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Bloch theory of entangled photon generation in nonlinear photonic crystals

William T. M. Irvine,* Michiel J. A. de Dood,† and Dirk Bouwmeester
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�Received 21 April 2005; published 20 October 2005�

We present a quantum-mechanical description of parametric down conversion and phase matching of Bloch
waves in nonlinear photonic crystals. We discuss the theory in one-dimensional Bragg structures giving a
recipe for calculating the down-converted emission strength and direction. We exemplify the discussion by
making explicit analytical predictions for the emission amplitude and direction from a one-dimensional struc-
ture that consists of alternating layers of Al0.4Ga0.6As and air. We show that the emission is suitable for the
extraction of polarization-entangled photons.

DOI: 10.1103/PhysRevA.72.043815 PACS number�s�: 42.65.Lm, 03.67.Mn

I. INTRODUCTION

Entangled photon pairs play a central role in both funda-
mental tests of quantum mechanics and in the implementa-
tion of quantum information theory protocols �1�. They are
an appealing resource for quantum communication since
they propagate easily over long distances with relatively
little interaction with the environment. Furthermore they
have been proposed as a resource for all-optical quantum
computation �2�.

A popular method to produce entangled photons is by
parametric down conversion in naturally birefringent nonlin-
ear crystals. In this process “pump” photons entering a crys-
tal decay or “down convert” into photon pairs. The role of
the nonlinearity is to mediate the interaction whereas the role
of the birefringence is to ensure that the process is phase-
matched, i.e., that the amplitudes for the down-conversion
process at different points in the crystal constructively inter-
fere. If a particular emission geometry can be achieved, pho-
tons emerging in a specific pair of directions will be en-
tangled in polarization �3�.

In a recent paper, the authors proposed the use of nonlin-
ear photonic crystals as a source of polarization-entangled
photons �4�. The scheme harnesses the higher ��2� nonlinear-
ity of semiconductor materials �e.g., �GaAs

�2� =200 pm/V �5�,
cf. �BBO

�2� =2.2 pm/V �6�� to mediate the down conversion and
proposes to use the photonic crystal geometry to phase match
the emission. The scheme has the potential of both increasing
the efficiency of the process and providing an entangled-
photon source that is more amenable to integration on optical
chips. The scheme is fundamentally different from schemes
for quasi-phase-matching in periodically poled materials,
where only the ��2� is modulated periodically.

One-dimensional photonic crystals had been considered
before for classical frequency conversion in the limit that the
optical wavelength is much larger than the periodicity �7–9�.
Two-dimensional nonlinear photonic crystals have also been
considered for classical frequency conversion �10�. Follow-
ing the appearance of our proposal, Ref. �11� used semiclas-

sical coupled mode theory to calculate colinear frequency
down-conversion efficiency in one-dimensional structures
using numerical calculations.

In this article we present the theory that underlies our
proposal. We use the Bloch-wave formalism to discuss the
quantum-mechanical down-conversion process in nonlinear
photonic crystals and show how to calculate the strength and
direction of the down-converted emission. The theory works
for photonic crystals of all dimensions. We apply the theory
to one-dimensional Bragg structures, performing calculations
of the down-conversion emission analytically. By plotting
the calculated emission from a structure that consists of al-
ternating layers of Al0.4Ga0.6As and air, we show explicitly
that entangled photon pairs can be generated in a realistic
structure.

The present article is structured as follows. Sections II
and III discuss Bloch waves and their quantization in linear
photonic crystals following essentially the work of Caticha
and Caticha �12�. In Sec. IV we derive an expression for the
interaction Hamiltonian and the phase-matching function
that govern the down-conversion process in nonlinear photo-
nic crystals. In Sec. V we summarize the discussion of Bloch
waves in Bragg structures by Yariv and Yeh �13� extending it
to obtain expressions for the Bloch-wave Fourier compo-
nents. Section VI consists of a detailed discussion of the
phase-matching problem in Bragg structures, giving a recipe
for establishing the emission amplitude and direction from a
given structure. The discussion centers on the application of
our method to an example Al0.4Ga0.6As/Air structure. Finally
we conclude and discuss extensions of the present work in
Sec. VII.

II. WAVE PROPAGATION INSIDE
A LINEAR PHOTONIC CRYSTAL

A photonic crystal is a material with a periodic variation
in the index of refraction or dielectric constant. A periodic
dielectric constant ��r�=��r+��, is seen as a periodic poten-
tial by the electric field. The eigensolutions of Maxwell’s
equations in a medium with periodic dielectric must there-
fore take the form of Bloch waves. We can thus write the
following expression for the four-vector potential inside the
medium:
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AK,�
� �r,t� = e−i�K·r−�K,�t��

G
�̃K,�

� �G�eiG·r. �1�

K represents the Bloch momentum �and will be taken to lie
within the first Brillouin zone�, the index � runs over the two
polarizations and the various branches of the dispersion re-
lation, G represents a reciprocal lattice vector and � runs
from 0 to 3. The bold face represents a Cartesian vector and
only the real part of A� is of physical significance. The sum
defines a periodic envelope field �K,�

� �r�=�K,�
� �r+�� with

Fourier coefficients �̃K,��G�. There are two natural generali-
zations of the Coulomb gauge: ��r�� ·A=0 and � · [��r�A]
=0 that reduce to the uniform dielectric Coulomb gauge
� ·A=0. In the gauge ��r�� ·A=0, Maxwell’s equations are
given by �12�

�tA
0 = �−1�r��2A − �t

2A , �2�

�2A0 = − �−1�r� � ��r� · ��tA + �A0� . �3�

Solving these equations with the ansatz �1� amounts to find-
ing the dispersion relation between � and K and an expres-
sion for �K,�

� �r� or its Fourier coefficients �̃K,�
� �G�. The most

striking consequence of the presence of a periodic potential
is the formation of frequency regions, known as “stop bands”
in which no propagating solution exists. Close to these re-
gions, the dispersion is strongly modified and �K,��r� takes
the form of a standing wave. Away from these regions
�K,��r� recovers its plane-wave form but the dispersion rela-
tion can differ considerably from that in a uniform dielectric
in a way that can be tuned by changing the geometry and
strength of the periodic modulation. The tunable dispersion
relation will play a crucial role in this paper.

