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As the periodicity in crystalline materials creates the optimal condition for electronic delocalization, one
might expect that in partially crystalline conjugated polymers delocalization is impeded by intergrain transport.
However, for the best conducting polymers this presumption fails. Delocalization is obstructed by interchain
rather than intergrain charge transfer and we propose a model of weakly coupled disordered chains to describe
the physics near the metal-insulator transition. Our quantitative calculations match the outcome of recent
broadband optical experiments and provide a consistent explanation of metallic conduction in polymers.
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One of the hallmarks of metallic transport is the negative
dielectric function« at low-frequencyv, that reflects a time
lag between induced current and applied field due to the
inertia of delocalized charge carriers. The surprising obser-
vation of negative« in conjugated polymers by Kohlman and
co-workers,1 which was recently verified by Romijnet al.
and Lee and Heeger,2,3 spurred experimental and theoretical
research into the nature of metallic conduction in these ma-
terials. As displayed in Fig. 1, the full spectral response is
quite complicated including multiple zero crossings of«svd
and nonmonotonous behavior of the conductivityssvd. The
low-v dynamics are characterized by long scattering times
t,ps and low plasma frequenciesvp,meV. This differs
three orders of magnitude from conventional metals where
t, fs andvp,eV, while the carrier densityn is only one
order of magnitude less. An empirical scaling relation be-
tween t and vp has been found(see Fig. 2), suggesting a
common mechanism governs these parameters.4

The initial models for metallic polymers relied either on
the Anderson theory of localization,5,6 or on a granular
picture,1,5 but both predict«.0.6–9 Including percolation ef-
fects explains negative«,1,9 but the calculatedvp lies two
orders of magnitude above the experimental values.9 Prigo-
din and Epstein suggested that the metallic state is sustained
by atypical resonant tunneling events and used the Landauer-
Büttiker transmission framework to explain smallvp and
long t.10 However, the conditions for resonant tunneling are
not always fulfilled,2 and the detailed physical mechanisms
remain to be untangled.

Recently, Prigodin and co-workers successfully explained
the v dependence in the insulating phase using quasi-one-
dimensional(1D) variable-range hopping theory with inter-
chain transfer as a rate-limiting step.11 By accounting for
quasi-1D conduction, Kaiseret al.12 gave a description for
metallic conductivity of granular polymers, which works for
blends as well.13 Recent optical experiments by Lee and
Heeger3 and the present authors,4 could be explained in a 1D
picture as well. Also Kohlmanet al. discussed 1D effects.1

Here, we attempt to elucidate the nature of metallic conduc-
tion in polymers in more detail. We first argue why the me-

tallic phase is dominated by the 1D structure. Then, as in
Ref. 10, we use a Landauer-Büttiker approach to model the
transport and show how interchain coupling drives the intrin-
sically insulating 1D phase to a metallic state at the cross-
over from 1D to three-dimensional(3D) coherent conduc-
tion. All transport parameters can be described in terms of
disorder and coupling strength and the relevant length scales
arez the 1D localization length, andl the length over which
carriers experience sequential interchain events. For weak
coupling z,l, transport keeps a 1D signature and effec-
tively only a fraction of the carriers is involved in 3D trans-
port. Our model reproduces the reported experimental results
well and naturally ascribes the unusual low-v dynamics to
small interchain coupling.

In metallic conductors, delocalized states exist at the
Fermi level. Delocalization is counteracted by disorder and
the balance between metallic and insulating groundstates is
critically dependent on the weakest charge transfer steps in
the system. In the disordered polymers, chains are aligned
within microcrystallites that are separated by amorphous re-
gions, and delocalization may be impeded by eitherinter-
grain charge transfer or byinterchain charge transfer. To
identify the critical mechanism, we compare the energy
scales.

FIG. 1. Optical dielectric function and conductivity of metallic
polypyrrole. Symbols: experimental results taken from Ref. 2.
Drawn lines: theoretical prediction for weakly coupled disordered
chains(see text).
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Intergrain charge transfer. For the best conducting poly-
mers the crystalline fraction isfc=50% (polypyrrole, PPy,
and polyaniline, PAni), even up tofc=90% for polyacetylene
(PAc); the typical microcrystallite sizeDc amounts to 2 nm
(PPy), 5 nm (PAni), or 10 nm(PAc). For isolated grains,10

