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The Chalker-Coddington network model �introduced originally as a model for percolation in the quantum
Hall effect� is known to map onto the two-dimensional Dirac equation. Here we show how the network model
can be used to solve a scattering problem in a weakly doped graphene sheet connected to heavily doped
electron reservoirs. We develop a numerical procedure to calculate the scattering matrix with the aide of the
network model. For numerical purposes, the advantage of the network model over the honeycomb lattice is that
it eliminates intervalley scattering from the outset. We avoid the need to include the heavily doped regions in
the network model �which would be computationally expensive� by means of an analytical relation between the
transfer matrix through the weakly doped region and the scattering matrix between the electron reservoirs. We
test the network algorithm by calculating the conductance of an electrostatically defined quantum point contact
and comparing with the tight-binding model of graphene. We further calculate the conductance of a graphene
sheet in the presence of disorder in the regime where intervalley scattering is suppressed. We find an increase
in conductance that is consistent with previous studies. Unlike the tight-binding model, the network model
does not require smooth potentials in order to avoid intervalley scattering.

DOI: 10.1103/PhysRevB.78.045118 PACS number�s�: 73.50.Td, 73.23.�b, 73.23.Ad, 73.63.�b

I. INTRODUCTION

The low-energy and long-wavelength properties of con-
duction electrons in a carbon monolayer �graphene� are de-
scribed by the two-dimensional Dirac equation.1 In one-
dimensional geometries this partial differential equation can
be solved analytically, but fully two-dimensional problems
typically require a discretization to permit a numerical solu-
tion. The tight-binding model on the honeycomb lattice of
carbon atoms provides the most obvious and physically mo-
tivated discretization.2 The band structure of a honeycomb
lattice has two valleys, coupled by potential variations on the
scale of the lattice constant. Smooth potentials are needed if
one seeks to avoid intervalley scattering and obtain the prop-
erties of a single valley.

Discrete representations of the Dirac equation that elimi-
nate from the outset the coupling to a second valley may
provide a more efficient way to isolate the single-valley
properties. Alternative tight-binding models3–6 have been in-
troduced for that purpose. One method of discretization,
which has received much attention, is the network model,
originally introduced by Chalker and Coddington7 as a
model for percolation in the quantum Hall effect. Ho and
Chalker8 showed how a solution of this model can be
mapped onto an eigenstate of the Dirac equation, and this
mapping has proven to be an efficient way to study the lo-
calization of Dirac fermions.9

The recently developed capability to do transport mea-
surements in graphene10 has renewed the interest in the net-
work model11 and also raises some questions which have not
been considered before. The specific issue that we address in
this paper is how to introduce metallic contacts in the net-
work model of graphene. Metallic contacts are introduced in
the Dirac equation by means of a downward potential step of
magnitude U�. The limit U�→� is taken at the end of the

calculation. �It is an essential difference with the Schrödinger
equation that an infinite potential step produces a finite con-
tact resistance in the Dirac equation.� This phenomenological
model of metallic leads, introduced in Ref. 12, is now com-
monly used because �1� it is analytically tractable, �2� it in-
troduces no free parameter, and �3� it agrees well with more
microscopic models.13,14 A direct implementation of such a
metallic contact in the network model is problematic because
the mapping onto the Dirac equation breaks down in the
limit U�→�. Here we show how this difficulty can be cir-
cumvented.

To summarize then, there is a need to develop numerical
methods for Dirac fermions in graphene when the potential
landscape does not allow analytical solutions. If one imple-
ments a method based on the honeycomb lattice of graphene,
intervalley scattering is present, unless the potential is
smooth on the scale of the lattice. Smooth potential land-
scapes are experimentally relevant, but computationally ex-
pensive, because they require discretization with a large
mesh. It is therefore preferable to develop a numerical
method that eliminates intervalley scattering from the outset.
The known correspondence between the Chalker-Coddington
network model and the Dirac equation provides such a
method, as we show in this paper. The key technical result of
our work is an analytical method to include heavily doped
reservoirs. �Including these reservoirs numerically would
have been prohibitively expensive, computationally.�

In Secs. II and III we summarize the basic equations that
we will need—first regarding the Dirac equation and then
regarding the network model. Our key technical result in
Sec. IV is a relationship between the scattering problems for
the Dirac equation in the limit U�→� and for the network
model at U��0. We test the method in Sec. V by calculating
the conductance of an electrostatically defined constriction
�quantum point contact� in a graphene sheet. We also study
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the effect of disorder on conductance. We confirm the results
of previous studies15–18 that smooth disorder �that does not
cause intervalley scattering� enhances the conductivity of un-
doped graphene. We conclude in Sec. VI.

II. FORMULATION OF THE SCATTERING PROBLEM

A. Scattering matrix

A scattering formulation of electrical conduction through
a graphene sheet was given in Ref. 12. We summarize the
basic equations. The geometry, shown in Fig. 1, consists of a
weakly doped graphene sheet �length L and width W� con-
nected to heavily doped graphene leads. A single valley has
the Dirac Hamiltonian

H = v� · �p − eA�r�� + V�r� + �z��r� , �2.1�

where A�r� is the magnetic vector potential, V�r� is the elec-
trostatic potential, and ��r� is a substrate-induced mass term.
The vector �= ��x ,�y� contains the standard Pauli matrices

�x = �0 1

1 0
�, �y = �0 − i

i 0
� . �2.2�

We assume that the fields A, V, and � are smooth on the
scale of the lattice constant, so that the valleys are un-
coupled.

