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The dynamics of vortices in type-II superconductors exhibit a variety of patterns whose origin is poorly
understood. This is partly due to the nonlinearity of the vortex mobility, which gives rise to singular behavior
in the vortex densities. Such singular behavior complicates the application of standard linear stability analysis.
In this paper, as a first step towards dealing with these dynamical phenomena, we analyze the dynamical
stability of a front between vortices and antivortices. In particular, we focus on the question of whether an
instability of the vortex front can occur in the absence of a coupling to the temperature. Borrowing ideas
developed for singular bacterial growth fronts, we perform an explicit linear stability analysis which shows
that, for sufficiently large front velocities and in the absence of coupling to the temperature, such vortex fronts
are stable even in the presence of in-plane anisotropy. This result differs from previous conclusions drawn on
the basis of approximate calculations for stationary fronts. As our method extends to more complicated models,
which could include coupling to the temperature or to other fields, it provides the basis for a more systematic
stability analysis of nonlinear vortex front dynamics.

DOI: 10.1103/PhysRevE.70.026209 PACS number(s): 05.45.2a, 74.25.Qt

I. INTRODUCTION

A. Motivation

The properties of type-II superconductors have been stud-
ied extensively in past decades. The analysis of patterns in
the magnetic flux distribution has generally focused on equi-
librium vortex phases. The interplay of pinning and fluctua-
tion effects, especially in the high-Tc superconductors, gives
rise to a rich variety of phases whose main features are by
now rather well understood[1,2]. In comparison with equi-
librium behavior, however, our understanding of the dynam-
ics of vortices, and the dynamical formation of vortex pat-
terns, is still much less well developed.

Recently, experiments with magneto-optical techniques
on flux penetration in thin films have revealed the formation
of a wide variety of instabilities. An example is the nucle-
ation of dendritelike patterns in Nb and MgB2 films [3–5].
These complex structures consist of alternating low and high
vortex density regions and are found in a certain temperature
window. Likewise, flux penetration in the form of droplets
separating areas of different densities of vortices has been
observed in NbSe2 [6]. Patterns with branchlike structures
have been found also in high-Tc materials, like YBa2Cu3O7−x
[7]. In addition, the scaling of the fluctuations of a(stable)
vortex front penetrating a thin sample has been studied[8].

Usually the occurrence of dendritelike patterns in interfa-
cial growth phenomena can be attributed to a diffusion-
driven, long-wavelength instability of a straight front, similar
to the Mullins-Sekerka instability[9] found in crystal
growth. In this paper, we therefore investigate the stability of
a straight front of vortices and antivortices which propagate
into a type-II superconductor. Furthermore, according to the
experimental data[10–13], the boundary between vortices
and antivortices exhibits many features suggestive of a long-
wavelength instability.

The nucleation of dendrites associated with the propaga-
tion of a flux front into a virgin sample has been attributed to
such an interfacial instability. This results from a thermo-
magnetic coupling[4,5,14,15] where a higher temperature
leads to a higher mobility, enhanced flux flow, and hence a
larger heat generation. However, the cause of the instability
at the boundary between fluxes of opposite sign is still being
debated. Shapiro and co-workers[16] attribute these patterns
to a coupling to the temperature field via the heat generated
by the annihilation of vortices with antivortices. On the other
hand, Fisheret al. [17,18] claim that an in-plane anisotropy
of the vortex mobility is sufficient to generate an instability.

There are several reasons to carefully reinvestigate the
idea of an anisotropy-induced instability of propagating
vortex-antivortex fronts. First of all, even though this mecha-
nism was claimed to be relevant for the “turbulent” behavior
at the boundaries of opposite flux regions, the critical aniso-
tropy coefficients found on the basis of an approximation
[17,18] correspond to an anisotropy too high to describe a
realistic situation, even when a nonlinear relation between
the current and the electric field was considered[19–21].
Secondly, the calculation was effectively done for a symmet-
ric stationary interface, rather than a moving one. Thirdly,
the physical picture that has been advanced[17] for the
anisotropy-induced instability is that of a shear-induced
Kelvin-Helmholtz instability, familiar from the theory
of fluid interfaces[22]. However, it is not clear how far
the analogy with the Kelvin-Helmholtz instability actually
extends.

In order to try to settle the mechanism that underlines
such phenomena, we investigate here the linear stability of
the interface between vortices and antivortices without any
approximations in the case where the front of vortices propa-
gates with a finite velocity. We perform an explicit linear
stability analysis which shows that, in the presence of an
in-plane anisotropy, vortex fronts with sufficiently large
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speedare stable in the absence of coupling to the tempera-
ture. We shall see that the issue of the stability of fronts
between vortices and antivortices is surprisingly subtle and
rich: while we confirm the finding of Fisheret al. [17,18]
that stationary fronts have an instability to a modulated state,
our moving fronts are found to be stable for all anisotropies.
Moreover, our calculations indicate that the stability of such
fronts depends very sensitively on the distribution of antivor-
tices in the domain into which the front propagates, so it is
difficult to draw general conclusions.

Besides the intrinsic motivation to understand this aniso-
tropy issue, there is a second important motivation for this
work. Our coarse-grained dynamics of the vortex densities is
reminiscent of reaction-diffusion equations with nonlinear
diffusion. This makes the coarse-grained vortex dynamics
very different from the Gaussian diffusive dynamics of a
linear diffusion equation. For example, the fact that vortices
penetrate a sample with linear density profiles[23] is an
immediate consequence of this. More fundamentally, the dy-
namically relevant fronts in such equations with nonlinear
diffusion are usually associated with nonanalytic(singular)
behavior of the vortex densities—such singular behavior has
been studied in depth for the so-called porous medium equa-
tion [24–26], which has a similar nonlinear diffusion. In the
case we will study, the front corresponds to a line on one side
of which one of the vortex densities is nonzero, while on the
other side it vanishes identically. In the regime on which we
will concentrate, this vortex density vanishes linearly near
the singular line. But for other cases encountered in the lit-
erature[18,27], even more complicated nonlinear dynamical
equations arise that are reminiscent of reaction-diffusion-
type models in other physical systems. The case of bacterial
growth models[28,29] illustrates that the nonlinearity of the
diffusion process can have a dramatic effect on the front
stability, so a careful analysis is called for. Nevertheless, in
our case nonlinear diffusion by itself does not lead to an
instability of the front, unlike in the bacterial growth case
[29] or viscous fingering[9].

