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�Received 3 March 2008; accepted 21 May 2008; published online 26 June 2008�

We present a new and efficient method for determining optimal configurations of a large number �N�
of interacting particles. We use a coarse-grained stochastic Langevin equation in the overdamped
limit to describe the dynamics of this system and replace the standard mobility by an effective space
dependent inverse Hessian correlation matrix. Due to the analogy of the drift term in the Langevin
equation and the update scheme in Newton’s method, we expect accelerated dynamics or improved
convergence in the convex part of the potential energy surface �. The stochastic noise term,
however, is not only essential for proper thermodynamic sampling but also allows the system to
access transition states in the concave parts of �. We employ a Broyden–Fletcher–Goldfarb–
Shannon method for updating the local mobility matrix. Quantitative analysis for one and two
dimensional systems shows that the new method is indeed more efficient than standard methods
with constant effective friction. Due to the construction, our effective mobility adapts high values/
low friction in configurations which are less optimal and low values/high friction in configurations
that are more optimal. © 2008 American Institute of Physics. �DOI: 10.1063/1.2943313�

I. INTRODUCTION

Condensed phases, whether liquid, glassy, or crystalline,
owe their existence and measurable properties to the interac-
tions between the constituent particles. These interactions are
comprised in a potential energy function ��r1 , . . . ,rN� that
depends on the location ri for each of those �N� particles.
Material-specific contributions to this potential energy func-
tion constitute a multidimensional �3N for structureless par-
ticles� potential energy landscape. Various static and dy-
namic phenomena in condensed phases emerge as
manifestations of the complex topography of this hypersur-
face �.1

An issue concerns the presence and determination of
special points on the � hypersurface, in particular, the
minima and saddle points. Minima correspond to stable par-
ticle configurations, such that any small distortion will result
in a restoring force to the undistorted arrangement. The glo-
bal minimum is related to the state of the system at zero
Kelvin, provided that the system is cooled slowly enough to
maintain thermal equilibrium. In general, several minima
with a substantial variation in depth are arranged in a com-
plex pattern throughout the configuration space; for a single-
component system rather general arguments show that the
total number of minima scales as N exp��N�,2 where ��0
depends on the chemical nature of the system considered.
Each minimum is enclosed in its own basin, consisting of all
points R= �r1 , . . . ,rN� in the direct vicinity of the minimum
where ��R� is monotonic. Saddle points can be found on the
boundary between contiguous basins and represent the tran-
sition states of the system.

Standard numerical optimization techniques for the de-

termination of these special points on the multidimensional
hypersurface have several drawbacks: �1� in practice, nonlin-
ear optimization methods �for instance, Monte Carlo �MC�
methods� are compute intensive due to rather poor conver-
gence; �2� deterministic algorithms are not devised to sample
multiple basins/minima and access them via transition states.
Moreover, general numerical methods are not based on fun-
damental physical laws underlying the time evolution of the
system and obscure the relation between the simulation path-
way and the dynamical phenomena that one would like to
capture. In molecular dynamics �MD�, the pathway is pre-
scribed by the classical Newtonian equations of motion,
which incorporate forces specified by �. Although MD is
commended as an exact method and, in general, provides an
adequate description of the particle dynamics, the length of
the pathway in configuration space is seriously limited by the
restriction of the time integration step to very small values,
caused by the presence of high frequency modes. For mod-
eling of phenomena on a long time and/or large length
scales, as well as the configurational sampling of large dense
systems, coarse-grained approaches are a reasonable alterna-
tive to MD. Coarse-grained descriptions reduce the degrees
of freedom in the system by employing time scale separation
and take into account only the stochastic properties of the
rapidly varying quantities. Stochastic dynamics techniques
�of which Brownian dynamics is the most simple form3� use
this approach to represent the presence of solvent by a sto-
chastic and a frictional force in the Langevin equation for the
solute. Moreover, one can argue that hydrodynamic modes
become irrelevant for the dynamics of dense and strongly
structured systems4 and assume that the velocity distribution
plays no relevant role. In particular, for dense systems, the
rapid flow of momentum and energy due to particle-particle
collisions in the Newtonian dynamics is given by the bath ina�Electronic mail: c.chau@chem.leidenuniv.nl.
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the Brownian dynamics. In the equilibrium limit, as a very
long time average of the dynamic evolution, the Newtonian
and the Brownian equations of motion should give the same
result and be equal to those of the equilibrium statistical
ensemble. Our aim here is to model the Brownian behavior
of N particles interacting via a pairwise potential. This po-
tential could be a Coulomb interaction, a Lennard-Jones-type
interaction, or simply a hard sphere repulsion. We employ
microscopic equations of motion and include information
about the local curvature of the potential energy hypersurface
� in the Langevin equation describing the Brownian dynam-
ics. The configuration-space sampling path resulting from
our method is unconditional and not necessary physically
realistic. There are conceptual similarities to some efficient
MC techniques.5,6

This article is structured as follows. First we introduce
our method and discuss the details and numerical implemen-
tation. Following, we compare the performance of this
method for a few lower dimensional problems to standard
methods. We discuss the properties and results obtained by
the new method in details. The focus here is on the effi-
ciency, the sampling path, and the numerically constructed
sampling ensemble. The application of this method to sys-
tems of higher dimensionality is left for future work.

