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Analogy between a two-well Bose-Einstein condensate and atom diffraction

H. L. Haroutyunyan and G. Nienhuis
Huygens Laboratorium, Universiteit Leiden, Postbus 9504, 2300 RA Leiden, The Netherlands

~Received 20 December 2002; published 27 May 2003!

We compare the dynamics of a Bose-Einstein condensate in two coupled potential wells with atoms dif-
fracting from a standing light wave. The corresponding Hamiltonians have an identical appearance, but with a
different set of commutation rules. Well-known diffraction phenomena asPendellösungoscillations between
opposite momenta in the case of Bragg diffraction, and adiabatic transitions between momentum states are
shown to have analogies in the two-well case. They represent the collective exchange of a fixed number of
atoms between the wells.
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I. INTRODUCTION

The most common approach to the description o
trapped Bose-condensed gas is based on the mean-fiel
proximation, which yields the Gross-Pitaevski equation
the macroscopic wave function. This wave function, wh
depends on the number of atoms, plays the role of the m
function for the Maxwell field. This approach is reliab
when the condensate is trapped in a single quantum state
potential well. However, when the condensate is separ
into two or more parts, so that more than one quantum s
is populated, the mean-field approach is not evidently ju
fied. It has been shown by Javanainen and Yoo@1# that two
originally separate parts of a condensate that are initially
Fock state and that are brought to overlap will reveal
interference pattern that varies in position from one reali
tion to another. This effect, which has also been obser
experimentally@2#, cannot be described by a single macr
scopic wave function. A simple model for a condensate i
double potential well is defined by a field-theoretical Ham
tonian for a boson-Hubbard dimer@3,4#, which can be ex-
pressed in terms of SU~2! angular-momentum-type operato
with a quadratic term. This latter term represents the inte
tion between atoms in a well. The mean-field approximat
is basically equivalent to classical equations of motion
the expectation values of the SU~2! operators@5,6#. The
quantum regime has mainly been studied numerically, le
ing to collapse and revival@5#, and to nonclassical dynamic
arising from the periodic modulation of the coupling b
tween the wells@7#. The formation of a two-well condensat
by the raising of the barrier has been analyzed theoretic
@8#. The situation of a Bose-Einstein condensate~BEC! in a
two-well trap is also studied experimentally@9,10#.

A very similar Hamiltonian describes the situation of
atom diffracting from a standing-wave optical potential. Th
problem has received attention already in the early day
laser cooling@11#. More recent work has developed the ba
structure of the energy spectrum@12#, and a number of re-
gimes have been distinguished that allow an analytical
scription @13#. In a simple version of the model, the Ham
tonian is identical in form as in the two-well problem
mentioned above. Now the quadratic term represent the
netic energy of the atom. The only difference between
two cases is that the commutation rules for the operator
1050-2947/2003/67~5!/053611~7!/$20.00 67 0536
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the diffraction case are slightly simplified compared to t
case of SU~2! symmetry.

In this paper, we discuss the analogy and the differen
between these two systems. We point that a number of a
lytical solutions known for the diffraction problem can b
carried over to the two-well system. The physics of the
cases is discussed.

II. BEC IN A DOUBLE POTENTIAL WELL

We consider a potential consisting of two wells. When t
barrier between the wells is not too low, the ground state
the first excited stateug& and ue& of a single atom are wel
approximated as the even and odd superposition of the l
est bound states in the two wells. Therefore, these states
be described as

ug&5
1

A2
~ u1&1u2&), ue&5

1

A2
~ u1&2u2&), ~1!

with u1& andu2& the localized states in either well. When th
energy separation between the excited and the ground sta
indicated as\d, the off-diagonal element of the one-partic
HamiltonianĤ1 between the localized states is

^1uĤ1u2&52\d/2 .

At the low energies that are of interest here, the two-part
interaction is well approximated by the standard contact
tential U(rW,rW8)5(4p\2a/m)d(rW2rW8), with a the scattering
length. The second-quantized field operator is now

Ĉ~rW !5âgcg~rW !1âece~rW !5â1c1~rW !1â2c2~rW !, ~2!

in terms of the wave functionsc i and the annihilation opera
tors âi of the single-particle states. The annihilation ope
tors and the corresponding creation operators obey the s
dard bosonic commutation rules. The correspond
Hamiltonian is
©2003 The American Physical Society11-1
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Ĥ5E drWĈ†~rW !H1Ĉ~rW !