The electric and magnetic field can be derived from the
vector potential in the usual way:

EK,� = − ��K,� − �tAK,�,

BK,� = � 	 AK,�,

where �K,�=AK,�
0 and A= �AK,�

1 ,AK,�
2 ,AK,�

3 �, giving

EK,��r,t� = e−i�K·r−�K,�t��
G


̃K,��G�eiG·r, �4�

BK,��r,t� = e−i�K·r−�K,�t��
G

�̃K,��G�eiG·r, �5�

where the Fourier coefficients 
̃K,��G� and �̃K,��G� are given
by


̃K,��G� = − i�K − G��̃K,�
0 �G� − i��̃K,��G� , �6�

�̃K,��G� = iG 	 �̃K,��G� . �7�

The symbol for the Fourier coefficients of the electric field 
̃
should not be confused with the dielectric constant ��r�.

III. FIELD QUANTIZATION INSIDE
A LINEAR PHOTONIC CRYSTAL

Unlike sum frequency generation, parametric down-
conversion does not occur classically and thus is a truly

quantum-mechanical phenomenon. It is thus most natural to
discuss the problem in the language of the quantized electro-
magnetic field. The procedure for the quantization of the
electromagnetic field in a medium with nonuniform dielec-
tric differs from that in a uniform dielectric in that the equa-
tions of motion for the potential �Eqs. �2� and �3�� involve
derivatives of the dielectric function. The two natural gener-
alizations of the Coulomb gauge ��r�� ·A=0 and
� · [��r�A]=0 lead to different quantization procedures. Here
we summarize the results of Caticha and Caticha �12� who
used the gauge ��r�� ·A=0 to quantize the electromagnetic
field in a medium with periodic dielectric. They showed that
the Hamiltonian is diagonal in the Bloch-wave basis and the
creation operators for the field satisfy suitably modified com-
mutation relations. The quantized field operator is given by

Â��r,t� = �
�
� d3K

�2��3 �â�K,��AK,�
� �r,t� + H.c.� , �8�

where AK,�
� �r , t� is given by Eq. �1�. The Hamiltonian can be

expressed in the usual form

Ĥ = �
�
� d3K

�2��3
�K,�â†�K,��â�K,��

and the creation and annihilation operators â and â† satisfy
the following commutation relations:

�â�K,��, â†�K�,���� = �2��3��3��K − K����,��, �9�

�â�K,��, â�K�,���� = 0, �10�

�â†�K,��, â†�K�,���� = 0. �11�

The electric and magnetic field operators derived from
Eq. �8� are given by

Ê�r,t� = �
�
� d3K

�2��3 �â�K,��EK,��r,t� + H.c.� , �12�

B̂�r,t� = �
�
� d3K

�2��3 �â�K,��BK,��r,t� + H.c.� �13�

with EK,��r , t� and BK,��r , t� given by Eqs. �4� and �5�. We
will now use these results to derive an expression for the
quantum interaction Hamiltonian and the phase-matching
function.

IV. NONLINEAR PHOTONIC CRYSTAL INTERACTION
HAMILTONIAN AND PHASE MATCHING

To derive the ��2� interaction Hamiltonian for the quan-
tized electromagnetic field, we proceed as in the case of non-
linear optical crystals with uniform dielectric and ��2� �14�.
Starting with the expression for the classical interaction
Hamiltonian
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�0� dV
1

2
�ijk

�2��r�Ei�r�Ej�r�Ek�r� ,

�where ��2� is the second order susceptibility tensor�, insert-
ing the expression for the quantized electric Bloch field

Ê�r ,0� �Eq. �12��, making the rotating wave approximation
and labeling the three interacting Bloch modes by p ,1 ,2, we
obtain the following quantum interaction Hamiltonian:

Ĥint = �
�p,1,2

� d3Kp,1,2dV 	 �0�ijk
�2��r�Ep

*i�r�E1
j �r�

	E2
k�r�âpâ1

†â2
† + H.c., �14�

where Ep,1,2 is short for EKp,1,2,�p,1,2
�r ,0� and âp,1,2 is short for

â�Kp,1,2 ,�p,1,2�. The interaction can be seen to mediate two
basic processes: one in which a p photon down converts into
photons 1 and 2 and �H.c.� in which photons 1 and 2 up
convert to photon p.

To calculate the time evolution of the field under this
interaction Hamiltonian, we switch to the interaction picture,
and evaluate the first term in the Dyson series expansion for
the time evolution of an initial state ��0�:

���t�� = 	1 + �
�p,1,2

� d3Kp,1,2

�2��3 ���p − �1 − �2��0� dV�ijk
�2��r�

	Ep
*i�r�E1

j �r�E2
k�r�âpâ1

†â2
† + H.c.
��0� .

For given states p ,1 ,2, the amplitude for parametric down-
conversion into modes 1 and 2 is proportional to the phase-
matching function ��p ,1 ,2�, given by

��p,1,2� = �0� dV�ijk
�2�Ep

*i�r�E1
j �r�E2

k�r� . �15�

It is instructive to substitute the Fourier expansion of
Ep�r� ,E1�r� ,E2�r� �Eq. �4�� and the Fourier expansion of
�ijk

�2��r� �with Fourier coefficients denoted by �̃ijk
�2��G�� into the

phase-matching function �Eq. �15�� to obtain

��p,1,2� = �
G�,Gp,G1,G2

�0�̃ijk
�2��G��
̃p

*i�Gp�
̃1
j �G1�
̃2

k�G2�

	��3��Kp − K1 − K2 + G� + G1 + G2 − Gp�
�16�

which makes the conservation of Bloch quasimomentum
manifest.

