
Subthreshold optical parametric oscillator with nonorthogonal
polarization eigenmodes
Aiello, A.; Nienhuis, G.; Woerdman, J.P.

Citation
Aiello, A., Nienhuis, G., & Woerdman, J. P. (2003). Subthreshold optical parametric oscillator
with nonorthogonal polarization eigenmodes. Physical Review A, 67, 043803.
doi:10.1103/PhysRevA.67.043803
 
Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/61250
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/61250


PHYSICAL REVIEW A 67, 043803 ~2003!
Subthreshold optical parametric oscillator with nonorthogonal polarization eigenmodes

A. Aiello, G. Nienhuis, and J. P. Woerdman
Huygens Laboratory, Leiden University, P.O. Box 9504, Leiden, The Netherlands

~Received 3 July 2002; revised manuscript received 27 November 2002; published 8 April 2003!

We study the behavior of a type-II degenerate parametric amplifier in a cavity with nonorthogonal polariza-
tion eigenmodes. The mode nonorthogonality is achieved by introducing circular birefringence and linear
dichroism. We use a scattering matrix formalism to investigate the role of excess quantum noise in such a
device. Since only two modes are involved we are able to derive an analytical expression for the twin-photon
generation rate measured outside the cavity as a function of the degree of mode nonorthogonality. Contrary to
recent claims we conclude that there is no evidence of excess quantum noise for a parametric amplifier working
so far below threshold that spontaneous processes dominate. Using the same scattering matrix formalism we
also investigate the output spectrum of the amplifier near the threshold of parametric oscillation. We find
optical band structures very similar to those known for passive ring cavities. These optical band structures are
studied as a function of mode nonorthogonality and mirror reflectivity.
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I. INTRODUCTION

A linear amplifier is a device that takes an input sign
and produces an output signal linearly related to the in
signal. Under this definition fall frequency-conserving amp
fiers, as laser amplifiers, and frequency-converting amp
ers, as parametric amplifiers. Quantum mechanics se
lower limit on noise in linear amplifiers@1# which corre-
sponds, in a laser amplifier, to having ‘‘one noise photon’’
the laser mode~Ref. @2#, p. 72! and, in a parametric ampli
fier, to having ‘‘one noise photon’’ in each of the input mod
@3#. This limit is easily reached in small devices, particula
in semiconductor lasers@4#. If the linear amplifier is part of
an optical cavity the quantum limit on its performances
strongly affected by the optical characteristics of the cav
itself which offers the possibility to control and to manip
late the quantum noise. This opens a wide range of poss
studies which spans from cavity QED~see, e.g.,@5# and ref-
erences therein! to the phenomenon of excess quantum no
@6–13#.

Recently there has been a large body of work pointing
the fact that the quantum noise may be enhanced by
so-called excess noise factor or PetermannK factor@6#. From
a physical point of view theK factor can be interpreted as
there areK noise photons in the lasing mode instead of
usual ‘‘one noise photon.’’ Semiclassically the noise e
hancement is due to nonorthogonality of the eigenmo
@7,14#. The existence of the PetermannK factor has been
experimentally verified in lasers with non-orthogonal eige
modes, either longitudinal@10#, transverse@11#, or polariza-
tion @9,12# modes, showing that a noise enhancement re
occurs. However, the physical origin of this enhancemen
under debate; the two main points of view are that it ste
from a cavity-enhanced single atom decay rate@15–18# or
from an amplification by the gain medium of the spontan
ously emitted photons@13,19,20#. If the single-atom decay
rate were enhanced, excess noise would also be a valid
cept~far! below the oscillations threshold of the device und
consideration. In this case excess noise could be very us
for instance, it has been claimed that it could lead to
1050-2947/2003/67~4!/043803~15!/$20.00 67 0438
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enhanced generation of twin photons in spontaneous p
metric down conversion~SPDC!, by placing a nonlinear
crystal in an unstable cavity~which has nonorthogonal trans
verse eigenmodes! @16#.

The most common experimental realization of mode n
orthogonality concerns the transverse modes of an unst
cavity. However, this case is intrinsically difficult to trea
one deals with an infinite manifold of transverse mod
which cannot be truncated since there is no sharp distinc
between system modes~5cavity modes! and reservoir
modes~5free space modes! @21#. This unavoidable difficulty
has motivated us to study the effect of excess noise
cavity-enhanced SPDC, for a case where one can cons
an exactly solvable quantum theory of mode nonorthogon
ity. This is possible for a cavity with nonorthogonalpolar-
ization eigenmodes~instead of transverse eigenmodes!
which has a nonlinear crystal inside.

In fact, SPDC constitutes a natural framework in which
study polarization excess noise in a quantum-mechan
context. Specifically, in a type-II SPDC process, two o
thogonally polarized photons are generated. Because of c
tal anisotropy, for a fixed frequency only a restricted set
spatial directions is allowed to the emitted photons. In
degenerate case one can achieve a single allowed dire
for a collinear emission@22# thus, assuming perfect phas
matching, single transverse mode operation can be reali
Although an optical cavity allows, in principle, several res
nant longitudinal modes, the double resonance condi
~signal and idler! for SPDC restricts this number. It can b
shown @23# that, because of crystal birefringence, for
type-II process the double resonance condition can only
satisfied at degenerate frequency so that the number o
lowed longitudinal modes is reduced to one.

In this paper we report a detailed study of an optical pa
metric oscillator with nonorthogonal polarization eige
modes, extending our previous results of Ref.@24#. Our ap-
proach is simple and straightforward: using a scatter
matrix formalism we calculate the rate of emitted photons
a SPDC process generated by a type-II degenerate param
amplifier ~DPA! inside a cavity with two nonorthogonal po
©2003 The American Physical Society03-1
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AIELLO, NIENHUIS, AND WOERDMAN PHYSICAL REVIEW A 67, 043803 ~2003!
larization modes, both far below and near the threshold
parametric oscillation@optical parametric oscillator~OPO!#.
We use and expand two existing theoretical models, one
the DPA and the other for the cavity, both of which ha
been experimentally verified. Our conclusion is that there
no enhancement in spontaneous parametric down con
sion.

In the second part of this paper we discuss the behavio
the spectrum of a parametric oscillator working close
threshold. We first discuss the definition of spectral re
nance within our scattering formalism, then we analyze
OPO spectrum for different cavity realizations. We find
quite unexpected behavior: the OPO spectrum exhibits b
structures very similar to those known in passive ring ca
ties. In fact, we find that because of the mode coupling
duced by passive and active optical elements inside the
ity, four resonant peaks per free spectral range appear in
OPO spectrum.

The paper is organized as follows. In Sec. II we introdu
a group-theoretical formalism for describing and analyz
the two-mode optical elements which are present in
model in terms of scattering matrices. In Sec. III such f
malism is applied to set up the cavity model. We also sh
explicitly the occurrence of the ‘‘geometrical’’ PetermannK
factor in our cavity model. The results obtained in Sec.
are collected and analyzed in Sec. IV where the absence
K-enhancedspontaneousdown-conversion rate is proven. I
Sec. V we exploit the scattering matrix formalism to inve
tigate the occurrence of band structures in the OPO spec
in a cavity with nonorthogonal polarization eigenmodes.
nally, we draw conclusions in Sec. VI.