From a broader perspective, we see this work as a first
step towards a systematic analysis of moving vortex fronts.
The linear stability analysis which we will develop can
equally well be applied to dynamical models which include
coupling to the temperature or in which the current-voltage
characteristic is nonlinear. For this reason, we present the
analysis in some detail for the relatively simple case where
the vortex velocity is linear with respect to the magnetic field
gradient and the current. Even then, as we shall see, the basic
uniformly translating front solutions can still have surpris-
ingly complicated behavior. We find that the density of vor-
tices which penetrate the sample vanishes linearly for large
enough front velocities, but with a fractional exponent for
front velocities below some threshold velocity[30]. Since
the latter regime appears to be physically less relevant, and
since we do not want to overburden the paper with math-
ematical technicalities, we will focus our analysis on the first
regime. As stated before, in this regime we find that an an-
isotropy in the mobility without coupling to the temperature
does not give rise to an instability of the flux fronts.

Our analysis will be aimed at performing the full stability
analysis of the fronts in the coupled continuum equations for

the vortex densities. Our procedure thus differs from the one
of [17,18] in which a sharp interface limit was used. In many
physical systems, it is often advantageous to map the equa-
tions onto a moving boundary effective interface problem, in
which the width of the transition zone for the fields is ne-
glected. One can in principle derive the proper moving
boundary approximation from the continuum equations with
the aid of singular perturbation theory. The analogous case of
the bacterial growth fronts[29] indicates, however, that such
a derivation can be quite subtle for nonlinear diffusion prob-
lems. Indeed it is not entirely clear whether the assumptions
used in the sharp interface limit of Refs.[17,18] are fully
justified. For this reason, we have developed an alternative
and more rigorous stability analysis which allows for a sys-
tematic study on fronts in vortex dynamics.

B. The model

The physical situation that we have in mind refers to a
semi-infinite two-dimensional(2D) thin film in which there
is an initial uniform distribution of vortices due to an exter-
nal field H applied along thez direction. By reversing and
increasing the field, a front of vortices of opposite sign pen-
etrates from the edge of the film. We will refer to the original
vortices as antivortices with densityn−, and to the ones pen-
etrating in after the field reversal as vortices with densityn+.
In the region of coexistence of vortices and antivortices, an-
nihilation takes place. Vortices are driven into the interior of
the superconducting sample by a macroscopic supercurrentJ
along they direction due to the gradient in the density of the
internal magnetic field. Flux lines then tend to move along
the directionx transverse to the current under the influence
of the Lorentz force on each vortex(see, e.g.,[1,2]),

F± = ±
1

c
J 3 f0 ez, s1d

where f0 is the quantum of magnetic flux associated with
each Abrikosov vortex. We consider the regime of pure flux
flow in which pinning can be neglected, while the viscous
damping then gives rise to a finite vortex mobility. We follow
a coarse-grained hydrodynamic approach in which the fields
vary on a scale much larger than the distance between
vortices. Since the magnetic flux penetrates in the form of
quantized vortices, the total magnetic field in the interior
of the thin film can be expressed in a coarse-graining proce-
dure through the difference in the density of vortices and
antivortices,

B = sn+ − n−df0 ez. s2d

The dynamical equations for the fields of vortices and anti-
vortices are simply the continuity equations

]n+

]t
= − = · sn+v+d −

n+n−

t
,

]n−

] t
= − = · sn− v−d −

n+n−

t
, s3d

where the second term on the right represents the annihila-
tion between vortices of opposite sign. Note that since vor-
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tices annihilate in pairs, the total magnetic fieldBz is con-
served in the annihilation process. The annihilation terms
depend on the recombination coefficientt; a simple kinetic
gas theory type estimate shows thatt−1 is of order ofvj0,
since the cross section of a vortex is of orderj0, the coher-
ence length[16]. The velocityv can be determined with the
phenomenological formula for the flux flow regime,

hv± = ± J 3
f0

c
ez, s4d

where the Hall term has been neglected with good approxi-
mation for a case of a dirty superconductor[2]. The drag
coefficient h is given by the Bardeen-Stephen model[31]
and generally depends on the temperature of the sample. In
this paper, we neglect this important coupling to the tempera-
ture, but we will allow the mobility(the inverse of the drag)
to be anisotropic. In passing, we also note that the above
linear relation between the currentJ and the flow velocityv±

is often generalized to a nonlinear dependence[18]. For sim-
plicity, we do not consider this case here, but our method can
be extended to such situations.

For a type-II superconducting material with a Ginzburg-
Landau parameterk@1/Î2, the magnetization of the sample
can be neglected, so thatB<H. Then, by using the Maxwell
equation(in which the term related to the displacement cur-
rents has been neglected with good approximation),

J =
c

4p
= 3 B, s5d

together with Eqs.(2) and (4), and substituting into Eq.(3),
we get

] n+

] t
= D = · fn+ = sn+ − n−dg −

n+n−

t
, s6d

] n−

] t
= D = · fn− = sn− − n+dg −

n+n−

t
, s7d

where the coefficientD is given byD=f0
2/ s4phd. This is the

system of nonlinear differential equations which governs the
dynamics of the vortex-antivortex front. The situation that
we will study in our analysis is the following. We consider a
front of vortices which propagates into the superconducting
thin film from the left edge atx=−Lx in the positivex direc-
tion. At x=−Lx, we impose the boundary condition that
the density of vorticesn+ is ramped up linearly in time,
n+s−Lx,td=Rt. This corresponds to the field going up lin-
early, just as in the Bean critical state[23]. We impose also
that far right atx→`, n+ vanishes whilen− approaches a
constant valuen`. Through a rescaling of time and length
variables, the coefficients of Eqs.(6) and (7) can be set to
unity. In particular, it is convenient to rescale the time and
length variables according to the following transformation:

t → t n`

t
,

x → x

l0
= xÎ4ph

f0
2t

,

n → n

n`

. s8d

We will henceforth analyze Eqs.(6) and (7) with D=1 and
t=1.

