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Random-matrix theory of Andreev reflection from a topological superconductor
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We calculate the probability distribution of the Andreev reflection eigenvalues Rn at the Fermi level in
the circular ensemble of random-matrix theory. Without spin-rotation symmetry, the statistics of the electrical
conductance G depends on the topological quantum number Q of the superconductor. We show that this
dependence is nonperturbative in the number N of scattering channels by proving that the p-th cumulant of
G is independent of Q for p < N/d (with d = 2 or d = 1 in the presence or in the absence of time-reversal
symmetry). A large-N effect such as weak localization cannot, therefore, probe the topological quantum number.
For small N we calculate the full distribution P (G) of the conductance and find qualitative differences in the
topologically trivial and nontrivial phases.
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I. INTRODUCTION

The random-matrix theory (RMT) of quantum transport
studies the statistical distribution of phase-coherent transport
properties in an ensemble of random-scattering matrices.
The theory finds a major application in the context of
chaotic scattering, because then the ensemble is fully specified
by fundamental symmetries—without requiring microscopic
input.1 Since scattering phase shifts for chaotic scattering
are uniformly distributed on the unit circle, such ensembles
are called “circular,” following Dyson, who first introduced
these ensembles in a mathematical context.2 The circular
ensembles have been successful in describing experiments on
low-temperature electrical and thermal conduction in quantum
dots, which are confined geometries connected by point
contacts to metallic or superconducting electrodes. For a
recent overview of the field we refer to several chapters of
a forthcoming handbook.3

While metallic quantum dots are characterized by the
three circular ensembles introduced originally by Dyson,2

superconducting quantum dots are described by four differ-
ent ensembles discovered by Altland and Zirnbauer.4 The
classification of the superconducting ensembles is based on
the presence or absence of time-reversal and spin-rotation
symmetry, as summarized in Table I. The symmetry classes are
called D, DIII, C, and CI, in a notation which originates from
differential geometry.4 The corresponding circular ensembles,
in the nomenclature of Ref. 5, are the circular real (CRE)
and circular quaternion (CQE) ensembles in class D and
C, respectively, and their time-reversal invariant restrictions
(T-CRE and T-CQE) in class DIII and CI.

In a remarkable recent development, it was found that some
of these symmetry classes divide into disjunct subclasses,
characterized by a topological quantum number.6–9 For a
quantum dot connected to a superconducting wire, such as
shown in Fig. 1, the topological quantum number Q = −1
or +1 depending on whether the quantum dot has a bound
state at zero excitation energy. (The state is only quasibound
if the quantum dot is also connected by a point contact to a
normal-metal electrode.) Because of particle-hole symmetry,
such a fermionic excitation is equal to its own antiparti-
cle, so it is a Majorana fermion. There is now an active
search for the Majorana bound states predicted to appear

at the ends of superconducting wires without spin-rotation
symmetry.10–15

The RMT of the four superconducting circular ensembles
was developed for the quasiparticle transmission eigenvalues
in Ref. 5 and applied to the thermal conductance. The
probability distribution of this transport property does not
depend on the topological quantum number, so it was not
needed in that study to distinguish the topologically nontrivial
ensemble (with a Majorana bound state) from the topologically
trivial ensemble (without such a state).

The electrical conductance G, in contrast, can probe the
presence or absence of the Majorana bound state through
resonant Andreev reflection.16,17 This applies also to a qua-
sibound state,18,19 so even if the N -mode point contact to
the normal metal has a conductance which is not small
compared to e2/h—although the effect of Q on G diminishes
with increasing N . As we will show in this article, the
Q dependence of the conductance distribution P (G) in the
circular ensembles is nonperturbative in N : Cumulants of order
p are identical in the topologically trivial and nontrivial phases
for p < N (N/2) in the absence (presence) of time-reversal
symmetry.

We derive this nonperturbative result by exactly computing
(in Sec. III and Appendix A) the joint probability distribution
P ({Rn}) of the Andreev reflection eigenvalues R1,R2, . . . RN

(eigenvalues of the product r
†
herhe of the matrix rhe of Andreev

reflection amplitudes). This probability distribution was only
known previously for one of the ensembles (CQE) without a
topological phase,20 while here we calculate it for all four
superconducting ensembles, including the possibility of a
topologically nontrivial phase.

The distribution of the electrical conductance G ∝∑n Rn

follows on integration over the Rn’s (Sec. IV). For small N

we obtain a closed-form expression for P (G) in the two cases
Q = ±1, and we demonstrate that, on increasing N , first the
average becomes the same, followed by variance, skewness,
kurtosis, and so on. A proof for arbitrary N of the Q

independence of low-order cumulants is given in Appendix B.
We conclude in Sec. V with a comparison of the analytical

predictions from RMT with a computer simulation of a system
that is of current experimental interest (a disordered semi-
conductor wire on an s-wave superconducting substrate, with
Rashba spin-orbit coupling and Zeeman spin splitting).10,11
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TABLE I. Classification of the symmetries of the reflection
matrix r for a normal-metal–superconductor junction. See Sec. II
for explanations.

Symmetry class D DIII C CI
Ensemble name CRE T-CRE CQE T-CQE
Particle-hole symmetry ree = r∗

hh,reh = r∗
he ree = r∗

hh,reh = −r∗
he

Time-reversal symmetry × r = �yr
T�y × r = rT

Spin-rotation symmetry × × √ √
Topological quantum Det r Pf i�yr × ×

number Q

Degeneracy of Rn �= 0, 1 2 2 2 2
Degeneracy of Rn = 0, 1 1 2 2 2

II. ANDREEV REFLECTION EIGENVALUES

Andreev reflection of electrons injected through a point
contact toward a normal-metal–superconductor (NS) interface
is described by the N × N subblock rhe of the 2N × 2N

reflection matrix r ,

r =
(

ree reh

rhe rhh

)
. (2.1)

The labels e and h refer to electron and hole excitations in the
normal-metal point contact, each of which can be in one of
N modes. We allow for spin-orbit coupling, so N counts both
orbital and spin degrees of freedom. The Andreev reflection
eigenvalues Rn (n = 1,2, . . . N) are the eigenvalues of the
Hermitian matrix product r

†
herhe.