II. TWO-MODE OPTICAL ELEMENTS AND GROUP
THEORY

The optical devices we consider in this paper are co
posed of linear and lossless optical elements, and have
input ports ~say 1 and 2) and two corresponding outp
ports. When the elements are passive, no photons are cr
or destroyed, so that the number of photons entering the
input ports is equal to the number of photons leaving the
output ports. Such devices can be described by a uni
matrix belonging to the groupU(2) @25#. Active optical de-
vices can create and annihilate photons but when the di
ence between the number of photons entering port 1 and
entering port 2 is conserved, the device can be describe
a unitary matrix belonging to the groupU(1,1) @26,27#. In
this section we review briefly the matrix representation
lossless passive and active optical devices, characteri
them in terms ofU(2) and U(1,1) group properties. We
show how, introducing the so-called commutator matrix@28#,
the Schwinger model for angular momentum can be
tended to build the generators ofU(1,1) group.

Let us consider a pair of operatorsx̂1 , x̂2 which satisfy
the following commutation rules:

@ x̂i ,x̂ j #50, @ x̂i ,x̂ j
†#[~G! i j ~ i , j 51,2!, ~1!
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whereG is a given diagonal 232 matrix. We arrangex̂1 and
x̂2 in a two-dimensional vectorX̂ ~and its adjointX̂†) defined
as

X̂[S x̂1

x̂2
D , X̂†[~ x̂1

† x̂2
†!, ~2!

and define the inner product (2,2) between two vectorsX̂
and Ŷ as

~X̂,Ŷ!5 x̂i
†ŷi ~ i 51,2!, ~3!

where summation over repeated indices is understood.
three Pauli matrices together with the identity matrix form
basis in the vectorial space of 232 matrices; we write them
as

s05S 1 0

0 1D , s15S 0 1

1 0D ,

~4!

s25S 0 2 i

i 0 D , s35S 1 0

0 21D .

Using the Pauli matrices we can construct four Hermit
operators defined as

Ŝa[~X̂,saX̂! ~a50, . . . ,3!. ~5!

These operators satisfy the following commutation rules:

@Ŝa ,Ŝb#5~X̂,sabX̂! ~a,b50, . . . ,3!, ~6!

where

sab[saGsb2sbGsa ~a,b50, . . . ,3!. ~7!

Because of completeness of the set of Pauli matrices, Eq.~4!,
we can always write, choosing adequately the consta
f abc ,

sab5 i f abcsc ~a,b,c50, . . . ,3!. ~8!

Using Eqs.~8! we can then write Eq.~6! as

@Ŝa ,Ŝb#5 i f abcŜc , ~9!

which shows that the four operatorsŜa satisfy the same com
mutation relations as the generators of a symmetry gro
The numbersf abc are calledstructure constantsand com-
pletely determine the group multiplication law@29#. The op-
eratorsŜa generate transformation of the vector operatorX̂,
in the form

exp~zŜa!X̂exp~2zŜa!5exp~2zGsa!X̂, ~10!

which follows after differentiation with respect toz, while
using the identity@Ŝa ,X̂#52GsaX̂. From Eqs.~6! and ~7!
3-2
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one notices that@Ŝ0 ,Ŝa#50 whenG5s0, and that@Ŝ3 ,Ŝa#
50 when G5s3. These two cases are realized when o
chooses

X̂5S â

b̂
D or X̂5S â

b̂†D , ~11!

where â, b̂ are independent harmonic oscillator operat
which satisfy the boson commutation relations:

@ â,b̂#505@ â,b̂†#,
~12!

@ â,â†#515@ b̂,b̂†#.

Case 1:G5s0. In this case the operatorsŜa belong to the
Lie algebra of the groupU(2) and we recover the Schwinge
representation of two modes,

N̂a1N̂b5Ŝ05â†â1b̂†b̂,

Ĵx5
Ŝ1

2
5

1

2
~ â†b̂1b̂†â!,

~13!

Ĵy5
Ŝ2

2
52

i

2
~ â†b̂2b̂†â!,

Ĵz5
Ŝ3

2
5

1

2
~ â†â2b̂†b̂!.

The operatorsĴx ,Ĵy ,Ĵz obey the usual commutation rules
angular momentum@ Ĵx ,Ĵy#5 i Ĵz , etc. The conserved quan
tity associated withŜ0 is the total number of photons repre
sented by the operatorN̂a1N̂b which commutes with the
three angular momentum operatorsĴx ,Ĵy ,Ĵz .

In order to see explicitly the connection between lossl
passive optical devices and the elements of the groupU(2)
we denote withx̂1 and x̂2 the annihilation operators for th
field entering the two input ports and withŷ1 and ŷ2 the
annihilation operators for the field leaving the two outp
ports. These four operators are connected by a scatte
matrix M whose form is

S ŷ1

ŷ2
D 5S M11 M12

M21 M22
D S x̂1

x̂2
D . ~14!

Conservation of probability in a scattering process dema
that output operators satisfy the same commutation relat
as the input operators. This requirement leads to the unita
condition forM ,

MM †51. ~15!

Here we write explicitly some scattering matrices and
associate transformations that will be used in the next s
tion. The operatorsĴx and Ĵy generate two possible scatte
ing matrices for a beam splitter and/or a rotator@30#,
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eia ĴxS â

b̂
D e2 ia Ĵx5S cos~a/2! 2 i sin~a/2!

2 i sin~a/2! cos~a/2!
D S â

b̂
D ,

~16!

eib ĴyS â

b̂
D e2 ib Ĵy5S cos~b/2! 2sin~b/2!

sin~b/2! cos~b/2! D S â

b̂
D , ~17!

while the scattering matrix accounting for free-field propag
tion is generated by operatorĴz ,

eig ĴzS â

b̂
D e2 ig Ĵz5S e2 ig/2 0

0 eig/2D S â

b̂
D . ~18!

Case 2:G5s3. Using Eq.~5! it is easy to see that the
operatorsŜa belong to the Lie algebra of the groupU(1,1),

N̂a2N̂b215Ŝ35â†â2b̂b̂†,

K̂x5
Ŝ1

2
5

1

2
~ â†b̂†1b̂â!,

~19!

K̂y5
Ŝ2

2
52

i

2
~ â†b̂†2b̂â!,

K̂z5
Ŝ0

2
5

1

2
~ â†â1b̂b̂†!.

In this case thedifferencein photon number is conserved
that is the operatorN̂a2N̂b commutes withK̂x ,K̂y ,K̂z which
are generators of the groupSU(1,1). The commutation rules
for these operators are @K̂x ,K̂y#52 iK̂ z , @K̂y ,K̂z#

5 iK̂ x , @K̂z ,K̂x#5 iK̂ y . The scattering matrices generate
by theSU(1,1) operators follow by Eq.~10!. They take the
explicit form

eiaK̂xS â

b̂†D e2 iaK̂x5S cosh~a/2! 2 isinh~a/2!

i sinh~a/2! cosh~a/2! D S â

b̂†D ,

~20!

eibK̂yS â

b̂†D e2 ibK̂y5S cosh~b/2! sinh~b/2!

sinh~b/2! cosh~b/2!D S â

b̂†D ,

~21!

eigK̂zS â

b̂†D e2 igK̂z5S eig/2 0

0 e2 ig/2D S â

b̂†D . ~22!