Equations �15� and �16� are the main result of this section.
To first order in ��2� a pump photon will down convert into a
superposition of all Bloch-wave pairs that satisfy conserva-
tion of energy ��1+�2=�p� and of Bloch quasimomentum,
with an amplitude ��p ,1 ,2� given by Eq. �15� or Eq. �16�.
An important difference with the phenomenon of up conver-
sion is the fact that down conversion involves all modes that
phase match, whereas up conversion is more constrained:
given two photons to up convert, there is typically only one
mode they can up convert to. A parallel between phase
matching in nonlinear crystals with uniform dielectric and

phase matching in photonic crystals is drawn in Table I
which contains a dictionary for the main concepts.

The vector equation that expresses the conservation of
Bloch quasimomentum

K1 + K2 = Kp + G� + G1 + G2 − Gp �17�

shall be referred to as the phase-matching equation. For a
given Kp, solving the equation corresponds to finding the

intersection between the dispersion surfaces �K1�k̂1 ,�1�� and

�K2�k̂2 ,�2�� for photons 1 and 2, centered on the origin and

on �Kp�k̂p ,�1 ,�2�+G�, where k̂ represents a unit vector that
points in the same direction as K. To solve the equation it is
therefore necessary to compute the dispersion surfaces of
photons with frequencies �1, �2, and �p.

For photons that satisfy the phase-matching equation, the
amplitude of the process is proportional to the overlap of the
waves in the nonlinear medium. As we shall see in later
sections, this is most easily calculated using Eq. �15� in cases
where the light field has standing wave character and using
Eq. �16� when it has the character of a propagating wave. It
is therefore useful to keep both these expressions in mind
when solving the phase-matching problem in a given struc-
ture.

In deriving Eq. �16�, the photonic crystal �interaction� vol-
ume was taken to be infinitely large. This will of course not
be the case for real photonic crystals. For finite-dimensional
crystals the delta functions embodying the conservation of
momentum become sinc functions:

sin��Kp − K1 − K2 + G� + G1 + G2 − Gp�iLi�
�Kp − K1 − K2 + G� + G1 + G2 − Gp�iLi

,

where Li is the length of the photonic crystal in the ith di-
rection. This corresponds to a certain amount of allowed mo-
mentum mismatch and, as will be seen in Sec. VI, can have
significant consequences.

In one- and two-dimensional photonic crystals, there are
two main mechanisms by which the dispersion surfaces are
modified by the presence of the crystal: form birefringence

TABLE I. Phase-matching dictionary that shows how the main
ideas of phase matching in nonlinear optical crystals translate to
nonlinear photonic crystals.

Natural nonlinear crystals Nonlinear photonic crystals

Plane waves Bloch waves

E��r�=eik·r EK,��r�=eiK·r�
G


̃K,��G�eiG·r

Momentum conservation Quasimomentum conservation

k1+k2=kp K1+K2=Kp+G

Natural dispersion and
birefringence

Artificial dispersion and
form birefringence

k�� , k̂�=n�� , k̂� /c k�� , k̂�=K�� , k̂�

Tensor properties ��2�

determine amplitude
Tensor properties ��2� and

Fourier coefficients
determine amplitude

BLOCH THEORY OF ENTANGLED PHOTON GENERATION… PHYSICAL REVIEW A 72, 043815 �2005�

043815-3



�7� and geometric dispersion. Although the two effects are
not entirely independent of each other, their origin is physi-
cally distinct. Form birefringence is the difference in the dis-
persion surfaces of Bloch waves that have different polariza-
tions and arises from the different boundary conditions at the
interfaces in the photonic crystal. In the long wavelength
limit �����, this type of dispersion is the dominating one.
The geometric dispersion is induced by the presence of the
periodic potential and appears as the only type of dispersion
for waves propagating in directions for which the boundary
conditions do not break the symmetry between polarizations.
In three dimensional structures the problem is more compli-
cated since the decoupling between direction and polariza-
tion does not readily occur.

The derivations so far apply in all dimensions, however,
from here on we will restrict our attention to one-
dimensional �Bragg� structures and discuss the analytical so-
lution of the down-conversion phase-matching problem in
detail with a view to generating entangled photon pairs. The
problem in the two dimensional case is similar, however cal-
culation of dispersion relations in two-dimensional structures
has so far only been approached numerically. For a discus-
sion of phase matching in two-dimensional photonic crystals
see Ref. �10�. Reference �15� discusses the problem in a
structure having a two-dimensional periodic ��2�, but uniform
linear dielectric.

V. BLOCH WAVES IN (ONE DIMENSIONAL)
BRAGG STRUCTURES

In this section we summarize the results of Yariv and Yeh
�13�, describing the Bloch-wave solutions that propagate in
one-dimensional photonic crystals �Bragg structures�. We ex-
tend their results by obtaining expressions for the Bloch-
wave Fourier coefficients and discuss the form of the Bloch
waves in detail, in order to gain intuition that will be needed
in the discussion of Sec. VI.

Figure 1 shows the basic structure of a one dimensional

photonic crystal consisting of a series of alternating layers of
materials a and b. We adopt Cartesian coordinates with the z
axis aligned with the axis of symmetry. Inside each layer the
field can be expressed as a superposition of forward and
backward propagating plane waves, with wave vectors k
having magnitude �k�=n� /c �where n is the refractive index
in the layer� and component kz

a,b along the z axis. Transla-
tional symmetry in the plane perpendicular to the z axis im-
plies, through conservation of momentum, that the compo-
nents of the wave vectors parallel to the planes �kx and ky�
are equal across the boundaries, thus the z components are
given by

kz
a,b =�	na,b�

c

2

− k�
2, �18�

where k�
2=kx

2+ky
2 and na,b are the refractive indices of mate-

rials a and b. For waves traveling at an angle to the z direc-
tion, there is a natural choice for the polarization basis: trans-
verse electric �TE� with the electric field pointing out of the
plane defined by the wave vector and the z axis and trans-
verse magnetic �TM�, with the electric field lying in the
plane �see Fig. 1�.