1E drW drW8Ĉ†~rW !Ĉ†~rW8!U~rW,rW8!Ĉ~rW !Ĉ~rW8!. ~3!

The wave functionsc1 and c2 of the localized states hav
the same form, and we assume that they do not overlap. T
the interaction term can be expressed exclusively in the
rameterk defined by

\k5
4p\2a

m E drWuc1~rW !u4, ~4!

which measures the strength of the interatomic interact
Performing the integrations in Eq.~3! leads to the expressio
for the Hamiltonian

Ĥ52
\d

2
~ â1

†â21â2
†â1!1

\k

2
~ â1

†â1
†â1â11â2

†â2
†â2â2!,

~5!

where we took the zero of energy halfway the two ene
levels of a single atom. This is also known as the bos
Hubbard dimer Hamiltonian@3#.

Hamiltonian~5! can also be expressed in terms of SU~2!
operators by applying the standard Schwinger representa
of two modes. This leads to the definition

Ĵ05
1

2
~ â1

†â12â2
†â2!, Ĵ15â1

†â2 , Ĵ25â2
†â1 . ~6!

These operators are related to the Cartesian componen
angular momentum by the standard relationsĴ65 Ĵx6 i Ĵy

and Ĵ05 Ĵz . They obey the commutation rules for angula
momentum operators

@ Ĵ0 ,Ĵ6#56 Ĵ6 , @ Ĵ1 ,Ĵ2#52Ĵ0 , ~7!

which generate the su~2! algebra. Hamiltonian~5! can be
rewritten in the form

Ĥ52
\d

2
~ Ĵ11 Ĵ2!1\k Ĵ0

21
\k

4
~N̂222N̂!, ~8!

with N̂5â1
†â11â2

†â2 the operator for the total number o

particles. Obviously, Hamiltonian~8! commutes withN̂, and
it is block diagonal in the number of particlesN. For each
value ofN, Hamiltonian~8! can be expressed as

ĤN1
\k

4
~N222N!,

with the N-particle Hamiltonian

ĤN52
\d

2
~ Ĵ11 Ĵ2!1\k Ĵ0

2 , ~9!

where the operators are now restricted to theN11 Fock
statesun,N2n& with n50,1, . . .N, with n particles in well
05361
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1 andN2n particles in well 2. In the language of angula
momentum, this manifold of states corresponds to
angular-momentum quantum numberJ5N/2, and the 2J
11 Fock states are eigenstates ofĴ0 with eigenvaluem5n
2N/2 with m52J,2J11, . . . ,J. Note thatm is half the
difference of the particle number in the two wells. For
even number of particles, the angular-momentum quan
numberJ as well as the ‘‘magnetic’’ quantum numbers a
integer, whereas these number are half integer in case o
odd number of particles. The action of the operatorsĴ0 and
Ĵ6 on the Fock states has the well-known behavior

Ĵ0um&5mum&, Ĵ1um&5 f m11um11&,

Ĵ2um&5 f mum21&, ~10!

with f m5A(J1m)(J2m11). The m dependence of the
strength of the hopping operatorsĴ6 reflects the bosonic
accumulation factor, which favors the arrival of an addition
bosonic atom in an already occupied state.

When the quadratic term in Eq.~9! would be replaced by
a linear term, the evolution would be a uniform rotation
the (2J11)-dimensional state space with angular frequen
Ad21k2. The presence of the quadratic term makes the
namics considerably more complex. Therefore, we comp
this dynamics with another well-known case in which a sim
lar quadratic term appears.

