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Analogy between a two-well Bose-Einstein condensate and atom diffraction
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(Received 20 December 2002; published 27 May 2003

We compare the dynamics of a Bose-Einstein condensate in two coupled potential wells with atoms dif-
fracting from a standing light wave. The corresponding Hamiltonians have an identical appearance, but with a
different set of commutation rules. Well-known diffraction phenomen&easdellsungoscillations between
opposite momenta in the case of Bragg diffraction, and adiabatic transitions between momentum states are
shown to have analogies in the two-well case. They represent the collective exchange of a fixed number of
atoms between the wells.
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[. INTRODUCTION the diffraction case are slightly simplified compared to the
case of SW2) symmetry.

The most common approach to the description of a In this paper, we discuss the analogy and the differences
trapped Bose-condensed gas is based on the mean-field djetween these two systems. We point that a number of ana-
proximation, which yields the Gross-Pitaevski equation forlytical solutions known for the diffraction problem can be
the macroscopic wave function. This wave function, whichcarried over to the two-well system. The physics of these
depends on the number of atoms, plays the role of the modeases is discussed.
function for the Maxwell field. This approach is reliable
when the condensate is trapped in a single quantum state in a
potential well. However, when the condensate is separated
into two or more parts, so that more than one quantum state We consider a potential consisting of two wells. When the
is populated, the mean-field approach is not evidently justibarrier between the wells is not too low, the ground state and
fied. It has been shown by Javanainen and ¥bjathat two  the first excited stat¢g) and|e) of a single atom are well
originally separate parts of a condensate that are initially in @approximated as the even and odd superposition of the low-
Fock state and that are brought to overlap will reveal arest bound states in the two wells. Therefore, these states can
interference pattern that varies in position from one realizabe described as
tion to another. This effect, which has also been observed
experimentally{2], cannot be described by a single macro- L L
scopic wave function. A simple model for a condensate in a _ _
double potential well is defined by a field-theoretical Hamil- 19)= E(HH 12)). le)= ﬁ(m_ 12). @)
tonian for a boson-Hubbard dim§8,4], which can be ex-
pressed in terms of SB) angular-momentum-type operators ) o
with a quadratic term. This latter term represents the interac%ith 1) and|2) the localized states in either well. When the
tion between atoms in a well. The mean-field approximatiorENergy separation between the excited and the ground state is
is basically equivalent to classical equations of motion forindicated agi 5, the off-diagonal element of the one-particle
the expectation values of the &) operators[5,6]. The  HamiltonianH, between the localized states is
guantum regime has mainly been studied numerically, lead-
ing to collapse and revivdb], and to nonclassical dynamics N
arising from the periodic modulation of the coupling be- (1[Hy|2)=~rhol2.
tween the wellg§7]. The formation of a two-well condensate

by the raising of the barrier has been analyzed theoreticallxt the low energies that are of interest here, the two-particle
[8]. The situation of a Bose-Einstein condens&&C) in a  interaction is well approximated by the standard contact po-
two-well trap is also studied experimental§,10. tential U(r,r') = (47h%a/m)S(r—r'), with a the scattering

A very S'm"af Hamﬂtoman describes the situation of aN |ength. The second-quantized field operator is now
atom diffracting from a standing-wave optical potential. This
problem has received attention already in the early days of
laser coolingd11]. More recent work has developed the band W (r)=agy(r)+aee(r) =y (r) +azyy(r), (2)
structure of the energy spectrurb2], and a number of re-
gimes have been distinguished that allow an analytical de-
scription[13]. In a simple version of the model, the Hamil- In terms of the wave functiong; and the annihilation opera-
tonian is identical in form as in the two-well problem torsa; of the single-particle states. The annihilation opera-
mentioned above. Now the quadratic term represent the kitors and the corresponding creation operators obey the stan-
netic energy of the atom. The only difference between thalard bosonic commutation rules. The corresponding
two cases is that the commutation rules for the operators iRlamiltonian is

