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CHAPTER 1 

INTRODUCTION INTO SUPER-RESOLUTION 

MICROSCOPY 

 

Abstract 

Since the discovery of red blood cells in 1674 and bacteria in 1676 mankind has 

been fascinated by the microscopic world of biology. With the naked eye the 

limit of what can be resolved is about 50 µm, the diameter of a thin human hair. 

Red blood cells are about 7 µm in diameter. To observe them, Antoni van 

Leeuwenhoek required a microscope. It can be safely stated that the microscope 

represents the key technology that enabled the field of biology to understand the 

functioning of living matter and life as such. This statement still holds for 

modern life-science research where continuing developments in microscopy 

push scientific discoveries. In what follows we present an overview of the 

current developments in super-resolution microscopy. Super-resolution 

microscopy has been developed over the last decade from a low-temperature 

technique into a ubiquitous biological tool. This tool enabled biologists to study 

details in live cells far beyond the diffraction limit, which was so-far only possible 

on fixed cells with electron microscopy. We will focus here on single molecule 

imaging methods and discuss the technique in detail. 
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1.1 THEORY OF MICROSCOPY 
A microscope consists of two main elements. The objective lens that collects the 

light coming from a sample, and the imaging lens that projects this light onto a 

detector. In the first microscopes, like those used by Antoni van Leeuwenhoek, 

the imaging lens was the eye, and the image was projected on the retina. In our 

modern microscopes the imaging lens is a glass lens placed at a fixed distance 

from a digital camera. 

The modern infinity-objectives consist of a collection of different lenses to 

correct for aberrations. They can be represented by a single positive lens with a 

short focal length of a few millimeters. (Fig. 1) 

 

Figure 1: Schematic of a microscope. The magnification is given by f2/f1. The infinity objective is represented by 
a single positive lens. 

Light originating from a point source in the focal plane of the objective produces 

a spherical wave with the source at the center. Imaging this wave with the 

objective can be seen as sampling part of the spherical wave and converting this 

into a plane wave (Fig. 2). 
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Figure 2: A part of the spherical wave emitted by a point source is captured by the objective lens (L1) and 
converted into a planar wave. The imaging lens (L2) transforms the planar wave back into a spherical wave that 
converges to a point. The magnification is given by M=f2/f1 and the solid angle of the spherical emission wave 
captured is Ω=2π(1-cos(α)) steradian. 

To image the light emitted by the point source, the imaging lens converts the 

plane wave back to a spherical wave that focusses the wave to a point. The waves 

can be seen as spherical caps with the center of the sphere at the base of the 

cone. 

The lens operates as a circular aperture that gives rise to Fraunhofer diffraction, 

that generates an intensity pattern in the image plane described by an Airy 

function [1]. 

𝐼(𝑟) = 𝐼0 (
𝐽1 (

2𝜋
𝑀𝜆

∙ 𝑟 ∙ 𝑛 ∙ sin(𝛼))

2𝜋
𝑀𝜆

∙ 𝑟 ∙ 𝑛 ∙ sin(𝛼)
)

2

 (1) 

With J1 the 1st-order Bessel function of the first kind, M the magnification, n the 

refractive index of the immersion medium, λ the wavelength of the incoming 
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light, α the maximum angle the objective can capture, and r the distance from 

the center of the image in the image plane (Fig. 2). This intensity pattern is 

commonly referred to as the point-spread-function (PSF) of the optical 

instrument. 

Ernst Abbe stated in 1873 that two objects that are closer than the full-width-

at-half-maximum (FWHM) of the PSF cannot be distinguished as individual 

objects. The half-maximum of the Bessel function, J1(x) is at x=1.616. The PSF 

calculated from eq. 1, with the magnification set to one, thus gives: 

2𝜋

𝜆
𝑟 ∙ 𝑛 ∙ sin(𝛼) = 2 ∙ 1.616 

𝑟 =
0.51 ∙ 𝜆

𝑛 ∙ sin(𝛼)
≈

𝜆

2𝑁𝐴
 

(2) 

Equation 2 is commonly known as the Abbe limit. NA stands for the numerical 

aperture, a property of the objective, defined as n×sin(α). A modern objective 

can have a numerical aperture of as high as 1.45. Typical imaging wavelengths 

for visible light are around 500 nm which sets the diffraction limit to 

approximately 170 nm. Therefore objects separated by less than 170nm cannot 

be distinguished as individual objects by conventional microscopy. 

1.2 SUPER-RESOLUTION MICROSCOPY TECHNIQUES 
A super-resolution microscopy technique is an optical technique that can resolve 

structures beyond the diffraction limit of the emission wave. 

1.2.1 Structured illumination 

It was shown in 1963 by W. Lukosz and M. Marchand that the diffraction limit 

could be broken in one dimension by sacrificing resolution in the other 

dimension [2] By applying a grating to both the illumination and the detection 

path the frequency space that the microscope can explore is changed from 

circular to ellipsoid. They showed from the perspective of information theory 

that this could double the obtainable resolution of a microscope. 

This idea was further explored in the nineties when the Wilson and the 

Gustafsson labs used Moiré-interference to directly create the grating in the 

illumination [3,4]. They expanded the grating to the third dimension to enhance 

the resolution. This resulted in a 3D super-resolution technique named 

Structured Illumination Microscopy (SIM). By changing the pattern in time and 
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imaging a sample multiple times a resolution increase of twofold is possible in 

each dimension as compared to normal diffraction-limited microscopy. 

1.2.2 Near-field scanning microscopy 

As D.W.Pohl pointed out, the diffraction limit does not play a role near to the 

sample. [5] A medical stethoscope can localize the heart better than 10 cm by 

listening to sound waves that have a wavelength of 100 m. The increased 

resolution is solely obtained by the narrow aperture of the stethoscope, which is 

at a small distance to the heart. This near-field approach can be adapted for the 

use of electromagnetic waves. The requirements stay the same: the aperture and 

the distance to the sample must be small in comparison to the wavelength of the 

wave. When the distance becomes large, Fraunhofer diffraction would apply and 

create a diffraction-limited spot in what is called the far field. 

In 1972 E.A.Ash and G.Nicholls showed near-field scanning microscopy for the 

first time using 3 cm radio waves. [6] By scanning an aperture of 1.5 mm over a 

fine aluminum grating deposited on glass, they could resolve gaps of the grating 

that were spaced by only 0.5 mm. Hence, they showed a resolution that is 60 

times below the wavelength. 

Extending this technique to the visible spectrum required microfabrication of 

apertures out of opaque material, and micro positioning of the sample. From 

1983 E.Betzig and A.Lewis worked on the development of such a system. In 

1987 they presented super-resolution imaging with near-field scanning optical 

microscopy (NSOM) [7]. The device positioned a 150 nm diameter aperture 

several nanometers from the sample. A xenon arc lamp was used to illuminate 

the aperture. By scanning an aluminum grating on a silicon nitride membrane 

they resolved lines of widths 250 nm that were separated by 250 nm. 
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1.2.3 Fluorescence 

The next super-resolution techniques apply 

specifically to fluorescence. In fluorescence, the 

orbital electrons of a molecule are electronically 

excited by light at a wavelength λex. This excites the 

electron from its singlet ground state (S0) into a 

singlet excited state (S1). The excited state undergoes 

vibrational relaxation with lifetimes in the order of 1-

5 · 10-12 seconds. After relaxation the electron falls 

back to the singlet ground state. There are different 

ways of relaxation, it happens either by emitting a 

photon or by non-radiative relaxation. The lifetime of 

radiative decay (τf) is typically in the order of 1-5 · 10-9 

seconds depending on the non-radiative decay rate. 

𝜏𝑓 =
1

∑𝑘 − 𝑘𝑛𝑟
 (3) 

The emitted photon has a lower energy than the photon that excited the 

molecule. This lower wavelength λem permits a background-free detection of the 

signal by filtering the emission with a low-pass filter. 

1.2.4 Stimulated emission depletion 

In 1994 Stefan Hell and Jan Wichmann proposed a technique they called 

stimulated emission depletion (STED) [8]. This technique would overcome the 

limits of near-field imaging by using what could be called an “optical aperture” 

to limit the illuminated volume. Fluorophores are excited using a focused, 

diffraction limited, Gaussian beam. Shortly thereafter, high intensity illumination 

of longer wavelength will introduce an alternative non-radiative decay rate. This 

forces the excited molecule back into the ground state by what is called 

stimulated emission. By using a doughnut-shaped depletion beam that overlaps 

with the Gaussian excitation beam the excited fluorescent molecules at the edges 

of the Gaussian beam are forced back into their ground state – those molecules 

stay dark. This process effectively limits the volume from which molecules can 

emit fluorescence. 
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The exited fluorophore needs to encounter a depletion photon within the time 

it is excited. The energy needed will be equal to the bandgap. This means the 

depletion beam intensity (Is) must exceed the photon energy (h·f) divided by the 

absorption cross-section (σ) and the time the fluorophore is in the excited 

state (τf).  

𝐼𝑠 =
ℎ𝑓

𝜎𝜏𝑓
 (4) 

By increasing the intensity of the doughnut beam (Im), the radius (r) of the area 

where a fluorophore will have radiative decay will get smaller. This enables the 

separation of fluorophores that are closer together than the Abbe limit. The 

formula for Abbe’s diffraction limit rewrites into equation 5. 

𝑟 =
λ

2𝑁𝐴√1 +
𝐼𝑚
𝐼𝑠

 
(5) 

By scanning the small excitation volume over the sample a super-resolution 

image is built-up. In 2000 the group of Stefan Hell published results that show 

a twofold increase in resolution over normal diffraction-limited techniques [9]. 

By increasing the intensity of the depletion beam the excitation volume was 

decreased further and the resolution increased to 17 nm to-date. It should be 

noted that this increase of resolution comes at the cost of photodamage of the 

sample due to the high intensity depletion beam. The non-radiative pathway also 

strongly decreases the lifetime of fluorescent decay in the doughnut region. By 

measuring the arrival time of the emitted photons and setting a minimum time 

tg for the photon arrival time, the volume that contributes to the signal could be 

further decreased without having to increase the intensity of the depletion beam. 

This technique was published in 2011 and named time gated STED [10]. 

A different method that enables a decrease in the intensity of the depletion beam 

is reversible saturable optical fluorescence transitions microscopy, or RESOLFT 

microscopy [11]. In RESOLFT microscopy the doughnut-shaped depletion 

beam reversibly switches the fluorescent molecules into an off-state, so that 

emission only emerges from the center of the beam. Using switchable 
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fluorescent molecules that switch at a low intensity enables a low-intensity 

depletion beam. 

1.3 SINGLE MOLECULE FLUORESCENCE 
Another technique that breaks the diffraction limit is based on the imaging of 

single molecules. In 1989 W.E. Moerner’s lab at IBM detected the first individual 

molecules by measuring their absorption spectrum at cryogenic 

temperature [12]. A tunable laser illuminated the sample and the detector 

measured the total absorption. By spectrum analysis they could show that the 

signal originated from a single molecule. At the same time Orrit and Bernard 

measured individual fluorescent molecules by their excitation spectrum, which 

gave a much higher signal-to-noise ratio [13]. 

In 1995 Takashi Funatsu et al. showed the possibility of imaging the emission of 

individual fluorescent molecules using a sensitive, cooled CCD detector and 

excitation by total internal reflection. With this system they could observe single 

ATP/ADP turnovers by kinesin motors [14]. A year later T. Schmidt et al. 

imaged individual labeled lipid molecules in an artificial lipid bilayer [15]. They 

stated that the individual fluorophores would act as point sources and produce 

a PSF on the camera. By fitting the PSF with a 2D-Gaussian the position of the 

molecule could be obtained to a much higher resolution than the diffraction 

limit. In their experiment they showed a positional accuracy of 30 nm at a 

temporal resolution of 7 ms. This allowed determination of the diffusion 

constant of individual lipids [15]. Since then this technique was used to 

determine the diffusion constant of many different molecules in artificial 

systems, in cells and even in an animal, but it was limited to a low density of 

fluorophores. At high densities the individual PSF’s would overlap, making 

single molecule microscopy impossible. 

1.3.1 Photoactivatable fluorescent proteins 

An important discovery that enabled single molecule imaging was the 

photoactivatable fluorescent protein (PA-FP) named Kaede in 2002 [16]. When 

searching for new fluorescent proteins in the stony coral Trachyphyllia geoffroyi, 

an aliquot of a sample was accidentally left on the windowsill. The next day the 

Miyawaki group found it had turned from green to red. A more detailed 

investigation showed this photo-convertible protein had a native fluorescent 

state with an absorption and emission spectrum in the green wavelength region, 
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but the spectra switched to the red wavelengths when illuminated with near UV 

light (Fig. 3). 

 

Figure 3: Structure of the chromophore of the PA-FP Kaede [17]. Phe61-His62-Tyr63-Gly64 are drawn 
with their surrounding amino acids LTTA-FHYG-NRVF. When illuminated with UV light the bond 
between phenylalanine-61 and histidine-62 is broken and the protein is converted from a green to a red state. 

In 2002 the group of J. Lippincott-Schwartz genetically engineered a variant of 

GFP that could be photoactivated using 413 nm light to increase its fluorescence 

100 times [18] 

1.3.2 PALM STORM and fPALM 

The necessity of spatially well separated point spread functions limited the 

maximum density of fluorescent molecules. Therefore single molecule detection 

could not result in high resolution images. The sampling density was too low to 

image enough single molecules in a small region to resolve small structures. This 

limit in sampling density is equivalent to the Nyquist-theorem as discussed later 

in this chapter. 

By illuminating PA-FPs with low intensity UV light only a few of them will be 

converted. These can be localized and will subsequently bleach. This process can 

continue until all proteins have been converted and localized, enabling a high 

sampling density. Three groups independently utilized this method in 2006. 
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Figure 4: Schematic representation of PALM. A small population of the green form of a PA-FP is converted 
by low intensity UV light into the red form. These molecules are excited and the fluorescence signal is collected 
on a camera. By fitting a 2D Gaussian the location of the PA-FP is obtained. By repeating the cycle all PA-
FP’s can be localized. 

Betzig et al. attached PA-FP Kaede to the lysosomal transmembrane protein 

CD63. By expressing this construct in cells they obtained a super-resolution 

image of CD63. They termed the technique photoactivated localization 

microscopy (PALM) [19]. S. Hess et al. localized PA-GFP on glass coverslips 

and termed the technique Fluorescence photoactivation localization microscopy 

(FPALM) [20]. The Zhuang group did not use fluorescent proteins, but used the 

dye Cy5. Cy5 is a fluorescent dye that can be switched between a fluorescent and 

a dark state by light of different wavelengths in the presence of another Cy-

fluorophore in its vicinity [21]. They termed the technique stochastic optical 

reconstruction microscopy (STORM). With STORM they could separate two 

dyes on double stranded DNA that were 34 nm apart [22]. 

1.3.3 dSTORM 

In 2008 the group of Sauer showed that the switching properties of conventional 

dye molecules were altered by adding reducing, thiol-containing compounds to 

the solution [23]. When excited, the fluorophores can undergo intersystem 

crossing, placing them in an excited triplet state. In this state the fluorophore 

can react with the reducing thiol and transfer into a long-lived dark state that is 

decoupled from the excitation scheme. This greatly reduces the number of 

molecules that are visible at the same time. The non-fluorescent fluorophores in 

the reduced triplet state can return to the fluorescent state by a reaction with 

oxygen. Changing the oxygen concentration and the thiol concentration will 

hence change the switching dynamics of the dye molecule. This made it possible 
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to use conventional antibody labeling techniques for super-resolution imaging. 

This technique is commonly known as direct STORM, or dSTORM. 

 

Figure 5: The energy diagram for dSTORM imaging [24]. When excited, the fluorescent dye molecule goes 
from the singlet ground state (1F0) to the singlet excited state (1F1), and falls back while emitting a photon. 
From the excited singlet state it can also undergo intersystem crossing (isc) to the excited triplet state (3F). By 
reacting with a reducing thiol (RSH) it can then go into a long lived dark state (F●). By changing the thiol and 
oxygen concentration the fraction of molecules in the dark state can be altered. 

PALM, fPALM, STORM, and dSTORM can be summarized under the term 

single molecule localization microscopy (SMLM). Effectively all SMLM 

techniques make use of a small population of fluorophores that is in a visible 

“on-state” where they can be localized. The majority of fluorophores is stored 

in a non-visible “off-state” from where they stochastically return to the “on-

state” for detection. 

1.3.4 3D SMLM 

The above mentioned methods permit to localize individual molecules at a 

precision down to about 10 nm. Their on-axis position however is inaccessible. 

The axial position could be obtained by realizing that the point spread function 

(PSF) is symmetrical in the z-direction. When the point source moves out of 

focus the size of its image will increase. Several ways to adapt the optical setup 

to enable 3D localization of a point source were presented since 1998. 

Bi-plane imaging 

In 1998 van Oijen et al. showed that they could resolve the axial position of a 

single pentacene molecule with 100 nm accuracy [25]. This was done by scanning 

the focal plane over the molecule and recording the PSF. The focal plane was 

scanned by moving the camera. By fitting the width of the PSF with respect to 

the camera position, the minimum can be obtained. This yields the axial position 

of the molecule. 
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In 2004 the group of R.J.Ober enhanced the technique by using a 50/50 beam 

splitter in the emission path [26]. The two emission paths where imaged on two 

camera’s at different focal planes. This allowed for simultaneous bi-plane 

imaging. In 2007 they showed this technique was applicable for 3D particle 

tracking [27]. However, splitting of the signal means the signal to noise is half of 

the 2D situation, reducing the positional accuracy in x and y by a factor √2. By 

aligning the two images the two fits can be combined and, depending on the 

precision of the alignment, part of the loss in positional accuracy can be 

recovered. 

The group of Bewersdorf applied the bi-plane technique in 2008 to SMLM [28], 

naming it BP-FPALM. 

Astigmatism 

A cylindrical lens focusses the light only in one axis, by effectively shifting the 

focus of the light in one axis to a different plane. When a point source is in focus 

on one axis, it will be out of focus on the other axis and the PSF will be elongated 

in that direction. This mechanism has been the basis of focus-control in CD-

players [29]. In 1994 the Verkman group published tracking of fluorescent 

particles in 3D using a cylindrical lens in the imaging path [30]. When the 

fluorophore is equally out of focus in both directions it appears round. By 

aligning the cylindrical lens with the camera the 3D information can be obtained 

by fitting a 2D Gaussian with a different width in x and y. In 2007 the technique 

was used to track quantum dots in living cells by Holtzer et. al. [31]. The group 

of Zhuang developed 3D STORM imaging using this technique in 2008 [32]. 

