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Abstract
We form sub-micrometer-sized vapor bubbles around a single laser-heated gold nanoparticle in a
liquid andmonitor them through optical scattering of a probe laser. Bubble formation is explosive
even under continuous-wave heating. The fast, inertia-governed expansion is followed by a slower
contraction and disappearance after some tens of nanoseconds. In a narrow range of illumination
powers, bubble time traces show a clear echo signature.We attribute it to soundwaves released upon
the initial explosion and reflected by flat interfaces, hundreds ofmicrons away from the particle.
Echoes can trigger new explosions. A nanobubble’s steady state (with a vapor shell surrounding the
heated nanoparticle) can be reached by a proper time profile of the heating intensity. Stable nano-
bubbles could have original applications for lightmodulation and for enhanced optical–acoustic cou-
pling in photoacousticmicroscopy.

1. Introduction

Gas bubbles in liquids are involved inmany processes and applications [1]. Cavitation bubbles causemechanical
damage [2], and even can produce high-energy electromagnetic radiation, an effect called sonoluminescence
[3]. The dynamics of bubbles driven by acoustic waves is highly nonlinear and displaysmany complex
phenomena including chaos [1]. In the present work, we consider nanobubbles, i.e., bubbles with diameters of a
few tens to hundreds of nanometers. Nanobubbles can be generated by heating ametal (gold) nanoparticle in a
liquidwith a focused laser pulse. Compared to earlier experiments onmicrobubbles (a fewmicrons to tens of
microns in diameter), nanobubbles aremore difficult to observe, study andmanipulate. However, theymay give
rise to simpler or different properties, for example because liquidflows around nanobubbles present lower
Reynolds numbers [4].

The standardmethod to form a gas bubble optically is to illuminate an absorbing liquidwith a (sub-)
picosecond laser pulse [5, 6]. Alternatively, the energy absorbed by ametal nanoparticle is transferred to the
liquid by conduction. Because of the fast excitation and of the high heat conductivity of themetal, the particle’s
temperature is raisedwithin a few picoseconds towell above the boiling temperature of the liquid, whose sudden
vaporization leads to a necessarily explosive expansion of hot steam, pushing the liquid away and launching
bubble dynamics in the nanosecond time regime. Transient nanobubbles produced by short laser pulses have
beenmonitored [7–9] (i) by optical imagingwith short pulses, giving direct access to bubble size, (ii) through
the time dependence of probe light scattered off the bubble, giving time-resolved information, (iii) by acoustic
detection of emitted soundwaves [7], or by the combination of electric conductivity through a nanopore and
optical detection [10]. The environment change upon boiling can be detected via the particle’s plasmon
resonance [11], or by photothermal detection [12] butwith limited time resolution. Ensembles of nanobubbles
were studied by light scattering and by small-angle x-ray scattering of short x-ray pulses [13], or by femtosecond
pump-probe spectroscopy [14, 15], but thesemethods do not apply to single nanobubbles. Baffou et al [16] used
an imagingmicroscope to createmicrobubbles with continuous illumination of a single gold nanoparticle, also
with low time resolution. Recently, Cichos’ groupmodulated a probe beamby an isotropic bubble in a nematic
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liquid crystal close to its phase transition [17], but this process ismuch slower than the liquid–vapor equilibria
considered here.

The aimof the present workwas to produce a single stable nanobubble that could be studied optically. Stable
nanobubbles are interesting for their fundamental properties [18, 19] andmay have useful applications [20]. A
nanobubble is an efficient two-way transducer between acoustic and optical waves because of its large
compressibility and optical scattering cross-section. A stable nanobubble could be an attractive beacon, source,
or detector in photoacousticmicroscopy [21]. Thus, we set out to heat a gold nanoparticle with a continuous
laser beam, striving towards a precise balance between heat production in the nanoparticle and heat loss to the
surrounding liquid.Wemonitor bubble formation and dynamics optically, which provides high time resolution
down to the nanosecond, single-shot regime. Future experiments with short probe pulses and stroboscopic
detectionmay give access to the sub-picosecond regime.