II. BEC IN A DOUBLE POTENTIAL WELL
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. g 1 andN—n particles in well 2. In the language of angular
HZJdF‘I’ (r)H W (r) momentum, this manifold of states corresponds to the
angular-momentum quantum numbé#N/2, and the 2
+f dFdFr\i,T(F)\IA,T(F/)U(F ;,)ﬁ,(;)ﬁ,(;,) 3) +1 Fock states are eigenstatesj@fwith eigenvaluew=n
’ ' —N/2 with u=—-J,—J+1, ... J. Note thatu is half the

Th f . q  the localized h difference of the particle number in the two wells. For an
e wave functions/; and i, of the localized states have o, on nymber of particles, the angular-momentum quantum

the same fo_rm, and we assume that they do not ove_rlap. ThelumberJ as well as the “magnetic” qguantum numbers are
the interaction term can be expressed exclusively in the panieqer whereas these number are half integer in case of an

rameterx defined by odd number of particles. The action of the operaﬁyand

4mh’a - - 12 J. on the Fock states has the well-known behavior
m drly(r)|*, (4)

hik=

. . . . Jolmwy=wlm),  Iilw)=F alu+1),
which measures the strength of the interatomic interaction.

Performing the integrations in E(B) leads to the expression

for the Hamiltonian I jwy=1,lu-1), (10)
N hé o aia AK mimsn n mpmpn A with f,=\(J+u)(J—u+1). The u dependence of the
__No T MK 4ot tat n >
H="7 (878z1 258 ) + 2 a121a,a; 1+ 3;3,8,8,), strength of the hopping operatods. reflects the bosonic

(5) accumulation factor, which favors the arrival of an additional
bosonic atom in an already occupied state.
where we tO(_)k the zero of energy halfway the two energy \when the quadratic term in E¢9) would be replaced by
levels of a single atom. This is also known as the bosony |inear term, the evolution would be a uniform rotation in
Hubbard dimer Hamiltoniaf3]. , the (2J+1)-dimensional state space with angular frequency
Hamiltonian(5) can also be expressed in terms of(BU /5777 The presence of the quadratic term makes the dy-
operators by applying the standard Schwinger representatiqiy mics considerably more complex. Therefore, we compare
of two modes. This leads to the definition this dynamics with another well-known case in which a simi-
1 o o lar quadratic term appears.
Jo=5(aja—ajay), Ji=aja,, J-=ajas. (6
I1l. STANDING-WAVE DIFFRACTION OF ATOMS
These operators are related to the Cartesian components OfThe translational motion of a two-level atom in a far de-

angular momentum by the standard relatighs=J,*iJy  {ned standing-wave light field is described by the effective
and Jy=J,. They obey the commutation rules for angular- Hamiltonian
momentum operators
PR A P A - h? 9?  hog?
[‘JOﬂJi]:i‘Ji’ [‘J+!‘Jf]=2‘-]07 (7) Hd:_ﬁg_TRCOSZkZ, (11)
which generate the §2) algebra. Hamiltonian5) can be
rewritten in the form with A =w,— o is the difference of the resonance frequency
ns 5k and the optical frgquency, anol is the Rabi frequency of
— (3, +I )+ I3+ —(N2—2N), (8)  each of the traveling waves that make up the standing wave.
2 4 The Hamiltonian takes a particularly simple form in momen-
A tum representation, since the kinetic-energy term is diagonal
with N=aja, +ala, the operator for the total number of in momentum and the potential energy changes the momen-
particles. Obviously, Hamiltonia(8) commutes wittN, and  tum by =+ 27k. Therefore, we introduce momentum eigen-
it is block diagonal in the number of particlés For each states|u) which have the momentumZik. Then apart
value of N, Hamiltonian(8) can be expressed as from an irrelevant constant, Hamiltonidfl) can be repre-
sented in the algebraic form

A

SLLINCEPN
N+T( —2N), i he i .
Flg=— (B, +B_)+#ixB3, (12)

with the N-particle Hamiltonian
R he . R where k= 2#k?/m determines the kinetic-energy term and
Hy=— 7(J++J,)+hKJ2, 9 o= sz/ZA the atom-field coupling. The operators occurring
on the right-hand sidé.h.s) are defined by the relations

where the operators are now restricted to the 1 Fock R R
statesin,N—n) with n=0,1, . . .N, with n particles in well Bolu)=ulp), Bilu)=|uxl). (13