At excitation energies ε below the superconducting gap �

there is no transmission of excitations through the supercon-
ductor (assuming that it is large compared to the penetration
depth ξ0 = h̄vF /�). The reflection matrix is then a unitary
matrix, r† = r−1. An electrical current I can still enter into
the superconductor, driven by a voltage difference V with the

FIG. 1. Quantum dot with an interface between a normal metal
(N) and a superconductor (S, shaded region). Andreev reflection at
the NS interface converts a normal current (carried by electron and
hole excitations e and h) into a supercurrent (carried by Cooper
pairs). The conductance G is the ratio of the current I into the
grounded superconductor and the voltage V applied to the quantum
dot via an N -mode point contact to a normal metal electrode (narrow
opening at the left). The system is in a topologically nontrivial
state if it supports a quasibound state at the Fermi level. This is
possible if spin-rotation symmetry is broken by spin-orbit coupling.
In the configuration shown in the figure (with a single NS interface),
time-reversal symmetry should be broken to prevent the opening of
an excitation gap in the quantum dot. In the presence of time-reversal
symmetry a second NS interface, with a π phase difference, can be
used to close the gap.

normal metal. The electrical conductance G = I/V is fully
determined by the Andreev reflection eigenvalues,21

G/G0 = N − Tr r†eeree + Tr r
†
herhe = 2

N∑
n=1

Rn. (2.2)

The conductance quantum is G0 = e2/h and the factor of two
accounts for the fact that charge is added to the superconductor
as Cooper pairs of charge 2e. (Spin is counted in the sum
over n.)

The relation (2.2) holds in the limit of zero voltage and
zero temperature, when the reflection matrix is evaluated at
the Fermi level (ε → 0). The subblocks in Eq. (2.1) are then
related by particle-hole symmetry,

rhh = r∗
ee, reh = r∗

he. (2.3)

Time-reversal symmetry imposes a further constraint on the
reflection matrix,

r = �yr
T �y, (2.4)

with �y = σy ⊕ σy ⊕ · · · ⊕ σy and σy a 2 × 2 Pauli matrix.
(The superscript T denotes the transpose.)

The Andreev reflection eigenvalues are all twofold degen-
erate in the presence of time-reversal symmetry. This is the
usual Kramers degeneracy, which follows directly from the
fact that �yr is an antisymmetric matrix [�yr = −(�yr)T ]
when Eq. (2.4) holds.22

Remarkably enough, a twofold degeneracy persists even
if time-reversal symmetry is broken. More precisely, as
discovered by Béri,23 if Rn is not degenerate then it must equal
0 or 1. This follows from the antisymmetry of the matrix rT

heree,
which is required by particle-hole symmetry and unitarity
irrespective of whether time-reversal symmetry is present. The
degeneracy of the Andreev reflection eigenvalues Rn �= 0, 1
is remarkable because the eigenvalues of the Hamiltonian are
not degenerate in the absence of time-reversal symmetry. To
distinguish it from the Kramers degeneracy, we propose the
name “Béri degeneracy.”

The determinant of r is real due to particle-hole symmetry
and therefore equal to either +1 or −1 due to unitarity.
The topological quantum number Q = Det r distinguishes the
topologically trivial phase (Q = 1) from the topologically
nontrivial phase (Q = −1).24–26 This quantum number is
ineffective in the presence of time-reversal symmetry, when
Kramers degeneracy enforces Det r = 1. In that case the
Pfaffian (the square root of the determinant of an antisymmetric
matrix) can be used instead of the determinant to identify the
topologically nontrivial phase27: Q = Pf i�yr equals +1 or
−1 depending on whether the superconductor is topologically
trivial.

A topologically nontrivial superconductor has a (possibly
degenerate) bound state at ε = 0, consisting of an equal-weight
superposition of electrons and holes from the same spin band.
It is the π phase shift on reflection from such a Majorana bound
state which is responsible for the minus sign in the topological
quantum number.26

These properties of the reflection matrix in the absence
of spin-rotation symmetry are summarized in Table I. For
completeness, we also include in that table the case when
there is no spin-orbit coupling. In that case it is sufficient to
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consider only the orbital degree of freedom, with a twofold
spin degeneracy of all Rn’s. The conditions for particle-hole
symmetry and time-reversal symmetry then differ from both
Eqs. (2.3) and (2.4), given respectively by

rhh = r∗
ee, reh = −r∗

he, (2.5)

r = rT . (2.6)

As a consequence, the determinant of r is now always +1,
while the Pfaffian does not exist (for want of an antisymmetric
matrix). Without spin-orbit coupling Andreev reflection exclu-
sively couples electrons and holes from opposite spin bands,
which prevents the formation of a Majorana bound state at the
NS interface.

III. RANDOM-MATRIX THEORY

In this section we calculate the distribution of the Andreev
reflection eigenvalues, which we then apply to electrical con-
duction in the next section. For each symmetry class we first
determine the polar decomposition of r in terms of the Rn’s.
The resulting invariant measure dμ(r) ∝ P ({Rn})

∏
n dRn

then gives the probability distribution P ({Rn}) of the Andreev
reflection eigenvalues in the corresponding circular ensemble.

A. Class D, ensemble CRE

In the absence of time-reversal and spin-rotation symmetry
the scattering matrix has the polar decomposition

r =
(

U 0

0 U ∗

)(
� −i	

i	 �

)(
V † 0

0 V T

)
. (3.1)

The N × N matrices U,V are unitary and the N × N matrices
	 and � are real, to satisfy the particle-hole symmetry
condition (2.3). Unitarity of r requires, in addition to �T � +
	T 	 = 1, that 	T � = −�T 	 is antisymmetric. As derived
in Ref. 23, the matrices 	 and � must therefore have a 2 × 2
block diagonal structure.