In the heavily doped leads �for x�0 and x�L�, we set
V�r�=−U� and take the limit U�→�. For simplicity we set
�=0 in the leads and we also assume that the magnetic field
is zero in the leads �so A is constant there�. The Dirac equa-
tion

H� = E� �2.3�

has to be solved subject to boundary conditions on the wave
function ��r� at y=0 and y=W. We will consider two types
of boundary conditions, which mix neither valleys nor trans-
verse modes. The first is the periodic boundary condition
���y=0= ���y=W. The second is the infinite-mass boundary
condition19

���y=0 = �x���y=0, ���y=W = − �x���y=W. �2.4�

We consider a scattering state �n that has unit incident
current from the left in mode n and zero incident current
from the right. �The quantum number n labels transverse
modes.� In the leads �n has the form

�n�r� = �n
+�y�eiknx + 	

m

rmn�m
− �y�e−ikmx, x � 0,

�2.5a�

�n�r� = 	
m

tmn�m
+ �y�eikm�x−L�, x � L . �2.5b�

We have introduced transmission and reflection amplitudes
tmn and rmn and the longitudinal component kn of the wave
vector of mode n. The right-propagating component in mode
n has a spinor �n

+ and the left-propagating component has a
spinor �n

−.
In the limit U�→�, the form of the scattering state in the

leads can be simplified considerably. The n dependence of kn
can be neglected, since kn
U� /	v→� as U�→�. The
number N�
U�W /	v of propagating modes in the leads can
be taken infinitely large. When N�→�, the choice of bound-
ary condition in the leads �not in the sample� becomes irrel-
evant and we choose periodic boundary conditions in the
leads for simplicity. Modes that are responsible for transport
through the weakly doped sample have transverse momenta
�qn�
U�. The corresponding spinors �n

� are

�n
��y� =

1
�2W

eiqny� 1

�1
�, qn =

2�n

W
, �2.6�

with n=0, �1, �2, . . .. While it is important not to neglect
the finiteness of qn in the phase factor exp�iqny� of these
modes, the spinor structure is proportional to �1, �1�, inde-
pendent of n because qn /U�→0. We note the orthogonality
relation

�
0

W

dy�m
��y�†�n

���y� = m,n�,��. �2.7�

We also note that the definition of �n
��y� ensures that each

scattering state �n carries unit incident current.
In a similar way, we can define a scattering state incident

from the right in mode n with transmission and reflection
amplitudes tmn� and rmn� . The transmission and reflection am-
plitudes constitute the scattering matrix

S = �r t�

t r�
� , �2.8�

which is a unitary matrix that determines transport proper-
ties. For example, the conductance G follows from the Lan-
dauer formula

G =
4e2

h
Tr tt† =

4e2

h
Tr t�t�†, �2.9�

where the factor of 4 accounts for spin and valley degenera-
cies.

−U∞

0

V

x

x

y

L

L

W

FIG. 1. Top panel: Schematic of a graphene sheet contacted by
two electrodes. A voltage source drives a current through the sheet.
The bottom panel shows the potential profile V�x ,y� for fixed y.
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B. Transfer matrix

The information contained in the scattering matrix S can
equivalently be represented by the transfer matrix T. While
the scattering matrix relates outgoing waves to incoming
waves, the transfer matrix relates waves at the right,

�R�r� = 	
n,�

bn
��n

��y�ei�kn�x−L�, x � L , �2.10�

to waves at the left,

�L�r� = 	
n,�

an
��n

��y�ei�knx, x � 0. �2.11�

The relation takes the form

bm
� = 	

n,��

Tm,n
�,��an

��. �2.12�

The four blocks T�,�� of the transfer matrix are related to the
transmission and reflection matrices by

r = − �T−−�−1T−+, �2.13a�

t = T++ − T+−�T−−�−1T−+, �2.13b�

t� = �T−−�−1, �2.13c�

r� = T+−�T−−�−1. �2.13d�

Unitarity of S implies for T the current conservation relation

T−1 = �zT
†�z, �2.14�

where �z is a matrix in the space of modes with entries
��z�m,n=m,n�z that are themselves 2�2 matrices. In terms
of the transfer matrix the Landauer formula �Eq. �2.9�� can
be written as

G =
4e2

h
Tr��T−−†T−−�−1� . �2.15�

C. Real-space formulation

In order to make contact with the network model, it is
convenient to change from the basis of transverse modes
�labeled by the quantum number n� to a real-space basis
�labeled by the transverse coordinate y�. The real space trans-
fer matrix Xy,y� is defined by

��L,y� = �
0

W

dy�Xy,y���0,y�� , �2.16�

where ��x ,y� is any solution of the Dirac equation �Eq.
�2.3�� at a given energy E. The kernel Xy,y� is a 2�2 matrix,
acting on the spinor �. Because the integral �Eq. �2.16��
extends only over the weakly doped region, X does not de-
pend on the potential U� in the leads.

In view of the orthogonality relation �Eq. �2.7��, the real-
space transfer matrix X is related to the transfer matrix T
defined in the basis of modes in the leads by a projection
onto �m

�,

Tm,n
�,�� = �

0

W

dy�
0

W

dy��m
��y�†Xy,y��n

���y�� . �2.17�

We now substitute the explicit form of �n
� from Eq. �2.6�.