053611-2
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They differ from the corresponding relatiofi0) in that now  The Pendellsung frequency is given by Q = &(&/

the strength of the hopping operators is uniform. 2k)2* Y[ (2 —1)11? [13]. This expression is fully analo-
This Hamiltonian(12) has the same form as E@), even  gous to the effective Rabi frequency for a resonant multipho-

though they describe completely different physical situaton transition, with nonresonant intermediate stafés16.

tions. The difference is mathematically characterized by the The regime of adiabatic coupling arises for a time-

commutation relations. The $P) relations(7) are replaced dependent atom-field coupling(t) that varies sufficiently

by the simpler set slowly, so that an initial energy eigenstate remains an eigen-

o R L state. The adiabaticity condition in the present case reads
[BOIBt]:iBil [B+!B—]:0! (14)

which is easily found from their explicit expressiofik3). a<:<5. (19
The two operator8.. are found to commute. A result of this

difference is that the state space in the two-well case has @hen an atom passes a standing wave with a sufficiently
finite dimension 2+1=N+1, whereas the momentum smooth variation of the intensity, and the Bragg condition is
space has an infinite number of dimensions. fulfilled, the presence of two initially degenerate eigenstates
A mathematically identical set of operators occurs in the|+ ) |eads to interference after the passage, which produces
description of the dynamics of the Wannier-Stark systemyyo outgoing beams. Because of the similarity between the
consisting of a particle in a periodic potential with anAaddl-»[W0 Hamiltonians(9) and (12), these well-known diffraction
tional uniform force[14]. In that case, the eigenstatesBYf  cases can be expected to have analogies in the dynamics of
represent the spatially localized Wannier states, rather thaghe two-well problem.
the momentum states.
We recall three approximate solutions of the evolution |\, syMMETRY CONSIDERATIONS OF GENERIC
governed by Hamiltoniari12), which are valid in different HAMILTONIAN
situations, and which allow analytical solutions.
The Raman-Nath regime is valid for interaction times that Hamiltonians(9) and (12) can be represented in the ge-
are so short that the atom has no time to propagate. Then tmeric form
quadratic term in Eq(12) can be neglected, and the evolu-
tion is determined by the atom-field coupliégt). The evo- H=—hol +harl2, (19
lution operator is simplyJ =exfi¢(B. +B_)/2], where ¢
= [dts(t) is the integral of the coupling constant over the with |"_X:(|”_++|”_7)/2, |"_Z: |:o- where the operator%i rep-
evolution period. The matrix elements of the resulting &V0-esent); or B,, depending on the commutation rules and the
lution operator for the pulse can be found by operator algeéorresponding algebra that they obey. In the two-well case,

ra in the form[14 . N
bra e form[14] the eigenstates$u) of the operatorL, represent number
" cul - tates in the two-well case, with the eigenvajuehalf the
NO|)y=i*" "1, _ (), 15 S . ' fuehat
([0l ) w-n(®) (19 number difference between the wells. In the diffraction case,
in terms of Bessel functions. For an initial staje) with a  the stategu) are momentum eigenstates. In this latter case,
well-determined momentum, the time-dependent state folthe coupling between neighboring momentum states is inde-

lowing the pulse can be expressed as pendent ofu [Eq. (13)], whereas in the two-well case the
dependence of the hopping operator indicated in @&Q)

it s e reflects the bosonic accumulation effect. A consequence of

|‘1’(t)>22 e u ) (w0 p). (16 this is also that the Hamiltonian in the diffraction case
K couples an infinite number of statigs), whereas in the two-

This leads to explicit analytical expressions for diffraction Well case the number of coupled states has the finite value

experimentg11]. The probability of transfer oh units of ~N+1. In the diffraction case, we restrict ourselves to the

momentum is proportional thl,( $)|?. situation that the Bragg condition is respected. Therefore,

The Bragg regime is valid when the couplidgbetween both in the diffraction case and in the two-well casattains

neighboring momentum states is small compared to theither integer or half-integer values. The actionLofis the

kinetic-energy separatior=2xku of the initial state|u) same in both cases.