Since the signal of a single fluorophore is spread out over a larger area the signal 

to noise per pixel drops and the positional accuracy in x and y is reduced. 

Double-helix point spread function 

In 2008 Pavani and Piestun showed that the shape of the PSF can be altered 

using a phase-only spatial light modulator in the imaging path [33]. They 

engineered a double helix PSF where the relative orientation of the two points 

contains the z-information (see Fig.6) 
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Figure 6: The helical point spread function from [34] The angle between the two detected points of the PSF 
changes when the axial position of the fluorophore changes. 

The x-y position is found by interpolating the two points. In 2009 the group of 

Moerner showed the application to SMLM [34] and has developed the technique 

since. The technique needs a method to alter the PSF and will lose photons while 

doing this, decreasing the resolution. However, by using a custom designed 

phase plate the losses can be minimized. The double-helix PSF has the advantage 

of being accurate over a large axial region, but it requires a different fitting 

algorithm to retrieve x-y-z information. 

Selective plane illumination 

The adapted PSF allows 3D imaging of samples and enables the acquisition of 

data from the entire sample. When the sample is thicker than the axial length of 

the adapted PSF, the objective is moved to image different planes. By adding the 

movement to the found z-position a thick sample can still be imaged. 

However, the planes that are not being imaged still receive excitation light, since 

the collimated beam from the objective illuminates the entire column. This 

means that fluorophores that out of the imaging plane are photobleached. To 

overcome this problem Zanacchi et al. introduced a second objective to 

selectively illuminate only the focal plane of the imaging objective [35]. By 

moving the illuminating objective with the imaging objective only the molecules 

that are in focus are excited. This enables super-resolution imaging with minimal 

photo bleaching in three dimension. They named this technique “individual 

molecule localization – selective plane illumination microscopy” IML-SPIM. 
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iPALM 

An entirely different approach to explore the 3rd dimension was published in 

2009 by the group of H.F. Hess [36]. By using a second objective the light 

emitted by a single fluorophore is split into two beam paths. These are combined 

in a 3-way interferometer that splits the signal onto three camera’s. The ratio 

between the three signals is a measure for the axial position of the fluorophore. 

This enables determination of the axial position to 4 nm positional accuracy and 

10 nm lateral for signal of 1500 photons/frame. 

1.4 COMPARISON BETWEEN IMAGING TECHNIQUES 
To compare super-resolution imaging techniques there are a few parameters that 

can be compared. Resolution, measurement speed, photo damage, and 3D-

imaging possibility. 

Structured illumination has the lowest resolution of the mentioned techniques. 

The maximum improvement with respect to confocal microscopy is a factor of 

√2. The measurement speed is very fast, since only a few images need to be taken 

at different structured illumination conditions. Modern optical elements can 

change the structured illumination conditions very rapidly. The photo damage 

will not be higher than for normal confocal microscopy. The technique uses 

standard optical techniques, hence it can be directly applied to any fluorescent 

sample. 

NSOM can reach very high resolutions by decreasing the size of the aperture. 

However the detection efficiency decreases rapidly with decreasing aperture and 

in practice the limit is at 10-20 nm. Another drawback is the need to stay in the 

near field. This limits the detection to just a few nanometers from the tip, making 

it essentially a 2D technique. 

STED has shown a resolution increase of 10-20 with respect to the diffraction 

limit. Since this technique uses optical scanning that is already developed for 

scanning confocal microscopy it can be applied to any fluorescent sample. The 

measurement speed scales with the number of pixels. With modern resonant 

scanning mirrors the frame rate can be very high. By moving the sample with 

respect to the objective and scanning again, the third dimension can also be 

imaged in slices. However, the high intensity of the depletion-beam makes it 

unsuitable for live cell imaging. RESOLFT has tackled this problem, but requires 

preparation of the sample with a suitable fluorophore. 
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SMLM can also improve the resolution by a factor of 10-20 with respect to the 

diffraction limit. However, because many fluorophores need to be detected, the 

measurement speed is limited to a few frames per minute. High excitation 

intensities make it a challenging technique when applied to live cells. The 

technique also requires preparation of the sample with photoactivatable proteins 

or photo switchable dyes. 3D-imaging is possible by various methods that adapt 

the point spread function of the optical setup. dSTORM works with 

conventional dyes, but requires switching buffer conditions that are often 

detrimental to cells. Adapting the buffer conditions to keep the cells alive and 

the dye molecules switching is a challenge. 

1.5 QUANTIFICATION OF SINGLE MOLECULE DATA 
The images acquired by single molecule localization microscopy (SMLM) are 

constructed from the determined location of many single molecules. This makes 

them fundamentally different from normal microscopy images, where the image 

is constructed from the signal of the molecules. 

1.5.1 Nyquist-Shannon sampling theorem 

To resolve a structure it is necessary to not only have a high positional accuracy, 

but also have a sufficient high sampling density. This is analogous to the 

Nyquist-Shannon sampling theorem for one-dimensional signals. It states that 

to resolve a certain frequency fs the sampling frequency must be at least 2 fs. (see 

Fig. 7a) 

 

Figure 7: Sampling of a structure. A) Nyquist sampling. to resolve two 100nm structures that are 100nm 
apart, the sampling period needs to be smaller than 50nm.  
B) Localization microscopy has no fixed sampling and only localizes the structure itself. 
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Single molecule localization differs from normal sampling because there is no 

fixed sampling frequency and the detections are only on the structure itself (see 

Fig.7b). Therefore the Nyquist-Shannon sampling theorem is rewritten to say 

that the shortest detectable spatial period (T) that can still be resolved must be 

twice the mean molecular separation between neighbors (see Eq. 6) [37]. 

𝑇 =
2

𝑛
∑𝑀𝑖𝑛𝑗 {(𝑥𝑖 − 𝑥𝑗)

2
}
½

𝑛

𝑖=1

 (6) 

To resolve a 10nm structure (r) on a line, the localizations must have a mean 

molecular separation between neighbors of 5nm. Therefore the minimum 

sampling density (𝜌) must be 200 µm-1. This scales with the imaging dimension 

(D) (see Eq. 7). 

𝜌 = (
2

𝑟
)
𝐷

 (7) 

However, overlapping PSFs of individual molecules cannot be resolved. 

Therefore two detections within the distance of one PSF must be separated in 

time. In the optimal situation where reappearance of the molecule is random and 

molecules are bleached after one detection. The highest efficiency is obtained 

when p is 0.2/√n with p the probability of each molecule to appear. (see Fig. 8) 

On average there is one detection every six frames.  
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Figure 8: Simulation result of N=100 (blue), 200 (red), 300(black), molecules in a PSF with different 
probability of appearing. For a low probability the number of frames required becomes high. At a high 
probability only a few frames are required to bleach all molecules. The optimal number of frames per detections 
depends on the probability of a molecule appearing and the number of molecules in a PSF. A probability of 
0.2/√N gives the optimal value for the number of required frames per detection. However, at this value many 
molecules will be discarded since they appear at the same time in the PSF. 

This causes a fundamental tradeoff in single molecule imaging. The spatial 

resolution gain comes at a temporal resolution loss. Equation 8 shows this 

tradeoff with t the minimal time needed, f the framerate r the resolution, and 

PSF the distance, surface or volume of the PSF.  

𝑡 =
6 ∙ 𝑃𝑆𝐹

𝑓
(
2

𝑟
)
𝐷

 (8) 
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This would mean to obtain an image with a resolution of 20nm in 2D with a 

100Hz camera and a PSF with a FWHM of 240nm takes at least 27 seconds of 

imaging. 

1.5.2 Image construction 

To obtain an image from localization data the locations must be mapped onto a 

pixelated area. This can be done by quantizing the localizations to the pixels of 

the image. This is also called binning or bucketing. However, the resulting image 

is depending on the chosen pixel size. When the pixels are large with respect to 

the structure the resolution will be greatly reduced. When the pixels are small 

with respect to the sampling density the structure can become binary and 

discontinuous. (Fig.9) 

 

Figure 9: Three representations of the same set of 150 localizations with different size pixels. 
A= 5x5, B=20x20, C=100x100 

Another possibility is to construct a probability density map. The 2D-Gaussian 

fit to the image data (Fig.10) gives a mean and standard deviation for the value 

of the center of the Gaussian. The probability density of the center position can 

be described with a 2D-Gaussian. By summation of all probability densities the 

probability density to find a molecule within an area can be calculated. (Fig. 10) 

This has the benefit of incorporating the fitting accuracy in the image, preventing 

a false sense of accuracy. 
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Figure 10: Probability density map of the 150 localizations from figure 5. 

This effect is seen when comparing figure 9c with figure 10. Figure 9c appears 

to pinpoint the position of molecules; from figure 10 it is clear the position of 

the molecules was not determined with absolute accuracy. However, for large 

datasets the calculation and summation of 2D Gaussians can be time consuming. 

1.5.3 Stoichiometry and multiple detections 

In biology it is often important to know the exact number of proteins in a 

complex to understand more about the underlying mechanisms. The relative 

amount of a protein in a complex is called stoichiometry. SMLM would seem to 

be an ideal tool to determine the number of molecules present in a sample. After 

localizing all molecules one could determine the stoichiometry just by counting. 

However, the technique suffers from multiple detections of the same molecule. 

When a fluorescent molecule is in the visible state, the emission will be detected 

by a camera. The camera takes in the order of 60-200 frames per second. When 

the molecule is visible for a period longer than the exposure time of the camera, 

it will appear in multiple frames. The common solution to this problem is to 

group detections that happen in the same region of the image and either remove 

all but one, or combine them into a single detection. This requires a parameter 

Δr, the radius of the circle where a second detection is considered a re-

appearance of the same molecule. Often this parameter is linked to the goodness 

of the 2D-Gaussian fit. When molecules can diffuse it is important to increase 

Δr to correct for double detections. A risk with this method is the exclusion of 

a second molecule that happens to be within Δr of a previous detection. 

dSTORM 

In dSTORM the fluorescent dye will undergo transitions between a fluorescent 

“on-state” and a non-fluorescent “off state” (Fig. 5). As a result the same 
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molecule can be detected multiple times, with extended dark times in between 

detections. To correct for this, a second parameter can be introduced, Δt, for 

the maximum dark-time where a new detection within Δr is considered the same 

molecule. However, for some dyes these dark-times can be in the order of tens 

of seconds, requiring Δt become very large. It also increases the chance a second 

molecule is excluded which appears within Δr and Δt. This effect makes 

molecular counting in dSTORM difficult. (see Chapter 5 for more details) 

PALM 

In PALM the PA-FP is cleaved by UV light, converting it into a red state. The 

molecule is either in a red “on state” or a green “off state”. The difference is that 

once a PA-FP is converted to the red state it cannot return to the green state. It 

can go into a triplet darkstate, but this state is reactive and will often result in a 

destructive reaction with triplet oxygen in a cellular environment leading to 

photobleaching. To prevent a molecule to be detected again after a successful 

return from the triplet state, Δt can be chosen such that the chance of double 

detections is minimal. This value will depend e.g. on the oxygen concentration. 
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1.6 OUTLINE OF THIS THESIS 
In this thesis we use SMLM to quantitatively investigate four different proteins 

that play an important role in cells. By localizing the proteins to sub-diffraction 

limited precision we analyzed parameters such as size, diffusive behavior and 

stoichiometry. To do so we had to develop strategies that allowed us to obtain 

quantitative data in a robust way. 

In chapter 2 we show the spatial distribution of different isoforms of the rat 

sarcoma (Ras) protein in order to quantify their collective diffusive behavior. 

The spatial distributions are measured using photoactivated localization 

microscopy on the PA-FP mEos2, genetically tagged to the Ras isoforms. By 

imaging fixed cells we observed membrane domains of 65 nm in size. In living 

cells we observe an increase in domain size to 150 nm. By simulating cluster 

diffusion we were able to understand our result. The data were consistent, 

assuming a diffusion constant for the domains of 5×10-4
 µm2/s. 

In chapter 3 we analyzed the 3D diffusive behavior using SMLM on yellow 

fluorescent protein (eYFP) fused to the glucocorticoid-hormone receptor. On 

activation of the receptor it translocates to the nucleus and is allowed to bind to 

specific target sites on DNA. Since we imaged only in a thin 2D-slice of the 

nucleus systematic errors in quantification of the diffusive behavior were 

introduced. We developed a method by which those errors are corrected for. We 

show that the receptor is present in two fractions, which are distinct in their 

diffusion constant of 0.67 and 0.043 µm2/s, respectively. Furthermore we show 

that there was no exchange between those two fractions on the timescale 

between 6.5 and 150 ms. 

In chapter 4 we imaged the spatial distribution of the protein α-synuclein in 

cells. We showed that small preaggregated fibers were taken up by cells within 

24 hours. Unlike earlier predictions we could not find any aggregation of fibers 

occurring after cellular uptake. On the contrary we found that aggregates 

decreased in size over time presumably by lysosomal degradation. 

In chapter 5 we analyzed the stoichiometry in focal adhesion complexes using 

dSTORM. The stochastic blinking and labeling of proteins so-far prohibited any 

quantitative analysis of the number of proteins in such complexes. We here 

developed a methodology based on second order spatial correlations to extract 

the number of proteins from localization data without the need for a detailed 

knowledge about the photophysics and labeling statistics. We applied this 



1.6 Outline of this thesis 

 
22 

methodology to relate the local force exertion by cells to the availability of 

proteins at this position. For the case of talin, one of the essential proteins in 

focal adhesions and a potential force regulator, we found an increase of cellular 

force of 100 pN/talin molecule. 
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CHAPTER 2 

SINGLE MOLECULE STUDY OF RAS MEMBRANE 

DOMAINS REVEALS DYNAMIC BEHAVIOR 

Abstract 

It has been conjectured that the differential behavior of the various isoforms of 

the small GTPase Ras is related to their spatial and temporal organization in the 

plasma membrane. Indeed, earlier experiments by fluorescence photobleaching, 

single molecule tracking, fixed cell super-resolution microscopy and cryo 

electron microscopy showed that Ras proteins are localized in membrane nano-

domains. It showed the domains differ in size depending on the specific isoform 

characterized by the specific membrane anchor. Here we performed live-cell 

super-resolution imaging with 18 nm positional accuracy on the membrane 

anchors of the various Ras isoforms. Comparison between live-cell and fixed-

cell super-resolution microscopy on the membrane anchor of H-Ras showed 

broadening of the apparent domain size. We show that domain mobility of 5*10-

4 µm2/s can quantitatively explain the broadening of the apparent domain size 

with observation time. 
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2.1 INTRODUCTION 
Ras proteins are small GTPases that reside in the cytosolic leaflet of the plasma 

membrane [1]. The discovery of mutated, constitutively active Ras proteins in 

several cancers triggered extensive research into the Ras-family of proteins [2–

4]. Ras proteins are active in the GTP-bound form and signal towards several 

pathways including Raf [5–8] and MAPK [9,10]. The activation of Ras by 

membrane-bound receptor proteins like the insulin receptor is mediated by 

guanine nucleotide exchange factors (GEFs) that release GDP from Ras and 

therefore allow binding of GTP [11] GTPase activating proteins (GAPs) on the 

other hand deactivate Ras by promoting the conversion of GTP to GDP [12,13]. 

For an efficient and reliable working of this activation/deactivation cycle it is 

advantageous when membrane receptors, Ras, GEFs and GAPs are spatially 

organized to facilitate the interaction of Ras with the various regulatory proteins 

crucial to Ras signaling. 

The Ras family of proteins consists of three different isoforms: the H-Ras, N-

Ras and K-Ras. Expression of mutants of these isoforms vary for different types 

of cancer [14] This indicates a different function for each of these isoforms in 

normal cells. It is interesting to note that the GTPase domain of all Ras isoforms 

is almost identical, but the various isoforms serve different functionalities. The 

difference in functionality seems to rely on the last 25 amino acids on the C-

terminus, that have a homology of less than 15% and form the so-called hyper 

variable region (HVR) of Ras [15]. The C-terminal domain is further post 

translationally modified to contain hydrophobic lipid anchors that protrude the 

inner leaflet of the plasma membrane. Whereas H-Ras has three such anchors, 

the N-Ras isoform has two and K-Ras has one hydrophobic anchor on top of a 

10 amino acid long positively charged lysine stretch [14] Given the large 

similarity when excluding the HVR, it can be speculated that the different 

functionalities of Ras isoforms are associated with a differential localization into 

the plasma membrane as dictated by their lipid anchor. Association to different 

local membrane environments might in turn influence their interaction with 

GEFs and GAPs. 

The plasma membrane of cells has long been modeled according to Singer & 

Nicholsons fluid-mosaic [16]. In this model the membrane is described as a 

uniform, two dimensional liquid that enables membrane proteins to diffuse 

freely. The last decades have seen compelling experimental evidence of a more 

heterogeneous and dynamic picture of the plasma membrane. E.g. for Ras earlier 
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studies from our lab and others showed that the diffusion for both H-Ras and 

K-Ras is confined to domains that have a size on the order of 200 nm [17]  [18]. 

Likewise, with the development of optical super-resolution techniques 

localization of membrane-bound proteins in fixed cells has been 

investigated [19] Those experiments showed clustering of membrane proteins 

into domains of a size that was found compatible with the earlier findings using 

single molecule tracking. 

Here, photoactivatable localization microscopy (PALM) is applied to directly 

observe the clustering of membrane anchors in living cells. To investigate their 

organization on the plasma membrane we transiently expressed the C terminal 

domain of the various Ras isoforms linked to mEos2 and the N terminal domain 

of Src linked to mEos2. mEos2 is a photoconvertible fluorescent protein that 

enables us to utilize optical super-resolution microscopy and to visualize plasma 

membrane domains and their dynamics. We show that membrane domains have 

a size of 40-50 nm, corroborating earlier electron microscopy data, that those 

domains are mobile within the plasma membrane, and must be stable for at least 

7 s. 
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2.2 MATERIALS AND METHODS 

2.2.1 Microscope 

For excitation of the green fluorescent state of the photoactivatable protein 

mEos2, a 488nm DPSC-laser (Coherent) was used. The red state was excited 

using a 532nm DPSS-laser (Cobolt). Photoconversion of mEos2 was initiated 

by a 405nm diode laser (Crystalaser). The laser beams were overlaid by dichroic 

mirrors, passed an acousto-optic tunable filter (AOTFnC-400.650, aa optics) and 

fed into a mono-mode fiber before coupled into the microscope. 