For N = 2M even and Q = 1 one has 	 = 	M , � = �M

with

	M =
M⊕

n=1

(
sin αn 0

0 sin αn

)
=

M⊕
n=1

σ0 sin αn, (3.2)

�M =
M⊕

n=1

(
0 cos αn

− cos αn 0

)
=

M⊕
n=1

iσy cos αn. (3.3)

The 2 × 2 Pauli matrices are σx, σy, σz (with σ0 the 2 × 2 unit
matrix). The real angles αn ∈ (0,2π ) determine the Andreev
reflection eigenvalues Rn = sin2 αn. These are all twofold
degenerate.

The parametrization derived in Ref. 23 has 	M ∝ iσy and
�M ∝ σ0. The present, equivalent, form is chosen because it
is more easily extended to symmetry class DIII (where an
additional symmetry condition applies). For the same reason,
we parametrize the diagonal entries in terms of the angles αn

rather than in terms of
√

Rn and
√

1 − Rn. (The sign of the
terms sin αn, cos αn cannot be fixed in class DIII.)

To check that the polar decomposition (3.1)–(3.3) in-
deed gives Det r = 1, one can use the identities Det AB =
(Det A)(Det B) and

Det

(
A B

C D

)
= Det (AD − ACA−1B). (3.4)

For N = 2M even and Q = −1 one has

	 = 	M−1 ⊕
(

0 0

0 1

)
, � = �M−1 ⊕

(
1 0

0 0

)
, (3.5)

so in addition to M − 1 twofold degenerate eigenvalues
R1, R2, . . . RM−1 there is one nondegenerate eigenvalue equal
to 0 and one nondegenerate eigenvalue equal to 1. It is this
unit Andreev reflection eigenvalue which contributes a factor
−1 to Det r .

For N = 2M + 1 odd there are M twofold degenerate
eigenvalues R1, R2, . . . RM plus one nondegenerate eigen-
value equal to q = (1 − Q)/2,

	 = 	M ⊕ (q), � = �M ⊕ (1 − q). (3.6)

The nondegenerate eigenvalue equals 1 in the topologically
nontrivial phase and 0 otherwise. Again, it is the unit Andreev
reflection eigenvalue which gives Det r = −1.

The calculation of the invariant measure from these polar
decompositions is outlined in Appendix A. The resulting
probability distributions of the twofold degenerate Andreev
reflection eigenvalues in the CRE are

P ({Rn}) ∝
M∏

i<j=1

(Ri − Rj )4,

if N = 2M and Q = 1, (3.7)

P ({Rn}) ∝
M−1∏

i<j=1

(Ri − Rj )4
M−1∏
k=1

R2
k (1 − Rk)2,

if N = 2M and Q = −1, (3.8)

P ({Rn}) ∝
M∏

i<j=1

(Ri − Rj )4
M∏

k=1

[
Rk − 1

2
(1 − Q)

]2

,

if N = 2M + 1. (3.9)

The degenerate Andreev reflection eigenvalues repel each
other with the fourth power of their separation. In addition,
there is a repulsion with the second power of the separation to
each of the nondegenerate eigenvalues, pinned at 0 or 1.

B. Class DIII, ensemble T-CRE

In the presence of time-reversal symmetry the scattering
matrix should also satisfy the condition (2.4), which implies
that i�yr is antisymmetric. The polar decomposition which
respects this symmetry condition [as well as the condition (2.3)
for particle-hole symmetry] is

i�yr =
(

� 0

0 �∗

)(
� −i	

i	 �

)(
�T 0

0 �†

)
, (3.10)

with � an N × N unitary matrix. Unitarity still requires that
	T � is antisymmetric, while time-reversal symmetry requires
�T = −�, 	T = 	.
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The number of channels N = 2M is even, with M the
number of channels per spin. Each reflection eigenvalue
has a twofold degeneracy, including those equal to 0 or 1.
This Kramers degeneracy due to time-reversal symmetry22 in
class DIII replaces the Béri degeneracy due to electron-hole
symmetry23 in class D—it is not an additional degeneracy. The
topological quantum number27 Q = Pf i�yr can be calculated
using the identity

Pf

⎛
⎜⎜⎜⎝

0 a b c

−a 0 d e

−b −d 0 f

−c −e −f 0

⎞
⎟⎟⎟⎠ = af − be + cd, (3.11)

for scalars a, b, c, d, e, f , and also the formulas Pf XYXT =
(Det X)(Pf Y ), Pf

⊕
n Yn =∏n Pf Yn (valid for arbitrary

square matrices X and antisymmetric matrices Y,Yn).
For Q = 1 we take 	 = 	M and � = �M from Eqs. (3.2)

and (3.3). The Pfaffian of the matrix (3.10) is always +1, so this
polar decomposition describes the topologically trivial phase.
In order to reach the topologically nontrivial phase, we include
a twofold degenerate eigenvalue equal to unity, but with a
σz matrix rather than a σ0 matrix: 	 = 	M−1 ⊕ diag (1,−1),
� = �M−1 ⊕ diag (0,0). Then the Pfaffian is −1.

As derived in Appendix A, the distribution of the M

degenerate Andreev reflection eigenvalues in the T-CRE is
given most compactly in terms of the variables ξn = sin αn ∈
(−1,1) (with Rn = ξ 2

n ). For Q = 1 the result is

P ({ξn}) ∝
M∏

i<j=1

(ξi − ξj )4. (3.12)

Notice that there is no repulsion of pairs of Andreev reflection
eigenvalues: If ξi → −ξj then Ri → Rj and yet the probabil-
ity distribution does not vanish.

For Q = −1 one pair of eigenvalues is pinned at RM = 1 ⇒
ξM = 1. The distribution of the remaining M − 1 degenerate
eigenvalues is

P ({ξn}) ∝
M−1∏

i<j=1

(ξi − ξj )4
M−1∏
k=1

(
1 − ξ 2

k

)2
. (3.13)

While pairs of Andreev reflection eigenvalues Rn ∈ (0,1) in
the T-CRE do not repel each other, they are repelled from the
eigenvalue pinned at RM = 1, with the same second power of
the separation as in the CRE.