Using the last two equations we can construct the scatte
matrix representing the nonlinear crystal, as shown
Ref. @26#.

III. THE CAVITY MODEL

We now apply the formalism developed in Sec. II to d
scribe a cavity with nonorthogonal polarization modes. O
3-3
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model of a degenerate parametric amplifier inside a Fa
Pérot cavity is, in fact, an extension of the model of Gardin
et al. @31# to the case of a cavity with nonorthogonal pola
ization modes.

A. Scattering matrix for a cavity round-trip

We consider a cavity having one perfectly reflecting m
ror at positionx52L, and a partially reflecting mirror atx
50, as shown in Fig. 1.

We decompose the electric field inside the cavity into l
~subscriptL) and right~subscriptR) propagating waves. In
degenerate type-II down-conversion two orthogonally po
ized modes are excited at the same frequencyv5V/2,
whereV is the frequency of the pump field. Let us deno
with a and b these two field modes and assume that th
polarization is parallel to they andz axis, respectively. An-
other modef ~also decomposed inf L and f R parts!, is intro-
duced in order to assure the unitarity of the model; we c
this mode the noise mode. We assume that modef has the
same polarization as modea. The role of this noise mode
will be soon made clear; for the moment we describe, a
Ref. @8#, the DPA cavity using a scattering matrix which
unitary only when it accounts both for field and noise mod
We shall see that nonorthogonality of the cavity modes na
rally appears as a consequence of restricting the scatte
matrix to the set of field modesa andb. However, truncating
the scattering matrix to the field modes is not enough
achieve mode nonorthogonality; it is necessary to introduc
non-Hermitian coupling between them. In our model t
mode nonorthogonality is achieved by inserting in the cav
a phase anisotropy due to circular birefringence~polarization
rotator! and a loss anisotropy generated by linear dichro
~polarization-dependent absorber!, following the scheme
given in @9#. Another way to produce nonorthogonal pola

FIG. 1. Schematic representation of the degenerate-cavity p
metric amplifier. Modesa andb have orthogonal polarizations. Th
boxes indicated withf, G, andu represent the rotator, the nonlin
ear crystal, and the delay line, respectively. In the dotted box
show the absorber modeled as a beam splitter acting only on m
a. For right-traveling modes we have putG51 to indicate the pas-
sive crystal behavior when there is no phase matching.
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ization modes is to use linear birefringence and linear dich
ism at 45 ° as in Ref.@12#. Although these two alternative
ways are implemented using physically different devic
both lead to basically the same expressions for the Pe
mannK factor, as we shall see in Sec. III B.

The canonical quantization scheme requires us to exp
the electromagnetic field inside the cavity in terms of a co
tinuous or discrete complete set of functions$un% ~the eigen-
modes of the cavity! and associating with them a correspon
ing set of field operators$ân%. A serious problem arises whe
the set of cavity eigenmodes$un% is not orthogonal. In fact,
as shown in Refs.@8,13#, a set of nonorthogonal mode
cannot be turned into a set of noncommuting operators
order to avoid this problem our calculations are based
the orthogonal sets of operators$â in , f̂ a in

%, $âout, f̂ aout
% (a

5a,b) associated with a corresponding set of plane-wa
modes@31#. We assume that the input and output operat
satisfy the usual~discrete! commutation relations

@ âx ,b̂x#505@ âx ,b̂x
†#,

@ âx ,âx
†#515@ b̂x ,b̂x

†# ~23!

~x5 in, out!,

and similarly for the noise operators.
The optical elements inside the cavity are as follows:

absorber modeled as a beam splitter acting only on modea(y
polarization!, a crystal with nonlinear gainG, and a rotator
which rotates the polarization axes by an anglef along thex
axis. The propagation of the modes over a cavity with len
L is modeled by a delay line in front of the left mirror whic
introduces a phase shiftu5vL/c. We assume that all optica
elements are infinitesimally thin and that the operator pha
at the positionx50 are equal to zero. The scattering mat
ces for the various optical elements inside the cavity
given below. On the output mirror the input annihilation o
erators belonging to thea mode are related to the input op
erators on the same mode, by the transformation

âout5T â1R1Râin , ~24a!

â1L5Râ1R1T âin , ~24b!

whereR52AR, T5 iA12R, and 0<R,1. For the modeb
the above relations hold if we make everywhere the sub
tution a→b. The effect of the rotator on left-traveling mod
operators can be represented as@30#

â2L5cosfâ1L1sinfb̂1L , ~25a!

b̂2L52sinfâ1L1cosfb̂1L . ~25b!

The corresponding matrix for right-traveling modes is o
tained substituting in the above formula 1↔2 and L→R.
Note that we have chosen as a rotator, a deviceantisymmet-
ric with respect to temporal inversion@32# ~e.g., a Faraday
rotator!; then the total rotation angle is doubled after a rou
trip. For completeness we note that in case of a device wh

ra-

e
de
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is symmetric with respect to temporal inversion~e.g., a
quartz crystal which displays optical activity!, the light beam
inside the cavity would retrieve its original polarization aft
one round trip. Polarization rotation can be also achie
using a half wave plate which introduces ap phase differ-
ence between fast and slow (f ands) axes@33#. This device
has been used jointly with a linear dichroic element with
axes at645 ° with respect tof ands in Refs.@12,34#. How-
ever, we have preferred to use a Faraday rotator, jointly w
a linear dichroic element with its axes parallel to thea andb
polarization directions, since this configuration leads to
more clear separation between the phase anisotropy an
loss anisotropy inside the cavity.

The scattering matrix for the parametric crystal, in t
nondepleted pump approximation@31,35#, is given by

â3L5Gâ2L1~G221!1/2b̂2L
† , ~26a!

b̂3L
† 5~G221!1/2â2L1Gb̂2L

† , ~26b!

where the real-valued gainG satisfiesG.1. For the right-
traveling modes the crystal is transparent due to the abs
of phase matching and in this case the operator transfor
tions can be obtained from Eqs.~26! after the substitutions
3↔2, L→R, andG51. Since Eqs.~26! preserve bosonic
commutation rules it is not necessary, for a parametric a
plifier with a classical nondepleted pump, to add noise fr
an external bath@1# to account for pump fluctuations. In ou
model only the down-converted field is confined by the c
ity, not the pump field, therefore the cavity mode structu
cannot affect the pump beam fluctuations. Incidentally,
note that when using this scattering matrix formalism,
difference between a linear and a nonlinear amplifier
rooted only in the choice of the operators which are coup
by the matrix, but not in the matrix itself, which is the sam
in both cases. In fact, in a linear amplifier the nondiago
matrix elements couple a field annihilation operator with
noise creation operator, while in a nonlinear amplifier t
coupling is between two different field modes, as in E
~26!.