from its neighboring statgg.+1). This initial state leads to Hamiltonian(19) is invariant for inversion ofu. In order

an oscillating time-dependent state between the two stateg demonstrate this, we introduce the inversion opergtor

|w) and|— ) with the same kinetic energy defined by the relatio®|u)=|— w). In the diffraction case,

Ot Ot the operatorP corresponds to inversion of momentum,

|\If(t))=cosT“|,u)+i sinT"l—m, (170 which does not change the kinetic energy. In the two-well

case, the operatoP represents interchanging the particle

apart from an overall phase factor. This can only occur wherumbers in the two wells, which has no effect on the inter-

the momentum transfer/2 (in units of 24k) is an integer, ~Particle interaction. The com|:nutation rules of the AinAveArsion
which corresponds precisely to the Bragg condition.operator with the operatorg; are specified byPL,P

053611-3
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=—L,, PL.P=L+, sothat invertsL, andL,, and com- even odd even odd
mutes Withl:x. It follows that Hamiltonian(19) commutes £ n— u——1 9 — 0
with P, so that it is invariant for inversion qf. Therefore, = | 00— 10— —10 g — -
the Hamiltonian has vanishing matrix elements between the go | 9____ 9 — — 9 — 3
even and the odd subspaces, which are the eigenspaées of - _—— 7T —
with eigenvalue 1 and-1, respectively. For half-integer i _ e - 7
values, these spaces are spanned by the states 40 L - —_— 6 — 6
—_— 4 —
i S — 4 5 —
=) _lw—=l=w) o L = 33— _, —5
)+ z | ) z (20) - 2 — 0
-40 b= —
for positive values ofu. In the case of integex values, the B 0 — 3 —
state|u=0) also belongs to the even subspace. The ever L — 3
and odd subspace evolve independently from one anothel _go | 2
This symmetry property oH depends on the fact that it is _2
quadratic in the operatdr, . i 1
The action of the quadratic term in Hamiltonié&t9) on 120 [ 1
the new basis is simply given by the relaticﬁﬂ,u)t 5 0 —
=u?|u). . The action of the coupling term in the Hamil- _jg0
tonian can be expressed in a general form by introducing ~  8/x=0 8/x=1 8/x =3

coefﬂClentsFﬂ for ”0”'”8,95‘“‘"3 values Qi. In the case of FIG. 1. Energy levels in units ol x for the double well with
the su2) algebra, we defin&,=f,, whereas in the diffrac-  \_ 100 particles, for various values éf k. The levels are labeled
tion case we simply have,,= 1. The matrix elements df, by the quantum numbek.

can be fully expressed in terms of the coefficieRts for

positive «. Within the even or the odd subspace, the operatowith w>1. The only difference is that the even subspace

L, has off-diagonal matrix elements only between two state@!so contains the stat®), which is coupled to the other

for which the values of differ by one, and we find states by the matrix element
3 1 +(1[A[0y=(0|H|1). = —AoF,/\2. (25
H(ptLdp)e=5F 1, (22) , oni
In both cases, the difference between the Hamiltonian

) ) - ) parts on the even and odd subspaces are proportional to
provided that the value of is positive. These matrix ele- These differences are responsible for the energy splitting be-
ments coincide with those on the basis of the sthigs For  tween the even and the odd energy eigenstates. Moreover,
the state|w=0), which belongs to the even subspace of agjnce these differences in the Hamiltonian parts occur for
manifold of states with integen values, the matrix element |ow values ofu, we expect that for a fixed value of «, the
1S even-odd energy splittings decrease for increagingalues.