II. OUR METHOD WITH ALTERNATIVE MOBILITY
TENSOR

As mentioned in the Introduction, we consider the
Brownian behavior of N particles, interacting via a pairwise
potential, in the high friction limit. The dynamics of this
system is described by the general position Langevin equa-
tion, written in Ito form as7

dx = �− M�x� � ��x� + kBT � · M�x��dt

+ �2kBTL�x�dW�t� . �1�

The second term on the right-hand side of Eq. �1� is the
compensation for the flux caused by the random force.7 Here
� is the potential energy, kB is the Boltzmann constant, T the
temperature, M�x� is the space dependent mobility tensor
with

M�x� = L�x�L�x�T, �2�

and W�t� is the multivariate Wiener process with
�dWi�t�dWj�t��=�ijdt. In the simulations, we use random
numbers with Gaussian distribution for the Wiener process.
For simplicity, we set kB=1 and render Eq. �1� in the dimen-
sionless form, i.e., all variables and functions �e.g., the en-
ergy potential ��x�� in Eq. �1� will be considered dimension-
less. Further, we will write � instead of 2kBT=2T. The
amplitude of the noise term is determined in agreement with
the fluctuation-dissipation theorem. As a result, the corre-
sponding Fokker–Planck equation gives rise to proper sam-
pling, according to the Boltzmann distribution, see
Appendix.

In the standard approach, the mobility tensor is chosen
as the identity I, giving rise to a scalar prefactor describing
the friction due to the implicit solvent. Here we include
space dependency via the second order derivative and con-

sider the mobility equal to the inverse Hessian H−1. As a
consequence, the deterministic part of Eq. �1� �for T=0�,

dx = − �H�x��−1 � ��x�dt , �3�

is similar to the update scheme in Newton’s method,

xk+1 − xk = �x = − �Hk
−1 � ��xk� , �4�

where dt is the �infinitesimal� time interval and � is an ap-
propriate positive step size, often obtained by a line search
method. In the following we use t as continuous variable and
k as iteration variable. Newton’s method is standard in un-
constrained nonlinear optimization, i.e., methods that aim at
minimizing a certain objective function ��x�, ��x� :RN

→R. The methods make use of a quadratic model in which
��x� is approximated on the kth iteration by a Taylor series
about xk,

��xk + �k� � qk��k� = ��xk� + �k
T � ��xk� + 1

2�k
TH�xk��k.

�5�

The displacement �k on iteration k follows as the minimizer
of qk���. A unique minimizer of qk��� exists if and only if
H�xk� is positive definite, and Newton’s method is only well
defined in this case. Usually, H�xk� is positive definite for
small �. It can then be proven that the sequence 	xk
 con-
verges and that the order of convergence is of second order
�quadratic convergence�. When xk is remote from the local
solution x* Newton’s method may not converge and may not
be defined �when H�xk� is not positive definite�. Prototype
algorithms such as line search and trust region methods can
be employed to avoid this problem.

Especially for large N or when evaluation of ��x� is
expensive, explicit calculation of the Hessian or inverse Hes-
sian is too demanding, and Newton-type methods are a good
alternative. These methods are based on approximating the
exact Hessian H�xk�=Hk in Eq. �5� by G�xk�=Gk �giving rise
to Bk=Gk

−1 approximate of Hk
−1 in Eq. �4��. The reduction of

��x�, the descent property, is guaranteed if Gk �and therefore
Bk� is positive definite. The rate of convergence depends on
the second derivative information installed in Bk and ranges
from linear to quadratic. The simplest positive definite
choice is Bk=Gk= I, which does not contain any curvature
information and gives rise to the well-known steepest de-
scent �SD� method with slow linear convergence. An alter-
native choice for indefinite Hk

−1 is Bk=Hk
−1+Dk, where Dk is

a diagonal matrix with proper elements. The efficient quasi-
Newton �QN� method builds up second derivative informa-
tion by estimating the curvature along a sequence of search
directions.8 Each curvature estimate is installed in an ap-
proximate inverse Hessian Bk by applying a rank-one or a
rank-two update. One of the most successful updates is the
Broyden–Fletcher–Goldfarb–Shannon �BFGS� formula,
which is a member of the wider Broyden class of rank-two
updates. The QN method with the BFGS update formula is
also known as the BFGS method.

