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We present a theoretical study of multimode scattering of light by optically random media, using the
Mueller-Stokes formalism which permits us to encode all the polarization properties of the scattering
medium in a real 4� 4 matrix. From this matrix two relevant parameters can be extracted: the
depolarizing power DM and the polarization entropy EM of the scattering medium. By studying the
relation between EM and DM, we find that all scattering media must satisfy some universal constraints.
These constraints apply to both classical and quantum scattering processes. The results obtained here may
be especially relevant for quantum communication applications, where depolarization is synonymous with
decoherence.
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Introduction.—Optical properties of random media have
drawn quite a bit of interest in recent years: since a light
field is a vector wave, this includes coverage of the polar-
ization aspects [1]. When polarized light is incident on an
optically random medium it suffers multiple scattering
and, as a result, it may emerge partly or completely depo-
larized. The amount of depolarization can be quantified by
calculating either the entropy (EF) or the degree of polar-
ization (PF) of the scattered field [2]. It is simple to show
that the field quantities EF and PF are related by a single-
valued function: EF � EF�PF�. For example, polarized
light (PF � 1) has EF � 0 while partially polarized light
(0 � PF < 1) has 1 � EF > 0. When the incident beam is
polarized and the output beam is partially polarized, the
medium is said to be depolarizing. An average measure of
the depolarizing power of the medium is given by the so-
called depolarization index (DM) [3]. Nondepolarizing
media are characterized by DM � 1, while depolarizing
media have 0 � DM < 1. A depolarizing scattering pro-
cess is always accompanied by an increase of the entropy
of the light, the increase being due to the interaction of the
field with the medium. An average measure of the entropy
that a given random medium can add to the entropy of the
incident light beam is given by the polarization entropy EM
[4]. Nondepolarizing media are characterized by EM � 0,
while for depolarizing media 0<EM � 1. As the field
quantities EF and PF are related to each other, so are the
medium quantities EM and DM with the key difference
that, as we show later, EM is a multivalued function ofDM.

The purpose of this Letter is to point out a universal
relation between the polarization entropy EM and the de-
polarization index DM valid for any random scattering
medium. This relation covers the complete regime from
zero to total depolarization. It has been introduced before,
by Le Roy–Brehonnet and Le Jeune [4], in an empirical
sense, to classify depolarization measurements on rough
surfaces (sand, rusty steel, polished steel, etc.). We derive
here its theoretical foundation and present analytical ex-
pressions for the multivalued function EM � EM�DM�.
Although the �EM;DM� relation is essentially classical,
05=94(9)=090406(4)$23.00 09040
we use a single-photon theoretical approach, exploiting
the well known analogy between single-photon and clas-
sical optics [5]. We prefer this to a classical formulation
since it offers a natural starting point for the extension to
entangled twin-photon light scattering by a random me-
dium, which is a true quantum phenomenon that could
deteriorate quantum communication. Moreover, the results
obtained here, although derived within the context of
quantum and classical optics, could have been equally
well developed in other contexts as, e.g., particle physics
or statistical mechanics [6], since the presence of two-level
systems (as is the polarization of a photon) and decoher-
ence processes (as depolarization) is almost ubiquitous in
physics.

Polarization description of the field.—Let us consider a
collimated light beam propagating in the direction z. In a
given spatial point r, the quasimonochromatic time-
dependent electric field associated with the beam is a
complex-valued vector E�t� � X�t�x� Y�t�y. This vector
defines the instantaneous polarization of the light which is,
in any short enough time interval, fully polarized.
Alternatively, the same light beam may be described by a
time-dependent real-valued unit Stokes vector s�t� �
f2Re�X	Y�; 2 Im�X	Y�; jXj2 � jYj2g=�jXj2 � jYj2�, which
moves on the Poincaré sphere (PS) [7]. Of course, no
detector can measure the instantaneous polarization; the
best one can get is an average polarization over some time
interval T. If during the measurement time T the Stokes
vector s�t� maintains the same direction, then the beam is
polarized. Vice versa, if s�t� moves over the PS covering
some finite area, then the beam is partially polarized. In the
last case, for stationary beams, the motion of s�t� produces
a probability distribution over the PS which determines the
degree of polarization of the light [8]. Time dependence of
the polarization is not the only cause for depolarization;
also spatial dependence, for example, may lead to loss of
polarization.