A This is confirmed by numerical calculations. In Figs. 1 and 2,
+(1]L,J0)=F, /2. (22)  we display the energy levels of the Hamiltonian, for a few
values of 6/k, both for the double-well caséwith N
On the other hand, in a manifold of states with half-integer =100), and for the diffraction case. The energy levels are

values, [, has a single nonzero diagonal element for found to be alternatingly even and odd, with increasing en-
=1/2, that is given by ergy. In the two-well case, the energy shifts and splittings

due to the coupling are larger for the same valué/af and

the same value of. This arises from the factdf,, which

is unity in the diffraction case, whereas in the two-well case
it decreases from-J=N/2 at u=0 to zero atu=J. In fact,

the condition for weak coupling is that matrix elements cou-
Yling the statedu) and |x—1) are small compared with
their unperturbed energy separation. This condition can be
expressed as

+(12L,|1/2)» = +Fypp. (23

Hence, in the case of half-integgrvalues, the Hamiltonian
projected on the even and the odd subspace differ excl
sively in the diagonal matrix element far=3%, for which
we find

FhoF (24 N Fu g 26
2 1/2- “_ZZM—I . (26)

hk

+(1/2H|1/2). = 2

For integer values oft, the Hamiltonian for the odd sub- This confirms that for a given value af/x, the region of
space is identical to the Hamiltonian for the even subspaceeakest coupling occurs for the highest valueg:.ofin the

053611-4
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i 4_ 46‘,2 o;dd4 . even ﬂ . (FulHerd =p)y=—10Q,/2, (28
5r with ), an effective oscillation frequency given by
E
= 1 ou
i o a\2utl 1 & 1
10 | Q=1 22p-1 ,2u—1 P AR
3— 3 — — 3 3— — 3
- The factorF is just the product of the coefficients, suc-
cessively coupling the states intermediate betwigenand
5 F ) ) 5 2— |=w). In the diffraction case, we simply havE=1,
- - T whereas in the case of $2) symmetry, applying to the
i | ] — double well, we find
1— - — 1
0F 0— o — — 1 J+u)!
0 _Gtmt (30)
| 0 — (J—pu)!
s 8/x=0 S/k=1 S/ =3 These expressions are valid both for integer and half-integer

values ofu. The eigenstates of the effective Hamiltonian are
FIG. 2. Energy levels in units df« for the diffraction case, for the even and odd states, and the eigenvalue equations are
various values ob/ k. Herd m) = (hku?F1Q,/2)| ). . For integer values of,
the frequency(), is negative, so that the even stafes |
two-well case, the lowest-energy states start out to be nearlyre shifted upwards and the odd states are shifted downwards

equidistant for lowg values as long as , is large. in energy. The opposite is true for half-integer valuesuof
In both cases, the ground state is even, and the energy eigen-
V. PENDELLO SUNG OSCILLATIONS states for increasing energy are alternatingly even and odd.

o ~Inview of the results of the numerical calculation mentioned

The energy splittings between the even and the odd eigengove, one may expect that this alternating behavior of the
states give rise to time-dependent states that oscillate bgyen and odd eigenstates is valid for all finite values of the
tween the states* ). In the diffraction case, they corre- ratig s/4. It is interesting to notice that in the special case
spond to the well-known Pendeflong oscillations in the that p=J=N/2, Eq. (29 for the two-well case coincides
Bragg regime. Here we show that S|mllar oscillations CaNyith the ground-state energy splitting of two coupled quan-
occur for the two-well problem, and we give an analytical y,y anharmonic oscillators, which model two coupled vibra-
estimation of the oscillation frequencies. For the generigjgng degrees of freedom in a molec(le].

Hamiltonian given by Eq(19), the Bragg condition is ful- For an initial statelu), the effective Hamiltoniarfl,

filled when inequality(26) holds. . o
The energy differences between the even and odd states It%ads o a twn_e-dependent state that is glven_by @a),
g : .~ apart from an irrelevant overall phase factor. This shows that
lowest order in\ , can be found from the effective Hamil-

tonian for two degenerate states that are coupled via a nurﬁbe oscillating solutior(17) corresponding to the Bragg re-

. ; S ime of diffraction can be generalized to the case of a con-
ber of nonresonant intermediate states. This situation occu =nsate in a double well. The same expres&kdh remains
for the state$+ ), with their 2u— 1 intermediate states. In ' b