The integrals over y and y� in Eq. �2.17� amount to a Fourier
transform,

Xm,n =
1

W
�

0

W

dy�
0

W

dy�e−iqmyXy,y�e
iqny�. �2.18�

From Eq. �2.17� we conclude that the 2�2 matrix struc-
ture of the transfer matrix,

Tm,n = �Tm,n
++ Tm,n

+−

Tm,n
−+ Tm,n

−− � , �2.19�

is related to the 2�2 matrix structure of the real-space trans-
fer matrix by a Hadamard transformation:

Tm,n = HXm,nH, H =
1
�2

�1 1

1 − 1
� . �2.20�

�The unitary and Hermitian matrix H is called the Hadamard
matrix.� In view of Eq. �2.14�, the current conservation rela-
tion for X reads

X−1 = �xX
†�x, ��x�m,n = m,n�x, �2.21�

where we used H�zH=�x.

III. FORMULATION OF THE NETWORK MODEL

The Chalker-Coddington network model7,9 was originally
introduced in order to analyze the localization transition in
the quantum Hall effect. Our interest in this model stems
from the fact that it is known to map onto the two-
dimensional Dirac equation.8 We briefly recall how the net-
work model is defined and how the mapping to the Dirac
equation works. We consider the square lattice shown in Fig.
2, with lattice constant �2l and lattice vectors

a2
a1

x

y

2l

FIG. 2. Square lattice �dots�, with circulating current loops that
form the network model. The loops are coupled to nearest neighbors
at the black rectangles. The lattice vectors a1 and a2 �each of length
�2l� are indicated.
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a1 = l�x̂ + ŷ�, a2 = l�ŷ − x̂� . �3.1�

The integers �m ,n� label the lattice site rm,n=ma1+na2. With
each site is associated a single current loop circling the site
without enclosing any neighboring sites, say clockwise, if
viewed from the positive z axis. The radii of these loops are
expanded until states associated with nearest-neighboring
sites overlap. At these points of overlap, states on adjacent
loops can scatter into each other.

As illustrated in Fig. 3, four current amplitudes Zm,n
�k� , k

=1, . . . ,4 are associated with each site �m ,n�. These are
amplitudes incident upon points of overlap, ordered clock-
wise, starting from the point of overlap with site �m+1,n�.
Each incident wave amplitude Zm,n

�k� has picked up a phase
�m,n

�n� since the previous point of overlap. With the point of
overlap between loop �m ,n� and �m+1,n� is associated a 2
�2 scattering matrix sm,n

+ , while sm,n
− is associated with the

point of overlap between �m ,n� and �m ,n−1�.
The matrix elements of sm,n

+ and sm,n
− are arranged such

that

� Zm,n
�2�

Zm+1,n
�4� � = �ei�m,n

�2�
0

0 ei�m+1,n
�4� �sm,n

+ � Zm,n
�1�

Zm+1,n
�3� � , �3.2a�

�Zm,n−1
�1�

Zm,n
�3� � = �ei�m,n−1

�1�
0

0 ei�m,n
�3� �sm,n

− � Zm,n
�2�

Zm,n−1
�4� � . �3.2b�

Ho and Chalker8 showed how this model can be mapped
onto the Dirac equation for two-dimensional fermions.
Firstly, one parametrizes the scattering matrices sm,n

� in terms
of Pauli matrices �i,

sm,n
− = sin��

4
+ �m,n��z + cos��

4
+ �m,n��x, �3.3a�

sm,n
+ = cos��

4
+ �m,n��z + sin��

4
+ �m,n��x. �3.3b�

�The same matrix of coefficients �m,n is used for sm,n
+ and

sm,n
− .� For given fields V�r�, A�r�, and ��r� in the Dirac equa-

tion, the mapping then dictates a corresponding choice of

parameters in the network model, namely �m,n
�k� and �m,n have

to satisfy8

1

2	
k=1

4

�m,n
�k� = �E − V�rm,n��

l

	v
, �3.4a�

�m,n
�1� − �m,n

�3�

2
= Ax�rm,n�

el

	v
, �3.4b�

�m,n
�4� − �m,n

�2�

2
= Ay�rm,n�

el

	v
, �3.4c�

2�m,n = ��rm,n�
l

	v
. �3.4d�

With this choice of parameters there is an approximate equal-
ity between a solution ��r� of the Dirac equation and the
current amplitudes of the network model,

��rm,n�  G�Zm,n
�1�

Zm,n
�3� �, G =

1
�2
�1 i

1 − i
� . �3.5�

The accuracy of the approximation is improved by making
the lattice constant �2l smaller and smaller.