Let us briefly discuss the possible steady states for a heatedmetal nanosphere in a liquid such as water. Upon
moderate heating, the particle is surrounded by a temperature gradient of hot water, as found for a gold nanorod
in an optical trap [22].We call this steady state regime I. Above a critical temperature, we expect to reach a
second steady state, regime II, with a steambubble around the nanoparticle. This steambubble remains in
equilibriumwith the liquid if the vapor pressure balances the ambient pressure, increased by the Laplace
pressure pL created by the liquid’s surface tension A T( ),T being the interface temperature. The Laplace pressure

scales inversely with nanobubble radiusR according to =p T( ) ,A T

RL
2 ( ) and reaches 30 atm for awater bubble

with 100 nmdiameter at room temperature. Forwater, =A T( 300 K)= 73mNm−1. Therefore, thewater
temperaturemust bemuch higher than 373 K (themacroscopic boiling temperature at ambient pressure) to
form a bubble around a nanoparticle. Figure 1(a) shows a phase diagramof regimes I and II for a heated
nanosphere with radius rparticle inwater, calculatedwith simple assumptions (see supplementary information).
Figure 1(b) shows the temperature profile around a nanosphere (rparticle = 40 nm) immersed in another liquid,
n-pentane. The large temperature gradient in the vapor is due to its low heat conductivity. The dashed line in
figure1(b) shows the boiling temperaturewhen the gas bubble just touches the sphere and shows the boundary
between regimes I and II for n-pentane. For very small particles, diameter <10 nm, the interface approaches the
critical temperature (647 K forwater, 469.8 K for n-pentane), and no clear interface appears anymore [23].

Here, we search for regime II of stable nanobubbles. To our surprise, we could not pass continuously from
regime I to regime II upon increasing the heating. Instead, the systemundergoes an explosive transition. After
characterizing this instability, we show that a proper time profile of the heating intensity allows us to create a
persistent nanobubble that lasts up to amicrosecond.

2.Methods

One of ourmain concerns in this work has been the reproducibility of our experiments.We studied the same
nanoparticle for a long time in a number of different experimental conditions for direct comparison.We
therefore workedwith gold nanospheres immobilized on a glass substrate, which can be imagedwith high

Figure 1.Phase diagram and temperature profile around a heated particle in liquid. (a): phase diagramof a heated particle inwater.
The line is theminimum temperature to reach the boiling as a function of particle radius. In steady state, a nanobubble develops
around the particle above the boiling line. The boiling temperature is significantly shiftedwith respect to ambient pressure (373 K).
(b): radial temperature profile around a nanosphere (diameter 80 nm) calculated in pentane. The dashed line indicates the boiling
phase transition as a function of particle size.
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precision in a standard confocalmicroscope. To obtain large enough optical signals, the size of nanoparticles was
chosen not too small, 80 nm in diameter.We also expect surface effects and irreversible shape changes of the
particle or of the particle-substrate area to be (relatively) less important for large particles.

For the sample preparation, we used gold nanospheres and immobilized themon a glass coverslip by spin
coating. The particles and the glass substrates were cleaned fromorganic ligands by repeated flushing and ozone
cleaning.We checked that all particles used in the present workwere isolated single ones, by photothermal
contrast [24]. The particles were coveredwith the liquid (water or n-pentane), so that bubbles could form in the
half-space limited by the flat glass–liquid interface. This breaks the spherical symmetry of the nanobubble with
respect to the gold nanoparticle and the interface (see the scheme infigure 2(a), but the nanobubble itself could
have a spherical shape.Our first experiments were done inwater for convenience and because it is by far themost
interestingfluid for applications. However, boilingwater around a nanoparticle requires temperatures up to
550 K, and the temperature of the gold particle can easily reach several hundreds of Kelvin above thewater’s
temperature (see figure 1(b)). Such high temperatures can lead to irreversible changes in particle shape
(movement of facets and of surface atoms) and,more critically, to changes in the contact area between gold and
glass. Therefore, to limit the possibility of such randomor irreversible changes we used n-pentane inmost
experiments. Pentane has a low boiling point (309 K at atmospheric pressure), so that we estimated that the
particle’s temperature did not exceed 370 Kupon boiling under our experimental conditions. This temperature
remains low enough to neglect surface rearrangements even after long illumination times.

We investigate the nanobubble optically only. The advantages of an all-optical investigation of the
nanobubble are its speed, non-invasiveness and sensitivity. The optical setup, shown in thefigure 2(b) and
supplementary information, is a classical photothermalmicroscope [25]. Photothermalmicroscopy is a
technique based on the absorption of small objects such as gold nanoparticles. Amodulated heating beamheats
the nanoparticle and creates a temperature gradient, or thermal lens, around the absorbing object. A non-
resonant probe beam,which is spatially overlappedwith the heating beam, is scattered by the thermal lens and
interferes with a reference beam, usually the transmitted or reflected probe beam. The interfering probe beam is
then collected by a photodetector such as a photodiode, and the signal is demodulated by lock-in amplifier.We
used the photothermal signal to overlap the heating (532 nm) and probing (815 nm) beams, to identify single
gold nanoparticles in the sample, and also tofind the critical intensity required for boiling (see section 3.1).
However, the photothermal signal, being produced by a lock-in amplifierwith an integration time of at least
0.1 ms, was too slow to follow fast bubble kinetics in the nanosecond andmicrosecond domains. For these time-
resolvedmeasurements, the probe signal collected in reflectionmode in bright-field scattering [26]was directly
fed into the fast photodiode and the electronic signal was recorded in a fast oscilloscopewith largememory.

