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In this paper, we present a determinant quantum Monte Carlo study of the two-dimensional Hubbard model
with random site disorder. We show that, as in the case of bond disorder, the system undergoes a transition
from an Anderson insulating phase to a metallic phase as the on-site repulsion U is increased beyond a critical
value Uc. However, there appears to be no sharp signal of this metal-insulator transition in the screened site
energies. We observe that, while the system remains metallic for interaction values up to twice Uc, the
conductivity is maximal in the metallic phase just beyond Uc and decreases for larger correlation.
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INTRODUCTION

The metal-insulator transition arising from the competi-
tion of randomness and interactions remains an intriguing
problem in condensed-matter physics. For example, the
question of the existence of a metallic phase in two dimen-
sions, for which an experimental consensus had emerged in
the 1980s,1 has been revisited with new samples over the last
decade, with developments which have driven a considerable
amount of new theoretical work.2,3

Several interesting lines of study have emerged, which
explore the interplay of one-body potentials and two-body
interactions in more general contexts. The superfluid-
insulator transition has been studied in disordered, interact-
ing boson systems, where the existence of a thermodynamic
order parameter, the superfluid density �s, as well as the
greater ease of numerical simulations, has resulted in many
definitive results.4–6 The coexistence of a metal and a Mott-
Hubbard insulating phase in the disordered half-filled Hub-
bard model has been explored using both numerical and ana-
lytical techniques.7 The existence of insulating phases away
from commensurate fermion filling has been explored in
models with bimodal distributions of on-site chemical
potential.8,9 Finally, the question of metallic phases arising
from the addition of correlations to a band insulator is draw-
ing new attention.10

The commonly cited qualitative picture of the appearance
of a metallic phase out of a disordered one is that the inter-
actions act to screen the one-body potential. While several
quantum Monte Carlo studies of disordered interacting fer-
mions exist,11–13 which demonstrate the possibility of a me-
tallic phase, none have looked quantitatively at this screening
in the Hubbard Hamiltonian.

In this paper, we will present results for the conductivity
and renormalized site energy of the two-dimensional
Anderson-Hubbard model,

H = − t �
�jl�,�

�cj�
† cl� + cl�

† cj�� + U�
j

nj↑nj↓

+ �
j

�� j − ���nj↑ + nj↓� . �1�

Here, cj�
† �cj�� are fermion creation �destruction� operators

on site j for spin � and nj�=cj�
† cj� is the number operator. t

is the hopping parameter, U the onsite repulsion, and � and
� j the global chemical potential and local site energies, re-
spectively. Each � j is drawn independently from a uniform
distribution on �− 1

2� , + 1
2��. We choose t=1 to set our scale

of energy.
Our key conclusion is that while increasing U can drive

an Anderson insulating phase metallic, there appears to be no
sharp signature of this transition in the variance of the renor-
malized site energies. This suggests that the metallic phase
arises at least partially from an additional mechanism beyond
a simple screening of the one-body potential.

NUMERICAL APPROACH

We employ the determinant quantum Monte Carlo
�DQMC� method.14 Since many descriptions of the approach
exist, we only provide a brief sketch here, focusing on those
features most relevant to the present study. DQMC is an
exact method to compute the properties of tight-binding
Hamiltonians on finite lattices. The inverse temperature � in
the partition function is discretized, and an auxiliary
�“Hubbard-Stratonovich”� field is introduced to decouple the
interactions. The resulting quadratic form in fermion creation
and destruction operators is integrated out analytically, leav-
ing a sum over the Hubbard-Stratonovich variables, which
can be performed stochastically.15

We have chosen the imaginary-time discretization size
small enough such that the systematic “Trotter” errors are
comparable to the statistical errors associated with the Monte
Carlo sampling and disorder averaging. Of greater concern in
these simulations is the finite lattice size and, in particular,
the possibility of a “false” signal of metallic behavior, which
would occur if the localization length exceeds the lattice
size. We have verified that in the phases we identify as me-
tallic, the localization length �computed at U=0� is less than
the lattice size.

