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Abstract
In paper [1] (Avotina et al. Phys. Rev. B 74, 085411 (2006)) the effect of Fermi surface anisotropy

to the conductance of a tunnel point contact, in the vicinity of which a single point-like defect is

situated, has been investigated theoretically. The oscillatory dependence of the conductance on the

distance between the contact and the defect has been found for a general Fermi surface geometry.

In this paper we apply the method developed in [1] to the calculation of the conductance of noble

metal contacts. An original algorithm, which enables the computation of the conductance for

any parametrically given Fermi surface, is proposed. On this basis a pattern of the conductance

oscillations, which can be observed by the method of scanning tunneling microscopy, is obtained

for different orientations of the surface for the noble metals.
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The scanning tunnelling microscope (STM) method enables to observe and investigate
quantum interference phenomena concerned with electron scattering by single defects. One
of them is Friedel-like oscillations of the differential tunneling conductance G measured by
STM around the defect. It is known that electrons of the surface states on the (111) surfaces
of the noble metals Au, Ag, and Cu form a quasi-two-dimensional electron gas which is
confined at the crystal surface. These electrons are scattered by surface defects, e.g. impurity
atoms, adatoms, or step edges, and the STM conductance exhibits oscillatory patterns
originating from an interference between the principal wave that is directly transmitted
through the contact and the partial wave that is scattered by the contact and the defect
[2, 3, 4, 5]. The period of the conductance oscillations depends on a distance from the
contact to the defect r0 and double the Fermi wave vector 2kF . A similar dependence can
result from the scattering of bulk electron states by subsurface defects [6, 7, 8]. It was found
that the oscillatory pattern obtained by STM reflects the anisotropy of the Fermi surface
(FS), i.e. the value of the vector kF depends on the direction in a plane of the sample
surface, and surface Fermi contours can be determined by Fourier transform of the STM
image [9, 10, 11]. Particularly, in Ref. [11] the contour related to the ’neck’ of the bulk FS
that for Cu (111) and Au (111) surfaces had been observed.

In the papers [1, 12, 13] the effect of quantum interference of electron waves which are
scattered by single defects below a metal surface to the conductance of a tunnel point-
contact has been investigated theoretically. It has been shown [12] that the dependence of
G on an applied voltage measure V can be used for the determination of defect positions
below a metal surface. In Ref. [1] we have analyzed the conductance of a tunnel point-
contact in the presence of a defect located inside the bulk for metals with arbitrary FS.
In the quasiclassical approximation the conductance of the contact had been found. The
general formula was illustrated for two non-spherical shapes for the FS: the ellipsoid and the
corrugated cylinder (open surface). These relatively simple models of FS make it possible
to get analytical expressions for the conductance and to analyze the main manifestations
of the FS anisotropy: ’necks’, inflection lines etc. In order time to compare the theoretical
results with experiment it is necessary to calculate the conductance for the real model of
the FS of a specific metal. In this paper we present such calculations for noble metals.

We consider as a model for our system a nontransparent interface separating two metal
half-spaces, in which there is an orifice (contact) of radius a ≪ λF (λF is a characteristic
Fermi wave length). The potential barrier in the plane of the contact is taken to be a
delta function with a large amplitude U (the transmission coefficient of electron tunneling
through the barrier is small, T ≈ (~vF/U)

2 ≪ 1, vF is a Fermi velocity). At the distance
r0 ≫ λF from the contact a point-like defect, which is described by a short range potential,
is placed. The interaction of electrons with the defect is taken into account in the framework
of perturbation theory with the constant of this interaction g. We also assume the applied
bias eV is much smaller than Fermi energy, εF. The conductance of the contact is calculated
in linear approximation in the transmission coefficient T, the constant g and the voltage V
by the method developed in Refs. [12, 14]. Under the listed assumptions a general formula
for the conductance had been derived in Ref. [1]:

G = G0

(
1− g̃

∑

s,s′

ReΛas
s (r0,εF) ImΛas

s′ (r0,εF)

)
. (1)

Here G0 ∼ T is the conductance of the tunnel point-contact without defect, g̃ ≈ gm∗2vF/~
3

is a dimensionless constant of electron-impurity interaction (m∗ is the effective electron
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mass). The function Λas
s (r,ε) defines the asymptote of the wave function ψ (r) ∼