Here, we aim at developing a general and efficient
scheme for equilibrating systems with many particles �large
N�, using the stochastic Langevin Eq. �1� in discretized form.
In analogy with Newton-type methods, we consider a mobil-
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ity matrix Mk that is a good approximation of the inverse
Hessian Hk

−1 to avoid direct calculation of this large 3N
�3N matrix. In particular, we use the BFGS method to de-
termine this approximate matrix Mk=Bk �see the Appendix
for details about the BFGS update scheme�. For T=0, our
update scheme is equal to that of the BFGS method. The
BFGS method is known to yield a positive definite matrix Bk

if the Wolfe conditions are satisfied,9 which requires that the
next step is in the descending direction and that the displace-
ment is sufficiently large. Moreover, in that case it shows
global convergence for convex functions ��x�.10 In contrast
to the standard practice, we deal with potentials ��x� that are
convex only in a relatively small subset of configuration
space. Our method should be able to hop between different
minimal states, that are separated by energy barriers, and not
be too sensitive to the starting configuration x0. A similar
problem is present in reaction path sampling: in some re-
gions, especially in the vicinity of saddle points, the Hessian
can be negative definite, and BFGS update becomes ill
conditioned.11 Recently, a number of alternative methods that
do not necessarily always satisfy the descent condition, the
symmetric rank-one formula �SRI�, Powell-symmetric-
Broyden method, and Bofill’s formula, were developed and
applied for reaction path sampling. Calculated pathways be-
tween reactant and product minima, via optimized transition
states, were found to be accurate for a number of problems.12

Nevertheless, we need to maintain the positive definiteness
of the mobility matrix Mk at all times, since the Choleski
decomposition in Eq. �2� requires this property.

As a consequence, the BFGS method needs to be
adapted to handle the cases where the Wolfe conditions are
violated. For computational reasons, we want to avoid any
type of preconditioning of the matrix Bk which requires the
explicit calculation of eigenvalues. A possible general rem-
edy to avoid ill conditioning is to switch back to the SD
method, i.e., restart the BFGS update from the initial guess
Bk= I. A disadvantage of this restart is that it would disregard
all curvature information that has been built up along the
pathway in configuration space. Another solution is updating
the Choleski factor L rather than B=LLT itself, which en-
sures a positive definite B.13 However, no practical advan-
tage can be expected for ill-conditioned problems,14 apart
from an assurance that Bk+1 remains positive definite in the
presence of round-off errors.

The key difference between Eq. �1� and standard BFGS
methods is the stochastic term that is added at every step to
ensure correct Boltzmann weights ��exp�−� /kBT��, which
can be seen as an information-based correction to the BFGS
update with varying amplitude and direction. Hence, our up-
date is a combination of a coherent and stochastic contribu-
tion. The coherent contribution is always in the descending
direction, by virtue of BFGS. The stochastic contribution al-
lows for sampling in the vicinity of the coherent update, the
extent of which is determined by thermodynamic properties,
and on average gives rise to the important ascending updates
and sampling of transition states. The efficiency of the co-
herent part, the BFGS method itself, depends on the appro-
priateness of the curvature estimate. We choose to conserve
the quadratic information that is accumulated in the sequence
of expanding subspaces in the convex part of � �where Bk is
positive definite� by the BFGS method. We use a small �con-
stant� step size and do not update Bk if the Wolfe conditions
are violated, i.e., if the approximate curvature yk

Tsk�0, we
take Bk+1=Bk. One can show that this choice does not affect
the theoretical equilibrium distribution of states, which is the
Boltzmann distribution. Since the pathway between different
minima should pass through regions with relatively small
Boltzmann weights, we expect fewer sampling in the part of
the potential energy surface where B is not updated, and
hence an increased efficiency of the update scheme in this
region. In terms of physical properties, reduced sampling can
be associated with accelerated kinetics and lower friction.
We will illustrate the peculiarities of this choice by consid-
ering the one dimensional �1D� and two dimensional prob-
lems. Since this scheme ensures the positive definiteness of
Mk=Bk at all times, the decomposition in Eq. �2� can be
obtained by the standard Choleski decomposition.

The calculation of the divergence of the mobility tensor
in the second term of the right-hand side of Eq. �1� is com-
pute expensive. To avoid direct calculation of the divergence
term Hütter and Öttinger15 proposed the following version of
the stochastic differential equation �SDE�:

dx = �− M�x� � ��x��dt + 1
2 �M�x + dx�M�x�−1

+ I��2kBTL�x�dW�t� . �6�

Equation �6� suggests the use of the predictor-corrector

FIG. 1. The considered low dimensional sample cases. �a� 1D energy landscape; �b� two dimensional energy landscape.
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method in the numerical evaluation. The corresponding nu-
merical scheme becomes

�x = − 1
2 �M�x + �xp� � ��x + �xp� + M�x� � ��x���t

+ 1
2 �M�x + �xp�M−1�x� + I��2kBTL�x��Wt, �7�

where �Wt is the Wiener increment with ��Wt�=0 and
��Wti

�Wtj
�=�ijI�t and �xp is the predictor step,

�xp = − M�x� � ��x��t + �2kBTL�x��Wt. �8�

The updated mobility tensor obtained by the BFGS method,
M�xk�=B�xk�, guarantees the existence of the inverse in Eq.
�7�. The integration scheme is weakly convergent to first or-
der in the time step �t. This method replaces the calculation
of the divergence term and is clearly favored to the direct
calculation �except in cases where � ·M�x� is given in closed
form�. Details about the BFGS update, space, and time de-
pendent, can be found in the Appendix.