III. STANDING-WAVE DIFFRACTION OF ATOMS

The translational motion of a two-level atom in a far d
tuned standing-wave light field is described by the effect
Hamiltonian

Ĥd52
\2

2m

]2

]z2
2

\vR
2

D
cos2 kz, ~11!

with D5v02v is the difference of the resonance frequen
and the optical frequency, andvR is the Rabi frequency of
each of the traveling waves that make up the standing wa
The Hamiltonian takes a particularly simple form in mome
tum representation, since the kinetic-energy term is diago
in momentum and the potential energy changes the mom
tum by 62\k. Therefore, we introduce momentum eige
statesum& which have the momentum 2m\k. Then apart
from an irrelevant constant, Hamiltonian~11! can be repre-
sented in the algebraic form

Ĥd52
\d

2
~B̂11B̂2!1\kB̂0

2 , ~12!

where k52\k2/m determines the kinetic-energy term an
d5vR

2/2D the atom-field coupling. The operators occurrin
on the right-hand side~r.h.s.! are defined by the relations

B̂0um&5mum&, B̂6um&5um61&. ~13!
1-2
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They differ from the corresponding relations~10! in that now
the strength of the hopping operators is uniform.

This Hamiltonian~12! has the same form as Eq.~9!, even
though they describe completely different physical situ
tions. The difference is mathematically characterized by
commutation relations. The SU~2! relations~7! are replaced
by the simpler set

@B̂0 ,B̂6#56B̂6 , @B̂1 ,B̂2#50, ~14!

which is easily found from their explicit expressions~13!.
The two operatorsB̂6 are found to commute. A result of thi
difference is that the state space in the two-well case h
finite dimension 2J115N11, whereas the momentum
space has an infinite number of dimensions.

A mathematically identical set of operators occurs in
description of the dynamics of the Wannier-Stark syste
consisting of a particle in a periodic potential with an ad
tional uniform force@14#. In that case, the eigenstates ofB̂0
represent the spatially localized Wannier states, rather
the momentum states.

We recall three approximate solutions of the evoluti
governed by Hamiltonian~12!, which are valid in different
situations, and which allow analytical solutions.

The Raman-Nath regime is valid for interaction times th
are so short that the atom has no time to propagate. Then
quadratic term in Eq.~12! can be neglected, and the evol
tion is determined by the atom-field couplingd(t). The evo-
lution operator is simplyÛ5exp@if(B̂11B̂2)/2#, wheref
5*dtd(t) is the integral of the coupling constant over t
evolution period. The matrix elements of the resulting ev
lution operator for the pulse can be found by operator al
bra in the form@14#

^m8uÛum&5 i m82mJm82m~f!, ~15!

in terms of Bessel functions. For an initial stateum& with a
well-determined momentum, the time-dependent state
lowing the pulse can be expressed as

uC~ t !&.(
m8

e2 iktm82
um8&^m8uÛum&. ~16!

This leads to explicit analytical expressions for diffracti
experiments@11#. The probability of transfer ofn units of
momentum is proportional touJn(f)u2.

The Bragg regime is valid when the couplingd between
neighboring momentum states is small compared to
kinetic-energy separation'2\km of the initial stateum&
from its neighboring statesum11&. This initial state leads to
an oscillating time-dependent state between the two st
um& and u2m& with the same kinetic energy

uC~ t !&5cos
Vmt

2
um&1 i sin

Vmt

2
u2m&, ~17!

apart from an overall phase factor. This can only occur wh
the momentum transfer 2m ~in units of 2\k) is an integer,
which corresponds precisely to the Bragg conditio
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The Pendellösung frequency is given by Vm5d(d/
2k)2m21/@(2m21)!#2 @13#. This expression is fully analo
gous to the effective Rabi frequency for a resonant multip
ton transition, with nonresonant intermediate states@15,16#.

The regime of adiabatic coupling arises for a tim
dependent atom-field couplingd(t) that varies sufficiently
slowly, so that an initial energy eigenstate remains an eig
state. The adiabaticity condition in the present case read

dd

dt
!kd. ~18!

When an atom passes a standing wave with a sufficie
smooth variation of the intensity, and the Bragg condition
fulfilled, the presence of two initially degenerate eigensta
u6m& leads to interference after the passage, which produ
two outgoing beams. Because of the similarity between
two Hamiltonians~9! and~12!, these well-known diffraction
cases can be expected to have analogies in the dynami
the two-well problem.