As mentioned in Sec. II, we will be considering two types
of boundary conditions at y=0 and y=W in the sample re-
gion 0�x�L. The periodic boundary condition is realized
in the network model by putting the square lattice on a cyl-
inder of circumference W=2Nl oriented along the x axis. The
infinite-mass boundary condition is realized8 by terminating
the square lattice at y=0 and y=W and adjusting the scatter-
ing phases along the edge. The edge y=0 lies at sites �n ,
−n� and the edge y=W lies at sites �N−1+n ,N−1−n�. As
shown in Appendix A, for sites �n ,−n�, Eq. �3.1� must be
replaced with

Zn,−n
�4� = − Zn,−n

�3� , Zn,−n
�3� = Zn,−n

�2� , �3.6�

while for sites �N+n ,N−n� it must be replaced with

ZN+n,N−n
�2� = ZN+n,N−n

�1� , ZN+n,N−n
�4� = ZN+n,N−n

�1� . �3.7�

IV. CORRESPONDENCE BETWEEN SCATTERING
MATRICES OF DIRAC EQUATION AND NETWORK

MODEL

In this section we combine the known results summarized
in the previous two sections to construct the scattering matrix
S of a graphene strip with heavily doped leads from a solu-
tion of the network model. This construction does not imme-
diately follow from the correspondence �Eq. �3.5�� because
the limit U�→� of heavily doped leads still needs to be
taken. At first glance it would seem that in order to preserve
the correspondence between the network model and the
Dirac equation, we must simultaneously take the limit l→0
so that U�l /	v remains small. �The correspondence between
the network model and the Dirac equation is correct only to
first-order in this quantity.� This would imply that very large

(m + 1, n)

(m, n)

(m, n − 1)

Z
(4)
m+1,n

Z
(1)
m,n

Z
(3)
m+1,n

Z
(2)
m,n

Z
(3)
m,n

Z
(4)
m,n−1

Z
(1)
m,n−1

s+
m,n

s−
m,n

FIG. 3. Segment of the network of Fig. 2 with the wave ampli-
tudes Zm,n

�n� and scattering matrices sm,n
� indicated.
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networks are required for an accurate representation of the
graphene strip.

It turns out, however, that it is not necessary to model the
heavily doped leads explicitly in the network model, as we
now demonstrate. We define the real-space transfer matrix Y
as the matrix that relates Z�1� and Z�3� at the right edge of the
network to Z�1� and Z�3� at the left edge of the network. The
left edge �x=0� lies at sites �n ,n� with n=0,1 ,2 , . . . ,N−1.
The right edge at x=L=2Ml lies at sites �n+M ,n−M�. The
real-space transfer matrix Y relates

�Zn+M,n−M
�1�

Zn+M,n−M
�3� � = 	

n�=0

N−1

Yn,n��Zn�,n�
�1�

Zn�,n�
�3� � . �4.1�

We define the Fourier transform

Yqm,qn
=

1

N
	

m�=0

N−1

	
n�=0

N−1

e−2ilqmm�Ym�,n�e
2ilqnn�, �4.2�

with qn=2�n /W.
In view of the relation �Eq. �3.5�� between the Dirac wave

function � and the network amplitudes Z�1�, Z�3�, the real-
space transfer matrix X of the Dirac equation is related to Y
by a unitary transformation,

Xy=2ln,y�=2ln� =
1

2l
GYn,n�G

†. �4.3�

We can now use the relation �Eq. �2.20�� between X and the
transfer matrix T to obtain

Tm,n = �1 0

0 i
�Yqm,qn

�1 0

0 − i
� , �4.4�

where we have used

HG = �1 0

0 i
� . �4.5�

From Eq. �4.4� it follows that the lower right blocks of T
and Y are equal: Tm,n

−− =Yqm,qn

−− . Substitution into the Landauer
formula �2.15� gives

G =
4e2

h
Tr��Y−−†Y−−�−1� . �4.6�

The Landauer formula applied to the network model thus
gives the conductance of the corresponding graphene sheet
connected to heavily doped leads. For later use, we note the
current conservation relation for Y, which follows from Eqs.
�2.14� and �4.4�

Y−1 = �zY
†�z. �4.7�

V. NUMERICAL SOLUTION

In this section we test the accuracy and efficiency of the
solution of a scattering problem in graphene by means of the
network model. As explained in Sec. VI we need to calculate
the real-space transfer matrix Y through the weakly doped

region. The conductance of the corresponding graphene
sample then follows from Eq. �4.6�.

We calculate the real-space transfer matrix recursively by
adding slices to the network and multiplying the transfer
matrices of individual slices. Since a multiplication of trans-
fer matrices is numerically unstable, we stabilize the algo-
rithm as explained in Appendix B. We limit the numerical
investigation in this section to the case A�r�=0, ��r�=0,
where only the electrostatic potential V�r� is nonzero.

We have found that the efficiency of the algorithm can be
improved by using the fact that, according to Eq. �3.3�, there
is some arbitrariness in the choice of the phases
��1� , . . . ,��4�. For A�r�=0 and ��r�=0, one choice of the
phases could be

�m,n
�k� = �E − V�ma1 + na2��l/2, k = 1, . . . ,4. �5.1�

Another choice is

�m,n
�1� = �m,n

�3� = �E − V�rm,n��l, ��2� = ��4� = 0. �5.2�

The correspondence �Eq. �3.5�� between the network model
and the Dirac equation holds for both choices of the phases;
however the corrections for finite l are smaller for choice
�Eq. �5.2��. More precisely, as shown in Appendix C, if ��2�

and ��4� are zero, the network model does not contain cor-
rections to the Dirac equation of order �rVl .

Let us first consider the analytically solvable case of a
clean graphene sheet that is obtained by setting V=0 in the
weakly doped region. The Dirac equation gives transmission
probabilities12

T�E,q� = �cos �L + i
E sin �L

	v�
�−2

, �5.3a�

� =�� E

	v
�2

− q2. �5.3b�

For periodic boundary conditions the transverse wave vector
is discretized as qn=2�n /W, with n=0, �1, �2, . . .