C. Class C, ensemble CQE

For completeness we also consider the two symmetry
classes C and CI without a topological phase. Then spin-
rotation symmetry is preserved, so it is sufficient to consider a
single spin degree of freedom, say an electron in the spin-up
band coupled to a hole in the spin-down band. The reflection
matrix for this scattering process has dimension 2M × 2M ,
where M only counts the orbital degree of freedom. Each
reflection eigenvalue has a twofold spin degeneracy.

The polar decomposition of the reflection matrix reads

r =
(

U 0

0 U ∗

)(
cos α i sin α

i sin α cos α

)(
V † 0

0 V T

)
, (3.14)

as required by unitarity and the particle-hole symmetry
condition (2.5). Here U,V are unitary M × M matrices and
α = diag (α1,α2, . . . αM ) is the diagonal matrix of real angles
that determine the reflection eigenvalues Rn = sin2 αn. As
before, we might have replaced sin αn 
→ √

Rn and cos αn 
→√
1 − Rn in this polar decomposition for class C, but not when

we additionally impose time-reversal symmetry (in class CI).
The factor i in Eq. (3.14) accounts for the π/2 phase shift

associated with Andreev reflection of an electron into a hole
from the opposite spin band. No such factor appears in the polar
decomposition (3.1) in the absence of spin-rotation symmetry,
because there it can be absorbed in the unitary matrices (which
in that case contain both spin bands for electrons and holes).

The probability distribution of the Andreev reflection eigen-
values in the CQE was calculated previously by Khaymovich
et al.20 We find

P ({Rn}) ∝
M∏

i<j=1

|Ri − Rj |, (3.15)

in agreement with Ref. 20 (up to an evident misprint,
∏

i �=j

instead of
∏

i<j ).

D. Class CI, ensemble T-CQE

Finally, in class CI we have the additional requirement (2.6)
of time-reversal symmetry. The polar decomposition becomes

r =
(

U 0

0 U ∗

)(
cos α i sin α

i sin α cos α

)(
UT 0

0 U †

)
. (3.16)

The distribution of the Rn’s in the T-CQE (each doubly
degenerate) is again given most compactly in terms of the
variables ξn = sin αn ∈ (−1,1) (with Rn = ξ 2

n ). We find

P ({ξn}) ∝
M∏

i<j=1

|ξi − ξj |. (3.17)

As in the T-CRE, there is no repulsion between pairs of
Andreev reflection eigenvalues in the presence of time-reversal
symmetry.

IV. DEPENDENCE ON TOPOLOGICAL QUANTUM
NUMBER OF THE CONDUCTANCE DISTRIBUTION

A. Broken time-reversal symmetry

From the probability distributions P ({Rn}) in Secs. III A
and III B we readily calculate the distribution P (G) of the
conductance (2.2), in both the topologically trivial and non-
trivial phases. We first consider the case without time-reversal
symmetry (class D, ensemble CRE). Using Eqs. (3.7)–(3.9)
we obtain the distributions for the first few channel numbers
N = 1, 2, 3, 4. The results are plotted in Fig. 2, and given by
the following:

(i) For N = 1, the conductance G/G0 = 1 − Q without
statistical fluctuations.18,23

(ii) For N = 2, the conductance G/G0 = 2 for Q = −1
without statistical fluctuations; if Q = 1, instead G/G0 = 4g

with P (g) = 1.
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FIG. 2. (Color online) Probability distribution of the conductance
in the CRE, for channel numbers N = 1, 2, 3, 4 and topological
charges Q = −1 (red solid curves) and Q = +1 (blue dashed curves).
In the lower panel the thick vertical lines indicate a δ-function
distribution.

(iii) For N = 3 the conductance G/G0 = 1 − Q + 4g, with
P (g) = 3( 1

2 − 1
2Q − g)2.

(iv) For N = 4 the conductance G/G0 = 2 + 4g if Q =
−1, with P (g) = 30 g2(1 − g)2, while if Q = 1 we have
G/G0 = 8g with P (g) = 6(1 − |1 − 2g|)5.

In these expressions, g denotes a stochastic variable in the
range (0,1).

From Fig. 2 we see that on increasing N , the conductance
distributions for Q = 1 and Q = −1 become more and more
similar. To quantify the difference, we list in Table II the
first few cumulants 〈〈Gp〉〉 of P (G) for several values of N .
Inspection of the table brings us to propose that the cumulant of

TABLE II. First five cumulants (p � 5) of conductance in the
CRE, calculated for number of modes N � 5 and topological
quantum number Q. (The first entry in each cell is for Q = 1, and the
second entry is for Q = −1.) The conductance distribution depends
on Q starting from the N -th cumulant (bold).

〈〈(G/G0)p〉〉
p = 1 p = 2 p = 3 p = 4 p = 5

N = 1 0
... 2 0

... 0 0
... 0 0

... 0 0
... 0

N = 2 2
... 2 4

3

... 0 0
... 0 − 32

15

... 0 0
... 0

N = 3 3
... 3 3

5

... 3
5 − 2

5

... 2
5

6
175

... 6
175

24
35

... − 24
35

N = 4 4
... 4 4

7

... 4
7 0

... 0 176
735

... − 32
147 0

... 0

N = 5 5
... 5 5

9

... 5
9 0

... 0 10
2079

... 10
2079 − 8

63

... 8
63

FIG. 3. (Color online) Same as described in the caption to Fig. 2
but for the T-CRE.

order p of the N-mode conductance in the CRE is independent
of the topological charge for p < N . A proof for arbitrary N

is given in Appendix B.

B. Preserved time-reversal symmetry

In the presence of time-reversal symmetry (class DIII,
ensemble T-CRE) we can similarly calculate the conductance
distribution from Eqs. (3.12) and (3.13). For small N we find
the following:

(i) For N = 2, the conductance G/G0 = 4 without sta-
tistical fluctuations if Q = −1, while if Q = 1 we have
G/G0 = 4g with P (g) = 1

2g−1/2.
(ii) For N = 4 the conductance G/G0 = 4 + 4g if Q =

−1, with P (g) = 15
16 (1 − g)2g−1/2; if Q = 1, instead G/G0 =

8g with P (g) plotted in Fig. 3 (upper panel). (The analytic
expression is lengthy.)