IV. SYMMETRY CONSIDERATIONS OF GENERIC
HAMILTONIAN

Hamiltonians~9! and ~12! can be represented in the g
neric form

Ĥ52\dL̂x1\kL̂z
2 , ~19!

with L̂x5(L̂11L̂2)/2, L̂z5L̂0, where the operatorsL̂ i rep-
resentĴi or B̂i , depending on the commutation rules and t
corresponding algebra that they obey. In the two-well ca
the eigenstatesum& of the operatorL̂z represent numbe
states in the two-well case, with the eigenvaluem half the
number difference between the wells. In the diffraction ca
the statesum& are momentum eigenstates. In this latter ca
the coupling between neighboring momentum states is in
pendent ofm @Eq. ~13!#, whereas in the two-well case them
dependence of the hopping operator indicated in Eq.~10!
reflects the bosonic accumulation effect. A consequence
this is also that the Hamiltonian in the diffraction ca
couples an infinite number of statesum&, whereas in the two-
well case the number of coupled states has the finite va
N11. In the diffraction case, we restrict ourselves to t
situation that the Bragg condition is respected. Therefo
both in the diffraction case and in the two-well casem attains
either integer or half-integer values. The action ofL̂z is the
same in both cases.

Hamiltonian~19! is invariant for inversion ofm. In order
to demonstrate this, we introduce the inversion operatorP̂,
defined by the relationP̂um&5u2m&. In the diffraction case,
the operatorP̂ corresponds to inversion of momentum
which does not change the kinetic energy. In the two-w
case, the operatorP̂ represents interchanging the partic
numbers in the two wells, which has no effect on the int
particle interaction. The commutation rules of the inversi
operator with the operatorsL̂ i are specified byP̂L̂zP̂
1-3



th
o

ve
th
s

l-
in

to
te

-

f a
t

r

cl

-
ac

ce
r

ian
o
be-
ver,
for

2,
w

are
en-
gs

se

u-

be

H. L. HAROUTYUNYAN AND G. NIENHUIS PHYSICAL REVIEW A 67, 053611 ~2003!
52L̂z , P̂L̂6P̂5L̂7 , so thatP̂ invertsL̂y andL̂z , and com-
mutes withL̂x . It follows that Hamiltonian~19! commutes
with P̂, so that it is invariant for inversion ofm. Therefore,
the Hamiltonian has vanishing matrix elements between
even and the odd subspaces, which are the eigenspacesP̂
with eigenvalue 1 and21, respectively. For half-integerm
values, these spaces are spanned by the states

um&1[
um&1u2m&

A2
, um&2[

um&2u2m&

A2
, ~20!

for positive values ofm. In the case of integerm values, the
state um50& also belongs to the even subspace. The e
and odd subspace evolve independently from one ano
This symmetry property ofH depends on the fact that it i
quadratic in the operatorL̂z .

The action of the quadratic term in Hamiltonian~19! on
the new basis is simply given by the relationL̂z

2um&6

5m2um&6 . The action of the coupling term in the Hami
tonian can be expressed in a general form by introduc
coefficientsFm for non-negative values ofm. In the case of
the su~2! algebra, we defineFm5 f m , whereas in the diffrac-
tion case we simply haveFm51. The matrix elements ofL̂x
can be fully expressed in terms of the coefficientsFm for
positivem. Within the even or the odd subspace, the opera
L̂x has off-diagonal matrix elements only between two sta
for which the values ofm differ by one, and we find

6^m11uL̂xum&65
1

2
Fm11 , ~21!

provided that the value ofm is positive. These matrix ele
ments coincide with those on the basis of the statesum&. For
the stateum50&, which belongs to the even subspace o
manifold of states with integerm values, the matrix elemen
is

1^1uL̂xu0&5F1 /A2. ~22!

On the other hand, in a manifold of states with half-integem

values, L̂x has a single nonzero diagonal element form
51/2, that is given by

6^1/2uL̂xu1/2&656F1/2. ~23!

Hence, in the case of half-integerm values, the Hamiltonian
projected on the even and the odd subspace differ ex
sively in the diagonal matrix element form5 1

2 , for which
we find

6^1/2uĤu1/2&65
\k

4
7

1

2
\dF1/2. ~24!