As we already mentioned in the Introduction, and as we
shall see in detail below, the above continuum equations
have a mathematical singularity at the point wheren+ van-
ishes. Of course, in reality there cannot be such a true sin-
gularity and our continuum coarse-grained model breaks
down at scales of the order of the London penetration depth.
In particular, the derivative of the magnetic field and thus the
current J are not discontinuous with respect to the space
variable, but they decrease exponentially in a distance ap-
proximately equal to the penetration depth. Effects like ther-
mal diffusion, the finite core size, and the nonlocal relations
which are neglected in the London approximation all play a
role there, and the Ginzburg-Landau equation would provide
a more appropriate starting point. Clearly, if the dynamical
behavior of our continuum model would be very sensitively
dependent on the nature of the singularity, then this would be
a sign that the physics at this cutoff scale would really
strongly affect the dynamically relevant long-wavelength dy-
namics. In practice, however, this is not the case. First of all,
our method to do the linear stability analysis is precisely
aimed at making sure that the singularities at the level of the
continuum equations do not mix with the behavior or pertur-
bations of the front region. Secondly, as we shall see, there
are no instabilities on scales of the order of the microscopic
cutoff provided by the London penetration depth.

C. The method

In our analysis, we first study a planar front which propa-
gates with a steady velocityv along thex direction. By con-
sidering the propagation of the front in the comoving frame,
we get a system of ordinary differential equations(ODEs)
for the vortex and antivortex density fields. The derivation of
the uniformly translating solution is discussed in Sec. II A.
As we will see, the profile that corresponds to the planar
front for the density of vortices is singular. In particular, in
the regime on which we will focus, the derivative of the
vortex density is discontinuous at the point where the field
vanishes, while in the low-velocity regime there are higher-
order singularities. As a consequence of this nonanalytic be-
havior, the numerical integration of the equations has to be
done with care near the singular point.

In Sec. III, we perform a linear stability analysis of the
planar solution. A proper ansatz consists here of two contri-
butions: a perturbation in the line of the singular front and a
perturbation of the density field. As we will see, the presence
of an in-plane anisotropy means that the(anti)vortex flow
velocity is no longer in the same direction as the driving
force acting on the(anti)vortices. Hence, contrary to the iso-
tropic case, we have to consider a component of the velocity
perpendicular to the driving force. The viscosity is thus rep-

DYNAMICS AND STABILITY OF VORTEX-ANTIVORTEX … PHYSICAL REVIEW E 70, 026209(2004)

026209-3



resented by a nondiagonal tensor and depends on the angle
between the direction of propagation of the front and the fast
growth direction given by the anisotropy. By applying a lin-
ear stability analysis, we get a system of equations for the
fields representing the perturbation. Through a shooting
method, and by matching the proper boundary conditions,
we are then able to determine a unique dispersion relation for
the growth rate of the perturbation. In Sec. IV, we treat the
case of a stationary front, with a velocityv=0. Contrary to
the case of a moving front, no singularity in the profiles of
the fields is present and the analysis can be carried out in the
standard way.

II. THE PLANAR FRONT

A. The equations and boundary conditions

In this section, we analyze the planar uniformly translat-
ing front solutionsn+=n0

+sx−vtd, n−=n0
−sx−vtd which are the

starting point for the linear stability analysis in the next sec-
tion. We refer to the system in a comoving frame in which
the new coordinate is traveling with the velocityv of the
front, j=x−vt. The temporal derivative then transforms into
]tux=]tuj−v]j. Since the front is uniformly translating with
velocity v, the explicit time derivative vanishes. In the co-
moving frame system, we considerj to vary in the spatial
interval f−L , +`g. Equations(6) and (7) become

− v
dn0

+

dj
=

d

dj
n0

+ d

dj
sn0

+ − n0
−d − n0

+n0
−, s9d

− v
dn0

−

dj
=

d

dj
n0

− d

dj
sn0

− − n0
+d − n0

+n0
−. s10d

This is a system of two ODEs of second order. Motivated by
the physical problem we wish to analyze, the relevant uni-
formly translating front solutions obey the following bound-
ary conditions at infinity:

lim
j→+`

n0
− = n`, lim

j→+`

dn0
−

dj
= 0,

lim
j→+`

n0
+ = 0, lim

j→+`

dn0
+

dj
= 0. s11d

It is important to note that the constantn` can actually be set
to unity: by rescaling the density fields as well as space and
time, any problem with arbitraryn` can be transformed into
a rescaled problem withn`=1. The stability of fronts there-
fore does not depend onn`, and in presenting numerical
results we always use the freedom to setn`=1.

On the left, the density of vorticesn+ increases linearly
with time with sweeping rateR. After a transient time, be-
cause of the annihilation process, the fieldn0

− and its deriva-
tive vanish. The dynamical equation(9) for the n+ field then
yields

dn0
+

dj
= − v + OS 1

n0
+D , s12d

i.e., we recover the well known critical state result[23] that
in the absence of antivortices the penetratingn+ field varies
linearly with slope −v. Requiring that this matches the
boundary conditionn+s−Lx,td=Rt for large times atj=−L
then immediately yields thatR=v2. It can be easily derived
that the density of antivortices decays with a Gaussian be-
havior on the left. By using indeed the relation(12) for large
distances and substituting it in Eq.(10), we get

n0
− < Ae−j2/4. s13d

Since the analysis of the planar front profiles and of their
stability is naturally done in the comovingj frame, we will
in practice use a semi-infinite system in thej frame, and
impose as boundary conditions atj=−L

lim
j→−L

n0
− = 0, lim

j→−L

dn0
−

dj
= 0,

lim
j→−L

n0
+ = const@ 1, lim

j→−L

dn0
+

dj
= − v. s14d

Of course, in any calculation we have to make sure thatL is
taken large enough that the profilesn0

± have converged to
their asymptotic shapes.