The scattering matrix representing the absorber, which
troduces losses only for the modea, is written as@36#

â4L5tâ3L1r f̂ L in , ~27a!

b̂4L5b̂3L , ~27b!

f̂ Lout5râ3L1t f̂ L in , ~27c!

wherer 5 iA12t2 and the real parametert(0<t<1) repre-
sents the ratio between field amplitudes alongy andz polar-
ization directions. For right-traveling modes we obtain e
sentially the same equations by substituting 4↔3 and L
→R, that is we consider a device insensitive with respec
the direction of the impinging light. We note that truncatin
the transformation equations~27! to the field modes only
leads to the following nonunitary transformation:
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S â4L

b̂4L
D 5S t 0

0 1D S â3L

b̂3L
D . ~28!

Since as the absorber we have chosen a linear dichroic
ment with its axes parallel to thea andb polarization direc-
tions, it introduces only anisotropic losses but no phase
isotropy and therefore the matrix Eq.~28! is diagonal.

The delay line with phase shiftu can be simply repre-
sented as

â5L5exp~ iu!â4L , ~29!

â4R5exp~ iu!â5R , ~30!

whereu5vL/c. It allows us to evaluate the effects of th
cavity lengthL. The same relations hold for modeb. Finally,
on the left mirror the boundary condition requires

â5R52â5L , ~31!

and similarly for modeb.
Equations~25!–~31! can be straightforwardly solved t

express right-traveling mode operators in terms of le
traveling mode operators,

S â1R

b̂1R
D 5GS 2g1cos~2f!2g2 2g1sin~2f!

g1sin~2f! 2g1cos~2f!1g2
D

3S â1L

b̂1L
D 1~G221!1/2

3S g2sin~2f! 2g2cos~2f!2g1

g2cos~2f!2g1 g2sin~2f!
D

3S â1L
†

b̂1L
† D 1S f̂ a

f̂ b
D , ~32!

whereg65exp(2iu)(t261)/2 and

f̂ a5r ~ t f̂ L in1 f̂ Rin!cosf, ~33!

f̂ b52r ~ t f̂ L in1 f̂ Rin!sinf. ~34!

The effect of the noise on modeb appears as a consequen
of introducing the rotator:f̂ b50 whenf50. At the same
time the noise disappears on both modes ift51. This means
that the full effect of the noise on the system becomes m
fest only forf.0 andt,1, that is when the cavity mode
are nonorthogonal. Assuming that noise operators belong
to left- and right-traveling modes do commute,

@ f̂ L in , f̂ L in
† #515@ f̂ Rin , f̂ Rin

† #,
~35!

@ f̂ L in , f̂ Rin
† #505@ f̂ Rin , f̂ L in

† #,

we find that, in the general casef5” 0 and t5” 1, the noise
operatorsf̂ a and f̂ b do not commute,
3-5
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@ f̂ a , f̂ a
†#5~12t4!cos2f, ~36a!

@ f̂ b , f̂ b
†#5~12t4!sin2f, ~36b!

@ f̂ a , f̂ b
†#52~12t4!sinf cosf.

~36c!

This noise correlation disappears when the modes bec
orthogonal (f50, p/2, and/ort51).

B. Nonorthogonal modes and the Petermann
excess noise factor

Having found the relations between operators belong
to right-traveling and left-traveling modes after one rou
trip, we now show that our model effectively describes
cavity with nonorthogonal modes and can therefore show
principle, excess quantum noise@8,37#. Although Eq. ~32!
has been written in a quantum context, it is equally valid i
classical context if one substitutes for the various opera
â1R, b̂1R , etc. the corresponding classical complex amp
tudesA1R , B1R , etc. and disregards the noise operatorsf̂ a

and f̂ b . The remaining homogeneous equation describes
round trip variation of a classical field inside the cavity. Fu
thermore, if one putsG51 then the classical counterpart
Eq. ~32! reduces to

S A1R

B1R
D 5M S A1L

B1L
D , ~37!

where

M[2S g1cos~2f!1g2 g1sin~2f!

2g1sin~2f! g1cos~2f!2g2
D , ~38!

which coincides, apart from a multiplicative factor, with th
classical cold cavity round-trip matrixMRT . Now, following
Ref. @8#, we find the eigenvalues and the eigenvectors of
matrix M and show that the latter ones form a nonorthogo
two-dimensional basis.

First we note that whenf50 or t51, MRT reduces to

f50⇒M52S t2 0

0 1D ~39!

or

t51⇒M52S cos 2f sin 2f

2sin 2f cos 2f D . ~40!

It is clear that in both these cases the eigenvectors are
thogonal. In the general case the eigenvaluesl6 are

l65
21

2
@~11t2!cos 2f6Z#, ~41!

where

Z[@~12t2!22~11t2!2 sin22f#1/2. ~42!
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Depending on the values assumed forf and t we may have
eitherZ real or purely imaginary. In the latter case it is co
venient to define

Z[ i z, z[@~11t2!2sin22f2~12t2!2#1/2, ~43!

wherez is real. The critical value oft for which Z becomes
purely imaginary is given by

tc~f!5F12usin 2fu
11usin 2fuG

1/2

. ~44!

For t,tc(f) both eigenvalues are real and the cavity eige
modes are degenerate; this regime is usually referred t
the locked regime@9,38#. Conversely, fort.tc(f) the eigen-
values Eq.~41! acquire an imaginary part and the degenera
between eigenmodes is removed~unlocked regime!. Let u6

be the non-normalized eigenvectors corresponding tol6 ,
respectively,

u65S ~12t2!cos 2f6Z

2~11t2!sin 2f D . ~45!

For arbitrary values oft and f these eigenvectors are no
orthogonal. This is shown in Fig. 2 where the angleb be-
tween u1 and u2 is plotted as a function oft for several
values off. For t51 we haveb5p/2 ~orthogonal modes!
for all values off, while for the criticalt5tc(f) we see that

FIG. 2. ~a!–~f! Angle b between the cavity eigenmodesu6 ver-
sus the absorber parametert for different values of the rotator angl
f. For t51 the eigenmodes are always parallel (b5p/2) irrespec-
tive of the value off. For t5tc(f) the eigenmodes become para
lel: b50. In ~c! the dotted line gives the PetermannK factor
(31/50) as calculated from Eqs.~47!–~48!; the divergence appear
for t5tc(f5p/10)'0.51 when the cavity eigenmodes are parall
3-6
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b50 and the modes become parallel. In Fig. 2~c! the ‘‘geo-
metrical’’ PetermannK factor for the cold cavity is plotted
together withb. As Siegman remarked years ago@7,14#, the
geometrical PetermannK factor, as given below, is an intrin
sic property of the cavity eigenmodes which has nothing
do with the gain medium inside the cavity. It can be calc
lated using the well known recipe@9#

1

K
512

u~u1 ,u2!u2

~u1 ,u1!~u2 ,u2!
, ~46!

obtaining

K,5
~12t2!2

~12t2!22~11t2!2 sin22f
, ~47!

for t,tc(f), and

K.5
~11t2!2 sin22f

~11t2!2 sin22f2~12t2!2
, ~48!

for t.tc(f). Apart from notation these results agree w
earlier works@9,12#. In the limit of small rotator anglef
!1 we havetc(f).122f which is very close to 1. If we
define the dissipative couplingt as t5exp(22t)(t>0) one
simply notices that in the limit of smallf andt, the behav-
ior of K near the critical valuetc is given by

K,'
1

12
f2

t2

, ~49a!