In Fig. 4 we compare Eq. �5.3� to the results from the
network model for periodic boundary conditions in the
weakly doped region. The small parameter that controls the

�10 �5 0 5 10
0.0

0.2

0.4

0.6

0.8

1.0

qL

T

FIG. 4. Transmission probability of a clean graphene sheet at
energy E=7.85	v /L as a function of transverse wave number q.
The solid line is the result �Eq. �5.2�� from the Dirac equation,
while the open circles were numerically calculated using the net-
work model with periodic boundary conditions �when q=2�n /W�.
The discretization parameter of the network was �=El /	v=0.28.
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accuracy of the correspondence is �=El /	v. We find excel-
lent agreement for a relatively large �
0.3.

Figure 5 shows the conductivity

� =
L

W

4e2

h 	
n

T�E,qn� �5.4�

at the Dirac point �E=0� as a function of the aspect ratio
W /L. We do the calculation both for periodic and infinite-
mass boundary conditions in the weakly doped region. �In
the latter case qn= �n+ 1

2 �� /W with n=0,1 ,2 , . . . .� Again
we see excellent agreement with the analytical results from
the Dirac equation.12

We now apply the network model to a case that cannot be
solved analytically because it involves intermode scattering.
We take the electrostatic potential landscape shown in Fig. 6,
which produces a narrow constriction or quantum point con-
tact of width D and length Lc. In the weakly doped region of
length L, electrons have an energy EF measured from the
Dirac point. The barrier potential is tuned so that electron
transport through the barrier takes place at the Dirac point,
where all waves are evanescent. As the constriction is wid-
ened, the number of modes at a given energy that propagates
through the opening increases. For fixed EF, this should lead
to steps in the conductance as a function of opening width, at
intervals of roughly � /EF. The steps are smooth because the
current can also tunnel through the barrier.

We have calculated the conductance with the network
model �solid curve in Fig. 7� and using the tight-binding

model of graphene �dashed curve�. In the tight-binding cal-
culation we did not connect heavily doped leads to the
weakly doped region. This does not affect the results, as long
as L�Lc.

Both calculations show a smooth sequence of steps in the
conductance. The agreement is reasonably good, but not as
good as in the previous cases. This can be understood since
the tight-binding model of graphene is only equivalent to the
Dirac equation on long length scales.

The final numerical study that we report on in this paper
involves transport at the Dirac point through a disordered
potential landscape. Recent experimental studies20 have ob-
served electron and hole puddles in undoped graphene. The
correlation length of the potential is larger than the lattice
constant, hence intervalley scattering is weak. We are there-
fore in the regime of applicability of the network model
�which eliminates intervalley scattering from the outset�.

To model the electron and hole puddles, we divide the
sample into an array of square tiles �Fig. 8�, where each tile
has size 10l�10l, �2l being the lattice constant of the net-
work model. The electrostatic potential is constant on a
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0.0

0.1

0.2

0.3

0.4

0.5

0.6
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σ
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e
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/
h
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FIG. 5. Conductivity �=G�L /W at E=0 for a clean graphene
sheet as a function of the aspect ratio. The data points were calcu-
lated from the network model for fixed L=40l with periodic bound-
ary conditions �circles� and infinite-mass boundary conditions
�squares� in the weakly doped region. The solid lines are the result
�Ref. 12� from the Dirac equation. The dashed line indicates the
limiting value �h /4e2=1 /� for short wide samples.

W
Lc

D

x

y

V

L

V = 0

EF

FIG. 6. Potential landscape V�x ,y� that produces a quantum
point contact. The Fermi energy EF is indicated.
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FIG. 7. Conductance through the constriction of Fig. 6 as a
function of the width of the opening in the constriction. The solid
line was obtained using the network model, while the dashed line
was obtained using the tight-binding model of graphene. We used
parameters W=35	v /EF, Lc=8.7	v /EF. For the network model we
set the length of the weakly doped region to L=49	v /EF and used
a lattice constant �2l=0.24	v /EF, while in the tight-binding calcu-
lation we used a lattice constant 0.17	v /EF.

x

y

10 l

−Vmax
Vmax

L

W

FIG. 8. Illustration of the model of electron and hole puddles in
a graphene strip that we have studied. The sample is divided into
tiles. The value of the potential on a tile is a constant, here indicated
in grayscale, uniformly distributed between −Vmax and Vmax. The
potential on different tiles is uncorrelated. We choose a mesh for the
network such that each tile has size 10l�10l, where the network
lattice constant is �2l.
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single tile, but uncorrelated with the potential on the other
tiles. We take the values of the potential on any given tile to
be a random variable uniformly distributed between −Vmax
and Vmax. To make contact with previous studies,15,16 we
quantify the disorder strength by the dimensionless number

K0 =
1

�	v�2� dr��V�r�V�r��� . �5.5�

�The average �V�r�� is zero.� With tiles of dimension 10l
�10l, the relation between K0 and Vmax is K0
=100�Vmaxl /	v�2 /3, and the network model faithfully repre-
sents the Dirac equation for values up to K0
10. We use a
sample with aspect ratio W /L=5 and average over 100 dis-
order realizations. We repeat the calculation for two different
sample sizes, namely W=5L=300l and W=5L=450l. The
calculation is performed for transport at energy E=0, i.e., the
Dirac point of a clean, undoped sample. In Fig. 9 we show
the average conductance. Remarkably enough, the conduc-
tance increases with increasing disorder strength. This is
consistent with the results obtained in Refs. 15–18. The ef-
fect should not depend on the shape of the tiles in our model
for the disorder. We have therefore repeated the calculation
with rhombic instead of square tiles. We find deviations of
less than 5%.