3. Results and discussion

3.1. Photothermal detection
We started our study of single immobilized nanospheres with photothermal contrast (see section 2). At low
heating power, we only find continuous heating of the liquid around the particle. Above a critical pump
intensity, however, the photothermal signal increases suddenly as shown infigure 3, due towater boiling and
nanobubble formation. Repeated heating cycles around the threshold power show fluctuations of the transition
power by a few%.The particle temperature, estimated from the absorption cross-section and the heat
conductivity of water and glass (see supplementary information), correspondswell with the simplemodel of
figure 1. Yet, this steady-statemodel fails to explain the strong variability of the signal and the irreproducibility of

Figure 2. Scheme of the vapor bubble formation and the experimental setup. (a) A cartoon showing the asymmetric vapor bubble
formationwith respect to the nanosphere due to the glass–liquid interface, the gold nanosphere is heated continuously by the heating
beam; (b) scheme of the optical setup used here for nanobubble studies.
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successive transitions. Even at its highest time resolution (0.1 ms), the lock-in detection is too slow to follow the
dynamics of the nanobubble.

Themodel offigure 1 shows that the particle temperature can rise by hundreds of K once the bubble forms.
Such high temperaturesmay degrade the particle’s shape and its contact areawith the substrate. Therefore, we
adjusted the intensity carefully to avoid damaging the particle.Moreover, we switched to a different liquid, n-
pentane, which has amuch lower boiling point thanwater, to further limit irreversible damage to the system and
ensure reproducibility of the results. The physics of bubble formation and dynamics in pentanewill thus serve as
amodel for bubble formation inwater.

3.2.Direct probe detection
We thus directly detect the scattered probe intensity with the fast photodiode, following the bubble signal in real
time. Figure 4 shows an example of a time trace recorded at 100 μW, just above the critical power (94 μW) in
liquid pentane. The complex boiling trace offigure 4(a) appears as a succession of brief and violent events lasting
some tens of ns only, separated by 500 ns on average. Such violent events are characteristic of explosive boiling,
which is often observed in superheated liquids [27], andwhich can be suppressedwith superhydrophobic
coatings [28]. Herein, we use theword ‘explosion’ to describe a rapid bubble expansion in the nanosecond time
scale, similar towhat is customary observed in pulsed heating experiments [1, 4, 6, 10, 29]. Note that these
explosions occur at lowReynolds numbers, of the order of unity. The contraction or the decay part of the
nanobubble signal resembles the collapse behavior of acoustically driven gas bubbles [1]. The signal-to-noise
ratio is good enough to follow individual explosions (figure 4(b)), which present a rise time of about 14 ± 2 ns
and a decay time of about 31 ± 7 ns, clearly longer than the detector’s rise and fall times 5 and 16 ns. From these
times and from the intensity and spatial dependence of the signal, we estimate the bubble radius to 100–200 nm
(see supplementary information).We averaged hundreds of such events, synchronizing themwith the rising
edge of the explosion signal, and obtained the averaged profile offigure 4(c), which appears only slightly
broadened by the averaging to a rise time of 18 ns. The decay part of the explosion signal presents a small but
reproducible shoulder whichwill be discussed below (section 3.3). Beyond themain initial peak, the averaged
trace shows further undulations at longer times, with average spacing of 500 ns, corresponding to the later
explosions. They broaden because of the lack of exact periodicity.

Taking a long trace with hundreds of bubble explosions, we can look at the distribution of inter-explosion
delays, shown infigure 4(d). No explosion is found to occur at less than 300 ns from the previous one. The
distribution is wellfitted by aGaussian, with amaximumat about 500 ns for the conditions offigure 4.We also
present a scatter plot of the pairs of times between successive events (τn,τ + )n 1 in a 2Ddiagram (figure 4(d),
insert). This plot appears compatible with a succession of inter-explosion times drawn at random from the
Gaussian distribution offigure 4(d).We thus conclude that the randomnoise causing jitter, or deviations from
the average inter-explosion times, are uncorrelated between successive events. Similar jitter observations were
reported in [10], and attributed to randomness in the bubble nucleation process. In particular, the jitter in
nanobubble dynamics is not caused by experimental imperfections such as laser intensity noise or focus drift.
Note that heating intensity drifts can affect ourmeasurements, as shown in the supplementary information
(available at stacks.iop.org/NJP/17/013050/mmedia).