To investigate the metal-insulator transition, we look di-
rectly at the dc conductivity, which we obtain from the
current-current correlation function

jx��,�� = eH��it�
�

�c�+x̂,�
† c�� − c��

† c�+x̂,���e−H�. �2�

We compute the Fourier transform jx�q ,�� of jx�� ,�� and its
correlation function 	xx�q ,��= �jx�q ,��jx�−q ,0��. Using the
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general formalism of linear-response theory, the dc conduc-
tivity is given by

�dc = lim

→0

Im 	xx�q = 0,
�



. �3�

The frequency-dependent conductivity is given by the inte-
gral transform

	xx�q,�� = �
−�

� d


�

e−
�

1 − e−�
 Im 	xx�q,
� . �4�

It is difficult to obtain Im 	xx�q ,
� by inverting this inte-
gral equation, because it requires the determination of
	xx�q ,�� on a very fine mesh of imaginary times � with very
high numerical accuracy. However, if we insert �=� /2 in
Eq. �4�, the function multiplying Im 	xx�q ,
� for low T ef-
fectively restricts the integral to small 
, so that we may
approximate Im 	xx�q=0,
� by �dc
. The validity of the
above approximation can be checked by inserting Eq. �3� in
Eq. �4�: if the approximation of linear response is valid, then
Eq. �4� becomes

	xx�q = 0,�� = �dc�
−�

� d


�


e−
�

1 − e−�
 = �dcf��,�� . �5�

This implies that the ratio 	xx�q=0,�� / f�� ,�� should be
independent of � near �=� /2. In Fig. 1, we show this ratio
against � for a representative set of parameters, averaged
over ten disorder realizations. It is indeed seen that the ratio
is nearly constant around �=� /2.

The frequency integral may now be evaluated analyti-
cally, leading to the following result:

�dc =
�2

�
	xx�q = 0,� = �/2� . �6�

This approximation is expected to be valid when the tem-
perature is smaller than an appropriate energy scale in the
problem. It is convenient because it allows the computation

of �dc as a function of temperature to be obtained from the
function 	xx�q ,��, which is calculated directly in DQMC.

Obtaining a transport property such as �dc directly from
imaginary-time data, as described above, is a process which
must be undertaken with caution. However, the use of this
procedure gives the correct characterization as a metal or
insulator in all cases, which we have checked so far. For
example, d�dc/dT is positive �insulating behavior� for the
half-filled d=2 Hubbard model without randomness at all
values of U, that is, regardless of whether the insulating char-
acter arises predominantly from antiferromagnetic order
�weak coupling� or Mott behavior �strong coupling�.11,18 The
procedure also gives the correct physics in a band insulator
when a staggered site energy is present and U=0. It has also
been shown to give the correct physics of the disordered
attractive Hubbard model.16

A fundamental check of the numerical data is the verifi-
cation that the longitudinal current-current correlation func-
tion obeys the gauge invariance condition

	xx�qx → 0,qy = 0,i
n = 0� = K , �7�

where K is the kinetic energy. We have checked that as in
previous work,11,16,17 this condition is satisfied.

Since the disordered site energies in the system are gen-
erated randomly from a uniform distribution �− 1

2� , + 1
2��, the

distribution has zero mean and a variance

V0
2 =

1

�
�

−�/2

�/2

�2 d� =
�2

12
. �8�

In order to study the screening of the disordered potential
by interactions, we note that within a mean-field picture, an
electron moving in the one-body potential � j will feel the site
energy renormalized by the density of oppositely oriented
electrons. That is,

�̃ j,� = � j + U�nj,−�� , �9�

which becomes, in the absence of spin polarization,

�̃ j = � j +
U

2
�nj� , �10�

since for each spin species �nj��= 1
2 �nj�. We define an asso-

ciated dimensionless variance by normalizing to the fluctua-
tions in the original site energies,

V2 =
1

V0
2 ���̃ j

2� − ��̃ j�2� =
12

�2 ���̃ j
2� − ��̃ j�2� . �11�

In the absence of interactions �U=0� or for very large � at
fixed U, we have V=1, indicating that there is no screening
of the random potential. The question we wish to address is
whether there is some signal, e.g., a noticeable decrease, in V
upon entry into a metallic phase.