For integer values ofm, the Hamiltonian for the odd sub
space is identical to the Hamiltonian for the even subsp
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with mf1. The only difference is that the even subspa
also contains the stateu0&, which is coupled to the othe
states by the matrix element

1^1uĤu0&5^0uĤu1&152\dF1 /A2. ~25!

In both cases, the difference between the Hamilton
parts on the even and odd subspaces are proportional td.
These differences are responsible for the energy splitting
tween the even and the odd energy eigenstates. Moreo
since these differences in the Hamiltonian parts occur
low values ofm, we expect that for a fixed value ofd/k, the
even-odd energy splittings decrease for increasingm values.
This is confirmed by numerical calculations. In Figs. 1 and
we display the energy levels of the Hamiltonian, for a fe
values of d/k, both for the double-well case~with N
5100), and for the diffraction case. The energy levels
found to be alternatingly even and odd, with increasing
ergy. In the two-well case, the energy shifts and splittin
due to the coupling are larger for the same value ofd/k and
the same value ofm. This arises from the factorFm , which
is unity in the diffraction case, whereas in the two-well ca
it decreases from;J5N/2 atm50 to zero atm5J. In fact,
the condition for weak coupling is that matrix elements co
pling the statesum& and um21& are small compared with
their unperturbed energy separation. This condition can
expressed as

lm5
d

2k

Fm

2m21
,1. ~26!

This confirms that for a given value ofd/k, the region of
weakest coupling occurs for the highest values ofm. In the

FIG. 1. Energy levels in units of\k for the double well with
N5100 particles, for various values ofd/k. The levels are labeled
by the quantum numberm.
1-4
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two-well case, the lowest-energy states start out to be ne
equidistant for low-m values as long aslm is large.

V. PENDELLÖ SUNG OSCILLATIONS

The energy splittings between the even and the odd eig
states give rise to time-dependent states that oscillate
tween the statesu6m&. In the diffraction case, they corre
spond to the well-known Pendello¨sung oscillations in the
Bragg regime. Here we show that similar oscillations c
occur for the two-well problem, and we give an analytic
estimation of the oscillation frequencies. For the gene
Hamiltonian given by Eq.~19!, the Bragg condition is ful-
filled when inequality~26! holds.

The energy differences between the even and odd stat
lowest order inlm can be found from the effective Hami
tonian for two degenerate states that are coupled via a n
ber of nonresonant intermediate states. This situation oc
for the statesu6m&, with their 2m21 intermediate states. In
this case, the intermediate states can be eliminated adia
cally, as demonstrated in Sec. 18.7 of Ref.@15#. The resulting
effective Hamiltonian for these two statesu6m& has an off-
diagonal element that is the ratio between two products.
numerator contains the product of the successive 2m matrix
elements2\dFm8/2 of the Hamiltonian coupling neighbor
ing states, and the denominator is the product of them
21 unperturbed energy differences of the degenerate s
u6m& with the successive intermediate states. In the diffr
tion case, this result coincides with the calculation given
Ref. @12#, which was obtained by diagonalizing a tridiagon
matrix and keeping only the lowest order ind/k.

Generalizing this result to the present case of the
statesu6m&, we find that the effective Hamiltonian has th
diagonal element

^6muĤe f fu6m&5\km2, ~27!

and the off-diagonal element

FIG. 2. Energy levels in units of\k for the diffraction case, for
various values ofd/k.
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^7muĤe f fu6m&52\Vm/2, ~28!

with Vm an effective oscillation frequency given by

Vm5~21!2m11
1

22m21

d2m

k2m21

1
[(2m21)!] 2 F. ~29!

The factorF is just the product of the coefficientsFm suc-
cessively coupling the states intermediate betweenum& and
u2m&. In the diffraction case, we simply haveF51,
whereas in the case of SU~2! symmetry, applying to the
double well, we find

F5
~J1m!!

~J2m!!
. ~30!

