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Abstract

Infection with HIV cannot currently be cured; however it can be controlled by combination treatment with multiple anti-
retroviral drugs. Given different viral genotypes for virtually each individual patient, the question now arises which drug
combination to use to achieve effective treatment. With the availability of viral genotypic data and clinical phenotypic data,
it has become possible to create computational models able to predict an optimal treatment regimen for an individual
patient. Current models are based only on sequence data derived from viral genotyping; chemical similarity of drugs is not
considered. To explore the added value of chemical similarity inclusion we applied proteochemometric models, combining
chemical and protein target properties in a single bioactivity model. Our dataset was a large scale clinical database of
genotypic and phenotypic information (in total ca. 300,000 drug-mutant bioactivity data points, 4 (NNRTI), 8 (NRTI) or 9 (PI)
drugs, and 10,700 (NNRTI) 10,500 (NRTI) or 27,000 (PI) mutants). Our models achieved a prediction error below 0.5 Log Fold
Change. Moreover, when directly compared with previously published sequence data, derived models PCM performed
better in resistance classification and prediction of Log Fold Change (0.76 log units versus 0.91). Furthermore, we were able
to successfully confirm both known and identify previously unpublished, resistance-conferring mutations of HIV Reverse
Transcriptase (e.g. K102Y, T216M) and HIV Protease (e.g. Q18N, N88G) from our dataset. Finally, we applied our models
prospectively to the public HIV resistance database from Stanford University obtaining a correct resistance prediction rate of
84% on the full set (compared to 80% in previous work on a high quality subset). We conclude that proteochemometric
models are able to accurately predict the phenotypic resistance based on genotypic data even for novel mutants and
mixtures. Furthermore, we add an applicability domain to the prediction, informing the user about the reliability of
predictions.
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Introduction

The Human Immunodeficiency Virus (HIV) was discovered

and isolated as the cause of ‘Acquired Immuno Deficiency

Syndrome’ (AIDS) in 1983. [1,2] Over the following three

decades HIV has turned into a global epidemic, the number of

people living with HIV in 2010 being estimated at 34 million

according to the World Health Organization. [3] Furthermore

the number of people newly infected was approximately 2.7

million and 1.8 million HIV related deaths were reported, [3]

hence illustrating that HIV represents one of the major illnesses

of mankind today.

Infection with HIV can be contained, however not cured, by

Highly Active Anti-Retroviral Therapy (HAART), which relies on

a combination of three or more inhibitors from different drug

classes. [4,5] Currently more than 20 HIV inhibiting dugs are

approved, [6] with the largest classes of drugs being formed by

Protease Inhibitors (PIs), Nucleoside/Nucleotide Reverse Tran-

scriptase Inhibitors (NRTIs) and Non-Nucleoside Reverse Tran-

scriptase Inhibitors (NNRTIs). However, while a large number of

drugs is accessible to the physician (thus rendering HIV in some

sense a disease that is currently ‘under control’ regarding the

treatment options available), the question of which drugs to use for

which patient is an exercise where more guidance would also in the

current situation be of tremendous practical relevance.

Genetic variability
The process of replication by HIV is extremely error prone and

therefore mutations in the viral genome occur frequently. [7,8] It

is these mutations that can be the basis for HIV resistance against

therapy, [6] even single point mutations can cause insensitivity of

HIV to treatment with all members from an entire drug class (e.g.

K101P in the case of NNRTIs). [6,9] Occurrence of these

resistance conferring mutations can be contained or minimized by
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the nature of HAART therapy due to the combination of multiple

drugs classes. [5] However, the occurrence of high impact

mutations can cause treatment failure in HAART for certain

specific drug regimens. It is therefore crucial that the drug regimen

is tailored to the specific viral genotype. [10,11]

Personalized medicine
What is required for a tailored drug regimen is knowledge of the

effect of individual mutations on the efficacy of different drugs. A

rough distinction can be made between assay based methods and

computational methods, with assay based methods being available

since the year 1998. [12,13,14] Conversely, various computational

methods have become available over the last decade.

[15,16,17,18,19,20] Personalized prediction has been shown to

perform equal to standard of care in treatment naı̈ve patients but

significantly (P = 0.02) better in patients experiencing drug failure.

[17] Furthermore, computational approaches have been shown to

perform equal to phenotypic assays. [21] Several methods that

have been published previously, both assay-based and computa-

tional approaches, will be outlined briefly in the following.