K.'
1

12
t2

f2

, ~49b!

in agreement with Ref.@9#.

IV. RESULTS AND DISCUSSION

In this section we calculate the SPDC rate of the s
threshold OPO shown in Fig. 1 and study how it depends
the ‘‘nonorthogonality parameters’’t andf. Equations~24!
together with Eqs.~32! can be straightforwardly solved t
express ‘‘out’’ operators in terms of ‘‘in’’ operators; this i
done explicitly in the Appendix. The resulting expressio
are very cumbersome and it is not useful to write them
plicitly. Their general form is

âout5 (
a5a,b

~S1aâ in1S2aâ in
† 1S3a f̂ a1S4a f̂ a

† !, ~50!

and similarly for modeb, whereSia are complicated func-
tions of t, f, G, R, and vL/c. From the above results w
calculate the average photon number emitted in modesa and
b:
04380
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n̄a5^âout
† âout&vac ~a5a,b!, ~51!

where the subscript ‘‘vac’’ indicates that the quantum exp
tation value is calculated for the incoming vacuum fie
When both the absorber and rotator are switched
~orthogonal-mode case! we find n̄a5n̄b[n̄, where

n̄5~G221!F 12R

122GAR cos~2vL/c!1R
G 2

. ~52!

This result is in agreement with Eq.~16! in Ref. @31#. The
term inside the square brackets, when calculated forG51,
coincides with the spontaneous emission modification fac
F @39#, but in our case it is quadratic because of nonlinea
@40#. At resonance (L5mpc/v, with m integer!, a diver-
gence appears forn̄ when G5(11R)/(2AR).1, corre-
sponding to the threshold of oscillation@41#. However, we
are interested only in the subthreshold case where a p
leged lasing mode is not selected. The average photon n
bers emitted on modesa andb, evaluated at resonance, in th
general casef5” 0 andt5” 1, are shown in Fig. 3. The value
of the nonlinear gain and the mirror reflectivity areG
51.01 andR50.2, respectively, corresponding to a su
threshold OPO. The behavior with respect to the variablef

of n̄a andn̄b , is quite similar fort'1. Whent→0, modea

is increasingly suppressed andn̄a→0. In the same limit
modeb does not disappear but is reduced by a factor'3.
We report in Fig. 4 the total average photon numberN̄[n̄b

1n̄a , evaluated at resonance, as a function of the abso
transmission coefficientt and of the rotation anglef due to
the rotator. The nonlinear gainG and the output mirror re-
flectivity R have been chosen asG51.01, R50.2, so that
subthreshold operation is achieved.

From Fig. 4 it is clear that the local maxima ofN̄, for the
t variable, are located on the curvef50 which corresponds
to a cavity with orthogonal modes. This curve constitutes
upper boundary of the gray band shown in Fig. 5. The ot
points in the gray band represent all possible values ofN̄,
calculated with the same parameters as in Fig. 4, for cav
with nonorthogonal modes. All these points are below
curve corresponding to orthogonal modes; so we donot find
any enhancement of the twin-photon rate under these co
tions.

This may be compared with the behavior of the geome
cal K factor, as given by Eqs.~47! and~48!. Figure 5 shows
the behavior of thisK factor with respect toN̄, as a function
of the absorber transmissiont. Both K and N̄ are evaluated
for f5p/8; furthermore,N̄ is evaluated forG51.01 and
R50.2. From a geometrical point of view, whent5tc the
cavity eigenmodes become parallel and the correspondinK
factor diverges, as shown in Fig. 2~c!. In Fig. 5 this resonant
behavior ofK, when t approachestc , is evident, but at the
same time there is no signature of a critical behavior ofN̄.
Therefore we conclude that for a subthreshold OPO, the t
average photon numberN̄ doesnot depend onK.
3-7
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V. OPTICAL BAND STRUCTURE
IN A PARAMETRIC OSCILLATOR

In the preceding section we have calculated the total

erage photon numberN̄5n̄a1n̄b of the subthreshold OPO
calculated at resonance, that is forvL/c5mp, wherem is
an integer. In general the numberN̄ varies as a function o
the phase shiftu[vL/c which plays the role of a reduce
length. It can be varied either by varying the lengthL of the
cavity or by varying the pump frequencyV52v. Then we
can regard the functionN̄(u) ~calculated for fixed values o
the other OPO parameterst, G, R, and f) as the cavity
spectrum. In Fig. 6 we plotN̄, calculated forG51.01 and
R50.2 ~below threshold OPO!, versus the lengthu and the
rotator anglef, for several values of the absorber parame
t. The functionN̄(u,f) has, forf50 and all values oft, the
expected periodic behavior~with periodp) which is charac-
teristic of the spectrum of a Fabry-Pe´rot cavity. For decreas
ing t the height of the resonant peaks is lowered but th

FIG. 3. ~a! Plot of the average numbern̄a of photons emitted on
modea for a subthreshold OPO at resonance as a function of
rotator anglef and the absorber parametert. The values of the
other parameters areG51.01, R50.2. Fort50 andf50 the pho-

tons in modea are fully absorbed so thatn̄a50. ~b! Plot of the

average numbern̄b of photons emitted in modeb under the same
conditions as in~a!.
04380
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shape and position are unchanged. Forf5p/2 and all values
of t we obtain the same spectrum as forf50 but shifted in
the variableu by an amountp/4. This happens becausef
5p/2 simply corresponds, from a physical point of view,
an exchange of the role of the two orthogonal polarizatio
For f.0 andt.0 each resonant peak is split in two sep
rate bands corresponding to cavity eigenmodes withy andz
polarization. The degeneracy is removed because of the
larization mode coupling induced by the rotator@see Eqs.

e

FIG. 4. Plot of the total average photon numberN̄[n̄a1n̄b of
the subthreshold OPO, calculated at resonance, as a function o
absorber transmissiont and of the rotator anglef. The values of the
other parameters are:G51.01, R50.2. For t50 and f50 the

photons in modea are fully absorbed and the residual value ofN̄ is
due to contribution of only modeb.

FIG. 5. Dotted-dashed line: ‘‘geometrical’’ PetermannK factor,
given by Eqs.~47! and~48! for a cavity without crystal, calculated
for f5p/8, as a function of the absorber transmissiont. The value
of K diverges fort→tc(f5p/8).0.41. Dashed line: total averag

photon numberN̄ calculated at resonance andf5p/8. The values
of the other parameters areG51.01, R50.2, corresponding to a
subthreshold OPO. The gray band represents all possible va

of N̄ for nonorthogonal modes. Note thatN̄ is not enhanced for
t5tc .
3-8
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FIG. 6. Emission spectrumN̄(u,f) for a subthreshold OPO calculated forG51.01, R50.2, and different values oft. ~a! For a cavity
with orthogonal modes (t51) we have the periodic behavior characteristic of the spectrum of a Fabry-Pe´rot cavity, but only so forf50 and
f5p/2. For other values off two resonant peaks for free spectral range appear.~b! and ~c! For a cavity with nonorthogonal modes (t

,1), N̄(u,f) decreases with respect to thet51 case but the doubling of the resonant peak remains.
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~25!#. Finally, for t50 there is an abrupt jump in the ban
structure forf5p/4 because modea is totally suppressed
and only a single linearly polarized mode can exist in
cavity. Actually this jump is not clearly visible in Fig. 6, bu
it becomes evident in Fig. 8.