METALLIC PHASE DUE TO INTERACTIONS

We begin by demonstrating that interactions can drive an
Anderson insulating phase metallic. We show in Fig. 2 the dc

FIG. 1. A plot of the ratio between the imaginary-time current-
current correlation function at q=0 and the function f�� ,�� as
defined in the text. The parameters are U=2, �=8, and �=8.
The result is an average of ten disorder realizations. The ratio
	xx�q=0,�� / f�� ,�� will fluctuate more around �=� /2 for lower T
and larger U, but not in such a way to invalidate our approximation
for �dc. The linear lattice size is 8.
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conductivity as a function of temperature for a fixed strength
of the disorder potential and increasing U. At U=0, �dc de-
creases as T is lowered, indicating insulating behavior. How-
ever, at strong coupling, �dc increases as T is lowered, indi-
cating a crossover to metallic behavior. All results in Fig. 2
and subsequently in this paper, are at one-quarter filling
�= �n�= 1

2 . This is far from the most dramatic effects of U in
the Hubbard model—the Mott transition and antiferromag-
netic ordering. The DQMC computations are carried out on a
square lattice with linear size 8.

The metallic phase in Fig. 2 can caused to return to insu-
lating behavior by increasing the site disorder. This is shown
in Fig. 3, where we begin with the interaction strength which
gives the largest conductivity, U=4, and makes � larger. For
9�10, the low-temperature slope of �dc reverts to insu-
lating character.

An interesting feature of Fig. 2 is the nonmonotonic be-
havior of the conductivity. �dc increases with U up to
U	3–4 but then decreases again at U=5. In order to verify
that this phenomenon is generic, we show in Fig. 4 data for
larger �=9. We again see that �dc comes down at strong
coupling. A similar phenomenon occurs in the evolution of
the superfluid density �s for correlated bosons moving in a

random potential—a superfluid phase with �s�0 exists at
intermediate coupling, but the system is insulating, �s=0,
both at weak and strong couplings.5

In Fig. 5, we show �dc vs the disorder strength for pro-
gressively lower temperature values. For ��c, the system
is metallic and �dc increases as the temperature is lowered,
while for ���c, in the insulating state, the behavior is op-
posite. The crossing point of the plots demarcates the critical
disorder strength.

In Fig. 6, we show a similar crossing plot for �dc as we
tune the interaction strength through the metal-insulator tran-
sition for a fixed disorder strength �=8 �see Fig. 2�. A small
value of the interaction is seen to be enough to cause the
transition to a metal. Interestingly, the conductivity is non-
monotonic and decreases for large values of the interaction
strength �the fermion sign problem in DQMC simulations
forbids the evaluation of �dc at U=5, �=8�. It is possible
that there is a crossing at larger interaction strengths when
the system reverts back to an insulator. Such nonmonotonic
behavior of the conductivity has also been seen in recent
DQMC studies of a multiband Hubbard model at half-filling,
where the sequence of transitions with increasing U is found
to be band insulator→metal→Mott insulator.

FIG. 2. �Color online� The dc conductivity as a function of
temperature for increasing values of the on-site repulsion U=0–5.
The site-energy variance �=8.

FIG. 3. �Color online� The dc conductivity as a function of
temperature for increasing values of disorder �=8–11. The on-site
repulsion U=4.

FIG. 4. �Color online� As in Fig. 2, except at larger disorder,
�=9. The same decrease of conductivity with U in the metallic
phase is seen as in Fig. 2.

