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Detection of Valley Polarization in Graphene by a Superconducting Contact
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(Received 29 December 2006; published 12 April 2007)

Because the valleys in the band structure of graphene are related by time-reversal symmetry, electrons
from one valley are reflected as holes from the other valley at the junction with a superconductor. We show
how this Andreev reflection can be used to detect the valley polarization of edge states produced by a
magnetic field. In the absence of intervalley relaxation, the conductance GNS � �2e

2=h��1� cos�� of the
junction on the lowest quantum Hall plateau is entirely determined by the angle � between the valley
isospins of the edge states approaching and leaving the superconductor. If the superconductor covers a
single edge, � � 0 and no current can enter the superconductor. A measurement of GNS then determines
the intervalley relaxation time.
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The quantized Hall conductance in graphene exhibits the
half-integer quantization GH � �n�

1
2��4e

2=h� character-
istic of massless Dirac fermions [1,2]. The lowest plateau
at 2e2=h extends to zero carrier density because there is no
gap between conduction and valence bands, and it has only
a twofold spin degeneracy because it lacks the valley
degeneracy of the higher plateaus. The valley degeneracy
of the lowest Landau level is removed at the edge of the
carbon monolayer, where the current-carrying states at the
Fermi level are located. Depending on the crystallographic
orientation of the edge, the edge states may lie fully within
a single valley, or they may be a linear combination of
states from both valleys [3,4]. The type of valley polariza-
tion remains hidden in the Hall conductance, which is
insensitive to edge properties.

Here we propose a method to detect the valley polariza-
tion of quantum Hall edge states, using a superconducting
contact as a probe. In the past, experimental [5–8] and
theoretical [9–13] studies of the quantum Hall effect with
superconducting contacts have been carried out in the
context of semiconductor two-dimensional electron gases.
The valley degree of freedom has not appeared in that
context. In graphene, the existence of two valleys related
by time-reversal symmetry plays a key role in the process
of Andreev reflection at the normal-superconducting (NS)
interface [14]. A nonzero subgap current through the NS
interface requires the conversion of an electron approach-
ing in one valley into a hole leaving in the other valley. This
is suppressed if the edge states at the Fermi level lie
exclusively in a single valley, creating a sensitivity of the
conductance of the NS interface to the valley polarization.

Allowing for a general type of valley polarization, we
calculate that the two-terminal conductance GNS (mea-
sured between the superconductor and a normal-metal
contact) is given by

 GNS �
2e2

h
�1� cos��; (1)

when the Hall conductance GH � 2e2=h is on the lowest

plateau [15]. Here cos� � �1 � �2 is the cosine of the
angle between the valley isospins �1, �2 of the states along
the two graphene edges connected by the superconductor
(see Fig. 1). If the superconductor covers a single edge
[Fig. 1(a)], then � � 0) GNS � 0—no current can enter
into the superconductor without intervalley relaxation. If
the superconductor connects different edges [Figs. 1(b) and
1(c)] then GNS can vary from 0 to 4e2=h—depending on
the relative orientation of the valley isospins along the two
edges.

We start our analysis from the Dirac–Bogoliubov–
De Gennes (DBdG) equation [14]
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FIG. 1 (color online). Three diagrams of a graphene sheet
contacted by one normal-metal (N) and one superconducting
(S) electrode. Edge states approaching and leaving the super-
conductor are indicated by arrows. The solid line represents an
electron state (green, approaching superconductor: isospin �1;
blue, leaving superconductor: isospin �2), and the dashed line
represents a hole state (red: isospin ��2).
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H �� �
�� �� THT�1

� �
� � "�; (2)

with H the Dirac Hamiltonian, � the superconducting pair
potential, and T the time-reversal operator. The excitation
energy " is measured relative to the Fermi energy �. Each
of the four blocks in Eq. (2) represents a 4� 4 matrix,
acting on 2 sublattice and 2 valley degrees of freedom. The
wave function � � ��e;�h� contains a pair of four-
dimensional vectors �e and �h that represent, respec-
tively, electron and hole excitations.