We can thus write down the following expressions for the
electric field in the nth layer

En,TE�M�
a = ei��t−kyy���an

+
̂+
a�TE�M�e

−ikz
a�z−n��

+ �an
−
̂−

a�TE�M�e
ikz

a�z−n��� �19�

En,TE�M�
b = ei��t−kyy���bn

+
̂+
b�TE�M�e

−ikz
b�z−n��

+ �bn
−
̂−

b�TE�M�e
ikz

b�z−n��� , �20�

where �
̂±
a,b�TE�M� are polarization unit vectors defined in Fig.

1 and we have chosen y as the off-axis direction for conve-
nience. Matching the fields at the boundaries we obtain rela-
tions between the amplitudes in neighboring slabs, which can
be further reduced to a relation between coefficients in the
same material in neighboring cells:

	an−1
+

an−1
− 
 = 	A B

C D

	an

+

an
− 
 .

The coefficients for TE and TM waves are �13�

ATE = eikz
aa
cos�kz

bb� +
i

2
	 kz

b

kz
a +

kz
a

kz
b
sin�kz

bb�� ,

BTE = e−ikz
aa
 i

2
	 kz

b

kz
a −

kz
a

kz
b
sin�kz

bb�� ,

ATM = eikz
aa
cos�kz

bb� +
i

2
	nb

2kz
a

na
2kz

b +
na

2kz
b

nb
2kz

a
sin�kz
bb�� ,

BTM = e−ikz
aa
 i

2
	nb

2kz
a

na
2kz

b −
na

2kz
b

nb
2kz

a
sin�kz
bb��

with CTE/TM=BTE/TM
* , DTE/TM=ATE/TM

* . The eigenmodes of
propagation can then be obtained by finding the eigenvectors

FIG. 1. Illustration of a one-dimensional photonic crystal com-
posed of alternating layers of materials a and b of thickness a and b
having refractive indices na and nb. The structure is periodic with
period �=a+b. The axis of symmetry is taken to be the z axis.
There are two types of propagating polarization eigenmodes: Trans-
verse electric �TE� and transverse magnetic �TM�. TE�TM� waves
have the electric�magnetic� field vector lying in a plane parallel to
the interfaces between the materials.
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and eigenvalues of the transfer matrix. The right-moving ei-
genvalue is eiKz� with

Kz
TE/TM�k�,�� =

1

�
cos−1�ATE/TM + DTE/TM� , �21�

where Kz is the z component of K= �Kx=kx ,Ky =ky ,Kz� and
the corresponding eigenvector is

an
TE/TM = e−inKz

TE/TM
�BTE/TM, �22�

bn
TE/TM = e−inKz

TE/TM
��e−iKz

TE/TM
� − ATE/TM� �23�

the bn
± coefficients are related to the an

±s via �bn
+ ,bn

−�
=M�an

+ ,an
−�, where M is given by

MTE =�
�kz

a + kz
b�

2kz
b eia�kz

a−kz
b� �kz

b − kz
a�

2kz
b e−ia�kz

a+kz
b�

�kz
b − kz

a�
2kz

b eia�kz
a+kz

b� �kz
b + kz

a�
2kz

b e−ia�kz
a−kz

b� � , �24�

MTM =�
�nb

2kz
a + na

2kz
b�

2nanbkz
b eia�kz

a−kz
b� �nb

2kz
a − na

2kz
b�

2nanbkz
b e−ia�kz

a+kz
b�

�nb
2kz

a − na
2kz

b�
2nanbkz

b eia�kz
a+kz

b� �na
2kz

b + nb
2kz

a�
2nanbkz

b e−ia�kz
a−kz

b� � .

�25�

To relate these expressions to the Bloch-wave expressions
in Secs. II and III we need to evaluate the Fourier transform
of the expressions for the electric field �Eqs. �19� and �20��
and compare it to Eq. �4� �with G=n�2� /��ẑ�. This is done
in the Appendix, where we derive the following expression
for 
̃K,�:


̃K,�	G = n
2�

�
ẑ


=
a

�2�
a0

+

sin
	Kz − kz
a − n

2�

�

a

2
�

	Kz − kz
a − n

2�

�

a

2

e−i�Kz−kz
a−n�2�/���a/2
̂+

a

+
a

�2�
a0

−

sin
	Kz + kz
a − n

2�

�

a

2
�

	Kz + kz
a − n

2�

�

a

2

e−i�Kz+kz
a−n�2�/���a/2
̂−

a

+
b

�2�
b0

+

sin
	Kz − kz
b − n

2�

�

b

2
�

	Kz − kz
b − n

2�

�

b

2

e−i�Kz−kz
b−n�2�/����a+b/2�
̂+

b

+
b

�2�
b0

−

sin
	Kz + kz
b − n

2�

�

b

2
�

	Kz + kz
b − n

2�

�

b

2

e−i�Kz+kz
b−n�2�/����a+b/2�
̂−

b .

The expressions for the dispersion relations

�Kp,1,2�K̂p,1,2 ,�p,1,2��, the field amplitude Ep,1,2�r�, and its
Fourier coefficients 
̃Kp,1,2,�p,1,2

(n�2� /��) can be substituted
into Eqs. �15� and �16� to give analytical expressions for the
phase-matched emission from any given �one dimensional�
nonlinear Bragg structure. The expressions are however not
immediately intuitive. We therefore proceed to consider the
results of this section in various situations to gain some in-
tuition on how the Bloch-wave properties depend on the ge-
ometry of the crystal and on the properties of the materials.