B. Singular behavior of the fronts

Effectively, Eqs.(6), (7), (9), and (10) have the form of
diffusion equations whose diffusion coefficient vanishes lin-
early in the densitiesn+ andn−. As already mentioned, it is
well known, from, e.g., the porous medium equation
[24–26], that such behavior induces singular behavior at the
point where a density field vanishes(see, e.g., Ref.[32]).
Because we are looking at fronts moving into the region
wheren+=0, in our case the singularity is at the point where
then+ density vanishes. Let us choose this point as the origin
j=0. Then the relevant front solutions haven+sjd=0 for all
j.0; see Fig. 1[33].

Becausen0
−s0dÞ0, the prefactor of the highest derivative

in the n− equation does not vanish atj=0, and hence one
might naively think thatn− is nonsingular at this point. How-
ever, because of the coupling through the diffusion terms,
this is not so. By integrating Eq.(10) over an interval cen-
tered aroundj=0 and using that the field valuesn0

+ and n0
−

are continuous, one immediately obtains that

lim
Dj→0

USdn0
+

dj
−

dn0
−

dj
DU

−Dj

Dj

= 0. s15d

Physically, this constraint expresses the continuity of the de-
rivative of the coarse-grained magnetic field(2). Mathemati-
cally, it shows that any singularity inn0

+ induces precisely the
same singularity inn0

−: to lowest order, the two singularities
cancel. Figure 1 illustrates this: one can clearly discern a
jump in the derivative ofn0

− at the point wheren0
+ vanishes

with finite slope.
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Before we analyze the nature of the singularity in more
detail, we note that because of the nonanalytic behavior at
j=0, it is necessary to analyze the regionj,0 wheren0

+

Þ0 separately from the one atj.0 where n0
+=0. In the

latter regions, the equations simplify enormously, as the re-
maining terms in Eq.(10) can be integrated immediately.
Upon imposing the boundary conditions(11) at infinity, this
yields

dn0
−

dj
= − v

sn0
− − n`d
n0

− , j . 0. s16d

Let us now analyze the nature of the singularity atj=0.
As the effective diffusion coefficient of then+ equation is
linear inn+, analogous situations in the porous medium equa-
tion suggest that the fieldn+ vanishes linearly. This motivates
us to write for −1!j,0 [34]

n0
+sjd = A1

+j + A2
+j2 + ¯ ,

n0
−sjd = A1

−j + A2
−j2 + ¯ + nan

− sjd, s17d

wherenan
− sjd is the analytic function which obeys Eq.(16)

for all j. Clearly, the continuity condition(15) immediately
implies

A1
+ = A1

−. s18d

If we now substitute the expansion(17) with Eq. (18) into
Eq. (9) for n0

+ we get by comparing terms of the same order

A1
+sv − nan

−8d = 0, Os1d,

4sA2
+ − A2

−d − 2nan
−9 − nan

− = 0, Osjd. s19d

Herenan
−8=dnan

− /djuj=0, etc. Likewise, if we substitute the ex-
pansion into Eq.(10) for n0

−, we get

2vA1
− − 2nan

− sA2
+ − A2

−d = 0, Os1d s20d

since the term of order unity involvingnan
− cancels in view of

Eq. (16). Higher-order terms in the expansion determine the

coefficientsA2
+ and A2

−, and other terms likeA3
± separately,

but are not needed here. Together with Eq.(16), the above
equations(19) and (20) immediately yield

nan
−8 = v,

nan
− s0d = 1/2,

A1
+ = A1

− = − v +
1

16v
, s21d

where for convenience we have now putn`=1.
There are two curious features to note about the above

result. First of all,n0
+ always vanishes at the point wheren0

− is
half of the asymptotic valuen` at infinity. Secondly, note that
A1

+ is negative forvù1/4 and positive forv,1/4. Since the
vortex densityn+ has to be positive, we see that these uni-
formly translating front solutions can only be physically rel-
evant forvù1/4.

Since the front velocity in this problem is not dynamically
selected butimposedby the ramping rateR=v2 at the bound-
ary, we do expect physically realistic solutions withv,1/4
to exist. In fact, it does turn out that in this regime the nature
of the singularity changes: instead of vanishing linearly,n0

+

vanishes with av-dependent exponent. Indeed, if we write
for −1!j,0 [34]

n0
+sjd = ujuasA1

+ + A2
+j + ¯ d. s22d

n0
−sjd = ujuasA1

− + A2
+j + ¯ d + nan

− sjd, s23d

and substitute this into the equations, then, in analogy with
the result above, we find

nan
−8 = v,

nan
− s0d = 1/2,

A1
+ = A1

−,

a =
1

8v2 − 1 . 1 sv , 1/4d, s24d

while again forj.0, n0
+ vanishes. A singular behavior with

exponent depending on the front velocityv is actually quite
surprising for such an equation[30]. However, one should
keep in mind that this behavior is intimately connected with
the initial condition for then− vortices. If one starts with a
case wheren− does not approach a constant asymptotic limit
on the far right, but instead increases indefinitely, one will
obtain solutions wheren+ vanishes linearly. For this reason,
and in order not to overburden the analysis with mathemati-
cal technicalities, from here on we will concentrate the
analysis on the regimevù1/4.