The pair potential � is isotropic in both the sublattice
and valley degrees of freedom. It is convenient to choose a
‘‘valley isotropic’’ basis such that the Hamiltonian H is
isotropic in the valley degree of freedom [16],

 H � v
�p� eA� � � 0

0 �p� eA� � �

� �

� v�0 	 �p� eA� � �; (3)

with v the Fermi velocity, p � �@=i��@=@x; @=@y� the ca-
nonical momentum operator in the x-y plane of the gra-
phene layer and A the vector potential corresponding to a
perpendicular magnetic field B. The Pauli matrices �i and
�i act on the sublattice and valley degree of freedom,
respectively (with �0 and �0 representing the 2� 2 unit
matrix). The time-reversal operator in the valley isotropic
basis reads

 T �
0 i�y
�i�y 0

� �
C � ���y 	 �y�C; (4)

with C the operator of complex conjugation. For later use
we note that the particle current operator J � �Je;Jh� has
electron and hole components

 J � v��0 	 �;��0 	 ��: (5)

Substitution of Eqs. (3) and (4) into Eq. (2) gives the
DBdG equation in the valley isotropic form

 

H� �� �
�� ��H�

� �
� � "�; (6)

 H
 � v�0 	 �p
 eA� � �: (7)

We seek a solution in the normal region (where � � 0), at
energies below the excitation gap �0 in the superconduc-
tor. Electron and hole excitations cannot propagate into the
superconductor at subgap energies, and the magnetic field
confines them in the normal region to within a magnetic
length lm �

�����������
@=eB

p
of the edge. We consider separately the

edge states along the insulating edge of the graphene layer
and along the interface with the superconductor.

The edges are assumed to be smooth on the scale of lm
( � 25 nm at B � 1 T), so that they may be treated locally
as a straight line with a homogeneous boundary condition.
The magnetic field should be less than the critical field of

the superconductor. (Ref. [8] used Nb, with a critical field
of 2.6 T, to maintain superconductivity in the quantum Hall
effect regime).

The edge states at the insulating and superconducting
boundaries are different because of the different boundary
conditions. Using only the condition of particle current
conservation, these have the general form [17]

 � �M�; (8)

with M a unitary and Hermitian matrix that anticommutes
with the particle current operator:

 M �My; M2 � 1;

M�n � J� � �n � J�M � 0:
(9)

The unit vector n lies in the x-y plane, perpendicular to the
boundary and pointing outward.

At the NS interface the matrix M is given by [18]

 M �
0 MNS

MyNS 0

� �
; MNS � �0 	 e

i��i�n�� ; (10)

with � � arccos�"=�0� 2 �0; �� determined by the order
parameter � � �0ei� in the superconductor.

The insulating (I) edge does not mix electrons and holes,
so M is block-diagonal with electron block MI and hole
block TMIT�1. The boundary condition is determined by
confinement on the scale of the lattice constant a lm, so
it should preserve time-reversal symmetry. This implies
that MI should commute with T. The most general matrix
that also satisfies Eq. (9) is given by [19]

 M �
MI 0
0 MI

� �
; MI � �� � �� 	 �n? � ��; (11)

parameterized by a pair of three-dimensional unit vectors �
and n?. The vector n? should be orthogonal to n but � is
not so constrained. Three common types of confinement
are the zigzag edge, with � � 
ẑ, n? � ẑ, the armchair
edge, with � � ẑ � 0, n? � ẑ � 0; and infinite mass con-
finement, with � � ẑ, n? � ẑ � 0.