We stress that this picture is not limited to the classical
domain; in Ref. [9] we found, e.g., that a multimode single-
photon scattering process generates a k-dependent Stokes
6-1  2005 The American Physical Society
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vector distribution. More generally, if  � ft;k; �; . . .g
denotes the set of all variables (e.g., time t, momentum
k, polarization �, etc.) on which s � s� � depends, then
the state of a polarized light beam (either classical or
quantum) may be described by a 2� 2 matrix �� � �

�0 � s� � � ��=2, where �0 is the 2� 2 identity matrix
and � � f�1; �2; �3g are the Pauli matrices. The matrix
�� � is known as the coherency matrix in classical optics
[7] and as the density matrix in quantum mechanics [10].
Since by construction Tr�� � � 1, each matrix �� � can
describe either a purely polarized beam in classical optics
or a pure photon state in quantum optics [11]. However, the
state of a partially polarized beam must be described by the
matrix � �

R
�d �w� ��� �, where

R
�d � is the integra-

tion measure [12] in the space of the variables  andR
�d �w� � � 1. The statistical weight w� � � 0 defines

a probability distribution over the PS. It is clear that � can
represent a mixed photon state in the context of quantum
optics as well. If A denotes any polarization-dependent
observable, its average value must be calculated as hAi �
Tr��A� �

R
�d �w� �Tr�A�� ��. If A represents the en-

tropy of the field, i.e., A � � ln���, then hAi �
�Tr�� ln��, which is the von Neumann entropy S of the
photon state [13]. However, it is easy to see that this
coincides with the Gibbs entropy [14] of the distribution
w� �, since S � �

R
�d �w� � ln�w� ��, in agreement

with the results of Ref. [8].
Single-photon scattering and multimode Mueller for-

malism.—The theoretical framework for studying one-
photon scattering has been established elsewhere [9], and
here we use the results found in [9] to extend the Mueller-
Stokes formalism to quantum scattering processes. In clas-
sical optics a polarization-dependent scattering process can
be characterized by a real-valued 4� 4 matrix, the so-
called Mueller matrix M [2], which describes the polariza-
tion properties of the scattering medium. We show now
that such a matrix description can be extended to the
quantum (single-photon) scattering case. Let us consider
a photon prepared in the pure state �� �, approximately
described by a monochromatic plane wave jk0; �0i. In this
case  � fk0; �0g. Now, let us suppose that the photon is
transmitted through a linear optical system described by a
unitary scattering operator T such that �� 0� � T�� �Ty

represents the pure state of the photon after the scattering,
where  0 is the set of all scattered modes:  0 �
fk1; �1;k2; �2; . . .g. A multimode detection scheme im-
plies a reduction from the set  0 to the subset of the
detected modes  00 � fk1; �1; . . . ;kN; �Ng �  0 which
causes a transition from the pure state �� 0� to the mixed
state � �

R
�d 00�w� 00��� 00�. If we denote the Stokes

parameters of the beam before and after the scattering
with s� � Tr��� ���� and s0�, respectively (� �

0; 1; 2; 3), then the classical result s0� �
P3
��0M��s� is

retrieved, with the difference that a generalized (measured)
Mueller matrix jjM��jj appears, which is defined as
09040
M�� /
Z
 00
dkm���k�: (1)

The local (with respect to the momentum) matrix elements
m���k� are defined by means of the matrix relation

WT�k�Ty�k;k0���T�k0;k�W�k� � m���k��� (2)

��; � � 0; 1; 2; 3�, and summation over repeated indices is
understood. Explicit expressions for the 2� 2 matrices
W�k� and T�k;k0� can be found in Ref. [9]. The propor-
tionality factor in Eq. (1) can be fixed by imposing the
condition M00 � 1=2. When  00 reduces to a single mode
fk; �g, then Wij�k� � �ij and the classical formalism is
fully recovered.