√
TΛas (r)

of the electrons transmitted through the contact at large distances r ≫ λF from the con-
tact. For points in the momentum space, for which the Gaussian curvature K (ε,pt) of the
FS ε (pt, pz) = εF (z is directed along the contact axis, pt and pz are components of the
momentum tangential and perpendicular to the interface) is not equal to zero, the function
Λas

s (r,εF) is given by

Λas
s (r,εF) =

cosϑ

2π~r
√
|K|

exp

[
iΓ + i

π

4
sgn

(
∂2p

(+)
z

∂p2x

)
(1 + sgnK)

]

pt=p
(st)
t,s

, (2)

where Γ (pt, r) is the phase accumulated over the path travelled by the electron between the
contact and the point r,

Γ (pt, r) =
1

~

(
ptρ+ p(+)

z (pt) z
)
, (3)

p
(+)
z (εF,pt) is the root of the equation ε

(
pt, p

(+)
z

)
= εF corresponding to a wave with a

z-component of the velocity v
(+)
z (εF,pt) > 0, and cos ϑ(r) = z/r is the angle between the

vector r and the z axis. The momenta pt = p
(st)
t,s (s = 1, 2...) are defined by the equation,

∂Γ

∂pt

∣∣∣∣
pt=p

(st)
t,s

= 0. (4)

Originally, pt = p
(st)
t,s are the stationary phase points of the integral wave function [1]. These

projections of the momentum correspond to the velocities v
(
ε,p

(st)
t,s

)
‖ r, i.e. at large

distances from the contact the electron wave function for a certain direction r is defined by
those points on the FS for which the electron group velocity is parallel to r [1, 15]. If the
curvature of the FS changes sign, Eq. (4) has more than one solution (s = 1, 2...). It may
also occur that Eq. (4) does not have any solution for given directions of the vector r, and
the electrons cannot propagate along these directions [16].

At the stationary phase points the curvature K (ε,p) can be written as

K0 (ε,n) =

[
1

|v|2
∑

i,k=x,y,z

Aiknink

]

pt=p
(st)
t

, (5)

where Aik =
∂ det(m−1)
∂m−1

ik
(p)

is the algebraic adjunct of the element

m−1
ik (p) =

∂2ε

∂pi∂pk
(6)

of the inverse mass matrix m−1 [17]; ni are components of the unit vector n = r/r.
For those points at whichK0 = 0 the amplitude of the electron wave function in a direction

of zero Gaussian curvature is larger than for other directions. This results in an enhanced
current flow near the cone surface defined by the condition K0 = 0 [15]. If the FS is open,
there are directions along which the electrons can not move at all. These properties of the
wave function manifest itself in an oscillatory part of the conductance (1): 1) The amplitude

3



of oscillations is maximal if the direction from the contact to the defect corresponds to the
electron velocity belonging to an inflection line. 2) There are no oscillations of G if this
direction belong to cones, in which the electron motion is forbidden.

Further calculations requires the information about the FS, ε (p) = εF. We use the
parameterization of the FS of the noble metals copper, silver and gold from [18]

ε(p) = α
[
−3 + cos

pxa

2~
cos

pya

2~
+ cos

pya

2~
cos

pza

2~
+ cos

pza

2~
cos

pxa

2~
+ (7)

r
(
−3 + cos

pxa

~
+ cos

pya

~
+ cos

pza

~

)]
.

This parameterization is accurate up to 99%. The value of the constants are r = 0.0995,
and ε/α = 3.63, and a is different for each metal. For copper, silver and gold a = 0.361,
a = 0.408 and a = 0.407nm, respectively. The Fermi energy of copper is 7.00 eV, for silver
5.49 eV and for gold it is 5.53 eV.

The FS (7) has the BCC symmetry. It basically looks like a sphere with 8 ’necks’ po-
sitioned at the 8 vertices of a cube (Fig. 1). The central part of the surface (‘belly’) has
a positive curvature K > 0 while the ends near the Brillouin zone boundary (‘necks’) have
negative curvature. The size of the ’necks’ and the curvature of the spherical areas are
slightly different for each noble metal. In the regions of ’necks’ there are the inflection lines,
at which the curvature K = 0.

In Eq. (7) for the FS, the x, y and z directions correspond to a [100] direction, and the xy
interface plane is therefore a (100) crystal plane. To align the xy plane with a (110) plane,
the FS is rotated by π/4 along the x or y axis. For the (111) orientation, the total rotation
consists of a rotation of π/4 along the z-axis, followed by a rotation of arcsin(1/

√
3) along

the x or y axis.