The microscope (Axiovert S100, Zeiss) was equipped with a 100x, 1.4NA oil-

immersion objective (Zeiss). Lasers were coupled into the back port. The 

emission light was passed through a 4-channel dichroic mirror 

ZT405/488/561/638rpc (Chroma) and a dual channel emission filter 

ZET561/640m (chroma). The image was finally focused onto a sCMOS camera 

(orca flash 4.0V2,Hamamatsu). 

To image live cells the medium was replaced by pure dulbecco's modified eagle 

medium (DMEM). Cells were mounted in a custom made holder for a stage 

incubator (TokaiHit incubater stage INUBG2ESFP-ZILCS). For life cell 

measurements the device was set to 37°C and 5% CO2 atmosphere. 

During search for transfected cells the 488 nm intensity was kept at 100 W/cm2. 

To detect individual molecules on a fairly flat part of the apical membrane we 

regularly chose a region on top of the nucleus. Activation and photoswitching 

intensities with 405 nm were set between 0 and 20 W/cm2, depending on the 

expression level and prior activation. Imaging with 532 nm was done at 3 

kW/cm2 for 3000 frames. Cells were illuminated for 10 ms per frame at a frame 

rate of 79 Hz. 

2.2.2 Correction for double detections 

One issue in localization microscopy when used to quantify local distributions is 

the potential sequential detection of molecules in multiple frames due to 

insufficient photobleaching. In imaging, double counting would lead to artifacts 

and would lead to an apparent clustering. There are various methods to minimize 

double detections in stochastic imaging [20]. Here we used a windowed-filtering 

where sequential detections within the localization precision of a molecule were 

removed for a time-window of 10 frames, i.e. 0.13 s of total exposure. mEos2 

has been shown to have a typical off time of 0.1 ± 0.01 s at 1kW/cm2 excitation 
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intensity and 100 mW/cm2 activation intensity [21]. Assuming that those 

intensities are still in the linear regime, we predict a double-count probability of 

exp(-3*0.13/0.1) = 0.02 at an excitation intensity of 3 kW/cm2 for the 10-frame 

exclusion window chosen. 

2.2.3 Cell culture and transfection 

Plasmids 

Plasmids were cloned by inserting the membrane targeting domain of human 

Ras at the c-terminus of mEos2 N11K / E70K / H74N / V123T / T158H / 

H121Y. For srcN15 the sequence was attached to the n-terminus. 

H-CAAX: 

N-CAAX: 

K-CAAX: 

SRCN15: 

-GCMSCKCVLS 

-GCMGLPCVVM 

-KKKKKKSKTKCVIM 

MGSSKSKPKDPSQRRNNNN- 

Cells 

COS-1 cells were grown in growth medium; DMEM without phenol red (Life 

Technologies) supplemented with 10% FCS under conditions of 37 degrees 

Celsius and 5% CO2. Prior to transfection cells were plated in 6-wells plate on 

coverslip glasses. Transient transfection was carried out using FuGENE HD 

transfection agent (Promega), following manufacture’s procedure, but allowing 

for 3hrs incubation time of the DNA plasmid and transfection reagent. Two 

days post transfection cells were imaged in conditions similar to culturing 

conditions. 

Fixation of cells was done by incubation for 15 minutes in 4% paraformaldehyde 

in phosphate buffered saline at room temperature. 

2.2.4 Analysis software 

Fluorescence images were taken with up to 3000 images per measurement. The 

fluorescence signal on the sCMOS from individual molecules was fitted with a 

2 dimensional Gaussian using a custom LSE algorithm in Matlab [22]. 

2.2.5 Ripley 

Ripley’s analysis [23] was performed in Matlab with edge correction as suggested 

by Diggle. [24] 
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2.2.6 Bootstrapping and automatic selection 

Ripley’s analysis is sensitive to artifacts originating from edge effects. To obtain 

statistics, and to deal with these artifacts we used a bootstrapping method. We 

calculated Ripley’s curves for small regions-of-interest of 1x1 µm2 in size. When 

the curve would not rise above 50 nm the square would be considered random 

and discarded from the analysis. 

When such an area is located on the edge of a cell there will be no large distances. 

The effect of this is that the value of L(r)-r curve will not decrease back to 0 for 

large radii, but instead end above zero. In further analysis also those curves were 

discarded. 

Therefore Ripley’s L(r)-r curves were removed based on two properties: 

1) The last 90% in r must be between -30 and 30 nm 

2) From r = 260 nm to the end, the curve must decrease 

These criteria showed effective removal of ROI’s at the edge of a simulated point 

pattern (see supplemental Fig S1). 

2.2.7 Simulation of cluster diffusion 

6000 freely diffusing objects together with 60 randomly positioned clusters of 

50 objects each were generated. The 60 clusters were allowed to diffuse with a 

given diffusion constant and a mean lifetime from an exponential distribution. 

When a cluster reached its lifetime the points were allocated to the 6000 freely 

diffusing objects, and a new position was chosen as a formation location for a 

new cluster. The nearest objects were taken from the freely diffusing fraction 

and reallocated to the cluster. From this simulation 3000 frames of 2 realizations 

were selected. 
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2.3 RESULTS 

2.3.1 Imaging of H-CAAX in fixed COS1 cells 

The nanoscopic distribution of the membrane-anchoring domain of Ras, the so-

called CAAX-domain, was studied in the cytosolic leaflet of the plasma 

membrane using photo-activatable localization microscopy (PALM). We fused 

the sequence of the green-to-red photo-convertible fluorescent protein mEos2 

to the anchoring domains of the various Ras isoforms leading to the H-CAAX-

mEos, N-CAAX-mEos, and K-CAAX-mEos constructs, respectively (see 

Fig.1a). COS1 cells were transiently transfected with the constructs. Transfected 

cells showed a clear localization of the fluorescent constructs to the plasma 

membrane confirming earlier results for the CAAX-YFP constructs [25] in 3T3-

fibroblasts. 

 

 

 

Figure 1: A) Schematic representation of the different CAAX constructs.  
B) Fluorescent image of H-CAAX-mEos2 clearly shows membrane localizations in Cos1 cells. Excitation 
488nm, 100W/cm2, 10ms. 
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The membrane localization is exemplified for H-CAAX-mEos in Figure 1b 

when imaged on a confocal microscope for excitation of the green form of 

mEos at 488nm. 

Subsequently cells were imaged on a camera-based wide-field single molecule 

imaging setup for super-resolution PALM microscopy. In PALM only a small 

subset of fluorescent molecules are activated in each frame, thereby temporally 

separating the fluorescent emission of individual molecules and allowing to 

distinguish the signals from individual molecules. The signals are subsequently 

fit to the point-spread-function of the microscope. From the fit the location of 

each individual molecule is determined to high accuracy. Using mEos2, 

activation is achieved by a photoconversion of a few molecules (< 0.1/µm2) to 

the red form by low-intensity 405 nm light (1-50 W/cm2 for 10 ms). 

Subsequently individual H-CAAX-mEos in the red form were imaged using high 

intensity illumination of 3 kW/cm2 at 532 nm. The mean signal detected from 

individual H-CAAX-mEos molecules was 300±130 photons per illumination 

time of 10 ms. This signal permitted to localize individual H-CAAX-mEos to a 

precision of 17 nm (Fig. 2), as predicted theoretically [26]. 
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Figure 2: Characteristic properties of the optical setup  
A) Frame with the signal of several mEos2 molecules. Scale bar = 2µm  
B) Histogram of the sigma of positional accuracy. Mean 18 nm  
C) Zoom-in of white square to show Gaussian intensity.  
D) Histogram of the intensity of localizations. Mean 317 photons. 
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Figure 3: 5406 independent positions on the apical side of a fixed COS1 cell, that were detected within one 
measurement of 38 s (3000 frames) are shown for the H-CAAX-mEos2 construct 
A) Localization of H-CAAX-mEos2 in fixed COS1 cells. Scalebar: 2µm.  
B) Zoom-in of the red square. Clustering is observed in small domains. Scalebar: 200nm.  
C) Ripley’s analysis on 7 cells. 51244 localizations were used. For each cell 1000 subsets of 1×1 µm were 
analyzed. The solid line is the median of all analyses, the shaded area contains 75% of all analyses. The 
maximum of L(r)-r appears at 65±3 nm. 22±2% of the molecules were distributed at random. 

  

B A 
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In figure 3 the localization data for H-CAAX-mEos2 clearly shows a large 

inhomogeneity in the spatial distribution of the protein on large (1 µm; figure 

3a) and small (0.1 µm; figure 3b) length scales, indicative for clustering of H-

CAAX. 

To quantify the inhomogeneity we used a variant of Ripley’s spatial statistics 

analysis [23]. In Ripley’s analysis the mean number of neighbouring molecules 

up to a given distance, r, is compared to a spatially random situation (see 

chapter 2.2: materials and method). Deviation of Ripley’s curve from zero is 

indicative of a spatially non-homogeneous distribution with clustering for 

positive, and depletion for negative deviation from zero. The position of the 

maximum corresponds to the typical size of a cluster [23]. The accuracy of the 

analysis was estimated by a bootstrapping strategy. For each image of 10x10 µm2 

we extracted 1000 randomly positioned, partially overlapping spatial subsets of 

1x1 µm2 in size for which Ripley’s analysis was performed. The mean (solid line) 

and 75% quantile (shaded areas) of such bootstrap analysis applied to the data 

in figure 3a is shown in figure 3c. H-CAAX showed a significant deviation from 

a random distribution. For a random distribution it has been shown that the 

absolute value of Ripley’s function |L(r)-r| does not exceed a value of 10 

nm [19]. For H-CAAX the Ripley curve assumes a maximum for a distance of 

65±3 nm. Further, we found that 22±2% of the H-CAAX molecules where 

randomly distributed. Those results corroborate our earlier findings by 

PALM [19] on a similar construct in which the membrane anchor was fused to 

dendra2 (for both, H-CAAX-dendra2 and the full HRas-dendra2), when taking 

into account the significant increase in positional accuracy from 40 nm in the 

earlier studies to 18 nm in the current study. The increase in localization accuracy 

was due to the use of the optimized mEos2 construct and the use of a sCMOS 

camera. From our data the typical size of H-CAAX domains is estimated to be 

65-2×18=29nm, taking into account the localization accuracy of 18 nm and the 

apparent typical domain size of 65 nm from the position of the maximum of 

Ripley’s curve in figure 3C. Our result is in excellent agreement with the cryo-

electron microscopy findings by Prior et al. [27] where a typical clustering length 

scale of 22 nm was reported. 

2.3.2 Imaging of H-CAAX in living COS1 cells 

We realized that the estimated membrane domain size that was found for fixed 

cells was significantly smaller (65 nm apparent size) compared to earlier findings 

by single molecule tracking (180-210 nm) [25]. Here we address the question on 
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whether and how the typical clustering size was modified by the fixation method. 

Therefore we performed PALM measurements on live cells for all constructs. 

A super-resolution image taken on the apical membrane of a living COS-1 cell 

when transfected with H-CAAX is shown in figure 4. The image was constructed 

from a 3000-frame image stack that lasted 38 s in total. In comparison to the 

results on fixed cells shown in figure 3, a significant broadening of Ripley’s curve 

was apparent. The position of the maximum of Ripley’s curve shifted 

significantly to 183±7 nm. 

Similar results were obtained for the other constructs (K-CAAX:figure 5b, N-

CAAX:figure 5c, and yet another membrane anchor from the src family of 

kinases:figure 5d). The maximum of Ripley’s curve was 160±4, 180±12 and 

172±11 nm for K-CAAX, N-CAAX and src, respectively. The bootstrapping 

suggest that K-CAAX clustered on a larger portion of the plasma membrane 

than the other constructs. 

The positions of the maxima found for the Ripley’s curves in live-cell PALM are 

in excellent agreement to our earlier findings using live-cell single molecule 

tracking (H-CAAX: 219 nm; K-CAAX: 206 nm) [25]. In those experiments, the 

length scale of clustering was estimated from diffusion measurements in which 

the mean-squared displacement displayed behaviour of confined diffusion. 
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Figure 4: Typical result of H-CAAX-mEos2 in living COS1 cells. 
A) Localization of H-CAAX-mEos2 in living COS1 cells. Imaging time 38 seconds. Scale bar: 2µm.  
B) Zoom in to the red square. Clustering is observed in domains on different scales. Scale bar: 200nm.  
C) Ripley’s analysis on 9 cells. For each cell 1000 subsets of 1×1 µm were analyzed. The solid line is the 
median, and the shaded area reflects the 75% interval. The position of the maximum is localized at 183±7 nm 
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Figure 5: Ripley curves of various membrane anchors. 
A) H-CAAX position of the maximum 183±7 nm; random population 57±1%. 
B) K-CAAX position of the maximum 160±4 nm; random population 37±1%  
C) N-CAAX position of the maximum 180±12nm; random population 50±1%  
D) SRC-N15 position of the maximum 172±11nm; random population 50±1% 
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We further designed experiments to understand the significant difference we 

found between results on H-CAAX obtained in experiments on fixed cells 

(position of the maximum 65 nm) in comparison to live-cell measurements 

(180 nm). It should be mentioned that sample drift, although increased from 20 

to 50 nm/min in the live-cell situation as determined by observation of fiducial 

markers, was too small to explain the difference. 

Ripley’s analysis assumes that the spatial pattern is stable during the course of 

the experiment. In fixed-cell experiments the distribution of the domains is 

frozen at the time point of fixation. However, in live-cell experiments any 

domain dynamics will lead to a broadening of Ripley’s curve and to a shift of the 

position of its maximum to higher values. It has been proposed that plasma 

membrane domains are mobile, dynamic entities with a lifetime of at least 

1 s [28] If they are responsible for the observed clustering of Ras and its 

membrane anchors we can expect the membrane anchors to behave similarly. 

For domains that are mobile we predicted that the position of the maximum of 

Ripley’s curve would increase with the observation time. 

 

Figure 6: The effect of shorter imaging time on the position of the maximum of Ripley’s curve. For shorter times 
the domains appear smaller. 

To test this hypothesis we analysed the data on live-cell H-CAAX in an 

observationtime dependent manner. We first restricted analysis to the initial 

2000 images (25 s) and then subsequently added additional image frames. The 
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shortest time window (25 s) was given by the minimum number of positions 

Nmin required to obtain a given spatial resolution Δr as set by the Nyquist 

theorem, Nmin = α(2L/Δr)2, given an image size of L2 covered by domains that 

contain only a fraction α. Aiming for a resolution of Δr = 60 nm in an image of 

size (6x6) µm2 at a coverage of 10%, Nmin = 4000. The data of HRas obtained 

from such analysis are shown in figure 6. As predicted for mobile domains the 

Ripley curves broaden with increase in observation time and the maximum of 

the curves shifted towards larger values. The position of the maximum for the 

shortest interval of 25 s was 112 nm, whereas it was 183 nm for the full 38 s 

image stack. 

In order to quantitatively understand our experimental findings we performed 

Monte Carlo simulations. 6000 freely diffusing objects together with 60 

randomly positioned clusters of 50 objects each were generated and 

subsequently allowed to diffuse, create and dissolve, such that the average 

number of clusters was kept constant (see chapter 2.2 materials and methods). 

Subsequently Ripley’s analysis was applied on the simulated image stack. Results 

of those simulations are shown in figure 7. We found that the lifetime of the 

clusters must be at least in the order of the minimum observation time (data not 

shown). For stable clusters that were allowed to diffuse, the maximum of 

Ripley’s curves shifted non-linearly towards larger values when the observation 

time was increased. The broadening and shift was dependent on the diffusion 

constant of the domains (data not shown). 

Taking our experimental findings as limits, the increase in domain size in living 

cells was recovered in the simulations by allowing domains of actual size of 65 

nm to diffuse. By setting the diffusion constant to Ddomain = 5-7 10-4 µm2/s and 

the domain lifetime larger than 7 s we could observe the same maximum in the 

Ripley curves as shown in figure 5 for live cells. 
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Figure 7: Monte-Carlo simulation showing the effect of cluster diffusion on maximum of Ripley’s analysis. 
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2.4 DISCUSSION 
The differential sensitivity and specificity of signaling by the various Ras 

isoforms has initiated a long discussion in the literature [29]. The general idea 

that emerged was that the differential behavior is controlled by the specificity of 

the membrane anchors in different isoforms. Thereby specificity might be 

controlled by the localization to specific nano-domains on the cytosolic side of 

the plasma membrane. Ras-specific nano-domains have been inferred from early 

fluorescence photobleaching recovery experiments [18], later single molecule 

tracking [30], fixed-cell super-resolution imaging [19] and cryo-electron 

microscopy [27]. Although the existence of Ras nano-domains is undisputed, the 

molecular origin, size, and dynamic behavior has so far not been addressed. Since 

all techniques mentioned above need special preparation methods a quantitative 

agreement between the results could not be achieved. 

Our live-cell data, at least in part, is able to alleviate the inconsistencies found in 

literature. We found that nano-domains indeed exist in the live-cell situation. We 

further found that domains are mobile and had a lifetime of at least 7 s. Their 

mobility readily explains the difference in size as obtained by cryoEM and fixed-

cell PALM when compared to single molecule tracking and live-cell PALM. 

Our simulations indicate that domain mobility is characterized by diffusion with 

a diffusion constant of Ddomain = 5×10-4 µm2/s. It appears interesting to note, 

that this diffusion constant is much smaller than that predicted for a cylindrical 

object in a 2-dimensional sheet as determined by the Saffman-Delbrück 

model [31]. From previous protein diffusion values of 0.1 µm2/s [30] for single 

proteins with an approximate radius of 1 nm we can derive a membrane viscosity 

of 8.4 Pa·s. This predicts a diffusion constant of an object of size 29 nm to be 

6.6×10-2 µm2/s. 

The significant difference in the observed diffusion constant with this prediction 

permits speculation about the molecular origin of the nano-domains. I.e. it 

appears very unlikely that domains reflect lipid inhomogeneities, like lipid 

rafts [32], in an otherwise homogeneous, unstructured lipid environment. 