The existence of optical band structures is well known
the case of a classicalring resonator, with passive
polarization-optical elements@32,42#. In that case counter
propagating polarized waves are coupled by electro-o
modulators~EOM!, Faraday rotators, partial reflectors, et
that are arranged in a ring configuration. The polarizati
mode eigenfrequencies then display band structures
function of a tuning parameter, e.g., the voltage across
EOM. A general method for determining the eigenfrequen
band structure in a ring cavity containing various pass
optical elements, has been developed in Refs.@32,42#. Opti-
cal elements are represented by 434 matrices which couple
two polarization degrees of freedom:x and y polarized
waves, and two momentum degrees of freedom: clockw
~cw! and counterclockwise~ccw! waves. The spectrum of
ring cavity is determined by solving the secular equation
eigenvalue unity,
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det~MRT21!50, ~53!

where MRT is the matrix for one round trip along the se
quence:MRT5Mn•••M2M1, andM1 ,M2 , . . . are the indi-
vidual optical element matrices.

This approach is inherently classical because it negle
the coupling between the cavity modes and the world outs
the cavity. Since our OPO is inherently a quantum syst
which, moreover, is based upon a Fabry-Pe´rot cavity instead
of a ring cavity, we have to be careful before adopting t
same method. Equation~53! implicitly defines what is a
spectral resonance for a classical ring cavity; we need
analogous definition in our quantum case. Input-output re
tions for a field inside a cavity with nonorthogonal mod
were already discussed from a very general point of view
Grangier and Poizat@37#; however, their analysis concerne
only a cavity with a linear medium inside. In our case w
shall find that the classical equation~53! remains valid in the
quantum context but acquires a different meaning.

A. Resonance conditions: Quantum theory

Now we extend to the quantum regime the treatment t
leads to Eq.~53!. The theory we have formulated in Sec.
3-9
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can be generalized to an arbitrary linear amplifier~in the
sense of Caves@1#! inside a cavity. A generalized one-outpu
mirror cavity is formed by a mirrorM put in front of a bulk
materialB as shown in Fig. 7. Horizontal arrows represe
field modes, that is modes of the electromagnetic both ins
and outside the cavity. Vertical arrows representnoise
modes, that is modes introduced to account for the loss c
nels. We denote the set of left-traveling field modes byL
and the set of right-traveling field modes byR and
assume dim(L)5dim(R)[N. The set of annihilation opera
tors associated with the input and output field modes
denoted byain5@(ain)1•••(ain)N(ain

† )1•••(ain
† )N#T and aout

5@(aout)1•••(aout)N(aout
† )1•••(aout

† )N#T, respectively. The
set of annihilation operators associated with the input no
modes is denoted byf5@(F)1•••(F)N(F †)1•••(F †)N#T.
All operators belonging to the input~output! field modes
commute with all operators~and their corresponding ad
joints! belonging to the input~output! noise modes. As
shown with more details in the Appendix, if we indicate wi
R, T, and M three 2N32N matrices which represent th
reflectivity and transmittivity of the output mirror and th
whole cavity, respectively, we find

aout5~R1TGT !ain1T~11GR!f ~54a!

[Sain1F, ~54b!

whereG[M (12RM )21. Equation~54a! can be straightfor-
wardly interpreted in term of transmitted and reflected fi
amplitudes, exactly as in the classical Fabry-Pe´rot interfer-
ometer theory. Looking at Eq.~54a! we see that the first term
Rain corresponds to the first reflected wave while the sec
term (TGTa in) is the product of the wave coupled into th
cavity which interacts with the optical elements represen
by G and finally is coupled out of the cavity. In a simila
manner we can interpret the noise term. Note that the s
tion Eq. ~54! exists only if

det~12RM !5” 0. ~55!

FIG. 7. Generalized one-output-mirror cavity. A mirrorM is put
in front of a bulk materialB. The sets of annihilation field operator
inside and outside the cavity are written asaR ,aL and aout ,ain ,
respectively. AnalogouslyF (G) represents the set of annihilatio
input ~output! noise operators.
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Now we are ready to reexamine the definition of a sp
tral resonance. From the general equation~54! it is clear, by
inspection, that allS-matrix elements have a common d
nominatorD(u) (u[vL/c) equal toD(u)5det(12RM ).
A natural definition of the resonant valuesu res is then given
by the complex zeros ofD(u) @43#. From a physical point of
view, sincev andL are real variables, we consider Re(u res)
as the true resonant frequency. With this definiti
D„Re(u res)…5” 0 and our previous calculations apply. As a
example of this definition we show in Fig. 8 the frequen
band structure corresponding to the spectra already show
Fig. 6. Re(u res) is plotted versus the rotator anglef for
different values oft. Whenf50 the two modes correspond
ing to polarizationsa andb are degenerate in frequency fo
all values of t. This degeneracy is removed by the rotat
which induces a coupling between the two polarizati
modes. Whenf5p/2 mod(2p) the two modes exchang
their role and the spectrum is simply shifted byp/2. For t
50 the polarization modea is completely suppressed an
the spectrum is again degenerate.

We now return to our discussion of the resonance con
tion to notice that, when Im(u res)50, the determinant is zero
for real frequencies and our calculations break down. Ho
ever, the real solutions of the equationD(u)50 constitute a
set of functionsu i(R,G,f,t) ( i 51,2, . . . ), which fix the
boundary of the domain, in the space of the parametersR, G,
f, andt, within which solutions of Eq.~54a! exist. In fact it
is clear that, beingu}v}k, the solutions, in general com
plexes, of the equationD(u)50 are the analog of the circle
of convergence of the geometrical seriess(z) in the Fabry-
Pérot transmission function. In the classical theory of t
Fabry-Pe´rot interferometer a plane wave impinging on o
of the mirrors of the interferometer is partially transmitte
and partially reflected. The amplitude of both the transmit
and reflected wave is proportional to the sum of a geome
cal series s(z)511z1z21••• whose argument isz
5rei2(kL1f) for normal incidence. This series can b
summed only ifuzu,1. In our caseuzu5re22kiL which is
less than 1 only ifki.ki

th were

FIG. 8. Frequency band structures corresponding to the th
dimensional spectra shown in Fig. 6. We have plotted Re(u res) ver-
sus the rotator anglef for different values oft.
3-10
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ki
th52

1

2L
lnS 1

r D . ~56!