Central to an intuitive understanding of Bloch-waves in a
given structure is the band diagram for that structure. Figure
2 shows a band diagram for a structure of alternating layers
of material a with refractive index na=1 and material b with
refractive index nb=5 �the values were chosen for illustrative
purposes�. Note that the labels a ,b shall also be used to
indicate the thicknesses of materials a ,b. The fill fraction
a /� of material a is 1

4 . For simplicity, natural material dis-
persion was neglected; it will be included in the section that
follows. The gray �white� areas correspond to combinations
of � and k� that propagate �do not propagate�. A given com-
bination of � and k� will propagate if the corresponding
KTE/TM�k� ,�� is real. This will be the case if � 1

2 �A+D���1.
For TE waves 1

2 �A+D� is given by

cos�kz
aa + kz

bb� + 
1 −
1

2
	 kz

b

kz
a +

kz
a

kz
b
�sin�kz

aa�sin�kz
bb� ,

whereas for TM waves it is given by

cos�kz
aa + kz

bb� + 
1 −
1

2
	nb

2kz
a

na
2kz

b +
na

2kz
b

nb
2kz

a
�sin�kz
aa�sin�kz

bb� .

It can be seen that the extent to which Kz� deviates from the
simple linear relation Kz�=kz

aa+kz
bb depends in a nontrivial

way on the ratios of the refractive indices and on the width of
the layers compared to the wavelength inside the medium.
The term in the square brackets is independent of the width
of the layers and is a measure of the strength of the modifi-
cation of the dispersion relation �and thus the width of the
bands�. The trigonometric terms in turn depend on the layer
widths in a simple way and have the primary function of
determining the positions of the bands. It is instructive to
consider the band structure for k� =0 of a crystal of fixed
optical periodicity l=naa+nbb and varying optical fill frac-
tion f =naa / l. Measuring the free space wavelength as a frac-
tion of l: �free sp.=x	 l we obtain the following expression
for �A+D�:

cos	2�

x

 + 
1 −

1

2
	na

nb
+

nb

na

�sin	2�f

x

sin	2��1 − f�

x

 .

It can be seen that the effects of geometric dispersion disap-
pear for f /x=n or �1− f� /x=m where n and m are integers.
This corresponds to regions in which the scattered waves
interfere destructively in the backward direction and the dis-
persion becomes the trivial one: K�=kaa+kbb. In these
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regions, the Bloch-wave is essentially a plane wave �i.e., it
has only one dominant Fourier component�.

Figure 3 �left� shows the electric field amplitude and
�right� the Fourier components of Bloch waves that corre-
spond to the dots in Fig. 2. As we approach the band edges
the Bloch waves can be seen to differ strongly from plane
waves. At the edge of a stop band the �2��3� waves take the
form of standing waves with the electric field concentrated in
the material of higher�lower� refractive index. The magni-
tude of K is the same at these two frequencies. When esti-
mating the down-conversion amplitude it is useful to be able
to switch between configuration and Fourier space depending
on the degree of localization of the Bloch waves. For waves
with nonzero k� both the interaction strength and the position
of the bands will change. In particular the difference between
TE and TM waves will become increasingly marked, as can
be seen by inspection of the band structure of Fig. 2. Some
intuition on how the magnitude of the Bloch momentum of
propagating waves varies as a function of k� can be gained by
examining Fig. 4, where we show the dispersion surfaces for
waves of frequencies �1,. . .,4. In particular it is apparent that
in the long wavelength limit, the surfaces resemble those for
a uniaxial birefringent crystal. The analogy can be formal-
ized �13� by expanding the expression for K�k� ,�� �Eq. �21��
in the limit ��� to obtain expressions for the corresponding
ordinary �TE� and extraordinary �TM� refractive indices no
and ne:

no
2 =

a

�
na

2 +
b

�
nb

2, �26�

1

ne
2 =

a

�

1

na
2 +

b

�

1

nb
2 . �27�

For phase matching between waves with different polariza-
tion in the long-wavelength limit, optimization of the bire-
fringence can provide a method to choose the fill fractions of
a structure.

Having gained some intuition on how the properties of
Bloch waves depend on the photonic-crystal geometry and
constituent materials we now turn to the problem of calcu-
lating the down-converted emission from real structures.

FIG. 2. Band diagram for a structure of alternating layers of
material a with refractive index na=1 and material b with nb=5.
The fill fraction of material a: a /� is 1

4 . For simplicity, natural
dispersion and absorption were neglected. Under this simplification,
the diagram can be drawn for frequencies and parallel components
of k expressed as multiples of �c /� and � /�, respectively. The
points labeled �1,. . .,5 correspond to the Bloch-wave plots of Fig. 3
and dispersion surface plots of Fig. 4.

FIG. 3. �Color online� �Left� Field strength and �right� Fourier
amplitudes of degenerate TE/TM Bloch waves propagating along
the axis of symmetry of the illustrative structure with band diagram
shown in Fig. 2. The wave parameters can be read off Fig. 2. Close
to the band edge ��2 ,�3� the counterpropagating components grow
to make the wave increasingly similar to a standing wave with the
field concentrated in the material of lower or higher refractive index
depending on whether the frequency is close to the bottom or the
top of a band gap. As the wavelength gets shorter, the waves deviate
more and more from a plane wave even close to the centre of a band
��5�.