Depolarization index DM and polarization entropy
EM.—Now that we have a recipe to calculate the Mueller
matrix describing a multimode scattering process, we use
this knowledge to study the depolarization properties of the
scattering medium. Within the Mueller-Stokes formalism,
the degree of polarization PF of the field and the depolar-
ization indexDM of the medium are defined as PF � �s21 �
s22 � s23�

1=2=s0 and DM � 
Tr�MTM�=3� 1=3�1=2, respec-
tively, where s� (� � 0; 1; 2; 3) are the Stokes parameters
of the field and M00 � 1=2 has been assumed. A deeper
characterization of the scattering medium can be achieved
by using the Hermitian matrix H [15,16] defined as H �P0;3
�;� M����� � �	

��=2, where Tr�H� � 1. The matrix H
has a straightforward physical meaning: H!" � hTijT	

kli,
where ! � 2i� j, " � 2k� l (i; j; k; l � 0; 1). The Tij
are the elements of the scattering (Jones) matrix T and
brackets indicate the average over the statistical ensemble
describing the medium [17]. Then it is clear [4] that a
physically realizable optical system is characterized by a
positive-semidefinite matrix H. Let 0 � �� � 1 (� �
0; . . . ; 3) be the eigenvalues of H; it can be shown that
both the depolarization index DM and the polarization
entropy EM are simple functions of the ��’s. Explicitly
we have

DM �

��
4
X3
��0

�2� � 1
�
=3
�
1=2
; (3)

EM � �
X3
��0

��log4����: (4)

Now we are ready to show the universal character of the
�EM;DM� plot originally introduced in Ref. [4]. More
precisely, we show that it allows one to characterize all
possible scattering media by means of their polarimetric
properties. The main idea is the following: both EM and
DM depend on the four real eigenvalues of H which
actually reduces to three independent variables because
of the trace constraint Tr�H� � 1. If we eliminate one of
these variables in favor of DM we can write EM �
EM�DM;!; "� where !;" represent the last two indepen-
dent variables. Then, for each value of 0 � DM � 1, dif-
6-2
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ferent values of EM can be obtained by varying ! and "
between 0 and 1. In such a way we obtain a whole domain
in the DM-EM plane instead of just a curve. In order to do
that, we have implemented a Monte Carlo code to generate
a uniform distribution of points over the four-dimensional
unit sphere: the square of the four coordinates of each point
is an admissible set of eigenvalues of H. In this way we
have generated the graph shown in Fig. 1. The boundary of
this domain is formed by the curves Cij (i; j � 1; . . . ; 4),
joining the points �pi ! pj�. The analytical expressions
for these curves are

E�n; f� � �
�1� nf�log4�1� nf� � nflog4�f��; (5)

where f� � 
1�
																																																								
1� 3�n� 1��1�D2

M�=�4n�
q

�=�n� 1�,
and n � 1; 2; 3 is the number of equal eigenvalues of H
(order of degeneracy). The links between the functions
E�n; f� and the curves Cij are given in Table I where we
have defined E13 � ��1���log4�

1��
2 � ��log4�

�
2�. The

curve C14 is special in the sense that it sets an upper bound
for the entropy of any scattering medium. We find numeri-
cally that the value of the entropy on this curve is very well
approximated by

Ecr
M � �1�D2

M�
(; (6)

where ( � 0:862, which is, interestingly, almost equal to
e=*. Then, for all depolarizing scattering media the con-
dition EM & Ecr

M must be satisfied. It is interesting to note
that a purely depolarizing scattering medium (with diago-
nal Mueller matrix) leads to EM � Ecr

M. By using thermo-
dynamics language, one may interpret Fig. 1 as a
FIG. 1. Numerically determined domain in the DM-EM plane
corresponding to all physically realizable polarization scattering
processes. The solid curves are the analytically obtained bounds.
The four cusp points p1 � �0; 1�, p2 � �1=3; log43�, p3 �
�1=

			
3

p
; 1=2�, p4 � �1; 0� separate different polarization scatter-

ing processes, as described in the text.

09040
polarization ‘‘state diagram’’ where different phases of a
generic scattering medium, characterized by different sym-
metries of the corresponding Mueller matrices, are sepa-
rated by the curves Cij. It is worth noting again that there is
nothing inherently quantum in the above derivation of the
physical bounds Eq. (5), therefore these results have valid-
ity both in the classical and in the quantum regimes.