Phenotypic assays
Phenotypic assays measure the replication of HIV in vitro

subsequent to genotype determination. Three common different

phenotypic assays include: Antivirogram (AVG) by Virco (1998),

[12] an assay by Walter et al. by the Universities of Erlangen-

Nürnberg and Leuven (1999), [14] and Phenosense by Monogram

Biosciences (2000). [13] Diverse readouts are employed in these

assays: spectrophotometrical determination of diphenyltetrazolium

bromide reduction (AVG), luminescence produced by secreted

alkaline phosphatase (Walter et al.), [14] and luminescence by

luciferase produced in the cell upon completion of one round of

virus replication (Phenosense). All readouts respond in a dose

dependent manner. Antiretroviral drug susceptibility is expressed

as the base 10 logarithm of a numerical fold change (Log FC). Log

FC is determined by dividing the IC50 for inhibition of the

mutated virus by the IC50 for inhibition of a determined wild type

virus (wt). Hence, a Log FC value of 1 for a given drug – mutant

pair means that the drug IC50 value for that particular mutant is

10 times that of the IC50 value for the same drug on wt. Likewise,

a Log FC value of 3 for a given drug – mutant pair represents an

IC50 value 1,000 times higher. The sequences that are defined to

be wt are the HXB2 strain (Uniprot accession P04585) for AVG,

[22,23] or a recombinant pNL4-3 strain (Genbank entry M19921)

for Walter et al. and PhenoSense. [24]

Virtual phenotype approaches
From the data generated by the phenotypic assays, computa-

tional models have been produced that predict a virtual phenotype

from a given genotype. Based on the large amount of Log FC data

generated by AVG, Virco introduced their first computational

prediction tool, Virtual Phenotype in 2000 superseded by

VircoTYPE HIV-1 in 2004. [25] VircoTYPE creates linear

regression models based on the presence of mutations and pairs of

mutations. Each mutation and mutation pair is given a weight

factor in model training based on measured data (6,000 to 40,000

samples per drug). The sum of all weight factors for relevant

mutations present in a mutant combined with the wild type weight

factor then provides the predicted log FC. In a randomized clinical

trial, VircoTYPE HIV-1 has been shown to perform slightly better

than conventional phenotypic assays in decreasing HIV RNA

concentration over a follow up period of 48 weeks (39% of the

phenotypic assay group reached HIV RNA below 400 copies/ml

compared to 51% of the VircoTYPE HIV-1 group). [21]

Next to VircoTYPE HIV-1, another implementation of a

virtual phenotype has been developed at the Max Planck Institute,

called Geno2Pheno. [20] This tool has been trained on smaller

dataset compared to VircoTYPE. However, it has been retro-

spectively validated on the Stanford HIV Drug Resistance

Database (Stanford Set) in 2009. [19] In this study Geno2Pheno

outperformed state-of-the-art-expert based systems by finding

16.2–19.8% more successful regimens.

Nevertheless, what the computational methods described here

have in common is that they are solely trained on the mutation

patterns and the effect these patterns have on a single drug.

[26,27,28] Therefore a separate model is created for every drug.

Similarity between individual amino acids is not considered (how

similar are two amino acids to each other and hence how big is the

impact of a mutation). Furthermore, the chemical similarity

between compounds is not considered in the models. Both types of

similarity information have the potential to lead to better models

and prompted us to apply ‘proteochemometric models’, described

in the following, to improve upon the current situation.

Proteochemometric modeling
Given that previous models did not take into account chemical

information, the individual models mentioned above fail to

acknowledge the chemical similarity between drugs that belong

to a single class, thereby discarding very valuable information.

This is the case because molecular similarity has been shown to

have great predictive power when it comes to identifying which

kind of related structures could also show activity against a given

target. [29] Hence it is likely that also for established drugs,

chemical similarity can improve models by explicitly taking the

concept of drug – target interaction into account, which is then

combined with mutational information of the drug target itself.

This technique is called proteochemometric (PCM) modeling. The

concept of PCM as we applied it has been summarized in Figure 1.

This flow chart shows how we combine both mutant data and

drug data and link it to a Log FC value. The authors have

previously reviewed the technique and it has already been

Author Summary

Infection with the human immunodeficiency virus (HIV)
currently cannot be cured. It can however be contained
through treatment with a combination of several anti-viral
drugs. Yet, during treatment resistance can occur which
leads to drugs becoming ineffective. Through a combina-
tion of drugs, this resistance can be deferred indefinitely.
The optimal combination of drugs depends on the specific
strain of HIV with which the patient is infected. Previously,
methods have been developed that predict a personalized
treatment regimen based on the genetic sequence
(genotype) of the virus via the use of computer modeling,
corner stone of the methods is drug affinity prediction.
Here we have applied proteochemometric modeling
which takes this genetic information into account, but
also includes chemical description of the drugs that are
now clinically available. We show that this combined
technique performs better than models that only include
genetic information. Our approach leads to personalized
treatment predictions with a higher reliability compared to
the current state of the art. In addition, we include a
reliability measure which allows each prediction to be
assessed for reliability. Finally we describe mutations of the
HIV genome that were not previously described in
literature and lead to resistance to treatment.