The analogous theorem for the Q independence of low-
order cumulants now reads as follows: The cumulant of order
p of the N-mode conductance in the T-CRE is independent
of the topological charge for p < N/2. A proof for arbitrary
(even) N is given also in Appendix B.

C. Weak localization and UCF

Weak localization and universal conductance fluctuations
(UCF) refer to the average and to the variance of the
conductance in the large-N limit. Since the dependence on the
topological charge is nonpertubative in N , these two effects
cannot contain any information on whether the superconductor
is in a topological phase. As a check, we have calculated the
average 〈G〉 and the variance Var G = 〈G2〉 − 〈G〉2 for N  1
directly from the probability distribution of the Andreev
reflection eigenvalues. This calculation also allows us to verify
a conjecture from Ref. 4 on the UCF in the presence of time-
reversal symmetry. Since the calculation follows established
methods in random-matrix theory,29 we only give the results.

The weak-localization correction δG = G − NG0 to the
conductance vanishes in the CRE and CQE, while δG/G0 =
1
2 ,−1 in the T-CRE and T-CQE, respectively. The UCF are
given by Var G/G0 = 1

2 , 1, 2, 4 in the CRE, T-CRE, CQE,
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and T-CQE, respectively. These Q-independent results are in
full agreement with Ref. 4.

All these results assume that the proximity to the super-
conductor does not induce an excitation gap in the quantum
dot. In the CRE and CQE this is realized by the pair-breaking
magnetic field. In the T-CRE and T-CQE we need a π junction
to close the gap: two NS interfaces, coupled equally well
to the quantum dot and with a π phase difference of the
superconducting phase.4 For a single NS interface in zero
magnetic field, the presence of an excitation gap does not
change the value of δG, but the variance of the conductance
is changed into28 Var G/G0 = 9/4β, with β = 1 or β = 4 in
the presence or absence of spin-rotation symmetry. Note that
time-reversal symmetry breaking then has only a relatively
small (10%) effect on the UCF,29 while in the absence of the
excitation gap the effect on the variance is a factor of 2.4

V. CONCLUSION AND COMPARISON WITH
A MODEL HAMILTONIAN

In conclusion, we have shown that the distribution P (G)
of the electrical conductance in a quantum dot connecting a
normal-metal to a superconducting electrode has a striking
dependence on the topological quantum number Q of the
superconductor, but only if the number of modes N in which
the current is injected is sufficiently small. In the absence of
time-reversal and spin-rotation symmetry, the distributions for
Q = −1 and Q = +1 differ in the average conductance for
N = 1, in the variance for N = 2, in the skewness for N = 3,
and in the kurtosis for N = 4. More generally, the dependence
appears in the cumulant of order N or N/2, depending on
whether time-reversal symmetry is broken.

The system we have considered (Fig. 1) is constructed
to ensure chaotic scattering, which is the requirement for
application of the circular ensembles of RMT. Systems of
present experimental focus in the search for Majorana bound
states have a simpler wire geometry, without the quantum dot
(Fig. 4, inset). Impurity scattering within a superconducting
coherence length from the NS interface can still lead to chaotic
dynamics, at least if the number of modes is sufficiently small
that they are fully mixed by the disorder.

To test the applicability of our RMT results to such a
system we have performed numerical simulations of the model
Hamiltonian of Refs. 10 and 11, which describes an InAs
nanowire on an Al or Nb substrate. The Bogoliubov-De
Gennes Hamiltonian

H =
(

1 0
0 σy

)(
HR − EF �

�∗ EF − σyH
∗
Rσy

)(
1 0

0 σy

)

=
(

HR − EF �σy

�∗σy EF − H ∗
R

)
(5.1)

couples electron and hole excitations near the Fermi energy
EF through an s-wave superconducting order parameter �.
(We have made a unitary transformation to ensure that the
condition for particle-hole symmetry has the form used in the
preceding sections.)

The excitations are confined to a wire of width W in the
x-y plane of the semiconductor surface inversion layer, where

FIG. 4. (Color online) Comparison of the probability distribu-
tion of the electrical conductance as predicted by RMT (dashed
curves) and as resulting from numerical simulation of the model
Hamiltonian (5.1) (solid histograms). The simulation is for the
disordered normal-metal–superconductor junction shown in the inset.
The number of propagating modes in the normal region is N = 2
(lower panel) and N = 3 (upper panel), while the red and blue
curves are for topological quantum number Q = −1 and Q = +1,
respectively. The disorder strength is fixed at U0 = 130 Eso for N = 2
and U0 = 100 Eso for N = 3. The values used for Fermi energy and
Zeeman energy (in units of Eso) are as follows. For N = 2: EF = 12,
EZ = 3.8 (Q = 1) and EF = 13, EZ = 9 (Q = −1). For N = 3:
EF = 19, EZ = 3.8 (Q = 1) and EF = 19, EZ = 8 (Q = −1).

their dynamics is governed by the Rashba Hamiltonian

HR = p2

2meff
+ U (r) + αso

h̄
(σxpy − σypx) + 1

2
geffμBBσx.

(5.2)

The spin is coupled to the momentum p = −ih̄∂/∂ r by the
Rashba effect and polarized through the Zeeman effect by a
magnetic field B parallel to the wire (in the x direction). Char-
acteristic length and energy scales are lso = h̄2/meffαso and
Eso = meffα

2
so/h̄

2. Typical values in InAs are lso = 100 nm,
Eso = 0.1 meV, and EZ = 1

2geffμB = 1 meV at B = 1 T.
We have solved the scattering problem numerically30 by

discretizing the Hamiltonian (5.1) on a square lattice (lattice
constant a = lso/20), with an electrostatic disorder potential
U (x,y) that varies randomly from site to site, distributed
uniformly in the interval (−U0,U0). The disordered supercon-
ducting wire (width W = 20 a, length L = 800 a, � = 4 Eso)
is connected at two ends to ideal normal-metal leads, obtained
by setting �,U0 ≡ 0 for x < 0, x > L. The length L was
chosen large enough that the transmission probability through
the wire was <10−2.