The increase in conductance is explained by the nonzero
density of states at the Dirac point that is induced by the
disorder, together with the absence of back-scattering for
Dirac electrons. While we do not make a detailed study of
the dependence of conductance on sample size �at fixed as-
pect ratio�, we note that the conductance of larger samples
�squares in Fig. 9� is larger than the conductance of the
smaller samples �circles in Fig. 9�. This is consistent with the
scaling behavior found in Refs. 16–18.

VI. CONCLUSION

In conclusion, we have shown how the Chalker-
Coddington network model can be used to solve a scattering
problem in a weakly doped graphene sheet between heavily
doped electron reservoirs �which model the metallic con-

tacts�. The method is particularly useful when the scattering
problem does not allow an analytical solution, so that a nu-
merical solution is required. The network model eliminates
intervalley scattering from the outset. Thus, with a given
mesh size, a larger graphene sample can be modeled with the
network model than with methods based on the honeycomb
lattice. The key technical result of our work is that an infi-
nitely high potential step at the contacts can be implemented
analytically by a unitary transformation of the real-space
transfer matrix, without having to adjust the lattice constant
of the network model to the small values needed to accom-
modate the small wavelength in the contacts. We have dem-
onstrated that the algorithm provides an accuracy and effi-
ciency comparable to the tight-binding model on a
honeycomb lattice. In agreement with the existing
literature15–18 we have found that disorder that is smooth on
the scale of the graphene lattice constant enhances conduc-
tivity at the Dirac point. The absence of intervalley scattering
in the network model may prove useful for the study of these
and other single-valley properties.
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APPENDIX A: INFINITE-MASS BOUNDARY CONDITION
FOR THE NETWORK MODEL

In this appendix we consider the boundary condition im-
posed on the Dirac equation by termination of the network
along a straight edge. We consider the eight orientations
shown in Fig. 10, which have the shortest periodicity along
the edge. Since we want to discuss the long-wavelength
limit, each edge needs to be much longer than the lattice
constant �2l. �In this respect the figure with its relatively
short edges is only schematic.� The orientations are defined
by the vector n̂���=−x̂ sin �+ ŷ cos �, �= j� /4, j
=1, . . . ,8, which is perpendicular to the edge and points
outwards.

We wish to impose the infinite-mass boundary condition21
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〉
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FIG. 9. Conductivity �=GL /W averaged over 100 disorder re-
alizations versus disorder strength K0 at the Dirac point E=0. The
circles are for samples of size 60l�300l while squares are for
samples of size 90l�450l. The statistical error is of the order of the
size of the data points. The dotted line indicates the ballistic limit
GL /W=4e2 /�h.
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FIG. 10. Network of circulating current loops, as in Fig. 2, but
now terminated with straight edges. The letters a, b , . . . label the
orientation of the edge.
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�edge = �n̂��� � ẑ� · ��edge = ��x cos � + �y sin ���edge

�A1�

on the Dirac wave function at the edge. In view of the cor-
respondence �Eq. �3.5�� between the Dirac equation and the
network model, Eq. �A1� implies the boundary condition

�Z�1�

Z�3� �
edge

= �− �x sin � + �z cos ���Z�1�

Z�3� �
edge

�A2�

on the network amplitudes.
Away from the edge, the network amplitudes obey Eq.

�3.1�. For �, A, V, and E all equal to zero �Dirac point�, these
reduce to

� Zm,n
�2�

Zm+1,n
�4� � = H� Zm,n

�1�

Zm+1,n
�3� � , �A3a�

�Zm,n−1
�1�

Zm,n
�3� � = H� Zm,n

�2�

Zm,n−1
�4� � . �A3b�

We can eliminate the amplitudes Z�2� and Z�4� to arrive at the
equations

Zm,n
�1� =

1

2
�Zm,n+1

�1� + Zm−1,n
�1� − Zm,n

�3� + Zm+1,n+1
�3� � , �A4a�

Zm,n
�3� =

1

2
�Zm,n

�1� − Zm−1,n−1
�1� + Zm+1,n

�3� + Zm,n−1
�3� � . �A4b�

There are two linearly independent solutions �Zm,n
�1� ,Zm,n

�3� �
� �1,0� and �Zm,n

�1� ,Zm,n
�3� �� �0,1�. When the network is trun-

cated along an edge, bulk Eqs. �A3a� and �A3b� do not hold
for the amplitudes along the edge. We seek the modified
equations that impose the boundary condition �Eq. �A2�� up
to corrections of order �E−V�l /	v.

The edge orientation a was previously considered by Ho
and Chalker.8 We consider here all four independent orienta-
tions a, b, c, and d. The other four orientations a�, b�, c�, and
d� are obtained by a symmetry relation.