Since our study will limit the stability analysis to fronts
with velocity vù1/4 in our dimensionless variables, let us
check how the scale that we consider relates with the realistic
values of flux flow velocities. By considering relations(8),
the velocities are measured in units of

FIG. 1. Profile of the planar front for the density of the vortices
sn+d and antivorticessn−d for the casev=1.
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v0 =
l0n`

t
= cÎH`

Hc2
Îrnn`vj0

4p
< cÎj0

2

a2Îrnvj0

4pa2 ,

s25d

where we have expressed the viscosityh in terms of the
upper critical fieldHc2 and the normal state resistivityrn by
using [31]. Furthermore,a is the distance between vortices
for j→`; thus, sinceH`=f0n`<f0/a2, it follows that
H` /Hc2<j0

2/a2. For the constantt we have used the esti-
matet−1=vj0 discussed after Eq.(3). We can then rewrite
Eq. (25) as

v < c2 j0
3

4pa4rn. s26d

By considering typical values in Gaussian unitsrn<10−16 s
for the resistivity of the material, a coherence lengthj0<2
310−7 cm for high-Tc compounds, and a magnetic field
H`<20 G (which corresponds to a lengtha<10−4 cm), our
velocity is then measured in units ofv<1 cm/s. This veloc-
ity scale is much less than values found typically in the flux
flow regime, since in the presence of instabilities, fronts of
vortices can propagate with much higher velocities of order
104−106 cm/s [5]. Thus, the regimevù1/4 is indeed the
physical relevant one.

C. Sum and difference variables

At first glance, the equations look like two coupled
second-order equations. However, there is more underlying
structure due to the fact that the annihilation term does not
effect the differencen+−n−. In order to integrate the set of
equations(9) and (10), it is convenient to consider the fol-
lowing transformations in the variables related to the sum
and difference of the density fields:

D = n+ − n−,

S= n+ + n−. s27d

In these variables, the equations become

− v
dD0

dj
=

d

dj
S0

dD0

dj
, s28d

− v
dS0

dj
=

d

dj
D0

dD0

dj
−

S0
2 − D0

2

2
. s29d

By numerically integrating Eqs.(28) and (29) and looking
for the solutions which satisfy the boundary conditions
above, we obtained the uniformly translating front solutions.
As Fig. 1 illustrates forv=1, the profile is singular at the
point where the density of then+ field vanishes linearly, in
agreement with the earlier analysis.

Because of this singularity, the numerical integration of
the set(28) and(29) is quite nontrivial. In particular, because
of the discontinuity in the derivative of then+ field, the sys-
tem (28) and (29) effectively needs to be solved only in the
intervalf−L ,0f, as the matching to the behavior forj.0 has
already been translated into the boundary conditions(21).

The first equation can be straightforwardly integrated, and by
combining it with the second, the set reduces to

dD0

dj
=

− vsD0 + n`d
S0

,

dS0

dj
=

S0fvs2D0 + n`dg
dD0

dj
+ sS0

4 − S0
2D0

2d/2

vS0
2 + fvsD0

2 + n`D0dg
. s30d

One can easily verify that in this formulation, the expression
on the right-hand side is indefinite at the singular pointj
=0, as both the terms in the numerator and denominator
vanish. In order to evaluate the expression, it is then neces-
sary to perform an expansion of the numerator and denomi-
nator around the critical point valuesS=−D=n` /2. From
such an analysis one can then recover the relations(21)
which we previously obtained from a straightforward expan-
sion of the original equations. Numerically, we integrate the
equations by starting slightly away from the singular point
with the help of the results from the analytic expansion.

III. FRONT PROPAGATION IN THE PRESENCE
OF ANISOTROPY

A. Dynamical equations

As mentioned before, we are interested in the effect that
an anisotropy in the vortex mobility could have on the sta-
bility of the front. In particular, the motivation for such an
investigation is the experimental evidence that an instability
for a flux-antiflux front was found in materials with an in-
plane ab anisotropy, such as, for example, YBa2Cu3O7−d

[12].
In a material characterized by an in-plane anisotropy, the

effective viscous drag coefficient depends on the direction of
propagation of the front. More precisely, the mobility defined
in Eq. (4) then becomes a nondiagonal tensor. This leads to a
nonzero component of the velocityv perpendicular to the
driving Lorentz force. We want to investigate whether the
noncollinearity between the velocity and the force is respon-
sible for an instability of the flux-antiflux interface. In the
presence of anisotropy, the phenomenological formula(4)
then has to be replaced by

v = ĥ−1F = GR−1S1 0

0 a
DRF, s31d

where G is a constant,a represents the anisotropy coeffi-
cient, andR is the rotation matrix corresponding to an angle
u between the direction of propagation of the frontx and the
principal axesx8 of the sample. The coefficienta varies in
the range[0,1] with the limiting case of infinite anisotropy
corresponding toa→0. Fora=1, the isotropic case is recov-
ered. The matrixĥ−1 is given in particular by

ĥ−1 = GS cos2 u + a sin2 u cosu sin us1 − ad
cosu sin us1 − ad a cos2u + sin2u

D . s32d

The dynamical equations for the fieldsn+ andn− in the pres-
ence of anisotropy generalize to
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] n±

] t
=

]

] x
Sn± ]

] x
sn± − n7dD + p

]

] y
Sn± ]

] y
sn± − n7dD

+ k
]

] x
Sn± ]

] y
sn± − n7dD + k

]

] y
Sn± ]

] x
sn± − n7dD

− n+n−, s33d

where the length and time variables have been rescaled and
the elementsk and p depend on the angleu through the
formulas

k =
cosu sin us1 − ad

cos2u + a sin2u
, p =

a cos2u + sin2u

cos2u + a sin2u
. s34d

Starting from an initially planar profile derived in Sec. II A,
we want to study the linear stability of the front of vortices
and antivortices by performing an explicit linear stability
analysis on Eq.(33).