It is clear that the threshold condition corresponds to a va
of z5x1 iy which lies, in the complex plane (x,y), exactly
on the radius of convergence of the geometrical seriesS(z).
Analogously we identify the points lying on the bounda
functionsu i(R,G,f,t) with the set of the values of the pa
rametersR, G, f, andt for which oscillations start~threshold
values! and therefore we write the threshold condition
Im(u res)50. In the next section we analyze the distributi
of these singular points in the plane (u,f) for different val-
ues ofR, G, and t. Finally it is interesting to note that th
‘‘quantum’’ equationD(u)5det(12RM )50 does not con-
tain any noise contribution and is, in fact, completely clas
cal and therefore fully equivalent to the ‘‘classical’’ equatio
~53!.

B. Mode spectra of OPO

We start our analysis of the OPO optical band structure
considering what happens in a cavity with orthogonal mo
(t51) when the threshold condition Im(u res)50 is satisfied.
In Fig. 9 the frequency band structure of the OPO spectr
is plotted for increasing values of the gainG and fixed mirror
reflectivity R50.5. For G51.01 ~subthreshold OPO! we
have Im(u res)5” 0 and the spectrum is the same as Fig. 8~a!.
For G.Gth(R)[(11R)/(2AR) each band is doubled an
shifted and the gap between two near bands is increa
along with G. In other words a degeneracy between tw
eigenmodes is removed when the OPO starts to oscillate
first sight these band structures closely resemble the co
sponding ones in passive ring cavities@see, e.g., Fig. 2~d! in
@32##. In a ring cavity the doubling in the band structu
arises from the coupling betweencounterpropagatingmodes
along the ring. In other words, in a ring cavity the four d
grees of freedom of the electromagnetic field that are resp
sible for the presence of four resonant peaks per free spe
range are two ‘‘polarization’’ degrees of freedom and tw

FIG. 9. Illustrating the doubling mechanism for an OPO in
cavity with orthogonal eigenmodes (t51) and mirror reflectivity
R50.5. For increasing values ofG the gap between bands is als
increasing. Higher values ofG are not considered here because o
model is limited by the nondepleted pump approximation.
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‘‘momentum’’ degrees of freedom. Instead in our case
doubling is due to the coupling between annihilation a
creation operators belonging to differentpolarizationmodes.
In other words here we have two polarization degrees
freedom coupled in a linear way by passive optical devic
and the same two polarization degrees of freedom couple
a nonlinear way by the crystal. To see this more clearly,
band structure for an OPO in a simple linear cavity (t51
andf50) is shown in Fig. 10, whereu res is plotted versusG
for different values ofR. When G approach the threshold
valueGth(R), a bifurcation in the OPO spectrum appears

This bifurcation should be, in principle, observable e
perimentally. However, the well-known instability of a ne
threshold OPO@41#, which is perhaps connected with th
bifurcation, could make its direct observation very difficu
However, a detailed analysis of the OPO instability and
connection with the spectrum bifurcation other than w
self-phase-locking~see, e.g.,@44#! goes beyond the scopes o
the present work. We simply recall that in our calculation t
crystal is considered infinitesimally thin so that the bifurc
tion cannot be explained as a refractive index-depend
propagation effect within the crystal. The true nature of t
phenomenon lies in the nonlinear coupling due to the cry
between annihilation and creation operators belonging to
ferent polarization modes, as is made clear in Fig. 9. In or
to understand this in detail, we rewrite the scattering ma
of a parametric amplifier as

b15coshga11sinhga2
† , ~57a!

b25coshga21sinhga1
† , ~57b!

whereG5coshg. Ou @45# has shown that under the tran
formations

a65~a1e2 id6a2eid!/A2, ~58a!

b65~b1e2 id6b2eid!/A2, ~58b!

r

FIG. 10. Illustrating the bifurcation appearing around a sin
resonant peak in the OPO spectrum in a Fabry-Pe´rot cavity with
orthogonal eigenmodes (f50 andt51). When increasing the mir-
ror reflectivity R the system approaches the threshold of oscillat
for smaller values ofG.
3-11
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(; dPR) Eqs. ~57! decouple in the equations of two inde
pendent degenerate parametric amplifiers,

b15coshga11sinhga1
† , ~59a!

b25coshga22sinhga2
† . ~59b!

A degenerate parametric amplifier is, following the definiti
of Caves@1#, a phase-sensitiveamplifier, that is an amplifier
which responds differently to the two quadrature phases
the field defined as

q~a!5
a1a†

A2
, ~60a!

p~a!5
a2a†

A2i
. ~60b!

These operators are both Hermitian and thus, in princi
observable. From Eqs.~59!, ~60! it is easy to see that eac
quadrature phase is amplified with a different gain,

q1~b!5egq1~a!, p1~b!5e2gp1~a!, ~61!

q2~b!5e2gq2~a!, p2~b!5egp2~a!,
~62!

and we have four independent observable degrees of
dom. In fact, from Eqs.~61!, ~62!, we see that only two
quadrature phases really exhibit different gain. Since
threshold condition Im(u res)50 contains explicitly the gain

FIG. 11. Frequency band structures of an OPO in a cavity w
nonorthogonal eigenmodes. The cavity ‘‘length’’u5vL/c is plot-
ted versus the rotator anglef for several values of the absorbe
parametert. The values of the other parameters areG5A2, R
50.5.
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each of these two quadrature phases reaches the thresho
a different set of values of the parametersR, G, f, andt and
two bands appear in the spectrum.

Now we consider the more general case of a cavity w
nonorthogonal modest<1 andf5” 0. In this case all four
quadrature phases are coupled to each other and four b
appear. The frequency band structure of the OPO spectru
shown in Fig. 11 whereu res is plotted versus the rotator ang
f for different values oft and fixedG5A2 andR50.5. The
difference between these spectra and the ones usually
tained for lossless ring cavities is both in the shape of
bands and also in their disposal. In our case the bands
symmetric with respect to a vertical axis while in th
passive-cavity case the symmetry is with respect to a h
zontal axis. This is clearly illustrated in Fig. 12 where t
two pictures differ for a rotation by ap/2 angle in the plane
of the figure. This phenomenon is entirely due to the los
in our model represented by a nonunitary matrix. Howev
we stress the fact that this lack of unitarity only appears
the classical equation det(12RM )50 but not in the full
quantum equation~54!.

To illustrate this phenomenon we consider, for simplici
a two-mode optical system which contains an absorbing
ement whose matrix can be written as@46#

A5S e2a 0

0 eaD , ~63!

wherea is a real parameter. This matrix is trivially nonun
tary. Let us now analytically continue the real parametera in

h FIG. 12. Illustrating the effect of nonunitarity on the frequen
band structure. Two band structures are shown, calculated fo
OPO with G5A2, R50.5 and~a! t5exp(21/5) and~b! t5exp
(2i/5). The two band structures have the same shape but they d
by a p/2 rotation in the plane of the figure.
3-12
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the complex space via the transformationa→aeih. After
this transformation the matrixA becomes

A~h!5S e2a cosh2 ia sin h 0

0 ea cosh1 ia sin hD , ~64!

which is in general nonunitary for arbitrary values of the re
parameterh. Whenh50 we recover the original matrixA,
while for h5p/2 we obtain

A~p/2!5S e2 ia 0

0 eiaD , ~65!

which is unitary. In Fig. 12 we show the effects of the tran
formationa→aeih on a eigenfrequency band structure: F
12~b! is obtained from Fig. 12~a! by writing the absorber
parameter ast5exp(2a) and by making the substitutiona
→ ia in the boundary functionsu i(R,G,f,t5e2a) intro-
duced in the preceding section. Looking at Eq.~10! it is clear
that the tricka→aeih can be interpreted as a ‘‘Wick rota
tion’’ @29# if one thinks of the parametera as proportional to
a finite time interval.