Rather, our data point to an interpretation that Ras nano-domains reflect 

structuring of the membrane by some underlying, potentially cytoskeletal 

structure. This speculation is supported by earlier experimental findings by single 

molecule tracking in which the existence of membrane nano-domains was found 

to be independent of cholesterol extraction, however was dependent on 

breakdown of the actin cyto and membrane skeleton by the drug latrunculin [25]. 
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Hence, it is not too surprising that size and lifetime of the nano-domains is not 

significantly different for the different membrane anchors, a result that has been 

likewise found in earlier single molecule tracking experiments. [30] In order to 

prove the existence of distinct nano-domains, specific for the different 

membrane anchors, future dual-color experimental strategies will have to be 

employed in which colocalization or cross-correlation between the colors is 

analyzed. With the developments described in the current report, such 

experiments appear feasible. 

2.5 OUTLOOK 
Imaging of Ras nano-domains using fluorescence microscopy is a challenging 

task. Not only due to the small size, but also because of sparse labeling of the 

clusters. Experiments done on fixed 3T3 cells with H-CAAX-eYFP using STED 

microscopy resulted in fast bleaching of the fluorophores inside the cluster. 

Since STED is a scanning technique the signal is obtained the first time the spot 

moves over the cluster. This is presented as single horizontal line that becomes 

less intense from left to right. We did not move on to live cell microscopy using 

STED. 

The observed broadening of Ripley’s curve when more frames are taken into 

account is a potential tool to detect the diffusion of a small cluster of molecules. 

This effect has been show in simulations and for the membrane anchor H-

CAAX. To further prove this method it would be recommended to perform a 

control experiment where the sensitivity to cluster diffusion can be quantified. 

By crosslinking five GM1-mEos2 proteins using CtxB, stable clusters of 

photoconvertible fluorescent proteins can be created. One could then vary the 

framerate to increase the effect of diffusion on the broadening of Ripley’s curve. 

A recently discovered problem with mEos2 is the self-clustering on the plasma 

membrane. At its discovery in 2009 [33] it was reported that mEos2 showed a 

relative high tendency to form dimers. This was measured by polarization 

measurements on increasing concentrations of protein. Dendra2, another 

photoactivatable fluorescent protein, showed loss in polarization at 12 µM, 

mEos2 showed loss in polarization at 0.5 µM. Since 0.5 µM is still well below 

the concentrations in our experiments it gave no reason for concern. However 

in experiments on the membrane, the 2D confinement greatly increases the 

probability of interaction [34] Futhermore, Magenau et al. [35] showed that 

mEos2 influences membrane clustering of several probes. To quantify this effect 
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it would be required to compare experiments using for example Dendra2 and 

mEos2.  
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2.7 SUPPLEMENTARY FIGURES 

 

Figure S1: 40.000 random distributed points in a polygonal area. 1000 Ripley analysis were performed. The 
black squares represent the curves where the last 90% of the curve rose above the 30nm offset. At straight edges 
the distribution, thanks to the edge correction, is too random to rise above the 30nm offset. 
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1This chapter is based on: R. Harkes, V.I.P. Keizer, M.J.M. Schaaf and T.Schmidt, 

Depth-of-focus correction in single molecule data allows analysis of 3D diffusion of 

the glucocorticoid receptor in the nucleus . (PLOS ONE, 2015) 

CHAPTER 3 

3D DIFFUSION MEASUREMENTS OF THE 

GLUCOCORTICOID RECEPTOR 

 

Abstract 

Single molecule imaging of proteins in a 2D environment like membranes has 

been frequently used to extract diffusive properties of multiple fractions of 

receptors. In a 3D environment the apparent fractions however change with 

observation time due to the movements of molecules out of the depth-of-field 

of the microscope. Here we developed a mathematical framework that allowed 

us to correct for the change in fraction size due to the limited detection volume 

in 3D single molecule imaging. We applied our findings on the mobility of 

activated glucocorticoid receptors in the cell nucleus, and found a freely diffusing 

fraction of 0.49±0.02. Our analysis further showed that interchange between this 

mobile fraction and an immobile fraction does not occur on time scales shorter 

than 150 ms. 

 

3.1 INTRODUCTION 
Since the initial camera-based observation of the diffusion of individual 

molecules in artificial membranes [1], single molecule imaging technology has 

yielded a plethora of novel insights into the behavior of proteins and other 

membrane constituents in vitro [2–4], in cellulo [5–11] and in vivo [12]. Single 

molecule microscopy has been of great importance to quantify the diffusive 

properties of membrane constituents. Diffusive properties consequently report 

faithfully about the local structural properties of the membrane, the activation 

state of signaling pathways [13], transport of membrane components [14], or 

cellular regulation processes [15,16]. For a homogeneous system in equilibrium, 

one would predict that the ensemble-averaged mobility is hence governed by 

1 
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multiple populations, each reflecting a distinct molecular state of its 

components. Indeed, experimental verifications of this prediction have 

ubiquitously been found. Whether particle-averaged mean-squared displacement 

analysis [17], molecular step-width distributions [18] or molecular squared-

displacement distributions [19] were analyzed, multiple populations have always 

been found in the analysis of receptor mobility in cells. 

Given that single molecule imaging permits to follow processes in time, there 

have been many attempts to find transitions between states that is to say, 

transitions in diffusive behavior. Those should show up as change in the fraction 

size of different mobility when changing the time of observation. Using gold [14] 

or quantum-dot labeling [20] of individual components, or by labeling larger 

structure like liposomes [21] long time scales could be covered and switching 

behavior has been observed. 

Spurred by the success of single molecule imaging in membrane biology and 

biophysics, in recent years the technology has been further developed to permit 

single molecule observations of proteins in the 3D environment inside live 

eukaryotic cells [18,22,23]. In those experiments individual proteins were imaged 

over time, their position analyzed in 3D to sub-wavelength accuracy [24], and 

subsequently the mobility analyzed by step-length analysis. Similar to the 

membrane constituents, mobility of cytosolic proteins appeared inhomogeneous 

and fractions of different mobility were identified. Various research 

groups [18,22,23] realized that, unlike when imaging on the 2D membrane 

surface, the apparent fraction size of the various components depends on 

observation time. This is due to movements of molecules out of the depth-of-

field of the observation volume: fast molecules will disappear faster compared 

to slow molecules (see Fig. 1). Given typical values for the depth-of-field of 1 

µm for both wide-field [18,23] or selective-plane [22] illumination and typical 

diffusion constants of cytosolic proteins of 10 µm2/s, the residency time of a 

molecule within the observation volumes reduces to <50 ms. Hence, in those 

earlier reports fraction sizes for short time-lags of 6.5 ms and 20 ms, respectively, 

were reported to avoid any 3D artifact [18,22,23] . 
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Figure 1: Imaging of diffusing fluorophores inside the nucleus. Since the depth of focus (DOF = 750 nm) is 
shallow, molecules can diffuse in and out of the observation volume. This will deplete the relative contribution of 
the fast diffusing fraction to the analysis. 

Here we present a mathematical framework that can correct for the change in 

fraction size due to the limited detection volume in 3D single molecule imaging. 

We applied our findings to data on the mobility of activated glucocorticoid 

receptors (GR) in the nucleus of monkey kidney (COS-1) cells. Our analysis 

showed that fraction sizes remain constant in the time-lag range from 6.5 ms to 

150 ms, thus showing that switching between fractions occurs on longer time 

scales. 

 

3.2 METHODS 

3.2.1 Cell culture 

To measure the diffusive properties of GR-eYFP COS-1 cells (acquired from 

ATCC) were cultured on coverslip glasses and transfected using X-tremeGENE 

(Roche, 500 ng DNA / 10 cm2) according to the manufacturers protocol. Three 

to six hours prior to measurement 1 µM dexamethasone (final concentration, 

Sigma-Aldrich) was added to the cells. Measurements were carried out at 37 °C. 

3.2.2 Single molecule imaging 

Imaging of individual GR-eYFP was performed as described earlier [23]. In brief 

1200, frames per cell were taken on an inverted wide-field fluorescence 

microscope (Axiovert 100TV) using a 100x/1.4NA oil-immersion objective 

(Zeiss). A region of interest of 50x50 pixels was selected (pixel size of 202 nm 

in the image plane). Cells were illuminated with 514 nm by a DPSL laser at an 

intensity of 2 kW/cm2 (Coherent Sapphire). The exposure time was kept 

750nm 

Objective 

Cytoplasm 

Depth of Focus 
Nucleus 

Glass 
slide 
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constant at 3 ms and the time lag between two images varied between 6.25 and 

75 ms by means of an acusto-optical tunable filter (AA optoelectronics). 45 cells 

were measured with 6.25 ms time lag between frames. 20 cells were measured 

with 25 ms lag time between frames. 16 cells were measured with 50 ms between 

frames. 16 cells were measured with 75 ms between frames. 

The fluorescence signal from individual eYFP molecules was captured on an 

emCCD (Princeton Instruments, Trenton, NJ) using a combination of filters 

(DCLP530, HQ570/80 (Chroma Technology, Brattleboro, VT) and OG530-3 

(Schott, Mainz, Germany). In order to obtain short acquisition times between 

frames of 6.25 ms the camera was run in kinetics-mode that permitted to capture 

8 consecutive frames on the camera chip before being digitized. Subsequently, 

signals were fitted with a 2 dimensional Gaussian using a custom algorithm in 

Matlab  [25]. The position of the molecules was obtained from the fitting 

parameters to an average accuracy of 34±9 nm. The 2D distance between 

localizations could therefore be obtained with an accuracy of 68 nm. 

3.2.3 Particle image correlation spectroscopy (PICS) analysis 

At high densities a tracking algorithm mixes trajectories. The previously 

described method of particle image-correlation spectroscopy (PICS) 

circumvents this problem and is often used to analyze membrane diffusion [26]. 

In PICS the cumulative distribution function (cdf) of squared distances between 

frames separated at a given time-lag is calculated from the position data (fig 5D). 

The drop of the cdf at short distances reflects the mobility of molecules  [26]. 

For a mobility characterized by diffusion the drop follows an exponential  [19]. 

As has been reported earlier by us  [27], the drop is faithfully described by a bi-

exponential, which reflects the bi-modal behavior of the receptor: a freely 

diffusing receptor and an immobile, bound receptor. 

For each measurement multiple time-lags are obtained by correlating not only 

subsequent frames but also further frames. However, due to photo bleaching 

the gap between frames cannot be increased indefinitely. Hence, the 6.25 ms 

dataset was analysed up to 5 steps (6.25-31.25 ms), the 25 ms dataset was 

analysed up to 4 steps (25-100 ms), the 50 and 75 ms datasets were analysed up 

to 2 steps (50-150 ms). 
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3.2.4 Depth of field calibration 

The depth of field (DOF) is defined by the axial offset of a point-object from 

the focal plane at which the width is increased by a factor √2 [28]  

𝜎(𝑧) = 𝜎0√1 + (
𝑧

𝐷𝑂𝐹
)
2

 (1) 

Eq (1) shows how the width, σ, of the PSF changes with the axial distance z 

from the focal plane. σ0 is the width at the focal plane. Combining Eq. (1) with 

the expression for the width at focus one obtains an equation for DOF, which 

only includes 0 and the wavelength of light, : 

𝐷𝑂𝐹 = 2
𝜋 ∗ 𝜎0

2

𝜆
 (2) 

 

To experimentally obtain the DOF, eYFP molecules were coated on a glass slide. 

The sample was imaged for different axial positions of the objective by means 

of a piezo-actuator (PiFoc, PI). The fluorescent signal of single eYFP molecules 

was subsequently fitted [1]. From the fit the peak-width was obtained. The 

relation between axial position and peak-width was subsequently fitted as given 

by eq. (1) [25]. From this experiment the width at focus of 0 = 263 nm and the 

DOF = 750 nm, as defined by the axial position at which the width increases by 

√2, was determined (figure 2). The experimentally determined DOF is in 

agreement with that predicted from eq. (2) of 790 nm, given the experimental 

value for 0 and the emission wavelength of eYFP (550 nm). 
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Figure 2: Calibration of the depth of field (DOF). eYFP was coated on a glass slide and the objective was 
moved by a piezo scanner. The resulting peak-widths were fitted as previously described [25]. The data were 
subsequently fit to eq. (1) yielding the signal width at focus, σ0 = 263 nm and the DOF = 750 nm. All data 

characterized by a width larger than √2 × 263 nm = 372 nm (dashed line) were discarded from further 

analysis 

In all further analysis localizations originating from fluorescent signal of width 

larger than √2 × 263 nm = 372 nm were discarded. 

3.3 RESULTS 

3.3.1 Analytical solution for correction of fraction size in 3D diffusion 

with limited detection volume 

Since the width of the point-spread-function (PSF) increases with increasing 

distance to the focal plane, the signal from an out-of-focus object will be spread 

out over a larger region of the detector and the signal to noise ratio will decrease 

concomitantly. Therefore the detectability of a molecule is limited to a small 

distance from the focus defining the depth of field (DOF). The DOF was 
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measured to be 750 nm (Fig 2). With respect to detailed mobility analysis that 

includes various fractions, the limited DOF will result in a bias towards the 

slowest fraction. Fast diffusing molecules will have a higher chance of diffusing 

out of the DOF than slow diffusing molecules. Therefore they will have a smaller 

contribution to the cumulative distance distribution. 

In what follows we derive an analytical solution for a system that consist of two 

fractions of diffusing objects characterized by diffusion constants D1 and D2, 

and fractions α and 1-α, respectively. The description can easily be expanded to 

include more fractions. 

For a molecule that is localized at axial position z0 the probability density for its 

axial location z after a time t, with a diffusion constant of D is given by: 

𝑝𝑑𝑓(𝑧, 𝑧0, 𝐷, 𝑡) =
1

√4𝜋𝐷𝑡
𝑒− 

(𝑧−𝑧0)
2

4𝐷𝑡  (3) 

 

Hence, the probability to stay within the DOF of length L is given by: 

∫
1

√4 ∗ 𝜋 ∗ 𝐷 ∗ 𝑡
𝑒−

(𝑧−𝑧0)
2

4∗𝐷∗𝑡  𝑑𝑧

𝐿

0

=
1

2
(𝑒𝑟𝑓 (

𝑧0

√4 ∗ 𝐷 ∗ 𝑡
)  + 𝑒𝑟𝑓 (

𝐿 − 𝑧0

√4 ∗ 𝐷 ∗ 𝑡
)  ) 

 

(4) 

with erf being the error function. Further integration over the start position z0 

from 0 to L results in the average probability to stay within the DOF: 

�̅�(𝐿, 𝐷, 𝑡) = erf (
𝐿

√4 ∗ 𝐷 ∗ 𝑡
) +

√4 ∗ 𝐷 ∗ 𝑡

𝐿√𝜋
(𝑒−

𝐿2

4∗𝐷∗𝑡 − 1) (5) 

 

Which finally leads to: 

�̅� = erf(𝑓) +
1

𝑓√𝜋
(𝑒−𝑓

2
− 1), 𝑓 =

𝐿

√4 ∗ 𝐷 ∗ 𝑡
 (6) 
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Eq. (6) describes the probability for a molecule that started inside the DOF to 

still reside within DOF after time t. Figure 3 shows the functional form for a 

realistic DOF of 750 nm and imaging time from 6.4 to 100 ms. The probability 

strongly depends on D, reducing even for short imaging times of 6.4 ms from 

P(0.1µm2/s)=0.96 to P(2µm2/s)=0.83, the range of diffusion constants typically 

reported. Following eq. (6) this effect becomes even more pronounced for 

longer imaging times. 

 

Figure 3: Result of formula 4 for a DOF of 750nm and four different lag times. For a diffusion constant of 2 
µm2/s the probability to diffuse inside the DOF of 750nm after 10ms is calculated to be 79%. When two 
fractions have a different diffusion constant the apparent fast fraction needs to be corrected using equation 7. 

In what follows we describe how eq. (6) is used to calculate the actual fraction 

size from imaging data in the case of multi-modal inhomogeneous diffusion 

data. By PICS analysis Di, and the apparent fraction size, αi, are obtained. 

Together with eq. (6) the real fraction sizes, βi, are obtained:  

P
ro

ab
il
it

y 
to

 d
if

fu
si

o
n

 w
it

in
 s

lic
e 

Diffusion constant (µm2/s) 



3D diffusion measurements of the glucocorticoid receptor 

 
57 

𝛽𝑖 =
𝑥𝑖

∑ 𝑥𝑖𝑖
, 𝑥𝑖 = 𝛼𝑖𝑃𝑖 (7) 

 

As required, both real and apparent fraction sizes are normalized quantities Σαi 

= Σβi = 1. 

For a two-component system eq. (7) simplifies to: 

𝛽 =
𝛼𝑃2

(1 − 𝛼)𝑃1 + 𝛼𝑃2
 (8) 

 

where β refers to the faction with diffusion constant D2, and 1-β the fraction 

with diffusion constant D1. 

3.3.2 Validation of the correction by simulations 

To prove the correction method Monte-Carlo simulations were performed. 3000 

molecules were split in two equal fractions, β = 1-β = 0.5. The fractions were 

characterized by diffusion constants of D1 = 2 pix2/frame and D2 = 0.05 

pix2/frame, respectively. Those values were chosen based on values typically 

found for diffusion of proteins in mammalian cells, and in particular are 

equivalent to the values for the bound and unbound fraction of the 

glucocorticoid receptor in the nucleus (2 and 0.5 µm2/s) reported earlier [23]. 

The objects used in the simulation were free to diffuse for 100 frames in a cube 

of 100×100×100 pixels. Periodic boundary conditions were applied. In order to 

set a DOF, only molecules within a slice of 5 pixel width (i.e. 1 µm) at the centre 

of the cube were considered. 

Particle image correlation spectroscopy (PICS) utilizes the distance distribution 

of the diffusing particles. To analyse the simulation the distances originating 

from fast diffusing objects were summed and divided by the total number of 

distances found. The observed fractions were extracted for time lags of 1 to 10 

frames. Figure 4 shows the result of this analysis (blue data). The apparent 

fraction size of the fast fraction decreased from 0.46±0.01 at the first time lag 

to 0.36± 0.01 for the 10th time lag. Subsequently eq. (8) was used to correct the 

data and calculate the real fraction size. Figure 4 shows that our analysis faithfully 
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follows the prediction and the real fraction size remains constant at β = 

0.500±0.007 over the whole range of time lags (green data). 