Results for the probability distribution of the electrical
conductance are shown in Fig. 4, for N = 2,3 and Q = −1, 1.
[For N = 1 we simply find the two δ-function distributions
at G = (e2/h)(1 − Q), as expected.] The histograms were
obtained by averaging over 105 disorder realizations, con-
ditionally on the value of the topological quantum number
Q = ±1 (calculated from Q = sign Det r , as in Ref. 26.) The
agreement with the predictions from RMT is quite satisfactory.
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APPENDIX A : CALCULATION OF THE
INVARIANT MEASURE

In this Appendix we derive the probability distributions of
the Andreev reflection eigenvalues in the circular ensembles,
given in Sec. III. We work out the derivation for the symmetry
classes D and DIII, for an even number N = 2M of modes and
for topological charge Q = 1, following established methods
of random-matrix theory.31 The calculations for the other
ensembles are entirely analogous, so we do not present them
here.

The circular ensembles are characterized by a uniform
probability distribution, constrained only by fundamental sym-
metries. Uniformity in the unitary group is defined with respect
to the invariant (Haar) measure dμ(r) = r†dr ≡ δr . Since the
polar decompositions in Sec. III give a parametrization of the
(unitary) reflection matrix r in terms of the angles αn, we
can transform the measure into dμ(r) = J

∏
i dpi

∏
n dαn.

The pi’s are the degrees of freedom of the matrices of
eigenvectors and J is the Jacobian of the transformation. From
this expression the probability distribution of the angles αn

follows on integration over the pi’s,

P ({αn}) ∝
∫

J
∏

i

dpi, (A1)

up to a normalization constant.
The Jacobian can be found from the metric tensor gμν ,

which can be read off from the trace Tr δrδr† when it
is expressed in terms of the infinitesimals dαn and dpi

(collectively denoted as dxμ):

Tr δrδr† =
∑
μ,ν

gμνdxμdxν, J = |Det gμν |1/2. (A2)

We carry out this calculation first for class D and then for
class DIII.

1. Class D (ensemble CRE)

In view of the polar decomposition (3.1) one has(
U † 0

0 UT

)
dr

(
V 0

0 V ∗

)
=
(

δU 0

0 δU ∗

)
L + dL

−L

(
δV 0

0 δV ∗

)
, (A3)

where we abbreviated

L =
(

� −i	

i	 �

)
. (A4)

The quantities δU = U †dU and δV = V †dV represent mea-
sures on the eigenvector manifolds. We used that d(V †V ) =
0 ⇒ (dV †)V = (δV )† = −δV .

Substitution of Eq. (A3) into Tr δrδr† = Tr drdr† gives

Tr δrδr† = 2 Tr L

(
δV 0

0 δV ∗

)
L†
(

δU 0

0 δU ∗

)

−Tr [δU 2 + (δU ∗)2 + δV 2 + (δV ∗)2]

+Tr dLdL†. (A5)

(All other cross terms vanish.) In terms of � and 	 this can be
expressed as a sum of five traces,

Tr δrδr† = Tr (�δV − δU�)(�TδU − δV �T)

+ Tr (�δV ∗ − δU ∗�)(�TδU ∗ − δV ∗�T)

+ Tr (	δV ∗ − δU	)(	TδU − δV ∗	T)

+ Tr (	δV − δU ∗	)(	TδU ∗ − δV 	T)

+ Tr dLdLT

≡ T1 + T2 + T3 + T4 + T5. (A6)

Each of the traces in Eq. (A6) is of the form Tr AA† =∑
ij |Aij |2 and is therefore real. Since the second line is the

complex conjugate of the first line and the fourth line is
the complex conjugate of the third line, their traces are the
same, hence T1 = T2 and T3 = T4. For the evaluation of the
expression we need to distinguish between the different values
of the topological quantum number and between the cases of
odd and even number of channels.

We work out the calculation for N = 2M even and Q = 1,
when 	 and � are given by Eqs. (3.2) and (3.3). The trace T5

is easiest to evaluate,

T5 =
∑
i,j

|dLij |2 = 4
M∑
i=1

dα2
i . (A7)

This trace contributes a diagonal block to the metric tensor
and a constant factor to the Jacobian, for M independent real
parameters. The other two traces T1 and T3 require more work,

T1 =
M∑

r<s=1

1∑
k,l=0

{
1

2
(cos αr + cos αs)

2|δU2r−k,2s−l

− (−1)k+lδV2r−k̄,2s−l̄ |2+
1

2
(cos αr− cos αs)

2|δU2r−k,2s−l

+ (−1)k+lδV2r−k̄,2s−l̄ |2
}+ M∑

m

1∑
k,l=0

cos2 αm|δV2m−k,2m−l

− (−1)k+lδU2m−k̄,2m−l̄ |2, (A8)

T3 =
M∑

r<s=1

1∑
k,l=0

{
1

2
(sin αr+ sin αs)

2|δV ∗
2r−k,2s−l−δU2r−k,2s−l |2

+ 1

2
(sin αr − sin αs)

2|δV ∗
2r−k,2s−l + δU2r−k,2s−l |2

}

+
M∑
m

1∑
k,l=0

sin2 αm|δV ∗
2m−k,2m−l − δU2m−k,2m−l |2. (A9)

We denote k̄ = 0, 1 for k = 1, 0.
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We group the indices of the matrices δU and δV into 2 × 2
blocks and consider first the off-diagonal blocks. For these we
can choose as independent parameters

δU2r,2s , δU2r−1,2s , δU2r,2s−1, δU2r−1,2s−1,

δV2r,2s , δV2r−1,2s , δV2r,2s−1, δV2r−1,2s−1,

with 1 � r < s � M . The real and imaginary parts, denoted
by δUR,δU I,δV R,δV I, produce a total of 8M(M − 1) inde-
pendent parameters. The contribution to Tr δrδr† for given
values of r and s has the form