The nonunitary nature of theM matrix is also responsible
for the lack of continuity in the band structure for values
t less then 1, as shown in Figs. 11~e! and 11~f!. The breaking
of the band structures and the appearance of ‘‘islands’’ is
to the fact that whent,1 one polarization mode~modea in
the preceding sections! is increasingly suppressed because
the losses introduced by the absorber. Since in Fig. 11
assigned value of the gainG corresponds to a near-thresho
value Gth only for t51, when t,1 the increasing losse
cause an increasing value ofGth and some eigenmodes ca
not start to oscillate. Particularly, fort50, one mode is com-
pletely suppressed and only two resonant peaks~instead of
four! per free spectral range are left. By explicit calculation
is easy to see that when using optical devices represente
a unitary matrix this phenomenon does not appear; this m
suppression can be achieved only using nonunitary op
devices.

VI. CONCLUSIONS

In the first part of this paper we have introduced a
analyzed a model for an optical parametric oscillator in
cavity with nonorthogonal polarization modes. Our mod
comprises~and reduces to those as particular subcases! two
theoretical models both of which have beenexperimentally
verified. For the type-II degenerate parametric amplifier
use the model of Gardiner and Savage@31# whose validity
has recently been verified experimentally by Ou and Lu@23#.
For the cavity with two nonorthogonal polarization mode
where large polarizationK factors have been demonstrat
@9,12#, we adopt the model of van der Leeet al. @9#. By
using this model we have shown that there is no excess q
tum noise enhancement in type-II SPDC. On the contr
the use of a cavity with nonorthogonal~instead of orthogo-
nal! eigenmodes leads to areductionof the twin photon gen-
eration rate. Excess quantum noise must therefore be ex
sively ascribed to amplification of spontaneously emit
04380
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photons; the spontaneous emission process itself is no
fected. Excess quantum noise becomes effective only v
close to threshold when one of the cavity eigenmodes
‘‘selected’’ as the oscillating mode which dominates over t
other modes@47#.

In the second part of this paper we have studied the eig
frequency spectrum of the same OPO, but now working n
threshold. In order to find the correct definition of a spect
resonance within our fully quantum treatment, we have
rived the spectral dependence of this resonance from
OPO parameters by writing explicitly the scattering mat
for the whole cavity. Since a type-II parametric cryst
couples annihilation operators belonging to a certain po
ization mode with creation operators belonging to the
thogonal polarization mode, we deal with a system wh
has four coupled degrees of freedom. Thus we have fo
that in the OPO spectrum four resonant peaks per free s
tral range can exist. The ‘‘position’’u5vL/c of these peaks
depends on the transmissiont of the absorber and on th
rotator anglef which also fix the ‘‘degree of nonorthogona
ity’’ of the cavity. Because of thef dependence, differen
band structures, whose shapes depend ont, appear in the
OPO spectrum. Since we are considering a degenerate p
metric amplifier with v5V/2, in order to experimentally
detect the spectral band structures we can either scan
cavity lengthL or vary the pump frequencyV. These band
structures closely resemble those found for a passive cla
cal ring cavity@32#.
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APPENDIX

In this appendix we derive explicitly Eq.~54! utilized in
Sec. V A. Let us consider the arrangement shown in Fig
Horizontal arrows representfield modes, that is modes of th
electromagnetic both inside and outside the cavity. Verti
arrows representnoise modes, that is modes introduced
account for the loss channels. We denote the set of l
traveling field modes byL and the set of right-traveling field
modes byR and assume dim(L)5dim(R)[N. The set of
annihilation operators associated with the input~output! field
modes is denoted byain (aout). The set of annihilation op-
erators associated with the input~output! noise modes is de
noted byF (G). All operators belonging to the input~output!
field modes commute with all operators~and their corre-
sponding adjoints! belonging to the input~output! noise
modes. Finally we denote withaL andaR the set of operators
belonging to the field modes inside the cavity. They sati
the quite general linear relation

~aR!a5 (
b51

N

@Mab~aL!b1Lab~aL
†!b#1Fa , ~A1!

where a51, . . . ,N. The 2N2 complex numbersMab and
Lab are completely determined by the optical elements
3-13
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side the cavity. Even if each of these elements is represe
by a unitary operator, the requirement that the operator
the setsaR and aL obey the bosonic commutation relation
does not need to be satisfied since these operators are
ciated with intracavity modes@48#.

The mirrorM generates a linear coupling between ope
tors belonging to the setsaL , aR , ain , aout which can be
represented as

~aout!a5 (
b51

N

@Tab~aR!b1Rab~ain!b#, ~A2a!

~aL!a5 (
b51

N

@Tab~ain!b1Rab~aR!b#, ~A2b!

(a51, . . . ,N). Is is easy to solve Eqs.~A1! and ~A2! to-
gether in order to express the operatorsaout as linear combi-
nations of the operatorsain andF ~and their respective ad
joints!, as we have already done in Sec. I. However, in or
to illustrate the nature of the solution that we have found a
to show how the resonance condition can be imposed
quantum theory, we solve again Eqs.~A1! and~A2! introduc-
ing a matrix notation. LetM stand forMab , L for Lab , T
for Tab andR for Rab . All these areN3N matrices. With
aL ,ain , etc., now we indicate theN-component vectors
aL5@(aL)1(aL)2•••(aL)N#T, ain5@(ain)1(ain)2•••(ain)N#T,
etc., respectively and similarly for the corresponding adjo
operators. Using this notation we rewrite Eqs.~A1! as

S aR

aR
† D 5S M L

L* M* D S aL

aL
†D 1S F

F †D , ~A3!

and Eqs.~A2! as
i

,

-
d

.
P.

e
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S aout

aout
† D 5S T 0

0 T* D S aR

aR
† D 1S R 0

0 R* D S ain

ain
† D , ~A4a!

S aL

aL
†D 5S T 0

0 T* D S ain

ain
† D 1S R 0

0 R* D S aR

aR
† D . ~A4b!

This is only an intermediate step. We go ahead further in
ducing the 2N-component vectors aR5(aR aR

†)T, f
5(F F†)T, etc., and the 2N32N matrices

M5S M L

L* M* D , ~A5!

and

T5S T 0

0 T* D , R5S R 0

0 R* D . ~A6!

Now we are ready to rewrite Eqs.~A3! and ~A4! as

aR5MaL1f, ~A7a!

aout5TaR1Rain , ~A7b!

aL5Tain1RaR . ~A7c!

Inserting Eq.~A7a! in Eq. ~A7c!, solving for aL and using
this result in Eqs.~A7a! and ~A7b! we finally find, for the
operators belonging to the output field modes,

aout5~R1TGT !ain1T~11GR!f ~A8a!

[Sain1F, ~A8b!

whereG[M (12RM )21.
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