Figure 3.Photothermal signal of a single gold nanosphere inwater as the heating intensity is increased. Until a critical power of
4.6 mW(about 0.6 MW cm−2) the signal increases smoothly as expected for heated liquidwater. Above the critical power, the signal
undergoes a sudden jump to amuch higher value, with large fluctuations. Red dots: a typical example of a power sweep; green
triangles: accumulated data frommany sweeps showing the dispersion in signal and in critical power. The data of each sweep are
connected by a solid line. Inset: photothermal signal (red line, left scale) as a function of timewhile the heating power (blue line, right
scale) is swept as a sawtooth function between values below and above the critical power.
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Wenowpropose and discuss amechanism for this unexpected explosive boiling under continuous-wave
heating conditions. Aswe saw in the introduction, to nucleate and grow, the nanobubble needs to overcome the
Laplace pressure in addition to the ambient pressure. This only happens at 367 K for an 80 nmparticle in
pentane (483 K inwater). Once the bubble starts to grow, however, the effective boiling temperature decreases
because the Laplace pressure itself decreases.When a small part of the hot liquid vaporizes, it generates afirst
very thin vapor shell, which pushes the remaining hot liquid just outside the bubble. This hot liquid now
becomes overheatedwith respect to the vapor in the bubble, because of the lowered Laplace pressure. It will then
feed fresh steam into the bubble, further amplifying the expansion.We have estimated the energies involved in
bubble growth (see supplementary information).Wefind threemain contributions. Two of them are energy
costs: (i) the surface energy, which increases with bubble radius because both surface and surface tension
increase, (ii) the latent vaporization heat and internal vapor energy needed to expand the bubble. The third
contribution is a source of energy, (iii) the thermal energy stored in the overheated liquid layer. This heat can
flow either to the cooler water layers at larger radii, or towards the bubble, helping its growth. For afinal bubble
radius of 140 nm, these contributions are−1,−2.8, and 8.3 fJ, respectively, which indicates that bubble
expansion liberates energy and is therefore thermodynamically favorable. Note that conduction through the
liquid is fast enough tomake this energy kinetically available during the expansion, as the diffusivity of heat in
liquid pentane (6 × 10−8 m2 s−1) corresponds to 8 nm in 1 ns. Once the excess thermal energy has been
consumed into surface energy and latent heat, the bubble eventually reaches amaximum radius and shrinks
back under the restoring forces of surface tension and vapor condensation. Indeed, at themaximumbubble
radius, cooling of the thinned hot liquid layer by the outer cold liquid is very efficient. This explains that the
bubblemay disappear completely upon shrinking, as the returning cold bubble wall can condensate all the
vapor. The cold liquidwill have to be heated again by the nanoparticle during some hundreds of nanoseconds in
our conditions before a newoverheated layer is established and a new explosion can take place.

We note that a similarmechanism is at work in short-pulse experiments, where heat supplied by the hot
nanoparticle first has to be conducted to the surrounding liquid before boiling can set in [13].We can also
compare our system to air bubbles inwater. Those can reach very smallminimal radii, with accordingly high
temperatures and luminescence [30], followed bymultiple after-bounces. In our case, however, the steam
condensates until the bubble’s surface hits the nanoparticle and the bubble disappears. Indeed, the data of

Figure 4.Direct probe detection of nanobubbles under constant heating (100 μW) just above the threshold for boiling. Detector gain:
×1000, bandwidth: 10 MHz. (a) Typical time trace of the scattered probe beam showing successive explosive nanobubble events. The
probe power isfixed at 5 mW; (b) further zoom-in on one part of time trace (a); (c) average of 3123 explosions in time trace (a), taking
the halfmaximumof the rising edge of the signal as the time reference. Inset: zoom-in on themain peak; (d) the histogramof delay
times between two successive explosions. The solid line is aGaussian fit. Inset: scatter plot of all pairs of consecutive delays, τn and τ + ,n 1

from the trace in (a), showing no obvious correlation pattern.

5

New J. Phys. 17 (2015) 013050 LHou et al



figures 4(b) and (c) show that this contraction step is not followed by any clear after-bounces, apart from the
small shoulder seen infigure 4(c) at t≈ 60 ns, whichwill be discussed hereafter (see section 3.3). The explosion
repetition rate ismainly determined by the rate at which the liquid layer gets overheated, but itmay also depend
on themicroscopic crossing of the nucleation barrier, as proposed recently byNagashima et al [10] in bubbles
produced by Joule dissipation in a nanopore. Our analysis of time traces offigure 4 did not reveal any sign of a
chaotic dynamics [31].