Efficacy Prediction of HIV Inhibitors by Proteochemometrics
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successfully applied to NNRTI inhibitors of HIV Reverse

Transcriptase before. [30,31,32,33]

Yet, the most important difference between this previous work and

the current study is the scale of the mutant database used to train the

models on. Previous work focused on a total of 4,792 data points, [30]

386 data points, [34] 654 data points, [31] 4,495 data points, [35] or

4,024 data points, [33] whereas here a total of 288,138 data points are

used. Hence, we expect a more generally applicable model resulting

from the current study. Furthermore, previous work included a larger

number of compounds (451 compounds) on the chemical side, and

their biological activity on a total of 14 mutants. Therefore, these

models described a relatively large chemical space compared to the

target space, while in the current work we have reversed this situation

and the models now describe a relatively large target space compared

(approximately 37,000 mutants) to the chemical space (21 drugs). In

addition, what is lacking in previously published PCM approaches is

the power to extrapolate, thereby able to also produce a reliable

prediction for novel (unknown) mutants while including a reliability

measure for these predictions. These are the points we are addressing

in the current work.

Aim of the project
In the current project it is our hypothesis that we can train a single

PCM model for each of the following major HIV drug classes using the

AVG data: Protease Inhibitors (PIs), Nucleoside/Nucleotide Reverse

Transcriptase Inhibitors (NRTIs) and Non-Nucleoside Reverse

Transcriptase Inhibitors (NNRTIs). As no PCM model has ever been

trained on such a large dataset (the current dataset is 60 times larger

than the largest published HIV PCM model) our hypothesis was on the

one hand to arrive at better model performance, and on the other hand

to unravel more reliable rules such as the influence of point mutations

on compound activity. Scientifically interesting is also the reversal in

the ratio between chemical space and target space in the model

training set described above.

Given the wealth of training data present, the resulting bioactivity

models can be used to predict the activity of clinical ARV drugs on

mutants not present (untested) in the dataset (corresponding to a patient

with a new, previously unseen genotype that needs to be treated in the

clinic). For this purpose, an additional 7,798 data points have been used

as a prospective validation set, in order to gauge predictive performance of

the model in a real-world situation. These data points have been

retrieved from the Stanford University database after model training

and validation was completed.

Results/Discussion

PCM model validation (internal)
We first validated by creating a learning curve for each drug

class. Learning curves plot the quality of models that are created

Figure 1. Flowchart of the work performed here. A distinction is made between the preparation of mutant descriptors (shown in red), drug
descriptors (shown in green) and activity data (Log FC, shown in blue). The descriptors and Log FC values are combined, and subsequently a model is
created using a non-linear modeling technique (support vector machines, SVM). The final step is model validation (shown in black) which is done
both on the outlier set by van der Borght et al. and the independent Stanford university set.
doi:10.1371/journal.pcbi.1002899.g001

Efficacy Prediction of HIV Inhibitors by Proteochemometrics
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on an increasing fraction of the data. Concurrently these models

are validated on the remainder (and hence decreasing) part of the

dataset (supporting Figure S1). When given enough measures of

model reliability in respect to the training set size, an estimate can

be made of the optimal performance possible on said dataset.

We found that all models should reach a root mean square error

(RMSE) ,0.5 units Log FC (see Methods section and supporting

Figure S1), which was subsequently confirmed in the external

validation which was performed per drug rather than per drug

class below (See supporting Table S1 for the used abbreviations for

each drug).

PCM model validation (external)
The second step was the generation of models on 70% of the

dataset as the learning curves showed this to be the optimal split

size to get a reliable performance estimate for these models. While

these 70% models give an estimate of the ability of the models to

perform future predictions successfully, other additional forms of

validation should also be included as we will show later on. [36]

The RMSE for sequences that were present in the training set,

however not in combination with the same drug, was 0.27 (PIs,

Figure 2C), 0.31 (NRTIs, Figure 2B) and 0.45 (NNRTIs,

Figure 2A), with an R0
2 0.89 (PIs, Figure 2C), 0.79 (NNRTIs,

Figure 2A), and 0.75 (NRTIs, Figure 2B). Hence, we found that

PCM was overall able to extrapolate the Log FC values for

individual pairs of drug and mutant not encountered in the

training set with a reliability that slightly better than the assay

reliability of the current dataset (approximately 0.5 log units).