III. RESULTS AND DISCUSSION

In order to compare our method to standard approaches
for which the performance is known analytically, we restrict
the application of the new method to 1D and two dimen-
sional systems. In particular, these energy potentials are not
related to any real physical system.

A. Simulated sampling distributions

First, we verify the thermodynamic accuracy, i.e.,
whether our method indeed samples according to the Boltz-
mann distribution N exp�−� /kBT�. The considered energy
landscapes, containing multiple minima, are shown in Figs.
1�a� and 1�b� and are periodic in space �we use periodic
boundary conditions� in order to obtain a more differentiated
sampling. The simulated sampling distributions were calcu-
lated from the simulation results by a binning routine, with
small bin width hb or area hb

2. To obtain Figs. 2 and 3�b�, the
number of samples obtained in each bin were divided by the
total number of samples K=106.

In Fig. 2, the simulated distribution �for �t=0.01 and
�=1� is compared to the expected distribution function. The
expected distribution is the stationary solution of the
Fokker–Planck equation. There is no driving force in equi-
librium, hence there is zero flux. This is equal to the Boltz-
mann distribution for our choice of the drift and noise term.16

It can be observed that the simulated distribution
matches the theoretical distribution reasonably well, qualita-
tively but also quantitatively. The oversampling of the
maxima, and the global maximum of the distribution, in par-
ticular, is due to finite sampling and the peculiarities in the
update scheme for Bk. On average, we also observe under-
sampling of states with lower Boltzmann weights. At a later
stage, we discuss how our choice for the mobility Mk=Bk

contributes to these effects. For the two dimensional case,
the theoretical distribution �Fig. 3�a�� and the simulated dis-
tribution �Fig. 3�b�� match rather well, but show even some-
what more pronounced over- and undersampling than in 1D.
Overall, we conclude that the sampling is accurate in both
cases.

For larger problems, i.e., large N, the efficiency of our
new method is of importance. Here, we compare the mean
first passage times �MFPTs� obtained by our mobility to that
of Eq. �1� for Mk is constant. The latter choice gives rise to
the standard Langevin equation for particle motion in the
overdamped situation, with a constant friction coefficient.
Instead of the 1D potential in Fig. 1�a� with multiple minima,
we use a double-well potential. The advantage of this
double-well potential is that an analytical expression for the
MFPT is known.17 We note that the 1D case is special, as any

FIG. 2. Comparison of numerically calculated �full bars� and analytical
�open bars� probability distributions. The numerical results are obtained us-
ing our sampling method with �=1 and �t=0.01.

FIG. 3. Comparison between analytical distribution function and the calculated distribution function with �=1 and �t=0.01. �a� Analytical probability
distribution; �b� calculated probability distribution.
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sampling path between different �quasi� equilibrium states
automatically requires crossing the potential energy barrier.
For higher-dimensional energy surfaces, high energy barriers
can be avoided in favor of lower energy transition states or
saddle points, and the performance of the method crucially
depends on the ability to find the optimal route.

B. MFPTs

We consider the mean escape time from a 1D well, see
Fig. 4. By this we mean the first passage time from a to x,
where x→b. The MFPT �t�, defined as the average time
needed from a well to the top of the hill is a quantitative
measure for the average transition time between the two dif-
ferent �quasi� equilibrium states. Numerically, we performed
a large number of simulations �1000�, all starting in point a
in Fig. 4 using different noise seeds. The simulations were

finalized upon passing b for the first time, i.e., for k= k̃ such

that xk�b. The simulation times k̃ ·�k �in this article, k and
t can be interchanged and both represent time� were later
averaged to obtain the simulated �t�.