IRVINE, de DOOD, AND BOUWMEESTER PHYSICAL REVIEW A 72, 043815 �2005�

043815-6



VI. THE PHASE-MATCHING PROBLEM
IN REAL STRUCTURES

The parameter space for the design of a structure that
achieves a particular type of phase matching is large. Here
we give a procedure to make predictions for the emission.
We suggest iterating the procedure, making changes to the
structure guided by the intuition developed in the previous
section, as a means of optimization. We take as an example a
structure composed of 30 alternating layers of Al0.4Ga0.6As
�123 nm thick� and air �64.5 nm thick� and consider down
conversion of 750 nm photons to degenerate 1500 nm pho-
ton pairs. The fraction of aluminium was chosen to avoid
absorption of the pump photons. The relative thickness of the
layers was chosen to optimize the birefringence in the long
wavelength limit. The periodicity was chosen to ensure both
pump and down-converted photons would propagate, the
pump in the second band, the down-converted photons in the
first band. We proceed according to the following recipe.

�i� Band structure. We first plot the band diagram �Fig. 5�
of the structure. An intuitive variable in terms of which to
plot the band diagram is the angle � of propagation of the
plane-wave solution inside the material of lower refractive
index which is given by sin���=k� /kz. When �k� /kz��1 total
internal reflection occurs at the interfaces between the layers
and the Bloch waves do not propagate along the crystal, but
rather in a direction perpendicular to the crystal axis. In the
case of the example structure this occurs when k� is equal to
the magnitude of the free-space wave vector � /c. It is of
course necessary to include natural absorption of the materi-
als in the band diagram plot since it can restrict the acces-
sible bands. Al0.4Ga0.6As absorbs at wavelengths below
640 nm �16�. The natural dispersion of the materials is ac-

counted for by including the frequency dependence of na,b
�see Ref. �16� for AlGaAs� in Eq. �18�.

�ii� Fourier spectrum. Having chosen frequencies that
propagate �or having varied the periodicity to ensure they
propagate�, we look at the amplitude of the Fourier compo-
nents of the Bloch waves having k� =0. Figure 6 shows the
waves and Fourier components for our example structure.
Both have a leading Fourier component. The phase-matched
emission will in general not have k� =0. However if the com-
bination � k� =0 does not lie close to a band edge, then the
k� =0 spectrum is a good indication of what the k��0 spec-
trum will look like.

�iii� Phase matching of leading terms. We then look to
satisfy the phase-matching equation Kp=K1+K2+G starting
with the leading G=n�2� /��ẑ’s from the Fourier analysis
above. This is done by drawing a dispersion diagram such as
the one shown in Fig. 7. Intersections between the displaced
down-converted photon dispersion surfaces represent Bloch
vectors that phase-match according to Eq. �17�.

The full set of solutions corresponds to the intersection of
the full two-dimensional dispersion surfaces. However, the
existence of an intersection in the diagrams discussed above
is a necessary and sufficient condition for the two surfaces to
have an intersection.

�iv� Plotting the emission. Having determined that the in-
tersections exist, we look at the detailed direction of the
emission. To do this analytically we make the simplifying
assumption that the crystal transverse dimensions are infinite
�Lx ,Ly �� /na,b�. This is both justified in most experimental
situations and makes it possible to produce a manageable
analytical prediction of the emission. The transverse part of
the phase-matching function then becomes a product of two
delta functions that ensure

FIG. 4. �Color online� Disper-
sion surfaces for �top, left� TE and
�top, right� TM Bloch waves with
frequencies �1,. . .,5. �Bottom, left�
Dispersion surface for the leading
TE wave components of waves
�1,. . .,3. �Bottom, right� The dis-
persion surfaces for TE and TM
waves shown together. In the long
wavelength limit the surfaces re-
semble those of a uniaxial bire-
fringent crystal. As the wave-
length is decreased to a length
comparable to the periodicity of
the structure, the surfaces increas-
ingly distort.
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kx
�1� = − kx

�2�,

ky
�1� = ky

�p� − ky
�2�.

Substituting these relations into the longitudinal part of the
phase-matching function �Eq. �16� with the � function re-
placed by the appropriate sinc function� to eliminate either
kx,y

�1� or kx,y
�2�, we can then plot the phase-matching function for

each emission. The elimination procedure is equivalent to
calculating a partial trace over the emissions of the twin pho-
ton. It should be noted that the partial trace calculation is
much simpler than in the case of birefringent nonlinear
crystals such as BBO since the optic axis is by default
aligned with the crystal axis. Figure 8 shows such a plot for
three types of processes: Type I where a pump photon with
TM polarization down converts to photons 1 and 2 with TE
polarization: p�TM�→1�TE�+2�TE�, type II: p�TM�
→1�TE�+2�TM�, and type III: p�TM�→1�TM�+2�TM�.
The width of the emission rings corresponds to the allowed
longitudinal momentum mismatch and is inversely propor-
tional to the crystal length. As can be seen in Fig. 8, it is an
important parameter for the crystal size being considered
here. For a discussion of the relation between the crystal
thickness and the yield of entangled photon pairs in BBO,
see Ref. �17�.

�v� Efficiency of the process. From the plots of the de-
tailed emission, the efficiency for emission in directions of
interest can be estimated. The values of k� for photons 1 and
2 are read off the plot. The amplitude for the phase-matched
process can then be calculated by performing the sum over
the Fourier coefficients �Eq. �16��, or by numerical integra-
tion of the field amplitudes in the nonlinear layers �Eq. �15��.

In the case of the Fourier amplitude calculation it will be
necessary to use the coefficients �̃�G� from the Fourier ex-
pansion of ��r� which is

��2��r� =
1

�
�

n

1

n

�be−i�b�n/�� sin	b�

�
n


+ �ae−i�a�n/�� sin	a�

�
n
�ei�2�x/��n

FIG. 5. Band diagram for the example Al0.4Ga0.6As/air structure
with periodicity �=187.5 nm. Points in the grey bands correspond
to propagating TM �left� and TE �right� states. Points in the white
bands correspond to frequencies that cannot propagate in the struc-
ture. The shaded area below 640 nm represents the region in which
Al0.4Ga0.6As is absorbing.