. . . - . ialid, while the oscillation frequenc§) , is determined by
this case, the intermediate states can be eliminated adiabafi- . . “
cally, as demonstrated in Sec. 18.7 of R&f]. The resulting gs.(29) and(30). This describes a state of the condensate

effective Hamiltonian for these two states u) has an off- atoms in the double well in the weak-coupling limit. In this

diagonal element that is the ratio between two products. Thg_ase, the state oscillates between the Fock sfatgsiy)

numerator contains the product of the successiuen2atrix =[N/2+ u,NI2— ) and|ny, ng)=|N/2— p,Ni2+ ).

elements—7 oF ,,/2 of the Hamiltonian coupling neighbor- Obwo_us_ly, Whe’? the initial state is given WM’ the
system is in a stationary state, and no oscillations occur. In

ing states, and the denor_nmator is the product of the 2 this case, Pendekning oscillations can still be induced by
—1 unperturbed energy differences of the degenerate states

| = 1) with the successive intermediate states. In the diffracincluding in the Hamiltonian a term that is linear lin.. In

tion case, this result coincides with the calculation given inthe diffraction case, there is no obvious physical realization
Ref.[12], which was obtained by diagonalizing a tridiagonal ©f Such a term. For the Wannier-Stark system, where the
matrix and keeping only the lowest order &x. quadratic term irLZ is absent, the linear term can be realized
Generalizing this result to the present case of the twdy imposing a uniform force, which gives rise to Bloch os-
states| = ), we find that the effective Hamiltonian has the cillations[14,18. In the case of the BEC in a double well, a

diagonal element term &L, in the Hamiltonian can be realized by imposing
an energy differencé ¢ between the single-particle ground
(+ ulHer = ) =fku?, (27)  states in the two wells. When this term is periodically vary-

ing, it can be used for coherent control of the condensate

and the off-diagonal element [20]. The additional term couples the even and odd sub-

053611-5
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spaces, thereby breaking the symmetry of the Hamiltonian. 24 | & — 5/x=01
On the basis of the statég)., the effective Hamiltonian | m 8/ke1
attains the off-diagonal element E*_E- -
. —— §/k=5
~ K
t</~L|Heff|M>I:h§M- (31
When we assume that bothand ¢ are small compared with 16 I
the splitting due to the interparticle interactian so that we
remain in the Bragg regime, the two statesu) remain 12 +
decoupled from the other number states, and we have a

effective two-state system. In practice, the paramétean

be easily controlled, so that many effects of two-state atoms
[19] can also be realized for these two states. For example, ir
analogy to the excitation of ground-state by an adiabatic
sweep across the resonance, one could create an effectiy
transfer from the statgu) to the statd — u) by varying the
parametek adiabatically from a positive to a negative value
that is large compared @ , . This gives an effective collec-
tive transfer oin=2u atoms from one well to the other one.

16

FIG. 3. Even-odd energy splittings for the double well as a
function of the quantum number, for various values ob/« and

V1. TIME-DEPENDENT COUPLING for N=100 particles.

When the couplings(t) varies with time, the time- |,) cos(;/2)+|—,u> sin(7/2). Again, as we see, this effect
dependent eigenstates of the Hamiltonian are coupled to eaghat is known in the diffraction case also has a counterpart
other. The eigenstate that correlates in the lighitO to the  for the double-well problem, where adiabatic switching of
state| u) - is denoted a$<p/f>. Note that even eigenstates are the coupling between the wells leads to a linear superposition
only coupled to other even eigenstates, and odd eigenstates the Fock statesn;,n,)=|N/2+ u,N/2— u) and|ny,n,)
to odd eigenstates. The coupling results from the time depen=|N/2— «,N/2+ u). By proper tailoring of the pulse, the

dence of the eigenstates. In fact, the term in the Sthger
equation couplinde,) to |¢;) is proportional to

78(t)