As mentioned, the simulated MFPT can be directly com-
pared to the MFPT for the standard Langevin equation, Eq.
�1� with M�x�=M is constant. We make our comparison
scale invariant by choosing the constant mobility M
=H−1�xmin�, where xmin is the location of the starting point.
The corresponding dimensionless position Langevin equa-
tion is

ẋ = − M � ��x� + 	�t� , �9�

and the analytical representation for the MFPT is given by
the integral formula

�t� =
2



�

a

b

dy exp 2

�
��y���

−�

y

dz exp−
2

�
��z�� , �10�

where 
 is the noise intensity of 	. Again, a is the initial
condition and b is the final state.18 For the double-well po-
tential shown in Fig. 4, defined by ��x�=− 1

2x2+ 1
4x4, we can

numerically integrate Eq. �10� and derive theoretical values
of the MFPT for varying �. Alternatively, one could also
directly use the well-known Kramers equation18 to calculate
theoretical MFPTs, but this explicit equation is only strictly
valid in the limit of high friction. The theoretical values �10�
and the simulated MFPTs, with M�xk�=B�xk�, are compared
in Fig. 5 for varying �. Additionally we have tested our

implementation by evaluating our scheme for constant mo-
bility M =M�xmin�. We observe that the simulated MFPTs for
this mobility are in very good agreement with the numeri-
cally integrated theoretical predictions of Eq. �10�.

An important observation is that the simulated MFPTs
for M�xk�=B�xk� are significantly smaller than the MFPTs for
the constant mobility �M =M�xmin�� for the whole � range.
The efficiency increases significantly for small � �or large
�−1, see Fig. 5�. Since the contribution of the stochastic term
is proportional to �, it is a clear indication that the incorpo-
ration of our new mobility, Mk=Bk�Hk

−1, in the determinis-
tic part of Eq. �1� allows for a much more efficient crossing
of energy barriers. This finding is important, since one could
think on beforehand that the effect of different mobilities is
rather small in 1D, where M is a scalar variable. In particu-
lar, using M =H−1�xmin� or M =B�xk� in Eq. �1� gives rise to
the same update for the deterministic part, apart from a space
dependent prefactor. For higher-dimensional energy surfaces,
the search direction itself will play an important role. We
have earlier noticed that, apart from the prefactor, the deter-
ministic part of Eq. �1� for M =M�xmin� is analogous to the
update in the standard SD method, independent of the di-
mensionality of the system. From transition state theory for
chemical reactions it is well known19 that the QN method is
much better suited for locating saddle points or transition
states than the SD method. Hence, we expect that especially
for high-dimensional systems the choice Mk=Bk, related to
the QN method, will lead to an improved sampling compared
to Mk=M�xmin�, which is, related to the SD method. In con-
clusion, we expect a further reduction of the transition times
�or MFPTs� for the new method and large N.

We have omitted error bars in Fig. 5 and calculated the
standard deviation of the MFPTs of the simulations. We
found that the ratio of standard deviation to the mean is
around 1 for each of the mobility tensors. This indicates that
the MFPTs are exponentially distributed.

C. The update scheme for mobility

Finally, we turn to our update scheme for M�xk�=Bk and
consider how our procedure to maintain positive definiteness
affects the sampling and efficiency. In particular, we only use

FIG. 4. The double-well potential considered; ��x�=− 1
2x2+ 1

4x4. FIG. 5. MFPTs of the double-well potential, calculated for different noise
amplitudes. The plusses ��� are the MFPTs calculated by numerically inter-
grating the analytical expresson �10�, with constant mobility M =H�xmin�−1.
The MFPTs found by our scheme �1� using a constant H�xmin�−1 ��� and
space dependent Bk ��� are shown as well. The step size �t=0.01.
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the BFGS update for Bk+1 if the Wolfe conditions are satis-
fied, otherwise Bk+1=Bk. The particular potential surface, the
1D double-well potential ��x�, H−1�x� �only for positive val-
ues� and the average B as a function of Cartesian coordinate
x are combined in Fig. 6. Since we again consider the 1D
potential, all functions have scalar values, and we use the
values from the many simulations that were carried out for
the calculation of the MFPT. Here and further on, all aver-
ages are calculated by a binning routine. For each bin, the
average is calculated over all B�x� within the bin.

In the convex region, where H �and thus H−1� is positive,
our update scheme clearly yields a good approximate for
H−1, as expected by virtue of the BFGS method. Only close
to the initial value a the average B is less accurate. This is
due to the initial guess B0= I and buildup of curvature infor-
mation. In the concave region, H−1�x� is negative, and hence
there is no update in this region, i.e., M�xk+1�=Bk+1=Bk. The
mobility remains unchanged as long as x lies in the concave
region. Only when the update crosses over to a convex re-
gion again, the mobility is updated. We refer to the boundary
limit the region, where the BFGS update is accepted or re-
jected as the crossover point xc. By virtue of our method the
location of this crossover point depends on the noise ampli-
tude and the temperature T. We determine the average
B�xc�=Bc value both numerically and by a simple theoretical
estimate. Consider xk=xpre in the convex region and xk+1

=xpost in the concave region, and x� the inflection point, i.e.,
the location where H=0 �see Fig. 7�. To determine xpre we
consider the following equation:

��x�2 = �xpre − xpost�2 = 4�xpre − x��2, �11�

where the latter equation is obtained by using xpre=x�

− 1
2�x.