3.3. Echo-triggered explosions
Underfinely tuned experimental conditions, a large fraction of explosion events are followed by after-pulses.
Figure 5 shows an example observedwith the particle studied in the experiments offigure 4 butwith a slightly
lower heating power (97 μW), corresponding to an inter-explosion delay of about 1 μs. In contrast tofigure 4,
the after-pulse offigure 5 occurs at awell-defined delay of about 200 ns after themain explosion, which
distinguishes it from the next explosion requiring a fully restored overheated layer.We propose that after-pulses
areweaker explosions triggered by sound echoes of themain explosion, reflected fromflat interfaces around the
nanoparticle.

Two interfaces are possible candidates: (i) the other side of the glass coverslip.With a thickness of 159 μm
and a sound velocity of 5640 m s−1[32], the echo arrives 56 ns after the explosion. This is precisely the delay of
the shoulder seen in the decay of the bubble signal, both in figures 4(c) and 5(c); (ii) the interface between the
immersion oil and the objective lens. The distance between the lens and the oil–glass interface is 100 μm
(working distance according to themanufacturer).With a sound velocity of 1350 m s−1 in oil1, this echo from
the second interface should arrive about 204 ns after themain explosion, exactly as observed infigure 5(c). The
after-pulse would thus be a second, weaker explosion triggered by the echo. Itmay feed on thermal energy left in
the hotwater layer after the first explosion or conducted from the hot particle. This remarkable phenomenon

Figure 5.Echo-triggered nanobubble explosions underfinely-tuned constant heating power above the threshold. (a)The non-
averaged raw time trace of scattered probe presenting echo-triggered bubbles. The probe power is fixed at 5 mW; (b) zoom-in time
trace on the dash-block part in (a); (c) averaging signal of 1108 explosions in (a) in the sameway as figure 4(c). Inset: zoom-in on the
main peak of (c).

1
Triisopropylbenzene is themain component of the immersion oil, sound velocities in some related compounds are about 1350 m s−1, data

from a commercial website (www.flexim.com).
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highlights the extreme sensitivity of a bubble toweak perturbations. Although the initial soundwave is
attenuated by two transmissions through the glass–oil interface, reflection on an oil–glass interface and
propagation as a spherical wave through 159 μmof glass and 100 μmof oil, this weak echowave appears
sufficient to trigger ameasurable signal 56 ns after thefirst explosion and even a second explosion 204 ns later. In
a few cases (see supplementary information), a second after-pulse follows the first one and can be attributed to
an additional reflection.

3.4. Towards stabilization of a nanobubble
The nanobubble around the particle could be stabilized bymeans of a suitable time profile of the laser intensity.
The instable layer of overheated liquid around the nanoparticlemakes it impossible to pass smoothly from
regime I to regime II infigure 1.However, the inverse process, inwhich the heating power is continuously
decreased from a point in regime II does not generate any unstable situation. Indeed, the continuous presence of
the liquid/vapor interface ensures that the two phases remain in equilibrium at all times, so that the bubble
disappears in a continuouswaywhen the heating power is reduced.

We therefore designed the following time profile of the laser power to lengthen the nanobubble’s persistence
time.We start just below the critical boiling power (0.96 Pc), then suddenly raise the heating intensity to a high
value (1.1 Pc; in practice, due to thefinite response time of our acousto-opticmodulator, the rise in heating lasts
about 100 ns).We then keep the intensity at this high level for a variable duration, 1 μs in the case offigure 6,
before reducing it back to the initial level. The result of this cycle for the scattered light is shown infigure 6
togetherwith the heating intensity profile.

Averaged probe signal traces following a raise in heating power are presented infigure 6 (see a single-shot
trace in the supplementary information). Again, the individual single-shot traces were averaged by
synchronizing themon themid-rising edge of the probe signal. The averaged trace clearly shows an initial
explosion of about 30 ns duration and of lower amplitude than those infigures 4 and 5, followed by a plateau at a
high scattering value. The probe signal after the explosion ismuch higher than before, when it was due to the
liquid’s temperature change alone. This high value indicates the presence of the bubble, and its persistence for as
long as the heating power is kept at the high level. The bubble disappears as soon as the heating power is reduced.
We therefore conclude that, in the few hundred ns following the explosion, the bubble reaches the steady-state
extent discussed and calculated above. After the shrinking phase of the explosion, the bubble remains as a thin
stable shell because enough heating power is provided, and the energy received by the vapor shell from the
particle balances the energy lost by conduction to the cooler liquid outside. This experiment shows the feasibility
of reaching andmaintaining steady state II, once the barrier of bubble formation is passed.Much longer times
than 1 μs could be achieved by optimizing the time profile and intensity stability of the heating power or by a
proper, fast enough feedbackmechanism from the scattered signal. A reproducible feature (shownwith a blue
arrow) appears on the trace offigure 6, about 200 ns after the initial explosion.We assign this feature to the
reaction of the nanobubble to the sound echo reflected by the oil–lens interface, and discussed in the previous
section.