 
Figure 4: Simulation result that shows depletion of the fast fraction for increasing time lags. The time lag is 
given by the number of frames between detections. In blue the uncorrected result, in green the result after 
correction with eq.(8). 

3.3.3 Validation of the correction using experimental data 

To further prove our correction method we applied the model for the correction 

of experimentally acquired life-cell data. The diffusion of the glucocorticoid 

receptor (GR) in live cells is a well-documented example for mobility of multiple 

fractions in a 3D environment. The GR is an member of the steroid receptor 

family [29–31]. It mediates the effects of natural as well as synthetic 

glucocorticoids like dexamethasone and prednisolone, which are drugs known 

for their anti-inflammatory activity that is beneficial to treat diseases like asthma 

and rheumatoid arthrosis [29]. Upon activation by glucocorticoids the receptor 

translocates from the cytoplasm to the nucleus. There it acts as a transcription 

factor. It binds to specific target sequences in the DNA to activate gene 

transcription. 
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The targeted search mechanism along DNA that activate or repress gene 

activation by hormone receptors like the GR has long been studied in theory 

and experiment [32]. The GR displays long immobilization times (2.3 s). The 

immobilized fraction probably reflects receptors bound to DNA in order to 

activate transcription. In addition, the GR is found to also have short 

immobilization times (0.7 s) [27]. Most likely the short immobilization times 

represents a search mechanism that includes non-specific DNA binding  [31]. 

Finally, approximately half of the GR population shows fast free 3D 

diffusion [27]. 

Here we followed the wide-field single molecule imaging strategy of Groeneweg 

et al.  [27] to analyze the diffusion properties of activated GR and extended our 

analysis up to 150 ms time-lags. Obviously, our current approach does not 

discriminate between the short (0.7 s) and long (2.3 s) immobilization times of 

the receptor due to the short time scale of the experiments. Hence, only two 

fractions were distinguished, an immobile and a freely diffusing fraction. 

Below briefly stated are the steps taken to obtain data on GR mobility, which 

are also depicted in Fig. 5. COS-1 cells were transfected with a plasmid encoding 

a YFP-labeled version of the GR. The functionality of the plasmid has been 

tested previously [27]. Cells were stimulated with 1 µM of dexamethasone which 

leads to efficient activation and translocation of the GR to the nucleus. 

Subsequently, individual YFP-GRs were followed using single molecule 

microscopy in which a mid-slice of 750 nm thickness of the nucleus was imaged 

(Fig. 5A; see the DOF subsection in M&M). Individual GRs appeared as 

diffraction-limited images of a signal of 203±90 counts when illuminated for 3 

ms at an intensity of 2 kW/cm2 of 514 nm light (Fig. 5B). This signal allowed us 

to track the receptors at a lateral accuracy of 34 nm. The axial position was lost 

as the camera imaged the 2D projection of the 3D slice in the nucleus. 
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Figure 5: Single molecule imaging and PICS analysis.  
A: Signal of individual eYFP-GR molecules on an emCCD camera. 
B: The signal of an individual molecule is fitted to a Gaussian yielding the position, the width and the strength 
of the signal. 
C: Distance calculation between molecules in subsequent frames.  
D: Cumulative distribution function (cdf) of distances of molecules in subsequent frames correlated by diffusion. 

Subsequently PICS analysis was used to analyze the mobility of the GR (fig 5C). 

In PICS the cumulative squared-distance distributions (cdf) in subsequent 

frames is calculated from position data (fig 5D). The drop of the cdf at short 

squared-distances reflects the mobility of the molecules [26]. For diffusion the 

drop follows an exponential [19]. As has been reported by us earlier [27], the 

drop is faithfully described by a bi-exponential, which reflects the bi-modal 

behavior of the receptor: a freely diffusing receptor and a bound receptor. 
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PICS analysis was performed for time lags between 6.25 and 150 ms. For each 

time lag the diffusion constant and apparent fraction size of the two components 

was determined. The diffusion constants were found to be 0.67±0.1 and 

0.043±0.004 µm2/s for the fast and immobile fraction, respectively. Our data are 

in excellent agreement to our earlier findings [27], and the prediction for a free 

diffusion process. It should be noted that the immobile fraction found in single 

molecule experiments consist of two sub-fractions which can be distinguished 

only at time-lags beyond 1 s as accessible by fluorescence recovery after 

photobleaching (FRAP) experiments. In FRAP it was found that those two 

fractions reflect two binding modes of the receptor to DNA, are equal in size, 

and are characterized by immobilization times of 0.7 and 2.3 s, respectively [31]. 

As previously observed [27] the apparent fraction of the fast fraction α dropped 

from 0.46±0.02 at 6.5 ms to 0.37±0.02 at 150 ms (Fig. 6, blue data). After 

correction to the real fraction size, as given by eq. (8), it is obvious that the size 

of the two fractions does not change in the time frame between 6.5 and 150 ms 

(Fig. 6, green data). The real fraction size is constant and amounts to β = 

0.49±0.02. 

Even though the different mobility modes for various transcription factors have 

been repeatedly reported, it has remained challenging to address the timescales 

on which switching between the modes occurs [22,23,27,33–35]. The observed 

drop in fraction size in the uncorrected data could have been misinterpreted as 

an indication of switching behavior. However, since in the corrected data the 

fraction size does not change with increasing time lag, we conclude that 

switching between the two modes does not occur within the time frame of 150 

ms. 
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Figure 6: PICS analysis of glucocorticoid receptor at different time lags. In blue the uncorrected result. A 
decrease of the fast fraction is observed. In green the result corrected by eq.(8) taking into account the DOF. The 
fast fraction stays constant for time lags at least up to 150 ms. Dashed lines are linear fits to the data. Error-
bars represent the standard deviation 

3.4 CONCLUSION 
We showed that a depletion of fast mobile fractions is observed when multiple 

diffusive fractions are analysed using imaging methods that have limited axial 

reach. We developed a mathematical framework to correct for the experimental 

limitations that allowed us to calculate the real fraction sizes. Results have been 

validated by simulation and applied to experimental data of the activated 

glucocorticoid receptor in the cell nucleus. These results show that the reduction 

of the fast fraction with time lag, observed for the uncorrected data, is faithfully 

rectified by using the novel correction method. The corrected data indicate that 

the size of the freely diffusing fraction of dexamethasone-activated 

glucocorticoid receptors in the cell nucleus is 0.49±0.02. Since the corrected data 

show that this fraction size is constant for at least 150 ms we conclude that the 

receptor does not switch between this freely diffusing and an immobile (DNA-

bound) state on this time scale. Thus, our theoretical framework not only allows 
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the determination of correct fraction sizes, but provides information on 

potential time scale for exchange between various fractions. 
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CHAPTER 4 

DIRECT OBSERVATION OF Α-SYNUCLEIN 

AMYLOID AGGREGATES 

 

Abstract 

Aggregation of α-synuclein has been linked to both familial and sporadic 

Parkinson’s disease. Recent studies suggest that α-synuclein aggregates may 

spread from cell to cell and raise questions about the propagation of 

neurodegeneration. While continuing progress has been made characterizing 

α-synuclein aggregates in vitro, there is a lack of information regarding structure 

of these species inside the cells. Here, we use confocal fluorescence microscopy 

in combination with super-resolution microscopy to investigate α-synuclein 

uptake when added exogenously to SH-SY5Y neuroblastoma cells, and to probe 

in situ morphological features of α-synuclein aggregates with near nanometer 

resolution. We were able to follow the uptake of α-synuclein aggregates by the 

cells and their partial degradation at a molecular level. Our data show that the 

cellular uptake via endocytosis is rapid. Once the aggregates are internalized, they 

accumulate in lysosomes where they are degraded. No further aggregation was 

observed inside the lysosomes as speculated in literature, nor in the cytoplasm 

of the cells. These results show the importance of the lysosome-dependent 

mechanism for protecting the cells from exposure to potentially toxic α-

synuclein. 

  

1 
α 
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4.1 INTRODUCTION 
Progressive accumulation and deposition of specific protein aggregates is a 

characteristic of many neurodegenerative disorders, including Parkinson’s 

disease (PD). In PD, α-synuclein(α-syn), a small presynaptic protein (~ 15 kDa), 

is the main fibrillar component of the intraneuronal protein aggregates (Lewy 

bodies) that represent the pathological feature of this disease[1]. Although α-syn 

is predominantly a cytosolic protein, recent studies suggest the protein exerts not 

only a pathogenic effect inside the cells, but an extracellular pathogenic action 

as well. Multiple forms of α-syn have been observed in cerebrospinal fluid, blood 

plasma and more recently, in saliva[2–4]. When applied to cultured cells, α-syn 

preformed aggregates are internalized via endocytosis and targeted to the 

lysosomes for degradation[5–9]. The extent of aggregate accumulation inside 

cells is determined by the cells ability to degrade and remove the aggregates. Few 

groups reported that α-syn take-up from the extracellular space induces the 

aggregation of the endogenous protein, leading to the formation of Lewy body-

like inclusions[9–12]. Cell to cell transmission of α-syn pathological aggregates 

has been demonstrated in neuronal cultured cells as well as in animal 

models[13,14]. They show this is most likely through sequential exocytosis and 

endocytosis. 

At this moment, the fate of the exogeneous α-syn aggregates once they enter the 

cells is not clear. Are the aggregates degraded in the lysosomes, or do they start 

growing into larger α-syn aggregates? Do they overload the degradation systems 

impairing their activity and escape in the cytosol inducing aggregation of the 

endogeneous protein? In order to address these questions, we followed directly 

the uptake and fate of α-syn preformed aggregates when added to neuroblastoma 

cells, SH-SY5Y, by super-resolution microscopy. 

While atomic force microscopy (AFM) has been extensively used to obtain the 

ultrastructure and morphological features of the amyloid aggregates, the 

technique has the drawback to be applicable only ex situ. In contrast, optical 

microscopy and in particular the new super-resolution methods are powerful 

and non-invasive techniques for the study of morphological features of the 

amyloid aggregates with nanometer resolution. In the last years, these optical 

techniques have been successfully used in several studies to probe the 

morphology of protein aggregates in vitro[15–17] and in cells[18–20]. 

Here we applied confocal fluorescence microscopy and optical super-resolution 

microscopy to follow and characterize the fate of small in vitro assembled α-syn 
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fibrils in human neuroblastoma cells. We found that fibrils were partially 

degraded when trafficked through the lysosomal pathway. Further fibril 

maturation and formation of long fibrils was not observed. Our study thus 

highlights the potential role of lysosomal degradation in the prevention of α-syn 

aggregation in cells. 
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4.2 MATERIALS AND METHODS 

4.2.1 Preparation of labeled α-syn fibrillar seeds 

Recombinant human wild type α-syn was expressed and purified as described 

previously[21]. Fibrils were formed at 37 ºC in 1.5 ml Eppendorf tubes under 

constant agitation (1000 rpm, in an Eppendorf Thermomixer comfort, 

Eppendorf AG, Germany). 300 μL of 70 µM α-syn in phosphate buffer saline 

(PBS) was incubated for 5 days. The presence of amyloid fibrils was confirmed 

by thioflavin T fluorimetry and atomic force microscopy. Labeling of α-syn 

fibrils with the NHS ester (succinimidyl ester) of Alexa Fluor 532 was performed 

according to the manufacturer’s instructions (Life Technologies, USA). Briefly, 

α-syn fibril solution was incubated for 1 h at room temperature with Alexa Fluor 

532 dye in a 1:1 protein/ fluorophore molar ratio. The unbound dye was 

removed by pelleting the fibrils at 13000 rpm for 15 min in a tabletop centrifuge. 

The supernatant was discarded and the pellet containing labeled fibrils was 

resuspended in PBS. The centrifugation/resuspension cycle was repeated twice. 

Purified labeled α-syn fibrils were divided in 20 μL aliquots, flash frozen and 

stored at -80 ºC. Fibrillar seeds of α-syn were produced as follows: 20 μL of 

labeled fibrils were diluted 10 times in PBS and sonicated 3×5 s with a probe 

sonicator (Sonics & Materials, Inc., USA) using 50% maximum power, yielding 

variable fibril lengths of approximately 350 nm. These seeds were added 

immediately in the culture medium of SH-SY5Y cells at a final concentration of 

100 nM, and their uptake by the cells was followed in time using confocal 

microscopy and direct stochastic optical reconstruction microscopy (dSTORM). 

4.2.2 Cell culture 

Human neuroblastoma cells, SH-SY5Y, (gift of Mireille M. A. E. Claessens, 

University of Twente, Netherlands) were grown in 1:1 minimum essential media 

(MEM) (Gibco by Life Technologies, USA) and nutrient mixture Ham’s F-12 

(PAN Biotech, Germany) free of phenol red, supplemented with 1% MEM, 

non-essential amino acids, 2mM Glutamax and 15% fetal bovine serum (Gibco 

by Life Technologies). 

4.2.3 Atomic force microscopy (AFM) 

Labeled α-syn fibrillar samples were diluted 5 times into PBS, and 10 μL were 

pipetted onto freshly cleaved mica and kept at room temperature for 60 s. The 

mica surface was then rinsed with Millipore-filtered water (2×50 µL) to remove 

loosely bound protein, dried under a stream of nitrogen and imaged immediately. 
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AFM imaging was performed on a MultiMode Nanoscope IIIa microscope 

(Digital Instruments, USA) equipped with an E-scanner. All measurements were 

carried out in the tapping mode under ambient conditions using single-beam 

silicon cantilever probes with a resonant frequency of 300 kHz (Olympus, 

Japan). Image analysis was performed using the instrument software. 

4.2.4 Co-localization experiments with lysosomes 

SH-SY5Y cells were incubated with 50 nM LysoTracker® Deep Red (Life 

Technologies) for 30 min at 37 ºC, then washed and incubated further with 100 

nM Alexa532-labeled α-syn sonicated fibrils. Cells were imaged live after α-syn 

seeds addition, using an adapted confocal spinning-disk setup based on an 

Axiovert 200 body microscope (Zeiss, Germany) with a spinning disk confocal 

unit (CSU-X1 Yokogawa, Japan) and a back-illuminated EMCCD camera 

(iXON 897, Andor, UK) on the side port. The temperature was kept at 37 ºC 

with constant 5% CO2 concentration in a stage-top incubator (Tokai Hit, Japan). 

Illumination was performed with two different lasers of wavelength 514 nm 

(Cobolt, Sweden) and 642 nm (Spectra-Physics, USA). 

4.2.5 dSTORM experiments and data analysis 

In vitro prepared α-syn fibrils, labeled with Alexa 532, were spin coated onto a 

glass coverslip in 1% poly vinyl alcohol (Sigma Aldrich) and imaged. Imaging 

was performed in a switching buffer solution: 100 mM mercaptoethylamine 

(Sigma Aldrich) in PBS (pH 8.0) [22]. On day before imaging, SH-SY5Y were 

plated at 105 cells on 35 mm ibidi treated glass bottom dishes (ibidi GmbH, 

Germany) and then incubated with 100 nM final concentration of α-syn seeds 

labeled with Alexa 532. Cells were fixed in 4% formaldehyde at different 

incubation times and then imaged in the switching buffer. 

dSTORM set-up 

Super-resolution imaging was performed on a home-built wide-field single 

molecule setup, based on an Axiovert S100 Zeiss inverted wide-field microscope 

equipped with a 100x 1.4 NA oil-immersion objective (Zeiss, Germany). The 

Alexa 532 dye was excited using a 532 nm laser (Cobolt, Sweden). A 405 nm 

laser (CrystaLaser, USA) was used for photo-switching and to adjust the density 

of visible fluorophores. The light was reflected into the objective by the dichroic 

mirror ZT405/532/635rpc (Chroma, USA). The fluorescence light in the 

detection path was filtered using the emission filter ZET532/633m (Chroma, 

USA). Conversion intensities were in between 0 and 20 W/cm2 at 405 nm and 



4.2 Materials and methods 

 
72 

the excitation intensity was 3 kW/cm2 at 532 nm. For each sample, we acquired 

10000 single molecule images with an acquisition time of 10 ms per frame and a 

frame rate of 87 Hz. The signal of individual dye molecules was captured on a 

sCMOS Orca Flash 4.0V2 camera (Hamamatsu, Japan) (Fig.1a). The average 

integrated signal of a single dye molecule was 447 detected photons (Fig.1d), 

spatially distributed by the 2 dimensional point-spread-function of the 

microscope of 293 nm FWHM (Fig.1c). 

Data analysis 

The signal from individual fluorophores (Fig.1c) was fitted with a 2 dimensional 

Gaussian using a custom least-squares algorithm in Matlab[23]. From the fit we 

determined the location of each molecule to high accuracy of 11 nm on average 

(Fig.1b). The localization accuracy coincides with the value predicted from the 

width of the point-spread-function and the detected number of photons, 293 

nm / √[447] = 14 nm. Subsequently, the localization data were used to generate 

super-resolution images. Super-resolution images were obtained by binning 

localizations into 20x20 nm2 bins. For zoom-ins we used probability density 

maps in which each localization was represented as a normalized Gaussian 

centered at the position and of width given by the sigma-uncertainty in 

localization. The pixel size was chosen to represent 1x1 nm2. 

For analysis of fiber width and length we used line fitting from the raw 

localization data. We selected a region of interest (ROI) around a fibril. The 

selected localizations were rotated and subsequently the y-coordinates of the 

localizations were binned. The full width at half-maximum (FWHM) was 

calculated from the resulting histogram (see supplemental Fig.S1). Given that 

localizations in dSTORM experiments had an average positional accuracy of 11 

nm (Fig.1b), leading to an apparent FWHM of 11×2√[2×log(2)]=26 nm for any 

point object. The apparent FWHM of the fiber was therefore de-convolved to 

give the true fiber width, FWHMd
 = √[FWHM2-(26 nm)2]. 
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Figure 1: Characteristic properties of the optical setup. (a) Frame with the signal of several Alexa532 
molecules. Scale bar = 2μm. (b) Histogram of the sigma of positional accuracy (Mean: 11 nm). (c) Zoom-in of 
the white square in figure 1a showing the Gaussian intensity profile. (d) Histogram of the intensity of 
localizations (Mean: 447 photons). 
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4.3 RESULTS AND DISCUSSION 

4.3.1 Super-resolution imaging of in vitro α-syn fibrils 

In this study we used direct stochastic reconstruction microscopy (dSTORM) to 

follow the uptake of α-syn aggregates by SH-SY5Y human neuroblastoma cells. 

dSTORM has been used in several studies to probe the morphology of protein 

aggregates such as Aβ-aggregates in Alzheimer’s disease[18,19], Huntington’s 

protein aggregates in Huntington’s disease[15,24] and α-syn amyloid fibrils in 

Parkinson’s disease (PD) [16]. In relation to earlier studies, we here used direct 

fluorescence labeling of α-syn by switchable fluorophores. Direct labeling is 

advantageous when compared to other superresolution methods which typically 

involve immunofluorescence labeling, the latter leading to substantial increase in 

structure size due to the antibody size (~10 nm) as compared to the small size 

of fluorescent dyes used in the current study. 