geometrical considerations imply a width of amorphous re-
gionsWa=Dcsfc

−1/3−1d, giving Wa=0.5, 1.3, and 0.4 nm, re-
spectively. Prigodin and Epstein estimate the localization
length along the chainz=1.2 nm.10 A different approach is
based on the potential barrier heightB of the amorphous
region, which from transport activation energy measure-
ments we estimateB=0.01–0.1 eV.14 A wave function
penetrating this barrier falls off exponentially with
z=s2meB/"2d−1/2=0.6–1.9 nm. This corresponds to fully
backscattered waves, expected for strong disorder, and
agrees with the experimental valuez=0.8 nm for insulating
polythiophene.15 Another approach is based on a result by
Thouless,z=asEF /Bd,2,16 which easily yields 10 nm using
reasonable parameters(EF=0.5 eV, B=0.1 eV, anda=4 Å
the microscopic length scale, e.g., a monomer). Taking a
conservative estimatez=1.2 nm, the intergrain transfer inte-
gral through amorphous regions along 1D chains,I i= I0
3exps−2Wa/zd, with I0<2.5 eV the intrachainp-electron
transfer of the unperturbed chain, equals at least 1.1, 0.3, and
1.3 eV for PPy, PAni, and PAc, respectively.

Interchain charge transfer. In conjugated polymers, the
p-electron system is formed by hybridization of 2px orbitals
on adjacent carbon atoms that constitute the polymer back-
bone. Interchain charge transfer stems from the overlap of
the p-electron clouds on neighboring chains. We estimated
the interchain charge transferI' for parallel chains of carbon
2px orbitals using the Slater wave-function approximation.
Our calculations suggest an optimum packing distance of
3 Å, where I'<10 meV is maximized. For larger separa-
tion, I' falls off exponentially with interchain localization
length,1 Å, in agreement with experimental results.15 Ex-
tensive tight-binding calculations by Mizes and Conwell
yielded I'<30 meV for PAc.17

Thus, for fc<50% the energy scale for interchain charge
transfer is at least an order of magnitude smaller than that for
intergrain charge transfer.18 This is not surprising when it is
realized that intergrain transport is essentially anintrachain
process that proceeds along the covalently bound chains,

while adjacent chains are not chemically but Van der Waals-
bonded and hence interchain electronic coupling should be
much weaker. It means that(i) intrachain carrier delocaliza-
tion extends over several grains and(ii ) formation of truly
delocalized states is governed by the small interchain charge
transfer. Therefore, we propose a system of weakly coupled
disordered chains to model conducting polymers. Our ap-
proach is as follows: we limit ourselves to an isolated disor-
dered 1D chain where quantum mechanics leads to localized
1D wave functions,C1D. We argue that, staying within a 1D
framework, interchain carrier exchange is equivalent to
dephasing of theC1Ds and derive the condition for delocal-
ization. Finally, we apply our model to describe the carrier
dynamics of conducting polymers using known microscopic
parameters and a tight-binding approximation for the inter-
chain coupling.

First, we briefly review the case for isolated chains. Even
for minimal disorder, the electronic eigenstatesC1D are lo-
calized due to repeated coherent backscattering.16 A conve-
nient approach to solve the transport problem is the
Landauer-Büttiker transmission framework.19 Assume a
transmission coefficientTø1 per unit lengtha. Then, over a
distancez.a, the envelope of an unreflected wave falls off
as Tz/a, implying an intrachain localization length
z=a/ lns1/Td. Disorder determines the microscopic transmis-
sion probabilities and hence setsz. The mean level spacing
of the localized states isD=1/sgzd with g the density of
states per unit length and unit energy. The dimensionless
conductanceG=T/ s1−Td and it follows that at short length
scalessz,zd G is finite and given by the classical(Ohmic)
result Gszd=z /z, while for a long chainGszd=exps−z/zd
scaling is non-Ohmic and the conductivity,G z, becomes
zero forz→`. The conductivity due to resonant transitions
between localized states is appreciable only for"v,D. For
"v.D, this Lorentz oscillator response approaches the
Drude conductivity with plasma frequencyVp,eV and in-
trachain scattering timet0, fs.