Equation �11� can be rewritten as

4�xpre − x��2 = �H−1�xpre��t , �12�

which becomes a simple fourth power equation, since H�x� is
a quadratic function in this special case. Because H�x� and x�

are known, Eq. �12� can easily be solved analytically, which
gives the theoretical value of xpre. We compare the theoretical
estimate H−1�xpre� and the numerically obtained average Bc

in Fig. 8. Since we consider the average Bc, we loose infor-

mation about the individual simulation pathways. In particu-
lar, some pathways cross the inflection point multiple times
before reaching the top b, and as a result the location of the
crossover point, and hence the value of Bc, varies in time. We
try to include these details in the averaging procedure by
distinguishing between all pathways and pathways that cross
the inflection point only once �to be called first-time passing
in the remainder�. The dotted line in Fig. 8 shows the aver-
age Bc after first time passing only, and the dashed line
shows the average Bc using all simulated pathways. As ex-
pected, the value of Bc after first-time crossing is smaller
than the value of Bc using all pathways, and for all graphs the
value of Bc increases with decreasing noise amplitude �.
This behavior can be explained. First of all, one should real-
ize that the average distance h between the crossover and the
inflection point is determined by the average stochastic con-
tribution to the search direction, and therefore by the noise
amplitude in the stochastic term in Eq. �1�. The distance h
will decrease for decreasing � �or increasing �−1�, and since
H−1 is a monotonically increasing function in this interval,
the constant value of Bc will increase �see the relevant fig-
ures�. Pathways that cross back from the concave to the con-
vex region are more likely to also sample the interval be-
tween the first-time crossover point and inflection point, and

FIG. 6. The double-well potential �solid line�, the analytical inverse Hessian
�dashed line�, and calculated average mobility �dotted line� for �=0.2 and
�t=0.01.

FIG. 7. Analytical inverse Hessian �dashed line� and the calculated average
mobility �dotted line� with �=0.2 and �t=0.01. In addition we include a
schematic view of xpre, xpost, and the asymptote at x=x�, used to estimate the
mobility when the Hessian H is negative. The actual position of xpre and xpost

depends on the noise amplitude.

FIG. 8. Comparison of the analytically estimated mobility H−1�xpre� �solid
line� with from simulation obtained Bc for the mobility in the concave re-
gion of the double well; the average Bc after passing the inflection point
�dashed line� and the average Bc after the first time passing the inflection
point �dotted line�, with �t=0.01.
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subsequently the positive definite Bc is higher on average,
following the same arguments. We observe that all graphs in
Fig. 8 follow the same trend and are therefore equal, except
for a scaling factor.

We see that our choice for the mobility update in the
concave region results in a constant mobility Bc, with an
average value that increases with decreasing �. This is a
convenient property, in general, since high mobility or
equivalent low friction gives rise to an acceleration of the
scheme and smaller residence times in this part of the energy
potential landscape. Although the potential energy surface is
different, this finding explains the oversampling of the
maxima and undersampling of lower regions after a finite
number of simulations steps, when compared to the theoret-
ical Boltzmann distribution N exp�−� /kBT� in Fig. 2 �for
�=1�. For a decreased temperature or noise amplitude, the
regions associated with low Boltzmann weights become even
more pronounced, and standard MC methods experience a
critical slowing down and very long transition times. Multi-
canonical ensemble methods have been developed to en-
hance the behavior in these regions, by manipulating the
sampling distribution.20 In our method, however, the distri-
bution itself is left unchanged and does not have to be cal-
culated explicitly. With decreasing temperature, the approach
of the inflection points is slowed down �see Fig. 5�, but
crossing this point is followed by “tunneling” through these
regions due to particular features of the update scheme.

To be complete, we have also considered the properties
of our scheme �1� for the potential energy surface with mul-
tiple extrema �see Fig. 1�a��. In Fig. 9, we compare the ana-
lytic H−1�x� for this potential energy surface and the average
B for two different temperatures: �=0.2 and 1. We observe
that the average B associated with the lower temperature �
=0.2 is a very good approximate of the �analytic� inverse
Hessian in the convex region and almost constant outside
this region. This finding is very well in accordance with the
double-well case. We also observe that the large energy bar-
riers in the potential energy surface cannot be overcome for
this relatively small �. For higher �, the scheme samples the
whole interval x� �0,1�, which can also be observed from
the simulated distribution in Fig. 2. The average mobility B,