We first characterized the properties of α-syn amyloid in vitro fibrils prepared in 

our conditions. Figure 2 shows the morphology of labeled intact α-syn fibrils as 

obtained by AFM (Fig. 2a) and by dSTORM (Fig. 2b) when deposited at low 

concentration onto a flat substrate. Individual fibrils were clearly identified in 

both methods. The overall images appear very comparable. The length of the 

fibrils clearly exceeded 1 µm extending to 10 µm and longer. In view of the 

complex topology of the fibrous network with fiber crossings, a detailed 

statistical analysis of fiber length was omitted. 

 



Direct observation of α-synuclein amyloid aggregates 

 
75 

 

Figure 2: Super-resolution imaging of the in vitro prepared α-syn fibrils. (a) AFM and (b) dSTORM images 
of intact wild-type α-syn fibrils covalently labeled with the NHS derivate of Alexa 532 fluorophore. (c) AFM 
and (d) dSTORM images of sonicated labeled α-syn fibrils. 

The apparent width of the fibers was determined from the dSTORM images as 

detailed in the materials and methods sub-section. A zoom-in of the fibril 

marked in figure 2b is shown in figure 3a. From the histogram of localizations 

(Fig. 3b) the apparent width of the fiber was 47nm FWHM (dashed red line). 

The distribution of apparent widths for 38 fibrils is shown in figure 3c. The 

distribution is characterized by a mean of FWHM = 43 ± 12 nm. Deconvolution 

leads to the real fiber widths of 34 ± 12 nm. This result by optical microscopy 

was compared to results by AFM experiments. In AFM experiments, we used 
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the height information to estimate the diameter of the labeled α-syn fibrils. The 

height approach is generally assumed more accurate than measurements of the 

width as of tip-convolution[25]. The mean height was found to be 8 ± 1 nm for 

the labeled α-syn fibrils (mean ± s.e. from 50 fibers, see supplemental Fig.S2). 

The apparent discrepancy in fiber widths between the two methods seems not 

too surprising. It is well known that AFM underestimates heights of nanometer 

size objects such as proteins[26], due to sample deformation and/or 

dehydration. 

 

Figure 3: Characterization of different sized α-syn fibrils by dSTORM. (a) Detailed view of an intact α-syn -
Alexa532 fibril (the marked fibril from figure 2b). (b) Histogram corresponding to the localization data (see 
supplementary figure 1 for details on the method). A FWHM of 47nm was calculated. (c) Histogram 
distribution of FWHM for intact α-syn fibrils. A mean diameter of 43.4 ± 12.3 nm was calculated from 
FWHM data (> 25 fibrils). (d) dSTORM images of two different sized sonicated fibrils (the marked 
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sonicated fibrils from figure 2d). (e) Histogram distribution of FWHM for sonicated α-syn fibrils. The mean 
diameter of α-syn sonicated fibrils was 42 ± 11 nm. 

α-Syn aggregates have been reported to be internalized into a variety of cell types, 

including neurons[7,9,12]. It has been shown that the uptake is more efficient if 

the aggregates are smaller. For this reason, α-syn fibrils were sonicated prior to 

their addition to the cells. The effect of sonication on fibril size is already 

apparent in Figure 2. Whereas fibril length clearly exceeds 1 µm for the intact 

fibrils (Fig. 2a&b), after sonication the length shortened to <1 µm (Fig. 2c&d) 

independent of the imaging method used. The lengths of the sonicated fibrils 

determined by AFM were between 50 and 700 nm. The lengths determined by 

dSTORM were similar, and in the range between 30 and 650 nm. The smaller 

length fibrils appear as globular (Fig. 3d 1) whereas the longer structures as clear 

fibrils (Fig. 3d 2). While sonication led to a significant decrease in fibril length, 

the fibril width was unchanged. The distribution of sonicated fibril width, as 

shown in Figure 3e, is characterized by a mean of 42 ± 11 nm, which leads, after 

deconvolution, to a real width of FWHMd of 32 ± 11 nm. 

4.3.2 Internalization of extracellular α-syn fibrils into neuronal cells 

Having established that we were able to distinguish small sized α-syn aggregates 

in vitro, we moved further to study the fate of the aggregates once they are 

exogenously added to cells in culture. We investigated the uptake of the small 

fibrillar α-syn aggregates labeled with Alexa-532 dye by the SH-SY5Y human 

neuroblastoma cells using confocal fluorescence microscopy. 

The time-course of uptake is seen in figure 4. Sonicated, labeled seeds were 

added at a concentration of 100 nM to the culture medium and left during the 

experiment. Their uptake by SH-SY5Y cells was followed in time using confocal 

microscopy and dSTORM. In the first 2 hours α-syn aggregates were mostly 

present at the cell membrane resulting in images that resemble typical images of 

the cell’s outline (Fig. 4 left&middle). After 24 hours Alexa532-syn aggregates 

disappear from the outer cell membrane and localize as granular intracellular 

deposits mostly close to the nucleus (Fig. 4 right). This observation suggests that 

fibrils were internalized and probably processed in the endosomal pathway 

towards perinuclear lysosomes. This interpretation is supported by dual color 

experiments which showed that the granular deposits (Fig. 4 green) colocalized 

with a marker for acidic organelles, such as lysosomes (LysoTracker; Fig. 4 red). 

Hence, our data confirm earlier results which suggested that protein aggregates 
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like α-syn are transported towards the lysosomal compartment for degradation 

and clearance[6,7]. 

 

Figure 4: Internalization of α-syn sonicated fibrils in human neuroblastoma cells. Images show co-localization of 
Alexa 532 labeled α-syn aggregates (green) with the lysosomes labeled with LysoTracker® Deep Red (red). 
SH-SY5Y cells were treated with 50nM LysoTracker® Deep Red, then washed, incubated further with 
Alexa532-labeled α-syn sonicated fibrils and imaged live on a confocal microscope. 

Subsequently we addressed whether maturation and increase in aggregation of 

fibrils occurred while transported from the plasma membrane to the 

endosomes/lysosomes. Whether and how maturation occurs and whether that 

will lead to some equilibrium distribution of aggregates, monomers and degraded 

peptide in cells when being continuously exposed to an extracellular 

concentration is still unclear. One proposed mechanism for maturation, that has 

been linked to disease, is that fibrils further aggregate inside the acidic endocytic 

vesicles as the combination of low pH and high effective concentration are 

favorable conditions for α-syn aggregation[27]. Further it is unclear whether 

such maturation would lead to the formation of long α-syn fibrils in the 

cytoplasm of the cells. 
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Figure 5: Super-resolution images of internalized α-syn aggregates in endosomal vesicles in time. a) dSTORM 
image of a cell treated for half an hour with α-syn-Alexa532 aggregates. A detailed view of the aggregates in the 
cell membrane is shown in the image to the right. (b) After 2 hours of incubation, α-syn aggregates are 
internalized in vesicles. Detailed view of the aggregates in a vesicle shown in the image to the right b). (c) 
Internalized α-syn aggregates after 24 hours of incubation, with two different sized clusters shown to the right. 

0.5 Hours 

2 Hours 

24 Hours 
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To address these questions, we used the super-resolution capability of dSTORM 

to probe directly the morphology of α-syn aggregates while entering SH-SY5Y 

cells (Fig.5). The dSTORM images, like the confocal images in figure 4, showed 

that α-syn aggregates initially associated with, and accumulated at the plasma 

membrane (Fig.5a). In the course of time cells took up the fibrils and 

accumulated them in endocytic vesicles (Fig.5b&c). Inside the vesicles the 

aggregates appeared tightly packed forming bigger clusters. The typical size of 

those intracellular globular structures stretched from 30 - 150 nm. It is worth 

mentioning that the small-sized fibrils did not completely lose their morphology 

even after 72 hours (Fig.5b&c). Endosomes and lysosomes are typically 50–400 

nm in diameter and are distributed uniformly throughout the cytosol[28]. Hence, 

the size of the clusters, as determined by live-cell dSTORM, falls into the small 

size region expected for endosomes and lysosomes. 

 

Figure 6: Size distribution of -syn aggregates in endosomal vesicles in time. (a)-(c) Histogram distribution of 
intracellular α-syn clusters FWHM in time. (d) A clear decrease in α-syn cluster size is observed in the 
representation of the mean average FWHM of α-syn clusters in time (x = median - = 50% interval). 
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The size of the clusters appeared to decrease as proteins moved through the 

endosomal pathway towards lysosomes (Fig.6). The size decreased from 104 ± 

32 nm at 2 h after incubation to 78 ± 28 nm after 72 h. This significant decrease 

might be interpreted as onset of lysosomal breakdown. It should be stressed that 

we did not observe maturation and formation of α-syn fibrils in the cytoplasm 

over a period of 3 days. This is a clear difference from our (see Fig.2) and others 

in vitro results in which long (> 1 µm) fibrils were already formed within this time 

span. It is important to note that, with the exception of Lewy bodies[9,29] there 

is so-far no clear evidence for the presence of linear α-syn amyloid fibrils within 

mammalian cells. Hence, our data further refutes the model in which fibril 

maturation proceeds within the cells and finally will lead to disease in 

Parkinson’s. 

In conclusion, our study provides additional evidence in favor of a lysosomal 

degradation pathway for removal of extracellular α-syn aggregates. Cells 

internalize extracellular small sized fibrils (<1 µm length). Subsequently the 

aggregates accumulate in endocytic vesicles and are trafficked towards 

lysosomes. Fibrils keep their morphology and do not further mature but rather 

partially degrade as they move through endosomal pathway. As lysosomal 

malfunction has been linked to neurodegeneration and age-related 

neurodegenerative disorders[30,31], enhancing lysosomal function may be a 

potential therapeutic strategy for prevention or treatment of PD. Since our study 

did not focus on the effect of longer (>1 µm) fibers on cellular processes and 

cell viability, their potential impact of long fibers in disease should not be 

overlooked. 
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4.5 SUPPLEMENTARY FIGURES 

 

Figure S1: FWHM determination. (a) The 526 localizations of the single fibril from figure 3a. Scale bar = 
50nm (b) Locations are rotated so the angle of a linear fit is 0 (red line). (c) Y-coordinates are binned into  

√N bins. FWHM is determined from linear interpolation of the histogram to be 47nm. (red dashed line) 

 

  

Figure S2: Height distribution of fibrils obtained by AFM. 
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Force sensing and quantitative dstorm on signal transduction proteins inside the 

integrin adhesome. 

CHAPTER 5 

FORCE SENSING AND QUANTITATIVE DSTORM 

ON SIGNAL TRANSDUCTION PROTEINS 

 

Quantitation in stochastic optical reconstruction microscopy is challenged by 

variations in the labeling strategies and the complex photophysics of the 

fluorescence labels. Both contribute to multiple observations of the same 

molecule, which can lead to imaging artifacts and prevents an easy assignment 

of a local stoichiometry. Here we developed a method that uses the inherent 

high spatial accuracy in super-resolution microscopy to determine the local 

stoichiometry. The methodology is based on analysis of the spatial distance 

distribution in the images which in turn is used to distinguish between spatially 

correlated and uncorrelated localizations. Given that fluorescence labeling and 

photophysics is equivalent for both the spatially correlated and uncorrelated 

localizations the exact stoichiometry can be determined even without detailed 

knowledge about the statistics governing the labeling strategy. Simulations show 

that our method can accurately reproduce the local stoichiometry even at high 

protein density. The strength of the methodology is demonstrated by addressing 

the stoichiometry of the protein vinculin in focal adhesion complexes, the dense 

structures at which cells mechanically interact with the extracellular matrix. 

When combined with high resolution force measurements we found that the 

local force developed by a focal adhesion increases on average by 15pN for each 

vinculin molecule localized to the focal adhesion. 

  

1 
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5.1 INTRODUCTION 
Quantitative description of processes in biology belongs to the current great 

challenges in the life sciences. Ultimately one would like to know the 

composition of all cellular components in space and time and describe their 

respective interactions. Although such undertaking in general terms appears 

unreachable, with the developments of single molecule techniques in the 

1990’s [1,2] it became possible to follow individual molecules in real time at high 

spatial and temporal resolution [3,4], assess their local stoichiometry [5], and 

follow their actions [6]. 

With the further developments of single molecule techniques towards super-

resolution imaging in 2006 [7–9] the initial aim came even closer into reach. In 

particular, super-resolution techniques that utilize single molecule imaging such 

as photo activation localization microscopy (PALM [8], fPALM [9]) and (direct) 

stochastic optical reconstruction microscopy (STORM [7], dSTORM [10]) have 

developed into standard tools in biophysics and cell biology. Those methods 

produce massive data that contain structural and compositional information [6]. 

So far mostly the high spatial resolution of the techniques has been utilized. 

Super-resolution imaging yielded spectacular images of cells leading to new 

insights into the structure and function of many subcellular components [11]. 

Since stochastic imaging is based on the observation of individual molecules, it 

appears tempting to use the technique in the context of quantifying a 

‘digital stoichiometry’ by just counting the number of molecules in a given 

structure. This approach would complement earlier methods in single molecule 

microscopy where photon correlation [12], the digital signal level [13,14] and 

digital photobleaching [15,16] have been used to address the oligomeric state of 

a protein complex [13,16,17]. However, unlike single molecule microscopy 

where the concentration of structures is low (or is experimentally adjusted [13]), 

in super-resolution microscopy the density of molecules is inherently very high 

with significant spatial overlap of signals. Additionally, photo-unstable 

molecules are essential for super-resolution imaging to induce the stochastic 

blinking of the fluorescence labels needed. This inherently results in multiple 

detections of individual fluorophores within an acquisition cycle. 

A second factor that hinders quantitative analysis is the use of antibody labeling 

in STORM techniques. Typically the protein of interest is first labeled by a 

primary antibody, that in turn is labeled by multiple (2-4) secondary antibodies, 

each carrying multiple (~4) fluorophores [18]. Hence, a single protein of interest 
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is labeled by ~10 fluorophores each switched on and off in a stochastic manner. 

Therefore the number of detections of one protein is typically not equal to the 

number of proteins in the sample. Quantitative super-resolution microscopy 

must account for those multi-detections to yield reliable information about the 

true local stoichiometry in the sample. 

An early method to prevent multiple detection of the same fluorophore is a 

cleaning algorithm that deletes any further detection within a radius Δr for a time 

span Δt. The choice of the parameters Δr and Δt depends on the photophysical 

properties of the fluorophore and the characteristics of the setup. Typically Δr 

is set to the positional accuracy for single molecule detection (Δr = 5-50 nm), 

and Δt set to a timescale that safely exceeds the photobleaching time of the 

fluorophores (Δt = 1-10 s). This method is well accepted for PALM imaging 

where undercounting inherent to the method is acceptable. The method works 

since, in PALM, each protein of interest is labeled with exactly one fluorescent 

protein, that bleaches fast and has dark times of about 50 ms [19]. 

For STORM and dSTORM experiments, that have multiple fluorescent dye 

molecules per protein of interest, suitable parameters for Δr and Δt are less 

obvious. Because of this, in STORM data quantitative analysis is often 

performed using density-based clustering algorithms [20–23]. Here localizations 

are categorized based on their local density as members of clusters. However, 

when the underlying structure is densely labeled, this method will not accurately 

separate individual molecules, and instead be sensitive to local clustering of the 

protein. Therefore this method is useful primarily for spatial cluster 

analysis [24,25], and not for counting of molecules. 

A technique to quantitatively analyze protein distributions is PC-PALM  [26,27]. 

The method was developed for PALM imaging, but likewise applicable to other 

stochastic super-resolution techniques. In PC-PALM a pixelated digital image is 

generated as a starting point for the calculation of a pair correlation function, 

g(r). The pair correlation function describes how the probability to find a second 

localization evolves with distance r. Pixilation has to be fine enough to create a 

true binary image, i.e. each pixel is occupied by either 0 or 1 localization. Hence, 

the method pretends an accuracy where each localization is centered on a pixel 

and determined with in accuracy of about half the size of the pixel. This 

approach will induce ambiguities in g(r) depending on the chosen pixelsize. For 

dense samples it will result in extremely large images since the pixels must be 

very small. Therefore the method uses selective regions with a high number of 
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occupied pixels to determine g(r). This ignores information that might be 

contained in the less dense regions of the sample. 

In what follows we describe a methodology that allowed us to count molecules 

and determine local densities from stochastic super-resolution data. Analogous 

to PC-PALM the methodology is based on the high positional accuracy that is a 

characteristic of super-resolution imaging. The cumulative density function of 

mutual distances is used to obtain the number of correlated and uncorrelated 

localizations in a field of view. Given that both depend equally on the underlying 

photophysical and labeling statistics, both are corrected for using this technique 

and the number of molecules is derived with minimal assumptions. Our method 

is an easy real space method, that has similarities to the Fourier ring-correlation 

analysis developed earlier [28]. 

Subsequently the strength of the methodology is demonstrated in addressing the 

stoichiometry of proteins in focal adhesion complexes. Focal adhesions, FAs, 

are membrane-proximal structures where the mechanical coupling of the cellular 

cytoskeleton with the extracellular matrix occurs and where mechanical signals 

are passed from the outside world to the cell’s interior and vice versa. In what way 

mechanical signals are translated to a biochemical outcome is not yet well 

understood. Among the missing information that is required to develop a 

quantitative model of mechano-reception is a detailed knowledge about the 

stoichiometry of the proteins localized in FAs. Together with information about 

the local stress and force fields the stoichiometry permits to create a ‘sensitivity 

map’, a measure of how much a particular protein contributes to force sensitivity 

of the cell. 