Edge a is constructed by removing all sites �m ,n� with
n�m. �See Fig. 11.� This means that the network amplitudes
Zm,m

�3� are prevented from scattering into the nonexistent am-
plitudes Zm−1,m

�2� belonging to the removed sites �m−1,m�.
Similarly, the amplitudes Zm,m

�4� are prevented from scattering
into the nonexistent amplitudes Zm,m+1

�3� . To do this one must
modify the scattering matrices sm−1,m

+ so that Zm,m
�3� can only

scatter into Zm,m
�4� , and sm,m+1

− so that Zm,m
�4� can only scatter into

Zm,m
�1� . As a consequence, for n=m+1, Eq. �A2� is replaced by

Zm,m
�4� = − Zm,m

�3� , Zm,m
�1� = Zm,m

�4� . �A5�

We eliminate Z�2� and Z�4� to arrive at Eq. �A3� for n�m and
Eq. �A4� for n=m. Equation �A4� for n=m is replaced by

Zm,m
�1� = − Zm,m

�3� . �A6�

The solution �Zm,n
�1� ,Zm,n

�3� �� �1,−1� indeed satisfies the
infinite-mass boundary condition �Eq. �A2�� with �=� /2.

Edge b is constructed by removing all sites �m ,n� with
n�0. �See Fig. 12.� This means that the network amplitudes

Zm,0
�4� are prevented from scattering into the nonexistent am-

plitudes Zm,1
�3� belonging to the removed sites �m ,1�. For n

=1, we replace Eq. �A3� by

Zm,0
�1� = Zm,0

�4� . �A7�

If we now eliminate the amplitudes Z�2� and Z�4�, we find that
Eq. �A3� is still valid for all n�0. For n=0, Eq. �A4� still
holds, while Eq. �A4� is changed to

Zm,0
�1� =

1
�2

�Zm−1,0
�1� − Zm,0

�3� � . �A8�

The solution �Zm,n
�1� ,Zm,n

�3� �T� �1,1−�2� satisfies the infinite-
mass boundary condition �Eq. �A2�� with �=� /4.

Next, we consider edge c, which results from the removal
of all sites �m ,n� with m�−n. �See Fig. 13.� In this case,
sm,−m+1

− must be modified to prevent Zm,−m
�4� from scattering

into Zm,−m+1
�3� . Furthermore, sm,−m

+ must be modified to prevent
Zm,−m

�1� from scattering into Zm+1,−m
�4� . For n=−m+1 we replace

Eq. �A2� by

Zm,−m
�2� = Zm,−m

�1� , Zm,−m
�1� = Zm,−m

�4� , �A9�

and eliminate Z�2� and Z�4� to verify that the boundary con-
dition holds.

The condition �Eq. �A9�� modifies three components of
Eqs. �A3a� and �A3b�:

(m, m)

(m, m + 1)

(m − 1, m)

Z(3)

Z(2)

Z(4)

Z(1)

Z(3)

Z(1)

Z(2)

s−
m,m+1

s+
m−1,m

FIG. 11. Network amplitudes at an edge with orientation a. The
dashed current loops are removed.

(m, 0)

(m, 1)

Z(3)

Z(2)

Z(4)

Z(1)

s−
m,1

FIG. 12. Edge with orientation b.
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Zm,−m
�1� =

1
�2

�Zm−1,−m
�1� − Zm,−m

�3� � , �A10a�

Zm,−m
�3� =

1

2
�Zm,−m−1

�3� − Zm−1,−m−1
�1� + �2Zm,−m

�1� � , �A10b�

Zm,−m−1
�1� =

1

2
�− Zm,−m−1

�3� + Zm−1,−m−1
�1� + �2Zm,−m

�1� � .

�A10c�

For m�−n−1 Eq. �A3� holds without modification and Eq.
�A3� also holds for m=−n−1. The solution

Zm,n�−m
�1� = �2Zm,−m

�1� = constant, Zm,n
�3� = 0 �A11�

implies �Zm,n
�1� ,Zm,n

�3� �� �1,0� for m�−n, which satisfies the
infinite-mass boundary condition �Eq. �A2�� with �=0.

Edge d results from the removal of all sites �n ,m� with
m�0. �See Fig. 14.� We must modify s0,m

+ such that Z0,m
�1�

does not scatter into Z1,m
�4� . To do this we replace Eq.�A3� for

sites �0,m� by

Z0,m
�2� = Z0,m

�1� . �A12�

We again eliminate Z�2� and Z�4� to arrive at

Z0,m
�1� =

1
�2

��2Z0,m+1
�1� + Z−1,m

�1� − Z0,m
�3� � , �A13a�

Z0,m
�3� =

1
�2

��2Z0,m
�1� − Z−1,m−1

�1� + Z0,m−1
�3� � , �A13b�

while for m�0 Eq. �A3� still holds. The solution
�Zm,n

�1� ,Zm,n
�3� �� �1,�2−1� obeys the infinite-mass boundary

condition �Eq. �A2�� with �=−� /4, as required.
This completes the boundary conditions for the four ori-

entations a, b, c, and d. The orientations a�, b�, c�, and d� are
obtained by the following symmetry: The network model is
left invariant by a � rotation in coordinate space �which
takes r to −r� together with the application of �y in spinor
space �which takes Z�1� to −iZ�3� and Z�3� to iZ�1��.