B. The linear stability analysis

As we have already mentioned in earlier sections, our
linear stability analysis differs from the standard one, due to
the presence of a singularity. The type of perturbation that
we want to consider should not only involve the profile in the
region wheren+ vanishes, but should also in particular in-
volve the geometry of the front. In other words, as Fig. 2
illustrates, we want to perturb also the location of the singu-
lar line at which the densityn+ vanishes. As discussed in
more detail in[29], the proper way to implement this idea is
to introduce a modulated variable

zsj,y,td = j + eeiqy+vt+iVt s35d

and then to write the densities in terms of this “comoving”
modulated variable. Of course, the proper coordinate is the
real variable Rez. However, when we expand the functions
in Fourier modes and linearize the dynamical equations in
the amplitude«, each Fourier mode can be treated separately.
Thus, we can focus on the single mode with wave numberq
and amplitudee and then take the real part at the end of the
calculation. The profiles of the fieldsn+ and n− are now
perturbed by writing

n+sz,y,td = n0
+szd + esn1

+ + in2
+dszdeiqy+vt+iVt, s36d

n−sz,y,td = n0
−szd + esn1

− + in2
−dszdeiqy+vt+iVt, s37d

wheren0
+ and n0

− are simply the planar front profiles deter-
mined before. Note that since we write these solutions as a
function of the modulated variablez, even the first term al-
ready implies a modulation of the singular line. Indeed, the
standard perturbation ansatz would fail for our problem be-
cause of the singular behavior of the front. The usual ansatz
of a stability calculation

n+sj,y,td = n0
+sjd + esn1

+ + in2
+dsjdeiqy+vt+iVt s38d

only works if the unperturbed profiles are smooth enough
and not vanishing in a semi-infinite region. If we impose on
our corrected linear stability analysis the conditions

n1
+ + in2

+

n0
+ bounded and

n1
− + in2

−

n0
− bounded, s39d

then as«→0 the perturbations can be considered small ev-
erywhere, plus we allow for a modulation of the singular line
[29].

We next linearize Eq.(33) around the uniformly translat-
ing solution according to Eqs.(36) and(37). We obtain a set
of four linearized ODEs for the variablesD1,D2,S1,S2,
which correspond, respectively, to the real and imaginary
parts of the difference and sum variables introduced in Eq.
(27). These equations, which are reported in the Appendix,
depend also on the unperturbed profilesD0,S0, which are
known from the derivation in Sec. II A. Moreover, there is an
explicit dependence on the parametersq,v ,V.

In order to analyze the stability of the front of vortices
and antivortices, the dispersion relationvsqd ,Vsqd must be
derived. This can be determined with a shooting method: for
every wave numberq there is a unique value of the growth
ratev and frequencyV which satisfies the boundary condi-
tions related to the perturbed front. If the growth rate is posi-
tive, a small perturbation will grow in time, thus leading to
an instability.

C. The shooting method

The singularity of the front makes the numerical integra-
tion difficult to handle, as in the case of the planar front. In
view of the relations(39), the boundary conditions

FIG. 2. Perturbed front profile
for the vortex and antivortex den-
sity field. The fronts propagate in
the x direction and have a sinu-
soidal modulation in the y
direction.
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n1
+ = 0, n2

+ = 0, s40d

have to be imposed forz=0. These yield the boundary con-
ditions for the variablesD1,S1,D2,S2,

S1 = − D1, S2 = − D2. s41d

Moreover, by substituting these boundary conditions and the
relations (21) for the unperturbed fields in the linearized
equations forD1,D2,S1,S2, the following relations can be
derived forz vanishing from the left[35]:

UdD1

dz
U

0−
= v + qkD2s0d, s42d

UdD2

dz
U

0−
= V − qkD1s0d − 2qkUdD0

dz
U

0−
. s43d

An explicit expression for the derivative of the sum of the
real and imaginary part of the perturbationsS1,S2 can also be
derived from the equations reported in the Appendix. In par-
ticular, these have the following generic form:

dS1szd
dz

=
N1szd
D1szd

,
dS2

dz
=

N2szd
D2szd

, s44d

which is similar in structure to Eqs.(30): N1,D1,N2,D2
depend onz through the set of functions

SD0,S0,
dD0

dz
,
dS0

dz
,D1,S1,

dD1

dz
,D2,S2,

dD2

dz
D ,

and on the parametersq,v ,V.
Equations(44) are not defined at the singular point. By

substituting the boundary conditions given by Eqs.
(41)–(43), both the numeratorsN1,N2 and the denominators
D1,D2 vanish. Again, as with Eq.(30), we encounter the
problem of dealing with the singularity atz=0. This diffi-
culty can be overcome in the same way as in Sec. II B for the
derivation of the planar front profile. In particular, we cannot
start the integration at the singular point, but we have to start
the backwards integration at some small distance on the left
of z=0. We do so by first obtaining the derivatives of the
fields S1 and S2 analytically through the expansion of Eqs.
(44) around the critical point. In the limitz→0, this yields
the following self-consistency condition for the derivatives:

UdS1

dz
U

0−
=

uN18u0−

uD18u0−
, UdS2

dz
U

0−
=

uN28u0−

uD28u0−
, s45d

where N18 ,N28 ,D18 ,D28 denote the derivatives of the corre-
sponding functions evaluated at the singular point. Once
these are solved and used in the numerics, the integration can
be carried out smoothly.

Because of the singularity at the pointz=0, the derivative
of the perturbed fields is not continuous there and a relation-
ship for the discontinuity in the derivatives can be derived, as
was the case for the unperturbed fields. In particular, the
expression(15) is generalized for the perturbed field. This
implies that the derivative of the total magnetic field is again
continuous even at the singularity.

From the equations for the perturbed fields given in the
Appendix, the boundary conditions atj=−L can be derived.
Just like the unperturbed field for the antivortex density van-
ishes on the left with a Gaussian behavior according to Eq.
(13), also the perturbationsn1

− andn2
− vanish as a Gaussian,

i.e., faster than an exponential.
Moreover, since the density of vortices increases linearly

asymptotically, we can retain in the equations only terms
which are proportional to the density of vorticesn0

+. From
this we get the following equation for the density of the
perturbationdn+=n1

++ in2
+ for z!−1:

d2dn+

d2z
+ 2iqk

ddn+

dz
− pq2dn+ = pq2dn0

+

dz
. s46d

The solutions of this equation which do not diverge are of
the form

dn+ = −
dn0

+

dz
+ Celz, l = iqk + Îfq2sp − k2dg, s47d

whereC is an arbitrary constant andk and p represent the
coefficients of anisotropy defined in Eq.(34). Thus, the per-
turbations decay on the left of the film with a decay length
z0, such that

1

z0
= qÎp − k2. s48d

Note that the decay length becomes very large for small
q—this type of behavior is of course found generically in
diffusion limited growth models. Technically, it means that
we need to be careful to take large enough systems to study
the small-q behavior. From the numerical integration, it was
verified that Eqs.(47) and(48) describe correctly the behav-
ior of dn+ at large distance.