Hence, PCM is on this dataset able to extrapolate to novel drug-

mutant pairs when the drug and mutant in question are only

present in the training set individually, and not in the combina-

tion, as shown in the test set (internal validation).

For sequences not present in the training set (representing

predictions for previously unseen patients, or genotypes) the

RMSE obtained by the model was 0.43 (PIs, Figure 2F), 0.49

(NNRTIs, Figure 2D) and 0.52 (NRTIs, Figure 2E) with an R0
2 of

0.74 (NNRTIs, Figure 2D), 0.71 (PIs, Figure 2F) and 0.33 (NRTIs,

Figure 2E), respectively. Hence, PCM is on the current dataset

also able to extrapolate the Log FC values for individual pairs of

drug and mutant not encountered in the training set with

reliability comparable to assay reliability when the mutant in

question is not present in the training set (External validation, for

validation plots per individual drug please see Figures S2, S3, S4).

PCM model validation (improvement over alternative
approaches on this set)

We also pursued two alternative approaches to model the

current dataset. These steps provide an estimate of the added

value of PCM itself rather than size of the dataset. Our first

validation was calculating the average of the Log FC values of

mutants for which we had multiple drug Log FC measurements.

Subsequently this average Log FC value was used as a predictor

for the drugs that were left out. This method was called Log FC

scaling and is similar to a benchmark we used in previous work.

[33] By comparing the average Log FC value to the value

measured on the sequence left out, the chemical descriptor

component of PCM is removed. Moreover the main contributors

to changes in Log FC in this method are those causing cross

resistance as the effects on individual Log FC values are ignored.

We aimed to leave out 30% when multiple measurements were

possible, when only three or two measurements were available we

left out one drug measurement. The results are included as

Supporting table S2, where PCM on average has a 50% lower

RMSE (on average 0.38 log units for PCM versus 0.56 log units

for scaling).

Likewise we trained individual models per drug using only the

sequence descriptors, hence this approach is conceptually identical

to Virtual Phenotype or Geno2Pheno models (shown as ‘sequence

only’ in supporting Table S2). The goal here was to ensure that

including chemical (ligand) information indeed improves model

performance. Indeed, we found that also here PCM outperforms

sequence only models in all drug classes. In all cases the prediction

error improves by approximately 11% (with a similar improve-

ment of correlation coefficient). This improvement is significant for

the NRTIs when performing a paired t-test (RMSE, P,0.01; R0
2,

P,0.01) and PIs (RMSE, P,0.01; R0
2, P,0.05). The difference

was not significant for the NNRTIs, while PCM did outperform

sequence only models (RMSE, P = 0.33; R0
2, P = 0.14). We think

this is mainly due to the large chemical diversity of the NNRTI

drug class, which are similar in pharmacophoric properties but

display a diverse collection of scaffolds. Since we use two

dimensional chemical descriptors rather than three dimensional,

PCM cannot reach the large performance difference shown for PI

and NRTI. This is supported by the fact that the chemically most

different NNRTI, ETR, is the only one that has a lower

performance in PCM models (similarity on average 0.36,

Supporting Table S7). Yet, the combination of the bioactivity

space for individual NNRTIs is successful as NNRTIs are known

to be sensitive to cross resistance, this is captured by PCM.

PCM model validation (Clinical Cut-offs)
In order to investigate clinical relevance of our work, we next

incorporated the actual clinical cut-off (CCO) values. These values

describe the expected response of a patient to treatment with a

certain drug based on the HIV genotype (the used clinical CCO

values are given in supporting Table S10 and S11). When we

apply the CCOs to our model predictions, our models achieve an

overall correctly classified percentage (CCP) of 95% for the

inhibition of mutant sequences present by a drug not present for

that sequence in the dataset (Figure 2).

For the sequences not present in the training set, 91% was

predicted correctly (supporting Table S3 and S4). More specifi-

cally per class, the PI scored the best (93% correct for internal

validation and 90% correct for external validation), followed by

NNRTIs (93% correct for internal validation and 91% correct for

external validation), and lastly the NRTIs (80% correct for

internal validation and 68% for external validation). However, it

should be noted that for the NRTIs only a small number of

sequences was available as validation, and all were not very

resistant, possibly leading to a biased validation.

We can conclude that even prediction on sequences not present

in the training set was possible, albeit slightly less than the internal

validation (RMSE 0.34 log units when the sequence is known

versus 0.48 when it is not). To further find the limitations of this

extrapolation we employed leave-one-sequence-out (LOSO) val-

idation.