APPENDIX B: STABLE METHOD OF MULTIPLICATION
OF TRANSFER MATRICES

To construct the transfer matrix of a conductor, one can
divide it into slices, compute the transfer matrix of each
slice, and multiply the individual transfer matrices. This re-
cursive construction is numerically unstable because prod-
ucts of transfer matrices contain exponentially growing ei-
genvalues, which overwhelm the small eigenvalues relevant
for transport properties. Chalker and Coddington7 used an
orthogonalization method22,23 to calculate the small eigenval-
ues in a numerically stable way. To obtain both eigenvalues
and eigenfunctions, we employ an alternative method.16,24

Using the condition of current conservation, the product of
transfer matrices can be converted into a composition of uni-
tary matrices, involving only eigenvalues of unit absolute
value.

We briefly outline how the method works for the real-
space transfer matrices Y of the network model, defined by
Eq. �4.1�. For the recursive construction it is convenient to
rewrite this definition as

�Zm+L,m−L
�1�

Zm+L,m−L
�3� � = 	

n=0

N−1

Y�L,L��m,n�Zn+L�,n−L�
�1�

Zn+L�,n−L�
�3� � . �B1�

The numbers L ,L� are integers so that Y�L ,L�� is the transfer
matrix from x�=2L�l to x=2Ll. The composition law for
transfer matrices is matrix multiplication,

Y�L,0� = Y�L,L − 1�Y�L − 1,0� , �B2�

with initial condition Y�0,0�= identity matrix.
The unstable matrix multiplication may be stabilized with

the help of the condition Y−1=�zY
†�z of current conserva-

tion �see Sec. VI�. Because of this condition, the matrix U
constructed from Y by

Y = �a b

c d
� ⇔ U = � − d−1c d−1

a − bd−1c bd−1 � �B3�

is a unitary matrix �U−1=U†�. Matrix multiplication of Y’s
induces a nonlinear composition of U’s,

Y1Y2 ⇔ U1 � U2, �B4�

defined by

�a1 b1

c1 d1
� � �a2 b2

c2 d2
� = �a3 b3

c3 d3
� , �B5�

(m,−m)

(m,−m + 1) (m + 1,−m)

Z(3)

Z(2)

Z(4) Z(1)
Z(3)

Z(4)

Z(2)

s−
m,−m+1

s+
m,−m

FIG. 13. Edge with orientation c.

(0, m)

(1, m)

Z(3)

Z(2)

Z(4)

Z(1)

s+
0,m

FIG. 14. Edge with orientation d.
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a3 = a1 + b1�1 − a2d1�−1a2c1, �B6a�

b3 = b1�1 − a2d1�−1b2, �B6b�

c3 = c2�1 − d1a2�−1c1, �B6c�

d3 = d2 + c2�1 − d1a2�−1d1b2. �B6d�

The algorithm now works as follows: Multiply a number
of transfer matrices and stop well before numerical overflow
would occur. Transform this transfer matrix into a unitary
matrix according to Eq. �B3�. Continue with the next se-
quence of transfer matrices, convert to a unitary matrix and
convolute with the previous unitary matrix. At the end, we
may transform back from U to Y by the inverse of relation
�B3�

U = �A B

C D
� ⇔ Y = �C − DB−1A DB−1

− B−1A B−1 � . �B7�

In practice this final transformation is unnecessary. Accord-
ing to Eq. �B3� the upper-right block of U is d−1��Y−−�−1,
which is all we need to calculate the conductance using the
Landauer formula �4.6�.

APPENDIX C: OPTIMAL CHOICE OF PHASES
IN THE NETWORK MODEL

In Sec. V we noted that the same long-wavelength corre-
spondence between the Dirac equation and the network
model can be obtained for different choices of the phases
�m,n

�k� . Among these choices, choice �5.2� avoids corrections
of order �rVl to the Dirac equation. Here we show why.

For �=A=0 Eq. �3.3� reduces to

�m,n = 0, �C1a�

�m,n
�1� = �m,n

�3� = �1 − ���m,n, �C1b�

�m,n
�2� = �m,n

�4� = ��m,n, �C1c�

where we have defined the dimensionless quantity �m,n
��E−V�rm,n��l /	v. The parameter � can be chosen arbi-
trarily. We wish to show that the choice �=0 is optimal. We
substitute Eq. �3.2a� into Eq.�3.2b� of Sec. III, with this pa-
rametrization, and obtain

Zm,n
�1� =

ei�m,n

2
�e−i���m,n+1−�m,n��Zm,n+1

�1� + Zm+1,n+1
�3� �

+ Zm−1,n
�1� − Zm,n

�3� � , �C2a�

Zm,n
�3� =

ei�m,n

2
�Zm,n

�1� + Zm+1,n
�3� − e−i���m,n−1−�m,n�

��Zm−1,n−1
�1� − Zm,n−1

�3� �� . �C2b�

Now we expand in �m,n, keeping terms to first order, and take
Z�1� and Z�3� to be functions defined for all r and smooth on
the scale of the lattice. From Eq. �C2� we then obtain

0 = �E + �zpx + �xpy − V�r���Z�1�

Z�3� �
−

�

2
�V�r + a2� − V�r� V�r + a2� − V�r�

V�r� − V�r − a2� V�r − a2� − V�r�
��Z�1�

Z�3� � . �C3�

After transforming to �=G�Z�1� ,Z�3��T, with G as in Eq.
�3.5�, the first term on the RHS. of Eq. �C3� becomes the
desired Dirac equation. If we choose ��0 then the potential
V has to be smooth on the scale of the lattice, for the second
term to be negligible in comparison with the first. We con-
clude that �=0 is the optimal choice.
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