however, appears to be noisy. At first this may seem surpris-
ing, as the BFGS method is known to approximate the actual
H−1�x� in one step for a 1D function ��x�, if ��x� is a
�nearly� quadratic function. Moreover, the �almost� constant
value Bc in the concave part of the landscape is higher for
�=1 than for �=0.2, which seems in contradiction with the
conclusion drawn for the double-well potential. Looking at
B=B�x� in somewhat more detail, we may consider B a su-
perposition of low and high frequency contributions. The
shape of this low frequency contribution is very similar to
that of the inverse Hessian in the convex region. In the con-
cave region, it is a constant. Hence, we conclude that this
contribution can be associated with the part of the pathway
where the matrix B is frequently updated, and the BFGS
scheme provides a good approximate B of the actual H−1�x�.
The high frequency contribution gives rise to a shift of the
average B toward higher values, when compared to H−1�x�.
A similar shift in the direct vicinity of xpre can be observed
for the double-well potential in Fig. 7. Although these simu-
lations were stopped when the pathway reached point b and
here multiple extrema are sampled instead, the origin of this
overestimation is the same. Due to the random displace-
ments, the update can hop between convex and concave re-
gions in the vicinity of the crossover point. Since B in the
concave part is taken as the value of the last positive definite
update Blast, an update that hops back to the convex region at
step k uses Blast to update Bk+1. Consequently, the calculation
of the average B�x� in the vicinity of the crossover point
includes a number of values Blast that may be inaccurate ap-
proximates of the inverse Hessian H−1�x�. Moreover, the val-
ues associated with these last updates are likely to be higher
�on average� than the actual inverse Hessians H−1�x� �see
also the previous discussion for the double-well potential
using only first-time passages and all pathways�. Since the
range of the random displacements scales with the noise am-
plitude, the affected range of B�x� is also larger for larger �.
This explains the superposition of two contributions with a
different character. This overestimation is observed in the
whole range of ��x� and is due to the fact that the wells in
Fig. 1�a� are not well separated. We conclude that only a part
of the sampling pathway is affected and that the mobility in
this part is artificially high. However, from the comparison in
Fig. 2 we see that the Boltzmann distribution is well repro-
duced by the numerical sampling, so the effect is rather
minimal.

For two dimensional potential energy surfaces, the simu-
lated distribution in Fig. 3�b� has features that are similar to
the ones observed in 1D �see the section about the simulated
distribution of states�, and we conclude that our choice of Mk

is apparently also efficient for sampling transition pathways
for N=2. We note that this is an important finding, as for
N�1 pathways that cross energy barriers �maxima of the
function �� can be avoided in favor of saddle points. The
situation for higher dimensional systems �N�2� will be
considered in future publications.

FIG. 9. The multistate energy potential �solid gray line�, the analytical in-
verse Hessian �thick solid gray line�, with the average mobility Bk used in
simulations. The dots represent Bk with �=1 �large noise� and solid black
line Bk with �=0.2 �lower noise�.
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IV. CONCLUSION

We already discussed in detail the similarities between
our displacement and the QN displacement. The drift term in
Eq. �1� contains the approximate correlation matrix B multi-
plied with the minus gradient of the energy potential �� and
dt. This expression is exactly the same as the displacement in
the QN method. By only taking into account −B��dt and
the BFGS approach for B guarantees the descending property
of the method. Mathematically, the drift term guarantees qua-
dratic convergence to the local minimum. Physically, one
immediately notices that −�� is the force, since � is an
energy potential. If B is the identity matrix I, the displace-
ment contribution of the drift term is exactly biased in the
direction of the force �corresponds to the mathematical SD
method�. For a general diagonal matrix, the biased direction
is the force which magnitude is determined by the values of
the diagonal. Using the approximate of the covariance ma-
trix, the direction is determined by the correlation matrix B.

The stochastic term �2kBTL�x�dWt contains the tem-
perature and the decomposition of the covariance matrix.
The noise term has been obtained mathematically by satisfy-
ing the fluctuation-dissipation theorem. The temperature in
the noise term determines the shape of the distribution. If the
temperature is low, the distribution function will have
sharply peaked maxima. The MFPTs have already shown
that it can take a very long time to cross an energy barrier if
the temperature is low. In the limiting case energy barriers
will never be crossed, for T=0 the method becomes the stan-
dard QN method and the method will be trapped in the near-
est �local� minimum. If the temperature is high, the noise
term will dominate. The distribution function will be flat-
tened, which means that each state becomes almost equally
likely to be visited. Due to the high temperature the system is
able to cross energy barriers and hop from one minimum to
another. Too high temperature makes it difficult to identify
the minima since there is no explicitly a favored state. From
the existing analytical expression for the MFPTs we already
know that higher noise intensities, equivalent to the tempera-
ture in our case, will cause shorter MFPTs. We performed
simulations to compare the numerical evaluation of the ana-
lytical expression for the MFPTs. Choosing the mobility as a
constant gives us the same results as the analytical expres-
sion. Using our correlation matrix as mobility, the MFPTs
are certainly shorter compared to the MFPTs obtained from a
constant mobility M =H−1�xmin� and thus implies a better per-
formance of our method, based on the the cycles needed to
find the MFPTs. To be more accurate, we need to consider
the arithmetical operations needed in each cycle. It is obvi-
ous that our method needs more arithmetical operations in
each cycle because of the update for the approximate inverse
Hessian Bk�o�n2�� and the Cholesky decomposition �o�n3��.
In our 1D case, the MFPTs for M =Bk are roughly one order
lower than the MFPTs for M =H−1�xmin� for small �. Obvi-
ously the arithmetical operations in our sample case are lim-
ited since n=1. For higher dimensions n1, the arithmetical
operations may start to dominate if the performance of our
method over the standard method does not improve as well.
Existing knowledge of the efficiency of the QN and SD

methods indicates that this may actually be the case. How-
ever, future study will concentrate on the use of limited
memory methods for the iterative updates.