FIG. 5. �Color online� A crossing plot for �dc vs �. The critical
disorder strength �c
9.2–9.3 for U=4 is clearly seen.
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RENORMALIZED SITE ENERGIES WITH
INTERACTIONS

Before showing the results for the dimensionless variance
of the renormalized site energies, we present in Fig. 7 a plot
of the original and renormalized site-energy landscapes. As
expected, the particles preferentially sit on the sites with low
� j, and these larger values of �nj� then lead to a smoother
�̃ j =� j +

U
2 �nj�. However, there is certainly no very dramatic

leveling of the landscape. Below, we will explore this more
quantitatively.

In Fig. 8, we examine whether there is signal of the metal-
insulator transition in the evolution of V. We plot the low-

temperature slope d�dc/dT from the data of Fig. 3 and show
its change of sign at �	9.2–9.3. There is no clear indication
of this critical value in the renormalized site-energy variance
V.

We can similarly look for this effect at the metal-insulator
transition driven by increasing U at fixed �=8 �Fig. 2�. This
is shown in Fig. 9. Again, there appears to be no clear signal
of the metal-insulator transition in the screened site energies.

RENORMALIZED SITE-ENERGIES WITH ZERO
HOPPING

The results from the previous section suggest that we look
more closely at the physical picture of the smoothening of
the site-energy landscape by interactions. Our expectation in
Fig. 8, where we plotted V as a function of the disorder
strength, was that in the metallic phase at weak disorder,
there would be a markedly smaller value of V and then a
crossover to a larger value as the disorder is increased into an
insulating phase. On the other hand, at weak disorder, we
expect the least inhomogeneity in the site occupations. In the
limit of uniform density, at very weak disorder, the site-
energy variance equals the original one, and V2=1, suggest-
ing that V might instead decrease with disorder. The conflict-
ing tendency to decrease with disorder as charge
inhomogeneity develops and increase in the insulating phase
might explain why the site-energy variance is so insensitive
to site-energy disorder, whereas when we tune through the
transition with interaction strength, there is a much larger

FIG. 6. �Color online� A crossing plot for �dc vs U. The crossing
is seen to happen for 0U1 for �=8.

FIG. 7. �Color online� Left: Landscape of the original site energies � j with �=8. Right: Landscape of the renormalized site energies �̃ j

with �=8, U=4, and �=8. On the right, the mean increase in the renormalized site energies due to U has been subtracted out.
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decline �though still no abrupt signal at the transition�. In this
section, we examine an analytically solvable limit of the dis-
ordered Anderson-Hubbard model, that of t=0, which can be
considered to be the limit of very high disorder. At this limit,
there is no metallic behavior, but it is still interesting to in-
vestigate the behavior of the site-energy distribution as we
move from weak to strong interaction �or strong to weak
disorder�.

When there is no hopping, the Anderson-Hubbard model
is classical. As electrons are added to the lattice at t=0, the
sites with the lowest site energies are singly occupied up to
the Fermi energy EF. When, however, EF exceeds −� /2+U,
it becomes preferable to start doubly occupying the low-
energy sites. This is illustrated in Fig. 10. From the figure, it
is evident that �n↑�= 1

� �EF+� /2� and �n↓�= 1
� �EF+� /2−U�

and hence that �n�= �n↑+n↓�= 1
� �2EF+�−U�. We can easily

obtain the mean of the renormalized site energies by averag-
ing Eq. �9�: ��̃↑�+ ��̃↓�=U��n↑�+ �n↓��= U

� �2EF+�−U�.
A completely equivalent result is obtained by recognizing

that the energies of the sites on which up spin electrons re-
side are raised by U in the range from −� /2 to EF−U, where
down spins are present. Similarly, the energies of the sites on
which down-spin electrons reside are raised by U in the
range from −� /2 to EF, where up spins are present. �Here,

the designations “up” and “down” merely reflect the “first”
and “second” electrons on a site.� When the energies are
averaged over these ranges, the same result for ��̃↑�+ ��̃↓� is
obtained.