To determine the edge states we consider a local coor-
dinate system such that the boundary is along the y axis (so
n � �x̂), and we choose a local gauge such thatA � Bxŷ.
The wave number q along the boundary is then a good
quantum number. In order to simplify the notation we
measure energies in units of @v=lm and lengths in units
of lm. Eigenstates of Eq. (6) that decay for x! 1 have the
form

 ��x; y� � eiqy
Ce 	�e�x� q�
Ch 	�h�x� q�

� �
; (12)

 �e��� � e��1=2��2 �i��� "�H���"�2=2�1���
H���"�2=2���

 !
; (13)
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 �h��� � e��1=2��2 H���"�2=2���
�i��� "�H���"�2=2�1���

 !
; (14)

in the region x > 0 (where � � 0). The function H��x� is
the Hermite function. The two-component spinors Ce and
Ch determine the valley isospin of the electron and hole
components, respectively.

The dispersion relation between energy " and momen-
tum q follows by substitution of the state (12) into the
boundary condition (8). At the NS interface we take
Eq. (10) for the boundary condition and obtain
 

f��"�q� � f��"��q� �
"�f��"�q�f��"��q� � 1�������������������

�2
0 � "

2
q ;

f��q� �
H�2=2�q�

�H�2=2�1�q�
:

(15)

The solutions "n�q�, numbered by a mode index n �
0;
1;
2; . . . , are plotted in Fig. 2. Notice that the disper-
sion relation has the inversion symmetry "�q� � �"��q�.
Each mode has a twofold valley degeneracy, because the
boundary condition (10) is isotropic in the valley isospin �.
The two degenerate eigenstates (labeled 
) have C
e �
cej
�i, C
h � chj
�i, with j
�i eigenstates of � � �
[20].

The expectation value vn � @
�1d"n=dq of the velocity

along the boundary in the n-th mode is determined by the
derivative of the dispersion relation. We see from Fig. 2
that the edge states all propagate in the same direction,
dictated by the sign of B and �. The velocity vanishes for
jqj ! 1, as the NS edge states evolve into the usual
dispersionless Landau levels deep in the normal region.
For q! �1 the Landau levels contain electron excita-
tions at energy "n �

���
2
p
�@v=lm�sgn�n�

������
jnj

p
��, while for

q! 1 they contain hole excitations with "n �

���
2
p
�@v=lm�sgn�n�

������
jnj

p
��. For � � 0 the NS edge states

have zero velocity at any q for j"j  �0. As illustrated in
Fig. 3, the localization of the edge states as�! 0 happens
because for j"j> j�j the electron and hole excitations
move in opposite directions along the boundary, while
for j"j< j�j they move in the same direction.

Turning now to the insulating edge, we take the bound-
ary condition (11). For an edge along the y axis we have
n? � �0; sin	; cos	�. The valley degeneracy is broken in
general, with different dispersion relations for the two
eigenstates j
�i of � � �. The dispersion relations for
electrons and holes are related by "
h �q� � �"

�
e ��q�.

For sufficiently small � there is one electron and one
hole state at the Fermi level, of opposite isospins. (Note
that electrons and holes from the same valley have opposite
isospins). We fix the sign of � such that j��i is the
electron eigenstate and j��i the hole eigenstate. We find
that "�e �q� is determined by the equation

 f��"�q� � tan�	=2�; (16)

while "�e �q� is determined by

 f��"�q� � �cotan�	=2�: (17)

The dispersion relations plotted in Fig. 4 are for the case
	 � �=2 of an armchair edge. The case 	 � 0 of a zigzag
edge contains additional dispersionless states away from
the Fermi level [3], but these play no role in the electrical
conduction.

To determine the conductance GNS we need to calculate
the transmission matrix t of the edge states at the Fermi
level. Edge states approach the superconductor along the
insulating edge I1 (with parameters �1, 	1), then propagate
along the NS interface, and finally return along the insulat-
ing edge I2 (with parameters �2, 	2). At sufficiently small
� each insulating edge Ip supports only two propagating
modes, one electron mode / j��pi and one hole mode /
j��pi. The NS interface also supports two propagating
modes at small �, of mixed electron-hole character and
valley degenerate. The conductance is given by [21]

 GNS �
2e2

h
�1� Tee � The� �

4e2

h
The; (18)

with Tee � jt��j2 the probability that an electron incident
along I1 returns along I2 as an electron and The � jt��j2

the probability that the electron returns as a hole.
Since the unidirectional motion of the edge states pre-

vents reflections, the transmission matrix t from I1 to I2 is

 ε [
h̄v

/l
m

]

q [1/lm]

2

4

6

0

0 55

FIG. 2. Dispersion relation of edge states in graphene along the
normal-superconducting interface, calculated from Eq. (15) for
j"j  �0. The dotted lines are for� � 0, the solid lines for� �
0:4@v=lm.