Recently we developed technology that allowed us to simultaneously measure 

cellular forces at 500 pN sensitivity together with dSTORM at a resolution of 30 

nm to reveal the nanoscale architecture of focal adhesions [29]. In the current 

report we use this technology to quantitatively investigate the correlation of 

number of vinculin molecules in a FA in relation to the cellular force generated 

locally. We found that our method reliably reconstructs the number of molecules 

even in a dense image. When combined with force measurements we find that 

each vinculin molecule added, increases the force in a FA by 15pN on average. 
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5.2 MATERIALS AND METHODS 

5.2.1 Cell culture 

NIH-3T3 fibroblasts were cultured in medium (DMEM; Dulbecco’s modified 

Eagle’s Medium, Invitrogen/Fisher Scientific) supplemented with 10% new 

born calf serum, 25 U/ml penicillin and 25 μg/ml streptomycin 

(Invitrogen/Fisher Scientific cat. # 15070-063). 

5.2.2 Sample preparation 

Micropillar preparation and cell seeding; 

Micropillars were used for cellular traction force measurements according to 

methodology described previously [29]. A negative silicon master was made 

using a two-step Deep Reactive Ion Etching (DRIE) process. Two different 

etching depths were obtained by subsequently applying two masks to the same 

wafer. A mask with 10x10 mm arrays with circles of 2 μm diameter and 4 μm 

center-to-center distance in a hexagonal grid was used as a negative for the 

micropillar arrays. A mask with two rectangular spacers of 10x2 mm was aligned 

on the sides of the arrays. The etching depth was varied for the micropillar arrays 

to make pillars of height 6.9μm. After passivation of the negative silicon master 

with trichloro silane (Sigma Aldrich), well-mixed PDMS at 1:10 ratio 

(crosslinker:prepolymer) was poured over the wafer. After 20 hours at 110°C, 

the PDMS was fully cured. Under these conditions bulk PDMS has a Young’s 

modulus of 2.5 MPa as determined by tensile testing. The pillar array used in the 

current study has a bending stiffness of 16 nN/μm as determined by finite 

element analysis [29]. This can be related to the bending stiffness of a circular 

area the size of the top of a pillar of a material with a Young’s modulus of 11.6 

kPa [30]. The effective Young’s modulus of the pillar array, Eeff, is therefore 11.6 

kPa. The individual micropillar arrays were peeled off with two spacers on the 

sides. Fibronectin stamping was performed using a flat piece of PDMS (1:30 

ratio, cured 16 hours at 65°C). Per stamp, a 40 μl mix of 50 μg/mL unlabeled 

fibronectin (Sigma Aldrich) and 10μg/mL Alexa405 (Invitrogen)-conjugated 

fibronectin was used. After stamping, the micropillars were blocked with 0.2% 

Pluronic (F-127, Sigma Aldrich) in PBS for 1 hour at room temperature and 

washed with PBS. Cells were seeded in single cell density in complete medium 

and incubated for 5 hours at 37 °C and 5% CO2. 
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Fixation and immunostaining; 

Samples were washed once with cytoskeletal buffer (CB; [31]), subsequently 

permeabilized and fixated for 10 seconds with 0.1-0.25% Triton-X, 0.4% 

paraformaldehyde and 1ug/mL phalloidin in CB. The triton concentration was 

adjusted to minimize the background signal without reducing the force 

application. Samples were finally fixed with 4% formaldehyde in CB, 

permeabilized with 0.1% Triton-X and blocked with 0.5% BSA in PBS. 

Immunostaining was performed with a primary mouse antibody against vinculin 

(Sigma, V-9131), and an Alexa 647 conjugated secondary antibody against mouse 

IgG (Jackson, 115-605-006) following the protocol suggested by [32]. 

5.2.3 dSTORM 

Super-resolution imaging was performed on a home-built wide-field single 

molecule setup, based on an Axiovert S100 (Zeiss) inverted microscope 

equipped with a 100x 1.4NA oil-immersion objective (Zeiss, Germany). 

Micropillar arrays were inverted onto #0, 25 mm diameter, round coverslips 

(Menzel Glaser). The micropillar arrays were kept from floating using a support 

weight made of glass. Imaging was performed in 100 mM mercaptoethylamine 

(MEA, Sigma Aldrich) in PBS. A 405 nm laser (CrystaLaser, USA) was used for 

imaging the pillars and photoswitching of the Alexa 647 dye to adjust the density 

of visible fluorophores. The light was reflected into the objective by a dichroic 

mirror (ZT405/532/635rpc, Chroma, USA). The fluorescence light in the 

detection path was filtered using the emission filter ZET532/633m (Chroma, 

USA). Conversion intensities were between 0 and 250 W/cm2 at 405 nm, and 

the excitation intensity was 5 kW/cm2 at 647 nm. For each sample, we acquired 

20000 images with an acquisition time of 10 ms per frame and a frame rate of 

69 Hz. The signal of individual dye molecules was captured on a sCMOS Orca 

Flash 4.0V2 camera (Hamamatsu, Japan). The average integrated signal of a 

single dye molecule was 608 detected photons, spatially distributed by the 2 

dimensional point-spread-function of the microscope of 440 nm FWHM. 

The signal from individual fluorophores was fitted with a 2-dimensional 

Gaussian using a custom least-squares algorithm in Matlab  [3]. From the fit we 

determined the location of each molecule to an accuracy of 16 nm on average 

(Fig.5b). The localization accuracy for an individual fluorophore coincides with 

the value predicted from the width of the point-spread-function and the detected 

signal, 440 nm / √[608] = 18 nm. 
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5.2.4 Image analysis 

Pillar deflections were determined with approximately 53 nm precision using a 

specifically designed Matlab script [29]. The pillar locations were determined 

from the labeled fibronectin fluorescence image using a fit to the cross-

correlation function between a perfect binary circle and the local fluorescence 

of one pillar. Those positions were compared to those of a perfect hexagonal 

grid used as reference. For an undeflected array the accuracy was found to be 53 

nm, this corresponds to a force accuracy of 860 pN on the pillar array of Eeff = 

11.6 kPa. Masks for adhesions corresponding to individual pillars of interest were 

manually drawn for each case. 
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5.3 RESULTS 

5.3.1 Analysis framework 

The majority of methods that have been developed so far to extract the number 

of molecules from super-resolution microscopy images focused on the temporal 

characterization of the blinking and bleaching behavior of the fluorescent 

molecules [19,33,34]. Here we take a different approach and use the spatial 

information of imaging methods to obtain a robust estimator for local densities. 

By such analysis the high spatial resolution, inherent to super-resolution 

techniques, are most efficiently utilized. The method uses features of particle 

image correlation spectroscopy (PICS) from single molecule imaging [35] for the 

determination of spatial correlations, and of number-and-brightness (N&B) 

analysis in confocal microscopy [36] that accounts for labeling and photophysics 

of the fluorophores. 

Basis of the images in super-resolution imaging are the positions of all 

localizations including their respective accuracies, ri±Δri. Typically, N = 104-106 

localizations are used to generate a final super-resolution image. From the 

position data the two-point spatial correlation function g(r) and subsequently the 

cumulative distance function, cdf, is calculated that contains spatial information 

of the image, 

𝑐𝑑𝑓(𝑟) = ∫ 𝑔(𝑟′)𝑑𝑟′
𝑟

0

. (1) 

 

For discrete 2D position data ri = {xi,yi}, as obtained in super-resolution 

microscopy, the cdf is constructed from  

𝑐𝑑𝑓(𝑟) = 2∑ ∑ (𝑥𝑖 − 𝑥𝑗)
2
+ (𝑦𝑖 − 𝑦𝑗)

2
<  𝑟2

𝑁

𝑗=𝑖+1

𝑁

𝑖=1

. (2) 

 

The cdf describes the number of mutual distances in a sample of N localizations 

that are smaller than r. 

When a protein is detected multiple times in the image stack, the number of 

localizations, N, exceeds the number of independent emitters, M. Multi-

localizations of individual molecules are correlated in space on short distances. 
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The correlation length, σi, is given by a combination of the localization 

uncertainty for an individual fluorophore, Δri, and the size of a primary and 

secondary antibody complex that might have been used to label the protein of 

interest. Typically, both are in the range of 10 nm. Since both detection and 

labeling originate from statistical processes, we assume that they are Gaussian 

distributed in space leading to a cdf that reads, 

𝑐𝑑𝑓(𝑟) = 𝑁𝑐 (1 − 𝑒
−
𝑟2

4𝜎2). (3) 

 

Here Nc is the total number of correlated distances and σ the mean positional 

uncertainty for all localizations. In particle image correlation spectroscopy an 

identical description was found that permits to determine lateral mobility of 

molecules characterized by their mean squared displacement [35]. 

 

 

Figure 1: Distance distribution of Gaussian distributed localizations 
A) 8 x 100 Gaussian distributed localizations. N=8, R=100, σ=0.15. 
B) Cumulative squared distance distribution (CSDD) for A(blue). Asymptote at N×(R2-R) (black dashed 
line). The distributions follows 1-exp(-r2/4σ2) (red dashed line). 

The effect of spatial correlation on the cdf is exemplified in the simulation 

shown in figure 1. Eight emitters were placed into the field of view, each allowed 

to reappear at random for ni = 100 times at a spatial accuracy of σ = 0.15. The 

resulting cdf (Fig.1 right) exactly follows the functional form predicted in eq. (3) 

on short length scales. 
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On length scales longer than the correlation length the cdf is characterized by a 

distance distribution for uncorrelated molecules. Assuming a homogeneous, 

random organization of molecules within a given field-of-view of area, A, the 

cdf of uncorrelated localizations scales quadratically with distance as:  

𝑐𝑑𝑓(𝑟) = 𝑁𝑢 
𝜋𝑟2

𝐴
. (4) 

 

Thus, the general form for the spatial correlation function is a linear combination 

of the correlated and the uncorrelated part: 

𝑐𝑑𝑓(𝑟) = 𝑁𝑐 (1 − 𝑒
−
𝑟2

4𝜎2) + 𝑁𝑢

𝜋𝑟2

𝐴
 (5) 

 

The predicted dependence of cdf on distance (eq. (5)) is seen for a simulation in 

figure 2. The cdf resembles those reported in studies of protein 

mobility [35,37,38]. 

  

Figure 2: 2048 molecules (blue dots) placed randomly in a 2x2 µm2 box. 
A) Image obtained for a positional accuracy of σ = 20nm and recurrence of the signal of mi = 100. At this 
density the images of individual molecules overlap completely, see the zoom-in to the gray square. 
B) Cumulative distance distribution (CDD). From linear extrapolation to the intersection with the y-axis the 
number of correlated distances is equal to Nc = 2×107. 
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In the simulation 2048 individual molecules were randomly positioned in a box 

of 2×2 µm2 and each molecule was allowed to reappear 100 times. The positional 

accuracy was set to 20 nm. The resulting distance distribution was calculated. Its 

dependence on the squared distance, r2, is shown in figure 2 (right). For squared 

distances beyond 4×10-3 µm2 the cdf(r2) became linear as predicted from eqs. 

(4)&(5). The slope of the linear part equals πNu/A. Its intersection with the y-

axis equals Nc, the number of correlated distances (see eqs. (4) and (5)). Hence, 

using the spatial information that is contained in super-resolution images, the 

number of correlated and uncorrelated distances are obtained. 

From those, the number of molecules can be calculated even without any 

detailed knowledge about labeling statistics and photophysics as shown in the 

following. The number of localizations, N, originating from M molecules each 

being observed ni times is given by  

𝑁 = ∑𝑛𝑖

𝑀

𝑖=1

 (6) 

 

The total number of all mutual distances is equal to N × (N-1), and using eq. (6) 

𝑁(𝑁 − 1) = (∑𝑛𝑖

𝑀

𝑖=1

)

2

−∑𝑛𝑖

𝑀

𝑖=1

 (7) 

 

Likewise, the total number of correlated distances per molecule is given by ni × 

(ni-1), for all molecules this yields: 

𝑁𝑐 = ∑(𝑛𝑖
2 − 𝑛𝑖)

𝑀

𝑖=1

 (8) 

  
 

With the definition of the mean <…>, eqs. (7) and (8) yield 

 

𝑁 ∙ (𝑁 − 1) + 𝑁

𝑁𝑐 + 𝑁
=
𝑀2〈𝑛〉2

𝑀〈𝑛2〉
, (9) 
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From this the number of independent molecules M can be calculated 

𝑀 =
𝑁2

𝑁𝑐 + 𝑁
∙ (1 +

𝑣𝑎𝑟(𝑛)

〈𝑛〉2
) (10) 

 

In eq. (10) var(ni) = <ni
2>-<ni>

2, is the variance in the number of detections per 

molecule. 

Eq. (10) describes how to obtain the number of molecules in a given super-

resolution image from the total number of localizations, N, and the number of 

correlated distances, Nc. The latter is obtained from a fit to the cumulative 

distance distribution using eq. (5). The second term in eq. (10) summarizes the 

properties of the joined statistics of labeling and photophysics of the 

fluorophores. Its value varies between 1 and 2 depending on which of the 

various processes dominates the joined statistics. For a typical dSTORM 

experiment, as used in the remainder of this report, the protein of interest is 

labeled by a primary antibody. This in turn is labeled by several secondary 

antibodies, and the latter labeled by 4 fluorophores on average. The value in such 

a case is close to one (see the supplementary material for a more detailed 

analysis). 

Figure 3 shows that our method reliably extracts the number of molecules even 

from very dense images. Simulations were performed for densities between 40 

and 4000 independent emitters on an area of 2×2 µm2. The mean positional 

accuracy was assumed σ = 20 nm, the mean number of localization per molecule 

<n> = 100. At high densities there was significant overlap of molecules within 

the image (Fig.2). The number of estimated molecules faithfully followed the 

input within an accuracy of 10% 
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Figure 3: Determination of the number of molecules in simulated results of different densities using formula 7. 
Figure 2 shows the procedure for N=2048. Insert is a zoom-in for small N. This shows the method is accurate 
for a large range of densities. 

In the estimation of the number of correlated distances from eq. (3) it was 

assumed that all molecules were randomly organized. This restriction is readily 

lifted by the addition of a second exponential term of size, NL, that accounts for 

a length scale, L, that characterizes any spatial structures in real data.  

𝑐𝑑𝑓(𝑟) = 𝑁𝑐 (1 − 𝑒
−
𝑟2

4𝜎2) + 𝑁𝐿 (1 − 𝑒
−
𝑟2

𝐿2). (11) 

 

For the distinction of the two components, the typical structural length scale 

should be significantly larger than the positional accuracy, L > 4σ, typically 40 

nm for a positional accuracy of 10 nm. This length scale is smaller than many 

cellular structures, like large membrane compartments, adhesion clusters, 

chromosome territories, such that the method described above provides a very 

general solution for molecule counting in super-resolution microscopy. 
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5.3.2 Counting molecules in focal adhesions 

The strength of the method developed above is demonstrated for the analysis of 

the stoichiometry in focal adhesions, FAs. A typical image taken on a confocal 

microscope is shown in figure 4. Focal adhesion molecules (red) were localized 

in elongated structures. FAs emerged from out the top of pillars (blue, see also 

zoom in in figure 4). In the following we focused on the FA-protein vinculin. 

Vinculin is an adapter protein linking other integrin proximal proteins to the 

actin cytoskeleton. Talin, one such integrin proximal protein, has cryptic vinculin 

binding sites that unfold under force [39] and has been shown to be important 

for force-induced adhesion strengthening [39]. Vinculin is recruited to FAs in a 

force dependent manner [40] and mediates focal adhesion growth through 

binding to talin and f-actin [41]. By correlation of the number of vinculin 

molecules in a given FA with the local force that a cell exerts, one would be able 

to narrow down the force range the prospective vinculin force-

sensor/responder would have. 

Mouse NIH-3T3 fibroblasts were seeded on an elastic micropillar array of 

effective Young’s modulus, Eeff = 11.6 kPa and allowed to spread for 5 h. The 

pillar-tops were stamped with fluorescence-labeled fibronectin. Unspecific cell 

adhesion was blocked to study integrin fibronectin interaction. Subsequently, 

cells were fixed, stained for vinculin and imaged. 
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Figure 4: Confocal image of a 3T3 mouse fibroblast on Alexa405-labeled fibronectin coated micropillars. 
Talin, a FA protein, is immunostained with Alexa647. Zoom in shows a focal adhesion attached to a 
micropillar. 

Super-resolution images were obtained using direct stochastic optical 

microscopy (dSTORM). Fixed cells were placed into dSTORM switching buffer 

and imaged on a high-sensitivity microscope where the fluorescence of labeled 

vinculin was acquired. 

A super-resolution image of the organization of vinculin in a FA is shown in 

figure 5a. The image of size 1×4 µm consists of 3616 localizations. Clearly 2 FAs 

emerged from a single pillar (dashed circle) in this image. FAs were elongated 

structures of several µm in length and had a width of 70-100 nm. 
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Figure 5: Analysis of a single focal adhesion. 
A) 3616 localizations of Alexa647 bound to Vinculin. The dashed circle represents the position of the pillar. 
Scale bar = 250nm. 
B) Cumulative distance funtion (cdf) of the localizations. From 0.09 µm2 to 0.25 µm2 the increase is linear, 
indicating uncorrelated distances that scale with the density. 
C) Histogram of the positional accuracy of the localizations in A. Mean value is 16 nm. 
D) Cdf from figure 5b with subtracted linear part. In red the double exponential fit of formula 11. The first 
exponential, consisting of Nc=9.4×104 distances, has a sigma close to the positional accuracy. The second 
exponential can be explained by the structure of the focal adhesion itself. The total number of molecules in figure 
5a equals 36162 / (3616+9.4×104)=134. 
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From the position data the cumulative distribution function (cdf) of mutual 

distances was calculated for squared distances between 0 and 0.3 µm2 (Fig. 3b). 

As predicted from eq. (5) the cdf becomes linear for squared distances beyond 

0.1 µm2, characteristic for uncorrelated localizations. Extrapolation of the linear 

part to 0 µm2 yields the number of localizations that is correlated due to either 

multiple localizations or to the FA structure, Nc+NL = 5.2±0.1×105. 