Figure 6. Formation of a persistent nanobubble. The pink line shows the probe signal averaged over 200 explosive events following
triggering by a raise in heating power. Detector gain: ×10 000, bandwidth: 200 MHz. The events have been averaged by synchronizing
at themid-rising edge of the probe transient signal. Inset: the averaged heating (green) and probe profile (pink), synchronized at the
mid-rising edge of the periodic heating pulse as delivered by the acousto-opticmodulator. After explosive formation, the nanobubble
persists for up to 800 ns. The heating beam ismodulated by a block pulse profile with a frequency of 100 kHz and a duty cycle of 10%
(1 μs on-time in a 10 μs period). Obviously, the explosive appearance of the nanobubble follows the rise in heating powerwith a jitter,
washing out the explosion signature in the insert. A histogramof the jitter delays and single-shot time traces are displayed in the
supplementary information.
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In somemeasurements with the same protocol inwater, we observed self-oscillations of the nanobubble.
Figure 7 shows a single-shot observation of a nanobubble formed inwater upon a 1 μs raise of heating power.
This bubble appears without an initial explosion and starts to oscillate after a few hundreds of ns. The oscillations
damp outwhen the power is decreased again below the critical value. The oscillation period is roughly consistent
to the time given by theMinnaert oscillation period of a bubble [33]. The possiblemechanism of this self-
oscillation is still unclear and requires additional investigation in the future.

4. Conclusion and outlook

Boiling of a liquid around a heatedmetal nanoparticle can be controlled and detectedwith high sensitivity and
fast time response. Even under continuous-wave heating, nanobubble formation is explosive. No after-bounce
could be detected upon bubble shrinking, presumably because all kinetic energy is dissipated upon vapor
condensation. The fast time response (less than 15 ns for the expansion and 20–30 ns for the contraction) could
be used for all-optical lightmodulationwith a bandwidth of about 100MHz, several orders ofmagnitude faster
thanwith liquid crystals [17].Within a narrow range of heating power, the nanobubble becomes extremely
sensitive toweak perturbations such as soundwaves reflected from far-away interfaces. Acoustic wave fronts
released in an initial explosion can trigger a new explosion, or lead to self-oscillations.We have shown that a
steamnanobubble can be stabilizedwith a suitable heating intensity profile, and by controlling the heating laser
power during the shrinking phase.

Our experimental results call for proper theoreticalmodeling. Compared to the inertial Rayleigh–Plesset
theory and its refined versions including surface tension [34] and heat andmass transfer [3], the present system
requires consideration of the thermodynamic and kinetic features of the liquid–gas phase transition [4] at
nanometer scales.Moreover, the geometry of our experiment excludes spherical symmetry and calls for a full 3D
model. Such a complex theory is well beyond the scope of the present work.Our results suggest using bubbles as
nanoscale generators and detectors of acoustic waves,much as radars are used atmacroscopic scales for
electromagnetic waves.

Acknowledgments

Thiswork is supported by the Foundation for Fundamental Research onMatter (FOM)with funding from
NWO. LH acknowledges thefinancial support of China Scholarship Council. Advice fromDr PZijlstra and
programming assistance of ACarattino are kindly acknowledged.

References

[1] LauterbornWandKurz T 2010 Physics of bubble oscillationsRep. Prog. Phys. 73 106501
[2] BrennenCE 1995Cavitation andBubble Dynamics (NewYork:OxfordUniversity Press)
[3] BrennerMP,Hilgenfeldt S and LohseD2002 Single-bubble sonoluminescenceRev.Mod. Phys. 74 425–84
[4] Lombard J, Biben T andMerabia S 2014Kinetics of nanobubble generation around overheated nanoparticles Phys. Rev. Lett. 112

105701
[5] YangK, ZhouY, RenQ, Ye J Y andDengCX2009Dynamics ofmicrobubble generation and trapping by self-focused femtosecond

laser pulsesAppl. Phys. Lett. 95 051107

Figure 7.A single-shot time trace showing the self-oscillating behavior of a nanobubble. Above: probe signal; below: heating profile.
In thismeasurement, the gold particle is in purewater and onBK7 glass substrate. The duration of the heating ‘pulse’ is 1 μs. The
oscillation period of the bubble is about 30 ns.