* d * _ = C .
<%(t) gt @M(t)> —_<‘Py(t)||-x|<PM(t)>Ef_E;,

MFE V. (32

final state can be made to coincide with either one of these
Fock states, with the even stdte), or with the odd state
|u)_, depending on the precise value of the accumulated
phase differencep, which in turn is determined by the en-
ergy diﬁerenceE;—E; between the even and the odd
eigenstate. In Fig. 3, we plot this energy difference in the
two-well case, foN=100, and for a few values @ . This

shows that these splittings decrease monotonously for in-

This coupling is ineffective in the case that the r.h.s. of Ed.creasing quantum number. When 8/« is not small, the
(32) is small compared withE; —E,;)/%. In this case, an decrease starts out to be slow, and then falls rapidly to zero .
initial eigenstate remains an eigenstate at all times. This is |n contrast, when the coupling terdft) has the form of a
the standard case of adiabatic following, which has been disshort pulse around time zero, such that the action of the
cussed in the diffraction cagé3]. Since within the even or quadratic term can be neglected during the pulse, the initial
the odd subspace there are no degeneracies, the dynamicss@dte| ) couples to all other statg¢g’). The state vector has
adiabatic following is particularly simple. When the coupling exactly the same fornil6) as for diffraction in the Raman-
coefficient§ is smoothly switched on, with the system ini- Nath regime. For the two-well problem, the evolution opera-
tially in the state |u)=(|u).+|u)-)/\2, the time- tor takes the forml=exp(dl,) with ¢=[dts(t), which
dependent state is obviously has matrix elements that can be expressed in the Wigner

|\If(t))=e“"(t)(|¢;)e‘”7(‘)’2+|go;)ei 1023 (33 rotation matrice$21] by

are _in —und
with 9(t)=['dt'[E, (t')+E,(t")]/24 the average phase (w'Ulw)=ir"rd,, (4), (34)

and n(t)=f‘dt’[E;(t’)— E,(t")]/% the accumulated phase . . _ . .

difference of the two eigenstates. In a time interval that th(z’\l,\\//\lltjh-v\\llglll—\::: rzéb’?e(r:r(ljmtﬁzn\/sv?gnvglrt?uﬁgii)?ssz?gzlstaza;;%(tah?ole
coupling 6 is constant, the phase differenegt) increases as the Bessel fur;ctions in the diffraction case

linearly with time, and stat€33) gives rise to expectation :

values oscillating at the single frequenc[/E;(t’)

—E,(t")])/7.. When the coupling is switched off again, the
phase difference approaches a constant limiting vajue In this paper, we have analyzed both the similarity and the
=n(=). State(33) at later times corresponds to a linear difference between the dynamical behavior of atom diffrac-

superposition of the states|+u) proportional to tion from a standing wave and a Bose-Einstein condensate in

VIlI. CONCLUSION
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a double-well potential. In both cases, the Hamiltonian iscur. A simple analytical expression is obtained for the Pen-
given by the generic forni19), the only difference being in dellosung frequency. An initial staten;,n,) with a well-

the commutation rules for the operatdrs with i =x,y,z. determined number of atoms in each well can be transferred
Well-known diffraction phenomena as Pendsilag oscilla-  to a linear superposition df,n,) and|n,,n;), which is a
tions between opposite momenta in the case of Bragg difhighly entangled state of the two wells. A similar analogy is
fraction, and the result of adiabatic transitions between moebtained to diffraction in the Raman-Nath regime. For the
mentum states have counterparts in the behavior of the atodouble-well problem this requires that the coupling is suffi-
distribution over the two wells, in the case that the couplingciently short to ignore dynamical effect of the atomic inter-
between the wells is weak compared to the interatomic interaction during the coupling. The well-known diffraction pat-
action or slowly varying with time. A common underlying tern in terms of the Bessel function is replaced by elements
reason for these effects is the symmetry of the Hamiltonianyf the Wigner rotation matrix for the double well. These
for inversionu — —u, and the energy splitting between even effects do not show up in the mean-field approximation,
and odd states arising from the coupling term. In these casegnere the Gross-Pitaevski equation holds.

effective coupling occurs between the statas,n,) and
[n,,n;) with opposite imbalance between the particle num-
bers in the two wells. These states are coupled without popu-
lation of the intermediate states, so that a numbem pf
—n, particles oscillate collectively between the two wells.  This work is part of the research program of the “Stich-
The interparticle interaction is essential for this effect to oc-ting voor Fundamenteel Onderzoek der Mate(EOM).
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