Furthermore, since vortices are absent in the positive re-
gion, we have to impose that the density of the perturbation
related to then+ field, and its derivative in space, have to
vanish there. Similarly, we get a second ODE with constant
coefficients by considering that the density of antivortices is
constant at large positive distances. Taking againn`

− =1, we
get, for z@1,

d2dn−

d2z
+ sv + 2iqkd

ddn−

dz
− spq2 + v + iVddn− = 0. s49d

In order to satisfy the boundary condition, we must consider
the solution which vanishes exponentially. The solution of
this equation which does not diverge is of the form

dn− = C1e
l̄z, Resl̄d , 0. s50d

We applied the shooting method in a four-dimensional space
defined by the free parametersD1s0d ,D2s0d ,v, and V, by
integrating backward in the intervalf−L ,0g and then inf0,
+`f, looking for solutions of the type(47) and (50).

By matching the solutions to the boundary conditions

lim
z→−L

n1
+ = −

dn0
+

dz
, lim

z→−L
n2

+ = 0,
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lim
z→+`

n1
− = 0, lim

z→+`
n2

− = 0, s51d

we then obtain a unique dispersion relation for the real part
of the growth ratevsqd.

D. Results

Figure 3 represents the dispersion relation for an angle
u=p /4 and different coefficients of anisotropya. The front
is always stable, even in the presence of very strong aniso-
tropy, for very low values ofa. As the anisotropic coefficient
a is lowered from above, for fixed wave numberq, the
growth ratevsqd increases, but it is always negative. For
small q, a quadratic behavior ofvsqd is found,

v < cq2, q ! 1, s52d

where the(negative) coefficientc depends on the anisotropy
of the sample. In Fig. 4, we have plotted the frequencyV as
a function of the wave numberq. One observes from Eq.
(35) that V /q is the velocity with which the perturbation of

the front shifts along the direction transverse to the propaga-
tion direction. The behavior ofVsqd is linear for low wave
numberq and is proportional to the nondiagonal element of
the mobility tensork,

Vsqd ~ kq, q ! 1. s53d

For an anisotropy coefficient equal to 1, the isotropic case is
recovered and thenVsqd vanishes identically for all wave
numbers.

As we have already mentioned, the equations that we
have used are valid at scales larger than the cutoff repre-
sented by the London penetration depth. Anyway, since our
results clearly show a stability in the large-q behavior, our
model provides a good description for the dynamics of the
front.

In Fig. 5, we plot the growth ratev as a function ofq2 for
different values of the angleu. Linear regression then gives a
slope corresponding to the constantc in Eq. (52), which is
half the second derivative of the growth ratev with respect
to the wave number atq=0. The dependence ofc as a func-
tion of the angleu is shown in the lower plot. As the angleu
increases, the front becomes more and more stable. This be-
havior can be understood directly from the form of the equa-
tions. By applying the transformation

FIG. 3. Dispersion relationvsqd for different values of aniso-
tropy coefficienta and a velocityv=1.0.

FIG. 4. Imaginary part of the growth rateVsqd for different
values of the anisotropy coefficienta, with velocity v=1.0.

FIG. 5. (a) Plot of vsq2d as a function of the
angle u. (b) For a coefficient of anisotropya
=0.8 and a velocityv=1.0, the results from linear
regression for the slope evaluated atq=0, c
=dv /dsq2d, are plotted as a function ofu.
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u → p

2
− u, 0 , u , p/4, s54d

the elements of the mobility tensor transform into

p → 1

p
, k → k

p
. s55d

By considering the quadratic relation ofvsqd for smallq and
the fact that the equations are invariant under the transforma-
tions q̃=pq and (55), it is easy to derive

vsqduu=p2vsqdup/2−u, 0 , p , 1, s56d

which proves that the dispersion relation becomes more
negative asu increases. When the direction of propagation
is that of the fast growth direction, the isotropic case is
recovered.

In Fig. 6, we show the dependence of the coefficientc as
a function of the velocity of the front. The front is stable for
velocities for whichn0

+ vanishes linearlysvù1/4d. Further-
more, the front becomes more stable with increasingv. As
one can easily understand from the form of the unperturbed
front, the vortex density profile becomes steeper with in-
creasing the velocity. Thev→` limit corresponds to the
case of a front of vortices propagating in the absence of
antivortices. Thus, the results confirm the stability of the
front without an opposing flux of antivortices.

IV. STATIONARY FRONT

As we mentioned in the Introduction, we have also ana-
lyzed the case of a stationary front, withv=0. In this case, it
is easy to derive the unperturbed profiles for the densities of
vortices and antivortices, since they are continuous and do
not present any singularities. This case was previously stud-
ied in [17] and treated in terms of a sharp interface limit.
Equations(9) and (10) in this case simplify to

d

dj
n0

+ d

dj
sn0

+ − n0
−d − n0

+n0
− = 0, s57d

d

dj
n0

− d

dj
sn0

− − n0
+d − n0

+n0
− = 0. s58d

The profiles of vortices and antivortices are symmetric in this
case, and outside the interfacial zone the density fields can be
easily derived analytically. By neglecting the annihilation
term, the profiles of vortices and antivortices have a depen-
dence on the coordinatej of the type

n0
± = ÎN2 7 2Csj ± j1d, s59d

whereg−j1,j1f denotes the region where vortices and anti-
vortices overlap,N is the density ats±j1d, andC is a con-
stant. The density of vortices and antivortices decays with a
Gaussian tail, as can easily be calculated from Eqs.(57) and
(58). For Eq. (57), by considering thatn0

+ assumes a
Gaussian-like dependence, and from the form of Eq.(59), we
get the following equation:

−
dn0

+

dj

dn0
−

dj
= n0

+n0
−. s60d

This yields in a self-consistent way a Gaussian behavior for
n+,

n0
+ < Ae−j2−jsN2/C−2j1d, s61d

whereA is a constant. The density profiles for the vortices
and antivortices are represented in Fig. 7. The stability of the
front was studied by following a similar procedure as for the
moving front. Because of the regular profiles, the ansatz(35)
that we have applied for the case of a finite velocity is not
required. Thus the linear stability analysis can be carried out
in the standard way and the linearized equations for the per-
turbation can easily be integrated. We do not explain here the
procedure in detail, since it is a simplified version of the one
discussed in the previous section.