8

New J. Phys. 17 (2015) 013050 LHou et al

http://dx.doi.org/10.1088/0034-4885/73/10/106501
http://dx.doi.org/10.1103/RevModPhys.74.425
http://dx.doi.org/10.1103/RevModPhys.74.425
http://dx.doi.org/10.1103/RevModPhys.74.425
http://dx.doi.org/10.1103/PhysRevLett.112.105701
http://dx.doi.org/10.1103/PhysRevLett.112.105701
http://dx.doi.org/10.1063/1.3187535


[6] Vogel A, LinzN and Freidank S 2008 Femtosecond-laser-induced nanocavitation inwater: implications for optical breakdown
threshold and cell surgery Phys. Rev. Lett. 100 038102

[7] Lukianova-Hleb EY and LapotkoDO2012 Experimental techniques for imaging andmeasuring transient vapor nanobubblesAppl.
Phys. Lett. 101 264102

[8] Kotaidis V and PlechA 2005Cavitation dynamics on the nanoscaleAppl. Phys. Lett. 87 213102
[9] Lukianova-Hleb EY and LapotkoDO2009 Influence of transient environmental photothermal effects on optical scattering by gold

nanoparticlesNano Lett. 9 2160–6
[10] NagashimaG, Levine EV,HoogerheideDP, BurnsMMandGolovchenko J A 2014 Superheating and homogeneous single bubble

nucleation in a solid-state nanoporePhys. Rev. Lett. 113 024506
[11] Fang Z, ZhenY-R,NeumannO, PolmanA, Javier Garcia deAbajo F,Nordlander P andHalasN J 2013Evolution of light-induced

vapor generation at a liquid-immersedmetallic nanoparticleNano Lett. 13 1736–42
[12] ZharovV and LapotkoD 2003 Photothermal sensing of nanoscale targetsRev. Sci. Instrum. 74 785–8
[13] Siems A,Weber S A L, Boneberg J andPlechA 2011Thermodynamics of nanosecond nanobubble formation at laser-excitedmetal

nanoparticlesNew J. Phys. 13 043018
[14] Boulais É, LachaineR andMeunierM2012Plasmamediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation

Nano Lett. 12 4763–9
[15] KatayamaT, SetouraK,WernerD,MiyasakaH andHashimoto S 2014 Picosecond-to-nanosecond dynamics of plasmonic

nanobubbles frompump–probe spectralmeasurements of aqueous colloidal gold nanoparticles Langmuir 30 9504–13
[16] BaffouG, Polleux J, RigneaultH andMonneret S 2014 Super-heating andmicro-bubble generation around plasmonic nanoparticles

under cw illumination J. Phys. Chem.C 118 4890–8
[17] Heber A, SelmkeMandCichos F 2014Metal nanoparticle based all-optical photothermal lightmodulatorACSNano 8 1893–8
[18] ZhangX, LhuissierH, SunC and LohseD 2014 Surface nanobubbles nucleatemicrodroplets Phys. Rev. Lett. 112 144503
[19] ZhangX, ChanDYC,WangD andMaedaN2012 Stability of interfacial nanobubbles Langmuir 29 1017–23
[20] Lukianova-Hleb EY, RenX, Sawant RR,WuX, TorchilinVP and LapotkoDO2014On-demand intracellular amplification of

chemoradiationwith cancer-specific plasmonic nanobubblesNat.Med. 20 778–84
[21] Yao J,Wang L, Li C, ZhangC andWang LV2014 Photoimprint photoacousticmicroscopy for three-dimensional label-free

subdiffraction imagingPhys. Rev. Lett. 112 014302
[22] Ruijgrok PV, VerhartNR, Zijlstra P, Tchebotareva A L andOrritM2011 Brownian fluctuations and heating of an optically aligned

gold nanorod Phys. Rev. Lett. 107 037401
[23] Merabia S, Keblinski P, Joly L, Lewis L andBarrat J-L 2009Critical heat flux around strongly heated nanoparticles Phys. Rev.E 79

021404
[24] GaidukA, YorulmazMandOrritM2011Correlated absorption and photoluminescence of single gold nanoparticlesChemPhysChem

12 1536–41
[25] GaidukA, Ruijgrok PV, YorulmazMandOrritM2010Detection limits in photothermalmicroscopyChem. Sci. 1 343–50
[26] Zijlstra P andOrritM2011 Singlemetal nanoparticles: optical detection, spectroscopy and applicationsRep. Prog. Phys. 74 106401
[27] Debenedetti PG 1996Metastable Liquids: Concepts and Principles (Princeton, NJ: PrincetonUniversity Press) p 39
[28] Vakarelski IU, PatankarNA,Marston JO, ChanDYC andThoroddsen S T 2012 Stabilization of leidenfrost vapour layer by textured

superhydrophobic surfacesNature 489 274–7
[29] Lukianova-Hleb E,HuY, Latterini L, Tarpani L, Lee S, Drezek RA,Hafner JH and LapotkoDO2010 Plasmonic nanobubbles as

transient vapor nanobubbles generated around plasmonic nanoparticlesACSNano 4 2109–23
[30] Gompf B and Pecha R 2000Mie scattering from a sonoluminescing bubblewith high spatial and temporal resolutionPhys. Rev.E 61