The average of the square of the renormalized site ener-
gies is obtained in the same way. We can then evaluate the
dimensionless variance of the renormalized site energies
Vt=0

2 , defined as

Vt=0
2 =

12

�2 ��� j̃
2� − �� j̃�2� . �12�

To determine the variance, we must distinguish between two
cases: a generic one, in which the Fermi energy EF is larger
than −� /2+U and there is double occupancy of the low-
energy sites, and a nongeneric case, in which there is only
single occupancy, which may happen for a large value of x
=U /� or a small density. For the generic case, the variance
can be computed in terms of the three energy scales �U, �,
and EF� in the t=0 problem:

Vt=0
2 = 1 +

3U2

�2 −
3U

�
−

3U4

�4 +
6U3

�3 +
12EF

2U

�3 +
12EFU3

�4

−
12EFU2

�3 −
12EF

2U2

�4 . �13�

The Fermi energy �for the generic case� can be deter-
mined in terms of U and � by the following equation:

� =

EF +
�

2

�
+

EF +
�

2
− U

�
, �14�

where � is the filling. For example, in the quarter-filled case,
�= 1

2 and EF= 1
2

�U− �
2

�. In the nongeneric case, the Fermi
energy can, of course, be determined by simple state count-
ing.

FIG. 8. �Color online� The variance of the renormalized site
energy V is shown as a function of �, as is the low-temperature
slope of the conductivity �U=4, �=8�.

FIG. 9. �Color online� The renormalized site energy is shown as
a function of U. There appears to be no signal of the MIT at small
U nor the conductivity peak at U	3–4.

FIG. 10. �Color online� At t=0, the energy levels for occupation
by the first electrons �which we denote by ↑� extend from −� /2 to
� /2 �left�. The energy levels for occupation by the second electrons
�which we denote by ↓� extend from −� /2+U to +� /2+U �right�.
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A plot of Vt=0
2 vs x=U /� is given in Fig. 11 for different

fillings. At very weak interaction �or very strong disorder�,
the variance equals the noninteracting value 1. As the inter-
action is increased �equivalently, the disorder is decreased�,
the variance first decreases and reaches a minimum. Upon
further increasing the interaction, however, the site occupa-
tions become homogeneous and the variance grows.

CONCLUSIONS

We have examined the metal-insulator transition in the
Anderson-Hubbard model using determinant quantum Monte
Carlo simulations. Our focus has been on the evolution of the
renormalized site energy through the transition, and we con-
clude that it exhibits no sharp feature there. It seems that the

picture of screening of the disorder by interaction is too
primitive to account for metallic behavior.

On the other hand, we observe an interesting nonmono-
tonic behavior of the conductivity with interaction strength.
In the boson Anderson-Hubbard model, the ground state at
incommensurate densities is an Anderson insulator at weak
U and an insulating “Bose glass” at large U. In between,
there is a superfluid phase in which the superfluid density
first rises, as one emerges from the Anderson insulator, and
then falls to zero again upon entry into the Bose glass. As far
as we can see, the fermion Hubbard model remains metallic
at large U, but simulations there are difficult and we cannot
make a definitive statement. In any case, the nonmonotonic
behavior of �dc is rather analogous to the behavior seen for
strongly interacting, disordered Bose systems.

In this paper, we have looked at site-energy renormaliza-
tion defined in the framework of the Hartree-Fock approxi-
mation away from half-filling �see Eq. �9��. A previous
study19 found much stronger screening of the renormalized
site energies in the Mott metal-insulator transition at half-
filling using a more general definition of the renormalized
site energies involving the full self-energy of the system. The
self-energy could be obtained using the approximate dynami-
cal mean-field theory. It will be a subject of future research
to explore the effect on screening of the site energies by
taking into account correlations via the full self-energy as
computed using the determinant QMC method.
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