Figure 5d shows the cdf up to 0.1 µm2. The data were fit to a dual-correlation 

model (eq. 11), given that a typical length scale reflecting the widths of the focal 

adhesions was predicted to occur from the image (Fig. 5a). This fit yielded two 

length scales, one of 24.5 nm predicted for the positional accuracy of 16 nm and 

the antibody size of 18 nm, and a length scale of L = 146 nm set by the widths 

of the FAs seen in figure 5a. The number of correlated localizations was Nc = 

9.4±0.1×104. Further assuming that the second term in equation 10 accounting 

for the photophysics and labeling statistics is close to unity (see supplemental 

information) the number of vinculin molecules that are distinguished in figure 

5a is M = 36162/(9.4×104 + 3616) = 134±1. 
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5.4 DISCUSSION 
The use of high accuracy position data that is inherent to super-resolution 

imaging allowed us to extract the number of molecules in an image in a robust 

manner. When applied to fixed-cell data for the localization of the protein 

vinculin we were able to determine the number of vinculin molecules in the 

highly dense structure of focal adhesions, structures that allow cells to interact 

mechanically with their environment. 

Simultaneously to the localizations of individual vinculin molecules we measured 

the local force of the cell as reflected by a displacement of the elastomeric pillar 

from its un-deflected position (data not shown [Harkes&Balcioglu, in 

preparation]). The pillar that the FA attaches to in figure 5a (indicated by the 

dotted circle) was deflected by 123±53 nm, equivalent to a force of 2±0.9 nN. 

Assuming all molecules contributed equally to the buildup of this force we 

conclude that addition of each vinculin molecule to a FA results in a force 

increase of 2 nN / 134 vinculin = 15±7 pN/vinculin. Whether this linear 

relationship, earlier found for bulk parameters like focal adhesion size [29,42,43], 

holds on a molecular scale will have to be confirmed in future experiments using 

the methodology developed in the current study. 

5.5 OUTLOOK 
This method to find the number of proteins should be independent of the 

antibody staining used. To verify this important property one could express a 

protein with two different binding epitopes. These can then be labeled with 

different primary and secondary antibodies. A dual color experiment should 

show a clear correlation between the found number of molecules. The 

correlation gives a measure for the difference in affinity of the primary antibody. 
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5.7 SUPPLEMENTARY MATERIALS 

5.7.1 Relation between variance and squared mean 

The second factor in eq. (10) characterizes the joined statistics of the 

photophysics of the fluorophore and the statistics of labeling of the primary 

antibody by the secondary antibodies. 

𝐹 = 1 +
𝑣𝑎𝑟(𝑛)

〈𝑛〉2
= 1 + 𝑐𝑣

2 (s1) 

It is related to the coefficient of variation cV of n = σn/<n> in statistics. Values 

for F vary between 1 and 2 depending on the underlying and dominant statistics. 

distribution mean variance F 

binomial n p n p (1-p) 1 + 1/np – 1/n 

Poissonian λ λ 1 + 1/ λ 

exponential 1/λ 1/λ2 2 

Gaussian µ σ2 1 + σ2/µ2 

 

For all, excluding the exponential distribution, F approaches 1 for large enough 

n. Exponential statistics would become dominant when single fluorophores are 

considered. In that case F =2. 

5.7.2 Simulation for a combined statistics with secondary antibody 

labeling 

A typical dSTORM experiment involves a dual labeling step where the molecule 

of interest is first labeled by a highly specific primary antibody, that subsequently 

is labeled by multiple fluorescence-labeled secondary antibodies. To assess the 

distribution in this experiment we performed simulations. In those simulations 

we assumed: 

1) the number of secondary antibodies bound to a primary antibody is 

constant, given that all binding sites on the primary antibody will be bound by 

the excess of secondary antibody. 

2) the number of fluorophores bound to a secondary antibody is Poissonian 

distributed with a mean of 4.7 (typical mean value provided by the 

manufacturer). 

3) the number of detections per fluorophore follows a single-exponential 

distribution, typical for photobleaching. The number of detections when a 
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fluorophore is in the on-state equals ton×framerate. Alexa647, as used in the 

current study is generally assumed to behave according to a four-state molecule 

characterized by a ground, a fluorescent excited, a non-fluorescent triplet and 

a long-lived dark state. The latter populated via the excited triplet state [44]. 

The distribution in such a case is described in terms of a static trap model [45], 

with on-times following a single exponential distribution. 

Figure S1 summarizes the result of this simulation. The factor F (eq. (s1)) is 

dominated by the number of secondary antibodies. For typical values found in 

literature as the secondary to primary ratio (4), F is found to be below 1.1. Even 

in the case of only a single secondary per primary F equals 1.5, still lower than 

it’s maximal value of 2. This is caused by the multiple fluorophores per 

secondary antibody. 

 

Figure S1: Correction factor F as described in formula S1 for several simulations where the number of 
observations per fluorophore and the number of secondary antibodies per primary antibody were varied. The 
number of secondary antibodies per primary dominates the factor F. 
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5.7.3 Error propagation on squared distances 

The squared distance, S, between location i and j is calculated 

𝑆 = (𝑥𝑖 − 𝑥𝑗)
2
+ (𝑦𝑖 − 𝑦𝑗)

2
 (s2) 

 

The error on S is calculated from the errors on the localization 

𝑑𝑆2 =(𝑑𝑥𝑖
𝜕𝑆

𝜕𝑥𝑖
)
2

+ (𝑑𝑥𝑗
𝜕𝑆

𝜕𝑥𝑗
)

2

+ (𝑑𝑦𝑖
𝜕𝑆

𝜕𝑦𝑖
)
2

+ (𝑑𝑥𝑗
𝜕𝑆

𝜕𝑦𝑗
)

2

 

 

(s3) 

𝜕𝑆

𝜕𝑥𝑖
=
𝜕(𝑥𝑖

2 − 2𝑥𝑖𝑥𝑗 + 𝑥𝑗
2)

𝜕𝑥𝑖
= 2𝑥𝑖 − 2𝑥𝑗  

 

(s4) 

𝑑𝑆2 = 4𝑑𝑥𝑖
2(𝑥𝑖 − 𝑥𝑗)

2
+ 4𝑑𝑥𝑗

2(𝑥𝑗 − 𝑥𝑖)
2
+ 4𝑑𝑦𝑖

2(𝑦𝑖 − 𝑦𝑗)
2

+ 4𝑑𝑦𝑗
2(𝑦𝑗 − 𝑦𝑖)

2
 

 

(s5) 

𝑑𝑆2 = 4𝑆𝑥(𝑑𝑥𝑖
2 + 𝑑𝑥𝑗

2) + 4𝑆𝑦(𝑑𝑦𝑖
2 + 𝑑𝑦𝑗

2) (s6) 

 

With Sx and Sy the squared distances in x and y respectively. 

 

Figure S2: Standard deviation of the calculated squared distances from 0.09 µm2 to 0.25 µm2 in figure 5B. 
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SUMMARY 

 

Quantitative Super-Resolution Microscopy 

Since the observation of individual fluorescent molecules in the early nineties 

there has been continuous development in the possibilities to localize single 

molecules. The wave properties of light however prevent a point-source to be 

imaged as a perfect point. The resulting image of a point source is called the 

point-spread-function (PSF). In an optical microscope, the PSF will have the 

shape of an Airy disk. By fitting the signal, its center can be localized to a high 

precision, and thus the position of a molecule can be obtained to high precision. 

The Airy disk shape of the PSF imposes a limit on the spatial distance at which 

two point sources can still be spatially separated. This diffraction limit was first 

stated by Ernst Abbe to be λ/(2·NA), where λ is the wavelength of the emitted 

light, and NA is the numerical aperture of the optical system. In practice, for 

two molecules to be observed as individuals, the distance between them must be 

at least 200 nm. When a random distribution of molecules is assumed, the 

molecular density must be less than 0.9 µm-2 to have a smaller than 5% chance 

of overlapping PSFs. This limit in sampling density in regular single molecule 

microscopy limits its use as structural imaging tool. 

In single molecule localization microscopy (SMLM) only a small subset of 

molecules is converted into a fluorescent state in which they can be localized as 

individuals. At high excitation intensity these fluorescent molecules bleach 

quickly and are no longer fluorescent. By repeatedly converting a small subset of 

molecules by chemical or photochemical activation into a fluorescent state, all 

molecules in a sample can be localized to high precision. This process enables a 

high sampling density and yields high-resolution imaging data. 

Chapter 2 demonstrates how SMLM can be used in live cells to look at the 

spatio-temporal organization of the plasma membrane. The various isoforms of 

the small GTPase Ras have been shown to organize in different membrane 

nanodomains. Here, the photoactivatable fluorescent protein mEos2 is used to 

label the membrane anchor of three different isoforms of the Ras-protein. Live 

cell SMLM allowed me to image the membrane anchors with a positional 
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accuracy of 18 nm. Comparison between live-cell and fixed-cell SMLM on the 

membrane anchor of H-Ras showed broadening of the apparent domain size. I 

concluded that a domain mobility of 5·10-4 µm2/s can quantitatively explain the 

broadening of the apparent domain size with observation time. 

In Chapter 3 SMLM data was analyzed using particle image correlation 
spectroscopy (PICS). In PICS the diffusive properties of proteins are extracted 
from the cumulative squared distance distribution, by analyzing their time-
correlated distances. However, in the case of multiple mobilities in the sample, 
in 3D the fastest fractions will show less correlated distances due to diffusion of 
molecules out of the focal volume. Here, I developed a method to correct the 
various fraction sizes. This method I applied to SMLM data from the 
glucocorticoid receptor (GR). When activated, the GR translocates to the 
nucleus and binds to the DNA. The correlated distances of the GR in the 
nucleus can be faithfully described by two fractions, which presumably reflects 
its bi-modal behavior in the nucleus: a freely diffusing receptor and a 
DNA-bound receptor. After correction, my analysis showed that over a period 
of up to 150 ms the fraction size of each population stays constant, proving that 
there is no exchange between the bound and unbound GR on this time scale. 

Chapter 4 shows the result of SMLM on fixed aggregates of α-synuclein. 
Whereas in the previous chapters I used localization data to obtain information 
on the dynamic behavior of proteins, in chapter 4 I applied the SMLM technique 
to obtain super-resolution imaging data. The α-synuclein monomers were 
directly labeled with an Alexa dye, which allowed me to chemically switch 
molecules into the fluorescent state. I constructed super-resolution images that 
showed the spatial distribution of α-synuclein in cells. I was able to follow the 
uptake of α-synuclein aggregates by the cells and their partial degradation at the 
molecular level. My results showed the importance of the lysosome-dependent 
mechanism for protecting cells from exposure to potentially toxic α-synuclein. 

In Chapter 5 I used SMLM to localize vinculin proteins labeled with an Alexa 
dye in fixed fibroblasts. I combined super-resolution fluorescence imaging with 
high-resolution cellular force measurements by plating cells on microstructured 
elastomeric pillar arrays, which provided me with a sensitive force readout. The 
aim was to correlate the number of vinculin proteins in a focal adhesion protein 
complex, to the local force generated by the cell via this complex. I developed a 
robust method to determine the local stoichiometry of molecules by their 
correlated distances as obtained from SMLM. My analysis yielded a correlation 
between force and number of vinculin molecules, with a local force increase of 
15 pN for each vinculin molecule added to the focal adhesion protein complex. 
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SAMENVATTING 

 

Kwantitatieve Super-Resolutie Microscopie 

Sinds men in de jaren negentig een enkel fluorescerend molecuul kon 

waarnemen, zijn er continu ontwikkelingen geweest om de positie van 

fluoreserende moleculen steeds nauwkeuriger te bepalen. Echter, de 

golfeigenschappen van het licht belemmeren het afbeelden van een puntbron als 

perfect punt. De afbeelding van een puntbron wordt beschreven door de 

puntspreidingsfunctie (PSF). In een optische microscoop met ronde openingen 

heeft de PSF de vorm van een Airyschijf. Door de PSF op de afbeelding te 

leggen kan het centrum van het signaal gevonden worden met een hoge precisie. 

Op deze manier kan de positie van het fluorescerende molecuul met hoge 

precisie worden bepaald. 

De vorm van de Airyschijf heeft tot gevolg dat wanneer twee PSF’s dicht bij 

elkaar liggen, ze niet meer van elkaar kunnen worden onderscheiden. Deze 

diffractielimiet werd voor het eerst beschreven door Ernst Abbe als λ/(2·NA). 

Hier is λ de golflengte van het uitgezonden licht en NA de numerieke apertuur 

van het optische systeem. In de praktijk betekent dit dat twee moleculen van 

elkaar kunnen worden onderscheiden wanneer hun onderlinge afstand meer dan 

200 nm bedraagt. Wanneer we een willekeurige verdeling van moleculen 

veronderstellen op een tweedimensionaal vlak, dan moet de dichtheid van de 

moleculen kleiner zijn dan 0,9 μm-2 om minder dan 5% kans te hebben dat PSF’s 

overlappen. Deze limiet in de molecuuldichtheid belemmert het maken van 

afbeeldingen, omdat te weinig moleculen gelokaliseerd kunnen worden. 

Om microscopie met lokalisatie van enkele moleculen (MLEM) mogelijk te 

maken, wordt een klein deel van de moleculen geconverteerd naar een 

fluorescerende toestand. Deze worden als enkele moleculen gelokaliseerd. Door 

ze te exciteren met hoge intensiteit zullen ze snel hun fluorescentie verliezen 

door een proces dat lichtbleking wordt genoemd. Door herhaaldelijk een klein 

deel van de moleculen chemisch of optisch te converteren naar een 

fluorescerende toestand kunnen alle moleculen in het af te beelden object 

gelokaliseerd worden. Dit maakt het mogelijk een afbeelding te reconstrueren 

met een zeer hoge resolutie. 
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Hoofdstuk 2 laat zien hoe MLEM kan worden gebruikt in levende cellen om 

de organisatie van het plasmamembraan in ruimte en tijd te bestuderen. Het is 

aangetoond dat verschillende isovormen van het kleine GTP-ase Ras zich 

organiseren in verschillende membraan nanodomeinen. In deze studie is het 

fotoactiveerbare eiwit mEos2 gebruikt als label. Hiermee kon ik de positie van 

het membraananker van drie verschillende isovormen van het Ras-eiwit bepalen 

met een nauwkeurigheid van 18 nm. Wanneer metingen aan levende cellen 

werden vergeleken met metingen aan gefixeerde cellen was een verbreding van 

de waargenomen domeingrootte te zien. Hieruit concludeer ik dat de domeinen 

in beweging zijn met een diffusieconstante van 5·10-4 μm2/s. Dit geeft een 

kwantitatieve verklaring voor de verbreding van de domeingrootte wanneer de 

domeinen langer geobserveerd worden. 

In hoofdstuk 3 zijn de data van MLEM geanalyseerd met behulp van “particle 

image correlation spectroscopy” (PICS). Met behulp van PICS worden de 

diffusieparameters van fluorescerende moleculen gevonden door de distributie 

van in de tijd gecorreleerde, gesommeerde, kwadratische afstanden te analyseren. 

Echter, wanneer meer populaties met verschillende diffusie-parameters in drie 

dimensies diffunderen zal de sneller diffunderende populatie relatief minder tijd-

gecorreleerde afstanden laten zien. Dit effect wordt veroorzaakt door diffusie 

van het molecuul uit het focaal volume. Ik heb een methode ontwikkeld die 

corrigeert voor dit effect. In dit hoofdstuk pas ik deze methode toe op de MLEM 

data van de glucocorticoïdreceptor (GR). Bij activatie verplaatst de GR zich naar 

de celkern en bindt daar aan het DNA. De gecorreleerde afstandsverdeling van 

de GR in de celkern kan goed beschreven worden met een model voor twee 

fracties. Dit zou verklaard kunnen worden door het bi-modaal gedrag van de 

receptor; ofwel ongebonden vrij diffunderend, ofwel gebonden aan het DNA. 

Na het toepassen van de correctie toont de analyse aan dat gedurende 150 ms 

de grootte van elke fractie onveranderd is. Dit bewijst dat er geen uitwisseling 

plaatsvindt tussen de gebonden en de ongebonden fractie van GR op deze 

tijdsschaal.  

Hoofdstuk 4 laat de mogelijkheden zien van MLEM op gefixeerde aggregaten 

van het eiwit α-synucleïne. In de eerdere hoofdstukken werden de localisatiedata 

gebruikt voor het verkrijgen van informatie over het dynamisch gedrag van 

eiwitten. In dit hoofdstuk wordt met de localisatiedata een super-resolutie 

afbeelding gereconstrueerd. De monomeren van α-synucleïne zijn direct 

gelabeld met een Alexa-fluorofoor die ik chemisch kon schakelen tussen een 
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fluorescerende en niet- fluorescerende toestand. De door mij gereconstrueerde 

super-resolutie afbeeldingen toonden de ruimtelijke distributie van α-synucleïne 

in cellen. Hierdoor was het mogelijk de opname van de aggregaten van α-

synucleïne te volgen en hun gedeeltelijke degradatie op moleculair niveau. Mijn 

resultaten tonen het belang aan van de afbraak via het lysosoom. Dit beschermt 

de cel tegen de mogelijk toxische invloed van α-synucleïne. 

In hoofdstuk 5 heb ik het eiwit vinculine gelabeld met een Alexa-fluorofoor. 

Hier worden MLEM data van dit eiwit gecombineerd met krachtmetingen met 

een hoge resolutie. Bij deze metingen groeien de cellen op elastische 

micropilaren die vervormen wanneer er kracht op wordt uitgeoefend. Dit gaf de 

mogelijkheid tot zeer gevoelige bepaling van de kracht die de cel uitoefent. De 

cel oefent krachten uit op zijn omgeving via het eiwitcomplex dat focale-adhesie 

wordt genoemd. Het doel was om een correlatie aan te tonen tussen het aantal 

vinculine-eiwitten in een focale-adhesie enerzijds en de uitgeoefende kracht door 

de cel anderzijds. Hiervoor heb ik een methode ontworpen waarbij de 

gecorreleerde afstanden worden gebruikt om de lokale stoichiometrie te 

analyseren. Mijn analyse toonde de correlatie aan tussen de kracht en het aantal 

vinculinemoleculen. Per vinculinemolecuul dat werd toegevoegd aan de focale-

adhesie vond ik een toename van 15 pN. 
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