5253–6
[31] Holt RG,GaitanDF, Atchley AA andHolzfuss J 1994Chaotic sonoluminescence Phys. Rev. Lett. 72 1376–9
[32] LideD2005CRCHandbook of Chemistry and Physics (Internet Version 2005) (Boca Raton, FL: CRCPress)
[33] MinnaertM1933Onmusical air-bubbles and the sounds of runningwater Phil.Mag. Ser. 16 235–48
[34] Gilmore FR 1952The growth or collapse of a spherical bubble in a viscous compressible liquidHydrodynamics Laboratory (Pasadena,

CA: California Institute of Technology)

9

New J. Phys. 17 (2015) 013050 LHou et al

http://dx.doi.org/10.1103/PhysRevLett.100.038102
http://dx.doi.org/10.1063/1.4772958
http://dx.doi.org/10.1063/1.2132086
http://dx.doi.org/10.1021/nl9007425
http://dx.doi.org/10.1021/nl9007425
http://dx.doi.org/10.1021/nl9007425
http://dx.doi.org/10.1103/PhysRevLett.113.024506
http://dx.doi.org/10.1021/nl4003238
http://dx.doi.org/10.1021/nl4003238
http://dx.doi.org/10.1021/nl4003238
http://dx.doi.org/10.1063/1.1520322
http://dx.doi.org/10.1063/1.1520322
http://dx.doi.org/10.1063/1.1520322
http://dx.doi.org/10.1088/1367-2630/13/4/043018
http://dx.doi.org/10.1021/nl302200w
http://dx.doi.org/10.1021/nl302200w
http://dx.doi.org/10.1021/nl302200w
http://dx.doi.org/10.1021/la500663x
http://dx.doi.org/10.1021/la500663x
http://dx.doi.org/10.1021/la500663x
http://dx.doi.org/10.1021/jp411519k
http://dx.doi.org/10.1021/jp411519k
http://dx.doi.org/10.1021/jp411519k
http://dx.doi.org/10.1021/nn406389f
http://dx.doi.org/10.1021/nn406389f
http://dx.doi.org/10.1021/nn406389f
http://dx.doi.org/10.1103/PhysRevLett.112.144503
http://dx.doi.org/10.1021/la303837c
http://dx.doi.org/10.1021/la303837c
http://dx.doi.org/10.1021/la303837c
http://dx.doi.org/10.1038/nm.3484
http://dx.doi.org/10.1038/nm.3484
http://dx.doi.org/10.1038/nm.3484
http://dx.doi.org/10.1103/PhysRevLett.112.014302
http://dx.doi.org/10.1103/PhysRevLett.107.037401
http://dx.doi.org/10.1103/PhysRevE.79.021404
http://dx.doi.org/10.1103/PhysRevE.79.021404
http://dx.doi.org/10.1002/cphc.201100167
http://dx.doi.org/10.1002/cphc.201100167
http://dx.doi.org/10.1002/cphc.201100167
http://dx.doi.org/10.1039/c0sc00210k
http://dx.doi.org/10.1039/c0sc00210k
http://dx.doi.org/10.1039/c0sc00210k
http://dx.doi.org/10.1088/0034-4885/74/10/106401
http://dx.doi.org/10.1038/nature11418
http://dx.doi.org/10.1038/nature11418
http://dx.doi.org/10.1038/nature11418
http://dx.doi.org/10.1021/nn1000222
http://dx.doi.org/10.1021/nn1000222
http://dx.doi.org/10.1021/nn1000222
http://dx.doi.org/10.1103/PhysRevE.61.5253
http://dx.doi.org/10.1103/PhysRevE.61.5253
http://dx.doi.org/10.1103/PhysRevE.61.5253
http://dx.doi.org/10.1103/PhysRevE.61.5253
http://dx.doi.org/10.1103/PhysRevLett.72.1376
http://dx.doi.org/10.1103/PhysRevLett.72.1376
http://dx.doi.org/10.1103/PhysRevLett.72.1376
http://dx.doi.org/10.1080/14786443309462277
http://dx.doi.org/10.1080/14786443309462277
http://dx.doi.org/10.1080/14786443309462277

	1. Introduction
	2. Methods
	3. Results and discussion
	3.1. Photothermal detection
	3.2. Direct probe detection
	3.3. Echo-triggered explosions
	3.4. Towards stabilization of a nanobubble

	4. Conclusion and outlook
	Acknowledgments
	References