 

S

N

B

FIG. 3. Cyclotron orbits of Andreev reflected electrons and
holes.
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the product of the transmission matrices t1 from I1 to NS
and t2 from NS to I2. Each of the matrices tp is a 2� 2
unitary matrix, diagonal in the basis j
�pi:

 tp � ei�p j��pih��pj�e
i�0p j��pih��pj: (19)

The phase shifts �p, �0p need not be determined. Using
jh�1j
�2ij

2 � 1
2 �1
 �1 � �2�, we obtain from t � t2t1 the

required transmission probabilities

 The � 1� Tee �
1

2
�1� �1 � �2�: (20)

Substitution into Eq. (18) gives our central result (1).
Referring to Fig. 1, we see that GNS � 0 in the case (a)

of a superconducting contact to a single edge (�1 � �2)—
regardless of whether the edge is zigzag or armchair. In the
case (c) of a contact between a zigzag and an armchair
edge we have �1 � �2 � 0) GNS � 2e2=h. The case (b)
of a contact between two opposite edges has �1 � ��2 )
GNS � 4e2=h if both edges are zigzag; the same holds if
both edges are armchair separated by a multiple of three
hexagons (as in the figure); if the number of hexagons
separating the two armchair edges is not a multiple of
three, then �1 � �2 � 1=2) GNS � e2=h.

Intervalley relaxation at a rate � tends to equalize the
populations of the two degenerate modes propagating
along the NS interface. This becomes appreciable if
�L=v0 * 1, with L the length of the NS interface and v0 �

@
�1d"0=dq ’ min�v=2;

���
2
p
�lm=@� the velocity along the

interface. The density matrix 
 � 
0�1� e
��L=v0� �


1e��L=v0 then contains a valley isotropic part 
0 / �0

with Tee � Teh � 1=2 and a nonequilibrium part 
0 /
j�1ih�1j with Tee, Teh given by Eq. (20). The conductance
then takes the form

 GNS �
2e2

h
�1� e��L=v0 cos��: (21)

A nonzero conductance when the supercurrent covers a
single edge (� � 0) is thus a direct measure of the inter-
valley relaxation.

This research was supported by the Dutch Science
Foundation NWO/FOM.

[1] K. S. Novoselov et al., Nature (London) 438, 197 (2005).
[2] Y. Zhang et al., Nature (London) 438, 201 (2005).
[3] L. Brey and H. A. Fertig, Phys. Rev. B 73, 195408 (2006).
[4] D. A. Abanin, P. A. Lee, and L. S. Levitov, Phys. Rev. Lett.

96, 176803 (2006).
[5] H. Takayanagi and T. Akazaki, Physica (Amsterdam)

B249–251, 462 (1998).
[6] T. D. Moore and D. A. Williams, Phys. Rev. B 59, 7308

(1999).
[7] D. Uhlisch et al., Phys. Rev. B 61, 12 463 (2000).
[8] J. Eroms et al., Phys. Rev. Lett. 95, 107001 (2005).
[9] Y. Takagaki, Phys. Rev. B 57, 4009 (1998).
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FIG. 4 (color online). Dispersion relation of states along the
insulating edge, calculated from Eqs. (16) and (17) for � �
0:4@v=lm and 	 � �=2. The solid lines are the electron states
(blue "�e , red "�e ), the dashed lines are the hole states (blue "�h ,
red "�h ).
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