2r∑
k=2r−1

2s∑
l=2s−1

{
4
[(

δUR
kl

)2 + (δU I
kl

)2 + (δV R
kl

)2 + (δV I
kl

)2]
+ 2a

[
δV R

kl δU
R
kl − δV I

klδU
I
kl

]}
+ 2b

[
δV R

2r−1,2s−1δU
R
2r,2s + δV I

2r−1,2s−1δU
I
2r,2s

]
+ 2b

[
δV R

2r,2sδU
R
2r−1,2s−1 + δV I

2r,2sδU
I
2r−1,2s−1

]
− 2b

[
δV R

2r−1,2sδU
R
2r,2s−1 + δV I

2r−1,2sδU
I
2r,2s−1

]
− 2b

[
δV R

2r,2s−1δU
R
2r−1,2s + δV I

2r,2s−1δU
I
2r−1,2s

]
,

where we abbreviated a = −4 sin αr sin αs and b =
−4 cos αr cos αs .

The contribution to the metric tensor is a block matrix with
elements⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4τ0 0 0 0 aτz 0 0 bτ0

0 4τ0 0 0 0 aτz −bτ0 0

0 0 4τ0 0 0 −bτ0 aτz 0

0 0 0 4τ0 bτ0 0 0 aτz

aτz 0 0 bτ0 4τ0 0 0 0

0 aτz −bτ0 0 0 4τ0 0 0

0 −bτ0 aτz 0 0 0 4τ0 0

bτ0 0 0 aτz 0 0 0 4τ0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the Pauli matrix τz and the 2 × 2 unit matrix τ0 were
introduced to account for real and imaginary parts in a compact
way. The determinant of this matrix is (sin2 αr − sin2 αs)8;
hence the contribution to the Jacobian from the off-diagonal
matrix elements is

Joff-diagonal =
M∏

r<s=1

| sin2 αr − sin2 αs |4. (A10)

Next we consider the diagonal blocks. We choose as
independent parameters

w1 = −i(δV2m,2m − δU2m−1,2m−1),

w2 = −i(δV2m−1,2m−1 − δU2m,2m),

w3 = −i(δV2m,2m + δU2m,2m),

w4 = δV2m−1,2m + δU2m,2m−1.

These are in total 5M real parameters. (Since w1,w2,w3 are
real numbers they contribute only M parameters each.) The
contribution to Tr δrδr† is

w2
1 + w2

2 + 2(w2w3 − w1w3 − w1w2 + w2
3) sin2 αm + 2w2

4,

and the contribution to the metric tensor is the block matrix⎛
⎜⎜⎜⎝

2 0 0 0

0 1 − sin2 αm − sin2 αm

0 − sin2 αm 1 sin2 αm

0 − sin2 αm sin2 αm 2 sin2 αm

⎞
⎟⎟⎟⎠,

with determinant 2(sin αm cos αm)2. Hence the contribution to
the Jacobian from the diagonal matrix elements is

Jdiagonal =
M∏

m=1

| sin αm cos αm|. (A11)

The number of independent parameters that we have
accounted for totals to 8M2 − 2M , which should equal the
number of degrees of freedom of a matrix in class D. The
matrix space in class D is isomorphic to the group of 2N × 2N

orthogonal matrices,4 which indeed has N (2N − 1) = 8M2 −
2M degrees of freedom.

Gathering all terms that contribute to the Jacobian in
Eq. (A1), we obtain the probability distribution

P ({αn}) ∝
M∏

r<s=1

| sin2 αr − sin2 αs |4
M∏

m=1

| sin αm cos αm|.

(A12)

The integration
∫

dpi over the degrees of freedom of the
eigenvector matrices only contributes a prefactor, which can
be absorbed in the proportionality constant. On transformation
to the Andreev reflection eigenvalues Rn = sin2 αn, we arrive
at the result (3.7) stated in the main text.

2. Class DIII (ensemble T-CRE)

For the treatment of class DIII it is useful to notice
the similarity of the polar decomposition of i�yr given in
Eq. (3.10) to the one of r in class D given in Eq. (3.1). Since
δ(i�yr) = δr all the equations up to Eq. (A9) derived for
class D also hold for class DIII, on replacement U 
→ � and
V 
→ �∗. (As before, we only give the detailed derivation
for Q = 1.) The expressions for the traces T1 and T3 then
simplify to

T1 =
M∑

r<s=1

{(cos αr + cos αs)
2[|δ�2r,2s − δ�∗

2r−1,2s−1|2

+ |δ�2r−1,2s + δ�∗
2r,2s−1|2] + (cos αr − cos αs)

2

× [|δ�2r,2s + δ�∗
2r−1,2s−1|2+|δ�2r−1,2s − δ�∗

2r,2s−1|2]}

+ 2
M∑
m

cos2 αm|δ�2m,2m + δ�2m−1,2m−1|2, (A13)

T3 = 2
M∑

r<s=1

1∑
k,l=0

(sin αr − sin αs)
2|δ�2r−k,2s−l |2. (A14)

For the off-diagonal blocks we choose

δ�2r,2s , δ�2r−1,2s , δ�2r,2s−1, δ�2r−1,2s−1,
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with 1 � r < s � M , as the independent real parameters (a
total of 4M2 − 4M). The contribution to Tr δrδr† for given
values of r and s is

c

2r∑
k=2r−1

2s∑
l=2s−1

[(
δ�R

kl

)2 + (δ�I
kl

)2]
+ 2d

[
δ�R

2r−1,2sδ�
R
2r,2s−1 − δ�I

2r−1,2sδ�
I
2r,2s−1

− δ�R
2r−1,2s−1δ�

R
2r,2s + δ�I

2r−1,2s−1δ�
I
2r,2s

]
,

with c = 4 − 4 sin αr sin αs and d = 4 cos αr cos αs . The con-
tribution to the metric tensor is a block matrix with elements⎛

⎜⎜⎜⎝
cτ0 0 0 −dτz

0 cτ0 dτz 0

0 dτz cτ0 0

−dτz 0 0 cτ0

⎞
⎟⎟⎟⎠,

with determinant (sin αr − sin αs)8. The contribution to the
Jacobian is

Joff-diagonal =
M∏

r<s=1

|sin αr − sin αs |4 . (A15)

The diagonal blocks have M independent degrees of
freedom,

δ�2m 2m + δ�2m−1 2m−1,

which contribute to the Jacobian a factor

Jdiagonal =
M∏

m=1

|cos αm| . (A16)

The total number of independent parameters (including also
the M degrees of freedom from the αn’s) is then 4M2 − 2M .
This agrees with the number of degrees of freedom of the
matrix space O(2N )/U (N ) in class DIII.4

The distribution of the αn’s results from the product of
Joff-diagonal and Jdiagonal,

P ({αn}) ∝
M∏

r<s=1

|sin αr − sin αs |4
M∏

m=1

|cos αm| . (A17)

Transformation to ξn = sin αn gives the expression (3.12) in
the main text.