These expressions are valid both for integer and half-inte
values ofm. The eigenstates of the effective Hamiltonian a
the even and odd states, and the eigenvalue equations
Ĥe f fum&65(\km27\Vm/2)um&6 . For integer values ofm,
the frequencyVm is negative, so that the even statesum&1

are shifted upwards and the odd states are shifted downw
in energy. The opposite is true for half-integer values ofm.
In both cases, the ground state is even, and the energy e
states for increasing energy are alternatingly even and o
In view of the results of the numerical calculation mention
above, one may expect that this alternating behavior of
even and odd eigenstates is valid for all finite values of
ratio d/k. It is interesting to notice that in the special ca
that m5J[N/2, Eq. ~29! for the two-well case coincides
with the ground-state energy splitting of two coupled qua
tum anharmonic oscillators, which model two coupled vib
tional degrees of freedom in a molecule@17#.

For an initial stateum&, the effective HamiltonianĤe f f
leads to a time-dependent state that is given by Eq.~17!,
apart from an irrelevant overall phase factor. This shows t
the oscillating solution~17! corresponding to the Bragg re
gime of diffraction can be generalized to the case of a c
densate in a double well. The same expression~17! remains
valid, while the oscillation frequencyVm is determined by
Eqs. ~29! and ~30!. This describes a state of the condens
atoms in the double well in the weak-coupling limit. In th
case, the state oscillates between the Fock statesun1 ,n2&
5uN/21m,N/22m& and un1 ,n2&5uN/22m,N/21m&.

Obviously, when the initial state is given byum&6 , the
system is in a stationary state, and no oscillations occur
this case, Pendello¨sung oscillations can still be induced b
including in the Hamiltonian a term that is linear inL̂z . In
the diffraction case, there is no obvious physical realizat
of such a term. For the Wannier-Stark system, where
quadratic term inL̂z

2 is absent, the linear term can be realiz
by imposing a uniform force, which gives rise to Bloch o
cillations @14,18#. In the case of the BEC in a double well,
term \jL̂z in the Hamiltonian can be realized by imposin
an energy difference\j between the single-particle groun
states in the two wells. When this term is periodically var
ing, it can be used for coherent control of the condens
@20#. The additional term couples the even and odd s
1-5
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spaces, thereby breaking the symmetry of the Hamilton
On the basis of the statesum&6 , the effective Hamiltonian
attains the off-diagonal element

6^muĤe f fum&75\jm. ~31!

When we assume that bothd andj are small compared with
the splitting due to the interparticle interactionk, so that we
remain in the Bragg regime, the two statesu6m& remain
decoupled from the other number states, and we have
effective two-state system. In practice, the parameterj can
be easily controlled, so that many effects of two-state ato
@19# can also be realized for these two states. For exampl
analogy to the excitation of ground-state by an adiab
sweep across the resonance, one could create an effe
transfer from the stateum& to the stateu2m& by varying the
parameterj adiabatically from a positive to a negative valu
that is large compared toVm . This gives an effective collec
tive transfer ofn52m atoms from one well to the other one

VI. TIME-DEPENDENT COUPLING

When the couplingd(t) varies with time, the time-
dependent eigenstates of the Hamiltonian are coupled to
other. The eigenstate that correlates in the limitd→0 to the
stateum&6 is denoted asuwm

6&. Note that even eigenstates a
only coupled to other even eigenstates, and odd eigens
to odd eigenstates. The coupling results from the time dep
dence of the eigenstates. In fact, the term in the Schro¨dinger
equation couplinguwm

6& to uwn
6& is proportional to

K wn
6~ t !U d

dt Uwm
6~ t !L 52^wn

6~ t !uL̂xuwm
6~ t !&

\ḋ~ t !

En
62Em

6
,

mÞn. ~32!

This coupling is ineffective in the case that the r.h.s. of E
~32! is small compared with (En

62Em
6)/\. In this case, an

initial eigenstate remains an eigenstate at all times. Thi
the standard case of adiabatic following, which has been
cussed in the diffraction case@13#. Since within the even or
the odd subspace there are no degeneracies, the dynam
adiabatic following is particularly simple. When the couplin
coefficientd is smoothly switched on, with the system in
tially in the state um&5(um&11um&2)/A2, the time-
dependent state is obviously

uC~ t !&5e2 iq(t)~ uwm
1&e2 ih(t)/21uwm

2&eih(t)/2)/A2, ~33!