A direct way to find solutions pt = p
(st)
t,s of Eq. (4) numerically for a certain position

of the defect r0 and calculate Λas
s (r0,εF) (2) is not most suitable. Instead, the result that

pt = p
(st)
t,s corresponds to the direction of the electron velocity along the direction from the

contact to the defect can be used. We start with a point p on the FS, calculate the value of
Λas

s (r,εF) for every point r ‖ v = ∂ε (p) /∂p in the real space, and then repeat this for all
points on the FS. Next, it is easy to perform the summation over all points on the FS, in
which r ‖ v to obtain the conductance. This idea is shown schematically in Fig. 1.

Strictly speaking, the asymptotic Eq. (1) is correct at a ≪ λF, r0 ≫ λF. However,
as it was shown in Ref. [1] from a comparison of the exact result for the ellipsoidal FS
with asymptotic expression (1), Eq. (1) describes the conductance qualitatively correctly
for a < λF and distances r0 of a few λF. The other point is that at the inflection lines,
which defines the classically unacceptable regions, the curvature K = 0. As it was shown in
Ref. [1], for such directions of the vector r0 the amplitude of the conductance oscillations
increases remains finite. Below we restrict ourselves to the condition K 6= 0 and do not
approach the inflection lines to a distance for which the second term in the Eq. (1) becomes
of the order of unity.

We present the result of computations for three different crystallographic orientations
(Fig. 2). The conductance as a function of the contact position for a defect in a noble metal
at various depths are plotted in Figs. 3-5 for the (100), (110) and (111) lattice orientations
respectively. For each of the lattice orientations, the graphs have the symmetries of that
particular orientation of the FS. In all figures ’dead’ regions, in which there are no con-
ductance oscillations, can be seen. These regions originate from the ’necks’ of the FS and
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FIG. 1: The main contributions to the conductance oscillations caused by a defect at ro come

from the points on the Fermi surface where the normal vector (velocity vector) points in the same

direction as the vector ro.

FIG. 2: The orientation of the Fermi surface relative to the contact axis for three principal lattice

orientations.

their edges are defined by the inflection lines. In our plots the edges are abrupt. In reality
there is a smooth change from a maximum to a zero of amplitude of the oscillations in the
’dead’ regions. This change can not be described by Eq.(1), and a numerical solution of
the Schrödinger equation with energy-momentum relation (7) must be used. However, the
problem becomes much more complicated, while it does not give any additional physical in-
formation. The rings of high amplitude conductance oscillations have already been reported
in experiments on Ag and Cu (111) surfaces [7].

From Figs. 3-5 it can be seen that the interference pattern of the conductance oscillations,
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                            a                                                 b 

FIG. 3: Conductance G as a function of the contact position for a defect at the origin at depths

5λF (a) and 7λF (b) for a (100) interface plane. The x and y directions both correspond to

〈100〉 directions. The conductance is plotted in gray scale, where the color of the ’dead’ regions

corresponds to the conductance value in absence the defect G = G0, positive addition to G is white

and negative is black.

a                                                    b 

FIG. 4: Same as Fig. 3, but for a (110) interface plane. The x and y directions correspond to [001]

and [110] directions respectively.

in particular the size and appearance of ’dead’ regions depend on the depth of the defect.
These characteristics of the part of the conductance related to the scattering by the defect
contains the information about the position of the defect. For all orientations of the metal
surface the defect position in the plane of the surface corresponds to a center of symmetry.
The depth can be found in the following way: The orientation of the ’neck’ axes defines the
axes of the cones, in which there are no scattered electrons. Vertexes of the cones coincide
with the defect. If the contact is situated in a point, which belong to a sectional plane of
the cones by a surface plane, the conductance of the contact is equal to its value without
the defect (we called these ’dead’ regions). A rough estimation of the defect depth can be
obtain, if we use the approximation of a cone of revolution with an opening angle 2γ. For
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a                                               b 

FIG. 5: Same as Fig. 3, but for a (111) interface plane. The x and y directions correspond to

[112]and [110] directions respectively.

example, in Fig.5 the radius R of the central ’dead’ region is defined by the equality R =
z0 cot (γ),(γ ≈ 300) [7]. Using a fiting of experimental results with theoretical calculations
in the framework our method enables one to find the depth of the defect below metal surface
more exactly.

Thus, we have demonstrated the possibility of calculations of anisotropic conductance
oscillation caused by electron scattering by the defect in noble metals. The developed
algorithm of calculations can be used for any parametrically given FS. We have shown that
the analysis of interference patterns makes it possible to find the position of the defect below
metal surface.

This work was partly supported by Fundamental Research State Fund of Ukraine (project
Φ 25.2/122).
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