FIG. 6. �Color online� �Left� Field strength and �right� Fourier
amplitudes of degenerate TE/TM Bloch waves propagating along
the axis of symmetry of the example structure.

FIG. 7. �Color online� Diagram to determine whether down-
converted light will phase match. The solid �dashed� blue lines rep-
resent the dispersion surfaces for pump ��=750 nm� TE�TM� pho-
tons. The solid �dashed� red lines represent the dispersion surface
for down-converted ��=1500 nm� TE�TM� photons. The pump dis-
persion surface is centered at the origin, and the blue arrow repre-
sents the pump Bloch vector. Two down-converted photon disper-
sion surfaces are drawn, centered on the extremities of the blue
arrow. Intersections between the down-converted photon surfaces
represent Bloch vectors that phase-match according to Eq. �19�.
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The n=0 term is simply the weighted average of the � ’ s:
�a�a+b�b� /�.

For photons emitted in the directions corresponding to the
intersection of the rings in Fig. 8 �middle� or Fig. 9 there is
one dominant combination of G ’ s: G�=0, Gp= �2� /��ẑ,
and G1=G2=0. For this combination the Fourier amplitudes
are 0.66, 0.90, 0.99, and 0.98, respectively. The combined
effect of the Fourier amplitudes leads to a factor 0.58.

In addition, the tensor nature of the ��2� interaction
needs to be included. This is done by taking the contraction
of the unit polarization vectors of the relevant Fourier
components of Ep ,E1 ,E2 with the ��2� tensor:

�ijk
�2��
̂p

b�kx
p ,ky

p��i�
̂�1�
b �kx

�1� ,ky
�1��� j�
̂�2�

b �kx
�2� ,ky

�2���k. The ��2� ten-

sor of AlGaAs has 4̄3m point group symmetry and has only
three nonzero coefficients all having magnitude 200 pm/V
�5�. For the conventional �100� surface orientation, the crys-
talline axis coincides with the direction of normal incidence
that we have defined to be the z direction. For photons emit-
ted in the directions corresponding to the intersection of the
rings in Fig. 8 �Middle� or Fig. 9 this leads to a value of
0.53	200 pm/V.

We are thus in a position to compare the efficiency of the
process to that in BBO. The overall down-conversion effi-

ciency for our example structure and choice of pump param-
eters is �0.53	0.58	200�2�780 times that in a BBO crys-
tal of similar size, where we have assumed that there is no
reduction of the 2.2 pm/V value of the BBO ��2� coming
from the tensor nature of the interaction.

It should be noted that there will also be down-conversion
into directions that phase match but do not involve leading
Fourier amplitudes. These can be treated in exactly the same
way, but will have much lower amplitude.

�vi� Extraction of polarization-entangled photon pairs. To
extract entangled photon pairs, we proceed as in the scheme
for the extraction of entangled photons from nonlinear crys-
tals �3�, by collecting photon pairs from the intersection be-
tween the TE emission and the TM emission �see Fig. 9�. At
each intersection the photons will be polarized TE�H� or
TM�V� with equal amplitude. However since the photons are
emitted in TE/TM pairs, which ever the polarization of a
photon at one intersection, we know the twin photon at the
other intersection will have opposite polarization. Adding the
amplitudes we obtain a maximally entangled polarization
state:

1
�2

��H��V� + ei��V��H�� , �28�

where � is a phase that can be easily tuned experimentally,
for example, by placing a birefringent element in one of the
paths.

The existence of a fixed phase relation between the two
terms depends on the genuine impossibility of deducing the
polarization of a photon collected at one of the intersections
from any of its other properties. Such a coupling between
degrees of freedom reduces the coherence between the terms.
There are many techniques to recover the coherence, for ex-
ample the use of compensating crystals �3� or of a polarizing
beam splitter �18,19�.

VII. CONCLUSIONS

We have presented a fully quantum-mechanical treatment
of the down-conversion process in nonlinear photonic crys-
tals, showing how to calculate the emission analytically in
one dimensional structures. We have applied the theory to a
realistic one-dimensional structure that consists of alternat-

FIG. 8. �Color online� Three types of phase matching in the
Al0.4Ga0.6As/air structure. �Top� type-I �TM→TE+TE�, �middle�
type II �TM→TE+TM�, �bottom� type III �TM→TM+TM�. The
density plots in k� space represent the emission strength calculated
using only the phase-matching function and do not include contri-
butions from the tensor nature of the ��2� nonlinearity. The blue
circle represents the values of k� that totally internally reflect be-
tween the layers. The type III phase matching is weak when com-
pared to types I and II for this set of parameters and so was multi-
plied by a factor 10 to make it visible.

FIG. 9. �Color online� Polarization-entangled photon pairs can
be extracted from the intersection of the TE and TM rings of the
type II emission according to a well-known scheme �3,18,19�.
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ing layers of Al0.4Ga0.6As and air and demonstrated that en-
tangled photons with a wavelength of 1500 nm can be ex-
tracted from the down-conversion emission that results from
the decay of pump photons having a wavelength of 750 nm.