with q(t)5* tdt8@Em
1(t8)1Em

2(t8)#/2\ the average phas
andh(t)5* tdt8@Em

1(t8)2Em
2(t8)#/\ the accumulated phas

difference of the two eigenstates. In a time interval that
coupling d is constant, the phase differenceh(t) increases
linearly with time, and state~33! gives rise to expectation
values oscillating at the single frequency@Em

1(t8)
2Em

2(t8)#/\. When the coupling is switched off again, th

phase difference approaches a constant limiting valueh̄
5h(`). State ~33! at later times corresponds to a line
superposition of the statesu6m& proportional to
05361
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um& cos(h̄/2)1u2m& sin(h̄/2). Again, as we see, this effec
that is known in the diffraction case also has a counterp
for the double-well problem, where adiabatic switching
the coupling between the wells leads to a linear superposi
of the Fock statesun1 ,n2&5uN/21m,N/22m& and un1 ,n2&
5uN/22m,N/21m&. By proper tailoring of the pulse, the
final state can be made to coincide with either one of th
Fock states, with the even stateum&1 or with the odd state
um&2 , depending on the precise value of the accumula
phase differenceh̄, which in turn is determined by the en
ergy differenceEm

12Em
2 between the even and the od

eigenstate. In Fig. 3, we plot this energy difference in t
two-well case, forN5100, and for a few values ofd/k. This
shows that these splittings decrease monotonously for
creasing quantum numberm. When d/k is not small, the
decrease starts out to be slow, and then falls rapidly to ze

In contrast, when the coupling termd(t) has the form of a
short pulse around time zero, such that the action of
quadratic term can be neglected during the pulse, the in
stateum& couples to all other statesum8&. The state vector has
exactly the same form~16! as for diffraction in the Raman
Nath regime. For the two-well problem, the evolution ope
tor takes the formÛ5exp(ifL̂x) with f5*dtd(t), which
has matrix elements that can be expressed in the Wig
rotation matrices@21# by

^m8uÛum&5 i m82mdm8m
J

~f!, ~34!

with J5N/2. A comparison with Eq.~15! shows that for the
two-well-problem, the Wigner functions play the same ro
as the Bessel functions in the diffraction case.

VII. CONCLUSION

In this paper, we have analyzed both the similarity and
difference between the dynamical behavior of atom diffra
tion from a standing wave and a Bose-Einstein condensa

FIG. 3. Even-odd energy splittings for the double well as
function of the quantum numberm, for various values ofd/k and
for N5100 particles.
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a double-well potential. In both cases, the Hamiltonian
given by the generic form~19!, the only difference being in
the commutation rules for the operatorsL̂ i with i 5x,y,z.
Well-known diffraction phenomena as Pendello¨sung oscilla-
tions between opposite momenta in the case of Bragg
fraction, and the result of adiabatic transitions between m
mentum states have counterparts in the behavior of the a
distribution over the two wells, in the case that the coupl
between the wells is weak compared to the interatomic in
action or slowly varying with time. A common underlyin
reason for these effects is the symmetry of the Hamilton
for inversionm↔2m, and the energy splitting between eve
and odd states arising from the coupling term. In these ca
effective coupling occurs between the statesun1 ,n2& and
un2 ,n1& with opposite imbalance between the particle nu
bers in the two wells. These states are coupled without po
lation of the intermediate states, so that a number ofn1
2n2 particles oscillate collectively between the two wel
The interparticle interaction is essential for this effect to o
e

s.

. A

A

on

v.

05361
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cur. A simple analytical expression is obtained for the P
dellösung frequency. An initial stateun1 ,n2& with a well-
determined number of atoms in each well can be transfe
to a linear superposition ofun1 ,n2& and un2 ,n1&, which is a
highly entangled state of the two wells. A similar analogy
obtained to diffraction in the Raman-Nath regime. For t
double-well problem this requires that the coupling is su
ciently short to ignore dynamical effect of the atomic inte
action during the coupling. The well-known diffraction pa
tern in terms of the Bessel function is replaced by eleme
of the Wigner rotation matrix for the double well. Thes
effects do not show up in the mean-field approximatio
where the Gross-Pitaevski equation holds.
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