Random-matrix approach.—We have checked the valid-
ity of the theory outlined above, for scattering media in the
regime of applicability of the random-matrix theory
(RMT) [18]. Random media, either disordered media [1]
or chaotic optical cavities [19], can be represented by
ensembles [17]. The transmission of polarized light
through a random medium may decrease the degree of
polarization in a way that depends on the number N of
the detected modes via Eq. (1). Under certain conditions,
RMT can account for a statistical description of the light
scattering by random media [20,21]. Let  ��k� be the
complex probability amplitude that a photon is scattered
in the state jk; �i. Then, according to RMT, the real and the
imaginary parts of the scattering amplitudes  ��k� are
independent Gaussian random variables with zero mean
and variance that can be fixed to 1. The assumption of
independent variables is justified since usually the set  00 of
the detected modes is much smaller than the set  0 of all
the scattered modes [22]. Let us suppose now that the
impinging photon is in the pure state jk0; �0i. In this
case  ��k� � T��0�k;k0� and the statistical distribution
of the M��’s can be numerically calculated according to
Eqs. (1) and (2). In this way we have calculated the
TABLE I. List of the analytical curves (continuous lines) in
Fig. 1. The second column refers to the equations generating the
corresponding curves, while the third column gives the eigen-
values of H. The first four curves form the boundary of the
physical domain; the last two represent inside curves. To each
function E�n; f� corresponds a sequence of eigenvalues of H;
e.g., E�2; f�� $ f�;�;�; 0g. For each sequence we use the
constraint Tr�H� � 1 to write �� n� � 1 ) � � 1� n� so
that � is the only independent variable left. Then a given
sequence can be put in Eq. (3), which can be inverted in order
to obtain a function � � ��DM�. In general, this inversion
cannot be done on the whole range 
0; 1� of DM, but only within
the subinterval 
pi; pj� delimited by the cuspidal points fpig.
These points are therefore obtained by studying the domain of
existence of ��DM�. Finally, we put the considered eigenvalues
sequence [with �! ��DM�] in Eq. (4), obtaining E�n; f�. Note
that since f� � f� � 2=�n� 1�, if n � 1 from Eq. (5) follows
that E�1; f�� � E�1; f��.

Curve Generating equation Eigenvalues of H

C12 E�3; f�� f�;�;�;�g
C23 E�2; f�� f�;�;�; 0g
C34 E�1; f�� f�;�; 0; 0g
C14 E�3; f�� f�;�;�;�g
C13 E13 f�; �;�;�g
C24 E�2; f�� f�;�;�; 0g
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FIG. 2. RMT results for the ensemble-averaged polarization
entropy hEMi as a function of the ensemble-averaged depolar-
ization index hDMi for generic (dark squares) and polarization-
conserving (open squares) scattering processes. In both cases
each point correspond to a given number N of detected modes.
When N increases from 1 to 30, points move from the bottom to
the top of the figure. The solid lines are the analytical bounds of
Fig. 1.
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ensemble-averaged polarization entropy hEMi and depolar-
ization index hDMi of the medium, as functions ofN for the
case in which the angular aperture of the detector is so
small that Wij�k� ’ �ij. The results are shown in Fig. 2 for
the cases of a generic scattering medium [T��0�k;k0�

unconstrained] and of a polarization-conserving medium
[T��0�k;k0� / ���0]. The last case is realized when the
geometry of the scattering process is confined in a plane.
As one can see, for both cases RMT results cover only a
small part of the (EM;DM) diagram; however, the numeri-
cal data are consistent with the analytical bounds given by
Eq. (5).

Conclusions.—In summary, we have studied the scatter-
ing of light by optically random media, from a polarization
point of view. After the calculation of the Mueller matrix
M characterizing the polarization properties of a generic
scattering medium, we have extracted from M the depo-
larization index DM and the polarization entropy EM. By
analyzing the functional relation between EM and DM, we
have found that the depolarization properties of any scat-
tering medium are constrained by some physical bounds.
These bounds have a universal character, and they hold in
both the classical and the quantum regimes. Our results
provide a deeper insight into the nature of random light
scattering by giving a useful tool, both to theoreticians and
to experimenters, to classify scattering media according to
their depolarization properties; we have demonstrated this
very recently in a series of experiments on various scatter-
09040
ing media [23]. The use of this tool may be particularly
relevant in quantum communication where depolarization
corresponds to decoherence [24].
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