We now suggest some possible extensions of the present
work. The results for the ��2� mediated emission of Sec. VI
are valid for structures of one, two, and three dimensions. An
obvious extension is thus the explicit analysis of Bloch-wave
phase matching in two and three-dimensional structures. An
advantage of the use of two-dimensional structures is that
two-dimensional structures with a large index contrast can be
more easily fabricated than one-dimensional structures with
a large index contrast. Another interesting extension is the
analysis of down conversion in the case where the pump
photons arrive in short pulses or wave packets �see Ref. �20�
for a discussion of the problem in BBO�. This brings up the
topic of group velocity dispersion in photonic crystals which
can differ significantly from its counterpart in natural crys-
tals. It seems likely that the possibility of tuning this form of
dispersion will provide interesting possibilities. Another in-
teresting avenue of research might be to investigate the po-
tential advantages of down converting to frequencies near a
photonic band edge, where the density of states is consider-
ably larger than that at the center of a band, thus further
improving the efficiency. Finally it might be interesting to
consider down conversion of frequencies close to the nonlin-
ear material absorption band gap, where the nonlinearity can
be significantly enhanced. In conclusion, the high degree of
control afforded by the freedom of choosing the crystal ge-
ometry combined with the high nonlinearity of semiconduc-
tor materials for which many advanced fabrication tech-
niques have been developed make nonlinear photonic
crystals a promising source of entangled photon pairs.
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APPENDIX: DERIVATION OF
THE BLOCH-WAVE AMPLITUDES

In this appendix we derive an expression for the Fourier
coefficients of the periodic part of the electric field in one-
dimensional Bragg structures. Throughout we will drop the
TE�M� labels since the derivation is identical for the two
cases. We begin by combining Eqs. �22� and �23� for the
eigenamplitudes of the forward and backward moving com-
ponents of the electric field in each layer, with the expression
for the electric field in the nth layer �Eqs. �19� and �20�� to
obtain

En
a = ei��t−K·r���a0

+
̂+
a�e−ikz

a�z−n��eiKz�z−n��

+ �a0
−
̂−

a�eikz
a�z−n��eiKz�z−n��� �A1�

En
b = ei��t−K·r���b0

+
̂+
b�e−ikz

b�z−n��eiKz�z−n��

+ �b0
−
̂−

b�eikz
b�z−n��eiKz�z−n��� . �A2�

Comparing these relations with Eq. �4� then yields the fol-
lowing relation:

�
n


̃K,�	n
2�

�

ein�2�/��z = �

layers
E+,n

a �z�
̂+
a + E−,n

a �z�
̂−
a

+ E+,n
b �z�
̂+

b + E−,n
b �z�
̂−

b , �A3�

where E+/−
a�b��z� represent the electric field propagating in the

forward/backward direction in material a�b�. In the nth layer
they are given by

E±,n
a �z� = a0

±e�ikz
a�z−n��eiKz�z−n��, �A4�

E±,n
b �z� = b0

±e�ikz
b�z−n��eiKz�z−n��. �A5�

To find the amplitudes of the of the Fourier coefficients 
̃K,�
we evaluate the Fourier transform of both sides of Eq. �A3�.
We define the Fourier transform f̃ of a function f as

f̃�q� =
1

�2�
�

−�

�

dzf�z�e−iqz.

The Fourier transform of the left hand side of Eq. �A3� is.

�2��
n


̃K,�	n
2�

�

�	qz − n

2�

�

 . �A6�

To evaluate the Fourier transform of the right-hand side of
Eq. �A3� it is convenient to first reexpress the sum over
layers in terms of the following: the top hat function
Tx1,x2

�x�:

Tx1,x2
�x� = �1, x1 � x � x2,

0, x � x1,x � x2
�

with x2�x1, the comb function ���,2N+1��z�:

���,2N+1��z� = �
n=−N

N

��z − n�� ,

and the convolution of functions f and g, f �g:

�f � g��x� = �
−�

�

dzf�z�g�x − z� .

In terms of these functions we have

�
layers

E+,n
a �z�
̂+

a + E−,n
a �z�
̂−

a + E+,n
b �z�
̂+

b + E−,n
b �z�
̂−

b

= E+
a�z�
̂+

a + E−
a�z�
̂−

a + E+
b�z�
̂+

b + E−
b�z�
̂−

b �A7�

with

E±
a�z� = ��E±,n=0

a T−a,0� � ���,2N+1���z� , �A8�
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E±
b�z� = ��E±,n=0

b T−�,−a� � ���,2N+1���z� . �A9�

E±
a�z� and E±

b�z� are well defined functions at all points in the
the crystal. They are equal to 0 outside layers a and b re-
spectively and equal to E±,n

a �z� �Eq. �A4�� and E±,n
b �z� �Eq.

�A5�� in the nth layer. The Fourier transform of E±
a�z� and

E±
b�z� can be simplified using the standard relation

f � g˜ = f̃ g̃ �A10�

to obtain

Ẽ±
a = �E±,n=0

a T−a,0
˜ ��̃��,2N+1�,

Ẽ±
b = �E±,n=0

b T−�,−a
˜ ��̃��,2N+1�. �A11�

If we evaluate the Fourier transform of ���,2N+1�:

��̃��,2N+1���qz� =
1

�2�

	sin
qz
�

2
�2N + 1��


sin
qz
�

2
� , �A12�

and take the limit of N→�, we obtain

lim
N→�

�̃��,2N+1� = �2���2�/�,��. �A13�

Comparison in this limit with the left-hand side of Eq. �A6�
then leads to the following expression for 
̃K,�:


̃K,�	n
2�

�

 = E+,0

a T−a,0
˜ 	n

2�

�


̂+

a + E−,0
a T−a,0
˜ 	n

2�

�


̂−

a

+ E+,0
b T−�,−a

˜ 	n
2�

�


̂+

b + E−,0
b T−�,−a

˜ 	n
2�

�


̂−

b .

�A14�

Evaluating E±,0
a T−a,0

˜ �qz� and E±,0
b T−�,−a

˜ �qz�:

E±,0
a T−a,0
˜ �qz� =

a
�2�

a0
±

sin
�Kz � kz
a − qz�

a

2
�

�Kz � kz
a − qz�

a

2

e−i�Kz�kz
a−qz��a/2�,

�A15�

E±,0
b T−�,−a

˜ �qz� =
b

�2�
b0

±

sin
�Kz � kz
b − qz�

b

2
�

�Kz � kz
b − qz�

b

2

	e−i�Kz�kz
b−qz��a+b/2� �A16�

completes our derivation. Combining Eqs. �A15� and �A16�
with Eq. �A14�, we obtain the result given in Sec. V.
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