The above discussion is essentially based on a one-
electron Schrödinger equation assuming phase-coherent
transport along the chain. Interchain transfer introduces a
probability e for interchain transitions and formally the iso-
lated chain eigenfunctions are no longer appropriate. For
smalle, however, the isolated chain picture remains accurate
for short time and length scales: theC1D’s obtain a finite
lifetime. In case of strong coupling such a picture is not
realistic and the carrier transport problem should be consid-
ered for the fully coherent 3D system. In conjugated poly-
mers, the interchain charge transfer is weak and a 1D trans-
port model including the effect of coupling seems a good
starting point. Particle conservation implies that interchain
coupling occurs in the form of carrier exchange with a res-
ervoir, where the carrier’s initial stateC1D,1 differs from the
final stateC1D,2, which thus introduces the finite lifetime of
the 1D states: interchain transport leads to dephasing reflect-
ing that theC1D’s are not “true eigenstates” of a system of
coupled chains. Usually, phase breaking is associated with
inelastic events occurring at nonzero temperature. However,
phase breaking is not necessarily dissipative when the initial
and final states have the same energy.20 Allowing “elastic

FIG. 2. Scaling relation between plasma frequency and 3D scat-
tering time. Dots: experimental results taken from Ref. 4. Full line:
calculation for disorder-driven metal-insulator transition(MIT ) (see
text).
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phase breaking” implies that the true eigenstates are ex-
tended over the entire system of coupled chains since then
the energy level spacingb2/ sgL3d vanishes forL→` (b in-
terchain distance), i.e., the system is gapless, or in other
words, a metal. The condition for which this becomes pos-
sible determines the zero-temperature MIT and will be dis-
cussed further below.

Phase-breaking events are modeled in the Landauer-
Büttiker framework by incorporating current-conserving
phase-randomizing scatterers into the chain. Each scatterer
randomizes phase with amplitudeÎe, yielding probabilitye
for phase breaking. The total transmission probability is
given byTtot=Tc+Ti,

19 with Tc the direct coherent intrachain
transmission probability(no interchain events) andTi trans-
mission including at least one interchain transition. The con-
ductance

G =
Ttot

1 − Ttot
=

Tc

1 − Tc − Ti
+

Ti

1 − Tc − Ti
s1d

consists of two contributions: proportional toTc and Ti, re-
spectively. However, the relations are not straightforward, as
the denominators contain bothTc andTi.

The carrier fractione that suffered dephasing atz=0
will, on average, suffer a subsequent dephasing event at
z,l=a/e. We can discern two limits:z,l andz.l. When
z,l, Tc@Ti ,Osed, Eq. (1) simplifies to that of the isolated
chain,G=Tc/ s1−Tcd. Whenz.l, Tc is exponentially small
and G=Ti / s1−Tid. Strong coupling, i.e., every scatterer
dephasesse=1d, l=z, corresponds to the classical(incoher-
ent) case,G=l /z=z /z. For strong disorder and weak cou-
pling, l.z, the transmission amplitudeTi becomes sup-
pressed by localization effects. Then,Ti consists of the
product of the dephasing probabilitye and a factorz /a that
counts the number of channels available for the interchain
transport on the scalez, where the wave functions have ap-
preciable amplitude, multiplied by exps−l /zd, the 1D coher-
ent transmission amplitude between subsequent dephasing
events, yieldingG=esz /adsl /zdexps−l /zd=sz /zdexps−l /zd.
Thus, for weak coupling, the classical expectation value for
the conductance is suppressed by 1D localization effects.
Delocalized carrier transport remains piecewise 1D and the
length scale of interest isl with a 1D transport time
tl=sz /vFdexpsl /zd. At tl scale, only fractione of the carri-
ers is involved in interchain transport and thus crossover to
full 3D conduction occurs att3D=tl /e.

The above results demonstrate that in the presence of
dephasing, the dc conductivity remains finite forz→`. This
holds for any dephasing mechanism, in particular, inelastic
events due to finite temperature.21 As argued above, “elastic
dephasing” is a necessary condition for the formation of a
truly metallic state. In our 1D model, the interchain transfer
couples aC1D,1 to a differentC1D,2 on length scalel, and
this gives a typical level splittingeD of these states. When
the finite widthh/tl of the 1D energy levels on length scale
l (Thouless energy) exceeds the level splittingeD, energy
matched (elastic) interchain transitions are possible and
hence a metallic phase can be formed. The inset of Fig. 3
schematically indicates this mechanism. Applying the rela-

tion hvF=g−1 valid for 1D conductors, the criterion for delo-
calization translates intoa/z=sB/EFd2,e lns1/ed. Alterna-
tively, one can use the conditionG.1 for a metal on a
characteristic length scale. When applied to the carrier frac-
tion that is effectively involved in the interchain transport on
length scalel, this givesGesld=Gsld /e=exps−l /zd /e.1,
leading to the same result. The phase diagram for coupled
disordered chains as function of disordersz /ad and inter-
chain couplingsed is shown in Fig. 3.