As Fig. 8 shows, an instability is found below a critical
coefficient of anisotropyac<0.02. These results confirm
previous approximate calculations[17], but, as we have al-

FIG. 6. Velocity dependence of half the second derivative of
vsqd with respect toq evaluated atq=0. As the velocity increases,
the front becomes more and more stable.

FIG. 7. Density profiles for vortices and antivortices in the sta-
tionary casesv=0d. The profiles are smooth and are not character-
ized by singularities, as was the case for fronts propagating with
finite velocity.
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ready underlined, this coefficient would correspond to an ex-
tremely high in-plane anisotropy which is not found in any
type of superconducting material. We conclude that this
model of a stationary front in the presence of anisotropy is
insufficient to explain the turbulent behavior that has been
found experimentally at the flux-antiflux boundary.

V. CONCLUSIONS

From our analysis, it follows that the planar front of vor-
tices moving with a sufficiently large velocityv in a super-
conducting thin film is stable even in the presence of strong
in-plane anisotropy. For stationary fronts, on the other hand,
our stability analysis confirms the earlier approximate analy-
sis of [17], confirming that such fronts show an instability to
a modulated state in the limit of very strong anisotropy. From
an experimental point of view, the critical anisotropy of this
instability is very high when compared with real values that
can be found for materials with both tetragonal and ortho-
rhombic structure[20,21], even when a nonlinear current-
electric field characteristic is considered[18]. From a theo-
retical point of view, the behavior in the limit of small but
finite v is still open as we have not investigated the range
0,v,1/4 where the profiles have a noninteger power-law
singularity. It could be that the instability gradually becomes
suppressed asv increases from zero, or it could be that the
limit v→0 is singular, and that moving fronts are stable for
any nonzerov. Only further study can answer this question.

Our calculations differ markedly from previous work in
that we focus on moving fronts from the start, where our
results follow from a straightforward application of linear
stability analysis to our model. Taken together, these results
lead to the conclusion that a model which includes a realistic
in-plane anisotropy, but which neglects the coupling with the
temperature, cannot explain the formation of an instability at
a vortex-antivortex boundary for sufficiently large front ve-
locities. At the same time, our calculations show that the
issue of the stability of vortex fronts is surprisingly subtle
and rich. For example, we note the fact that for any front

velocity, the valuen0
− at the singular line is exactlyn` /2 for

any v. Is this simply a mathematical curiosity or is the ab-
sence of instabilities related to this unexpected feature
through the boundary conditions at infinity? Is the presence
of a gradient in the antivortex distribution far ahead of the
front perhaps necessary to generate a long-wavelength front
instability? These are all still open issues, so clearly it is
difficult to make general statements about the(transient) sta-
bility of such fronts in less idealized situations.

One possible interpretation of the results is that when one
has a finite slab into which vortices penetrate from one side,
and antivortices from the other side, a stationary modulated
front (anihilation zone) forms in the middle for extremely
large anisotropies. However, a moving front never has a true
Mullins-Sekerka-type instability, since a protrusion of the
front into the region of antivortices is always damped as a
result of the increased annihilation.

The fact that the turbulent behavior at the interface be-
tween vortices of opposite sign was found in a temperature
window [12] shows that the coupling with the local tempera-
ture in the sample has to be considered. It appears that it is
necessary to include both the heat transport and dissipation
in the model. Applying an appropriate stability analysis to
such extended models is clearly an important issue for the
future.
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APPENDIX A: LINEARIZED EQUATIONS
FOR THE PERTURBED FRONT

From the linear stability analysis, we get the linearized
equations for the variablesD andS,

vSD1 +
dD0

dz
D − VD2 + pq2S0SD1 +

dD0

dz
D = + v

dD1

dz

+ SdS0

dz
DSdD1

dz
D + SdD0

dz
DSdS1

dz
D + S0

d2D1

dz2 + S1
d2D0

dz2

− qkF2S0
dD2

dz
+

dS0

dz
D2 +

dD0

dz
S2G , sA1d

vD2 + VSD1 +
dD0

dz
D + pq2S0D2 = + v

dD2

dz
+ SdS0

dz
DSdD2

dz
D

+ SdD0

dz
DSdS2

dz
D + S0

d2D2

dz2 + S2
d2D0

dz2 + qkF2S0SdD1

dz

+
d2D0

dz2 D +
dS0

dz
SD1 +

dD0

dz
D +

dD0

dz
SS1 +

dS0

dz
DG , sA2d

FIG. 8. Dispersion relationvsqd in the case of a stationary front.
An instability is found for a critical anisotropy coefficientac

<0.02.
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vSS1 +
dS0

dz
D − VS2 + pq2D0SD1 +

dD0

dz
D = + v

dS1

dz

+ 2SdD0

dz
DSdD1

dz
D + D0

d2D1

dz2 + D1
d2D0

dz2 − qkF2D0
dD2

dz

+ 2
dD0

dz
D2G − S0S1 + D0D1, sA3d

vS2 + VSS1 +
dS0

dz
D + pq2D0D2 = + v

dS2

dz
+ 2SdD0

dz
DSdD2

dz
D

+ D0
d2D2

dz2 + D2
d2D0

dz2 + qkF2D0SdD1

dz
+

d2D0

d2z
D

+ 2
dD0

dz
SD1 +

dD0

dz
DG − S0S2 + D0D2. sA4d
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