APPENDIX B : PROOF OF THE TOPOLOGICAL-CHARGE
THEOREM FOR THE CIRCULAR ENSEMBLES

The theorem we wish to prove states that the p-th cumulant
of the conductance in the N -mode circular ensemble is
independent of the topological charge Q for p < N/d, with
d = 1 in the CRE and d = 2 in the T-CRE.

We start from the definition (2.2) of the conductance, which
we rewrite as

G/G0 = 1
2 Tr
[
1 − r†τzr(1 + τz)

]
, τz =

(
1 0

0 −1

)
. (B1)

The reflection matrix r is a 2N × 2N unitary matrix, satisfying
the particle-hole symmetry relation (2.3), which we rewrite as

r = τxr
∗τx, τx =

(
0 1

1 0

)
. (B2)

This equation implies that Tr r†τzr = 0, hence Eq. (B1)
reduces to

G/G0 = 1
2 Tr [1 − r†τzrτz)]. (B3)

The p-th cumulant of G contains only averages mq =
〈(Tr r†τzrτz)q〉 with q � p; hence to prove the theorem is it
sufficient to prove that mp is independent of Q for p < N/d.

We first do this for the CRE. Then the average mp can be
written as

mp =
∫

dμ(r) (Tr r†τzrτz)
p 1

2 (1 + Q Det r), (B4)

where dμ(r) is the invariant measure of class D. The defining
property of this measure is that dμ(Ur) = dμ(rU ) = dμ(r)
for any 2N × 2N unitary matrix U that satisfies U = τxU

∗τx .
What we seek to prove, therefore, is that∫

dμ(r) (Tr r†τzrτz)
p Det r = 0 if p < N. (B5)

We decompose

τz =
N∑

n=1

τ (n), τ
(n)
kl = δk,l(δk,n − δk,n+N ) (B6)

and apply this decomposition to one of the τz’s in Eq. (B5),

(Tr r†τzrτz)
p =

N∑
p1=0

N∑
p2=0

· · ·
N∑

pN =0

p!

p1!p2! · · · pN !

× δp,p1+p2+···+pN

N∏
n=1

[
Tr r†τ (n)rτz

]pn
. (B7)

Consider one of the terms

M =
∫

dμ(r)
N∏

n=1

(Tr r†τ (n)rτz)
pn Det r. (B8)

If p < N , there is at least one index n0 ∈ {1,2, . . . N} such
that pn0 = 0. Transform r 
→ U (n0)r , with

U
(n0)
kl =

⎧⎨
⎩

δk,l if k �= n0,n0 + N,

δl,n0+N if k = n0,

δl,n0 if k = n0 + N,

(B9)

a real, symmetric, unitary matrix which commutes with τx .
This transformation does not change the invariant measure,
dμ(U (n0)r) = dμ(r), while the integrand transforms to

M =
∫

dμ(r)
N∏

n=1

[Tr r†U (n0)τ (n)U (n0)rτz]
pnDet U (n0)r

= −
∫

dμ(r)
N∏

n=1

[Tr r†τ (n)rτz]
pn Det r

= −M, (B10)

since Det U (n0) = −1 and U (n0) commutes with τ (n) for n �= n0,
while pn0 = 0. Hence M = 0.

This completes the proof for the CRE. For the T-CRE, we
seek to prove that∫

dμ(r) (Tr r†τzrτz)
p Pf i�yr = 0 if p < N/2, (B11)

where now dμ(r) is the invariant measure of class DIII. The
invariance property reads dμ(�yU

T �yrU ) = dμ(r) for any
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2N × 2N unitary matrix U that satisfies U = τxU
∗τx . Since

τz and �y commute, we may rewrite Eq. (B11) as∫
dμ(r) (Tr r†�yτz�yrτz)

p Pf i�yr = 0 if p < N/2.

(B12)

Substitute the decomposition (B6) in both the τz’s,

(Tr r†�yτz�yrτz)
p =

N∑
p11=0

· · ·
N∑

pNN =0

p!∏
n,m pnm!

× δp,
∑

n,m pnm

N∏
n,m=1

[Tr r†�yτ
(n)�yrτ

(m)]pnm . (B13)

Consider one of the terms

M=
∫

dμ(r)
N∏

n,m=1

[Tr r†�yτ
(n)�yrτ

(m)]pnmPf i�yr. (B14)

If p < N/2, there is at least one index n0 ∈ {1,2, . . . N}
such that pn0m = 0 and pnn0 = 0 for each n,m ∈ {1,2, . . . N}.
Transform r 
→ �yU

(n0)�yrU
(n0), with U (n0) defined in

Eq. (B9). This transformation does not change the invariant
measure, so the integral transforms to

M =
∫

dμ(r)
N∏

n,m=1

[Tr r†�yU
(n0)τ (n)U (n0)�yr

×U (n0)τ (m)U (n0)]pnm Pf [U (n0)i�yrU
(n0)]

= −
∫

dμ(r)
N∏

n,m=1

[Tr r†�yτ
(n)�yrτ

(m)]pnm

× Pf i�yr = −M, (B15)

where we have used that Pf XYXT = (Det X)(Pf Y ). Hence
M = 0 and we have completed the proof for the T-CRE.
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