Let us now apply our model to the metallic polymers.
First we derive e using a tight-binding approximation.
Interchain charge transfer would, in the absence of disorder,
lead to an interchain bandwidth~I'. However, as a result
of disorder, electronic statesC1D on adjacent chains
typically have an energy mismatch<D /2. Provided that
I',D /2, the bandwidth available for interchain transport
reduces to 4I'

2 /D, which corresponds to an interchain
coupling e=4sI' /Dd2 governed by both interchain transfer
and disorder. Next, we derive the relevant transport time
(energy) scales. Crossover to full 3D conduction occurs
on a time scalet3D=tl /e. Following the reasoning for the
MIT criterion, the bandwidth for interchain transport is
eD exps−l /zd and, using tight binding, the effective mass for
3D transport becomesm* =8"2 expsl /zd / seDb2d. 1D local-
ization suppresses the transmission probability on scalel
and the effective carrier density involved in 3D transport
reduces toneff=n exps−l /zd. This gives

t3D = sp"/2I'
2 gzdexpsa/4I'

2 g2z3d, s2d

vP = Îne2b2I'
2 gz/2"2«0 exps− a/4I'

2 g2z3d. s3d

For vt3D,1, the 3D transport channel is open and
the conductivity isssvd=s3D/ s1+ivt3Dd. At intermediate
energy, " /t3D,"v,D, the 1D signature of delocalized
carrier transport becomes visible. Screening in 1D conduc-
tors is poor and the dynamic response is described as
ssvd=snisvd / f1+snisvd / sivCdg, where snisvd=sl / s1

FIG. 3. Metal-insulator phase diagram of coupled 1D chains as
a function of interchain coupling and intrachain localization length.
Below the drawn line the system is insulating, above it is metallic.
Dots: disorder-driven MIT in conducting polymers. The inset gives
a graphical representation of the leitmotif behind the MIT criterion
discussed in the text.
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+ ivtld, the noninteracting case, and capacitanceC<e2g
quantifies the 1D screening efficiency.22 For "v.D the
isolated chain response(Lorentz oscillator) is obtained:
ssvd=s0/ h1+ifsv2−v0

2d /vgt0j, with v0 a measure for level
separation. In case the time scales are sufficiently separated,
the total optical response is

ssvd <
s3D

1 + ivt3D
+

sl

1 + ivtl +
sl

ivC

+
s0

1 + i
v2 − v0

2

v
t0

.

s4d

Here s3D=«0vp
2t3D, sl=s3D because the factorse in

tl=et3D and vp,l
2 =vp

2/e [proportional to bandwidth
D exps−l /zd] cancel, and s0=«0Vp

2t0=ne2t0/m is the
intrinsic intrachain conductivity. Indeed, Fig. 1 demonstrates
our theory and gives an excellent description of the experi-
mental results, using t0=3 fs, tl=0.4 ps, t3D=5 ps,
s3D=sl=220 S/cm, s0=380 S cm, v0=0.23 eV, and
C=10−10 F/m. Thus,l /z=3.5 ande=0.08, which, assuming
a=4 Å, leads toz=1.4 nm andl=5.0 nm.

We conclude by addressing the scaling relation between
vp and t3D. Equations(2) and (3) express the extreme sen-
sitivity of the 3D carrier dynamics for disorder and inter-
chain coupling. For increasing disorder(lower z) and de-

creasing coupling(lower I') the transition time to 3D
conduction increases exponentially, while simultaneously the
plasma frequency decreases at the same rate. Let us consider
the case of a disorder-driven MIT. We choset0=1.2–4.0 fs
as a typical range andz=4vFt0 (Ref. 10) to reproduce the
experimental results in Fig. 2 using known microscopic pa-
rameters for conducting polymers:5 I'=50 meV, a=4 Å,
b=3 Å, g=0.5 eV−1 a−1 , andn=731027 m−3, which corre-
sponds to optimum doping of 0.25 carrier per monomer. A
similar calculation can be performed for a MIT purely driven
by interchain transfer, but agreement with experiment can be
achieved only for an unrealistically large change inI' of
20–90 meV. This agrees with the general consensus that the
MIT in polymers is disorder driven. Using the above param-
eters, we have calculated the phase diagram for the disorder-
driven MIT (see Fig. 3), illustrating the transition to the me-
tallic state. Indeed it shows the conducting polymers are on
the edge of being metallic or insulating.

In summary, we have discussed a transport model for
weakly coupled disordered chains. Under appropriate condi-
tions, sB/EFd2,e lns1/ed, a crossover from 1D to 3D trans-
port occurs, and a metallic phase is formed. Expressions for
the optical conductivity, 3D scattering time and plasma fre-
quency have been derived. Based on established microscopic
parameters, the model quantitatively explains broadband data
on metallic PPy.
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