In short, our method combines the quadratic conver-
gence of the drift part with the properties of statistical ther-
modynamics in the noise part. The update of the mobility
tensor in the 1D double-well case shows that the mobility is
large in concave regions of the energy potential. This corre-
sponds with faster crossing over energy barriers, i.e., less
friction. In the convex regions, the mobility is lower, corre-
sponding to high friction. Hence, due to the constructed mo-
bility the method over sample regions which are more likely
and under samples regions which are less likely. The tem-
perature in our method has been kept constant during each of
the simulations. One can imagine that the method can be
improved by using the temperature as the tuning parameter
of the system. For instance, the temperature may be in-
creased if the sampling path is pinned to a certain minimum
for a long time. An increased temperature can help the
method to cross over a certain energy barrier. Adaptive tem-
peratures are a standard procedure in “simulated
annealing.”21

Additionally, improvement of the numerical perfor-
mance may come along by changing the time step �t, that
was considered constant throughout this study. This directly
corresponds to changing the step size in a QN method. A
very common method is using line search to determine the
step size. Other improvements, with respect to the BFGS
method used here, will be considered for larger dimensional
systems, and are out of scope of the present study.

APPENDIX: DERIVATION OF THE GENERAL
LANGEVIN EQUATION AND NUMERICAL
IMPLEMENTATION

According to Gardiner22 the many variable version of
the Fokker–Planck equation �FPE�, which describes the time
evolution of the probability density function of a stochast x,
is given as

�p�x,t�x0,t0�
�t

= − �
i=1

n

�i�p�x,t�x0,t0�ai�x��

+ 1
2�

i=1

n

�
j=1

n

�i� j�p�x,t�x0,t0�Dij�x�� , �A1�

which is related to the SDE,

dx = a�x�dt + B�x�dW �A2�

by D�x�=B�x�B�x�T. The drift vector a�x� and noise matrix
B�x� are obtained by requiring the stationary solution of the
FPE ps�x� to be the Boltzmann distribution ps�x�
=N exp�−���x��. Setting �p�x , t �x0 , t0� /�t=0 and substitute
ps�x� for p�x , t �x0 , t0� in the FPE give
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ps�x�ai�x� = 1
2�

j=1

n

� j�ps�x�Dij�x�� �A3�

= 1
2�

j=1

n

�Dij�x�� jps�x� + ps�x�� jDij�x�� �A4�

= 1
2�

j=1

n

�− �Dij�x�� j��x�ps�x� + ps�x�� jDij�x�� ,

�A5�

→

ai�x� = 1
2�

j=1

n

�− �Dij�x�� j��x� + � jDij�x�� . �A6�

This leads to the following SDE:

dx = 1
2 �− �D�x� � ��x� + �D�x��dt + B�x�dW�t� , �A7�

where B�x�BT�x�=D�x� and �−1=kBT. After defining D�x�
=2kBTM�x�=2kBTL�x�LT�x� one obtains

dx = �− M�x� � ��x� + kBT � · M�x��dt

+ �2kBTL�x�dW�t� , �A8�

where the noise term satisfies the fluctuation-dissipation
theorem. Equation �A8� is equivalent to the SDE proposed
by Hütter and Öttinger,15

dx = �− M�x� � ��x��dt + 1
2 �M�x + dx�M�x�−1

+ I��2kBTL�x�dW�t� . �A9�

This can be easily proven by expanding M�x+dx� around x
and obeying the rules dWdt=0 and dWdW=dt.

The discretized form of the SDE proposed by Hütter and
Öttinger is given below. The update for xk at simulation step
k is given as

xk+1 = xk − 1
2 �M�xk + �xk

p� � ��xk + �xk
p�

+ M�xk� � ��xk���t + 1
2 �M�xk + �xk

p�M−1�xk�

+ I��2kBTL�xk��Wt, �A10�

with the corresponding predictor step

�xk
p = − M�xk� � ��xk��t + �2kBTL�xk��Wt. �A11�

The approximate inverse Hessian B�xk�=Bk, which is taken
as the mobility tensor M�xk� is calculated using the BFGS
update,

Bk+1 = Bk −
Bkykyk

TBk

yk
TBkyk

+
sksk

T

yk
Tsk

, �A12�

where

sk = xk+1 − xk

and

yk = ���xk+1� − ���xk� . �A13�
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