Leave-One-Sequence-Out validation (LOSO)
LOSO validation is unique to proteochemometric approaches,

since it enables the prediction of compound activities for entirely

novel genotypes (or patients), hence estimating which treatment would

be most likely to succeed in a given treatment situation. For

computational reasons, our approach used a subset of approxi-

mately 1,000 mutants from the full set (4% (PR) and 9% (RT) of

the total dataset, respectively). Each of these sequences was left

out, and a model was trained on the remaining sequences; results

are shown in Figure 3. Again, the PCM technique overall provides

Efficacy Prediction of HIV Inhibitors by Proteochemometrics
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rather robust in modeling the current dataset. Best performance

can be observed for the PI model (with an RMSE of 0.40 log units,

R0
2 of 0.76 and CCP 90%), followed by the NNRTIs (RMSE of

0.67 log units, R0
2 of 0.53 and CCP 84%) and the NRTIs (RMSE

of 0.45 log units, R0
2 of 0.50 and CCP 71%). The finding that PIs

and NRTIs are easier to model than NNRTIs is in line with our

finding above. What should be noted is that the NNRTI model

tends to slightly underpredict the Log FC values that have been

measured with a Log FC above 3.0. While those values are

correctly predicted to be above 1.0 (which is an important

prediction to have by itself in practice), the numerical correlation

between predicted and experimental values leads to a slight, but

consistent under prediction of activities in this value range.

Crucial for the application of computational models is an

estimate in which cases the model can be trusted, and where it is

likely to fail. In this spirit, the ‘Applicability Domain’ of

computational models has become an important topic recent-

ly;[37] however, so far it was mainly applied to the chemical

domain. This concept was extended in the current work, given the

nature of PCM models, also to the protein target or biological

domain where special considerations need to be taken into

account. Since we are dealing with a large set of viral mutants we

are unable to define a single similarity to a WT to get an idea of

the applicability domain. Therefore, we chose to define the

applicability domain based not only on the distance to the training

set, but also on the density of neighbors in the training set (See

Methods section for details). At a similarity threshold of 97% each

sequence is hence assigned a density score between 0 and 1 (0

corresponding to no sequences with a similarity of at least 97%,

and 1 corresponding to all sequences in the dataset having more

than 97% similarity to the sequence under consideration).

Figure 3 visualizes the ‘Neighborhood Behavior’;[38] if the

fraction of sequences having this similarity of 97% (X-axis) is

larger (closer to 1), the maximal encountered prediction error

(RMSE, y-axis) is lower (closer to 0 log units). This means that if

the model can extrapolate from a larger number of sequences

having a similarity of 97% or higher, the predictions become more

reliable. Performance of a practically useful model would require

the largest error to be below 1 log unit; hence, given this

requirement, the density of sequences in the training set should be

larger than 0.15 (for PIs and NRTIs) and larger than 0.25 (for

NNRTIs), respectively. Due to this numerical quantification of the

Figure 2. Model validation. (A,B,C) Our models perform robustly in both internal validation (unknown combinations of known drugs and known
mutants) and (D,E,F) external validation (unknown combinations of drugs and mutants, one of which is unknown). The PIs perform the best (RMSE
0.27 log units, CCP 93% internal and 0.43 log units, CCP 90% external), followed by the NNRTIs (RMSE 0.45 log units, and CCP 93% internal and 0.49
log units, CCP 91% external) and then the NRTIs (RMSE 0.31 log units, CCP 80% internal and 0.52 log units, CCP 68% external). The range of Log FC
values present in the dataset is the largest for the NNRTIs, followed by the PIs and then the NRTIs.
doi:10.1371/journal.pcbi.1002899.g002

Efficacy Prediction of HIV Inhibitors by Proteochemometrics
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‘Applicability Domain’ of the model, in biological space, we are now

able to judge in which situations the model will be applicable (i.e. is

likely to generate reliable results), and in which situations it is not

which is of crucial importance in order to gain trust into

computational models.

LOSO validation (Clinical Cut-offs)
Further exploring the clinical relevance of this work, the CCO’s

were again applied to model predictions also in the case of the

LOSO experiments. Overall the model reached a CCP of 81% of

the individual mutant – drug pairs. Moreover, 12% of the total

predictions were overpredicted, and only 7% underpredicted.

Hence our models perform robust also on sequences that are entirely

novel to the model (supporting Table S5). For the individual classes,

the image is very similar to that in the external validation, the PIs

perform the best (90% correct), followed by the NNRTIs (84%

correct) and lastly the NRTIs (71% correct).

In the text above we have thoroughly validated our models and

they have shown to be robust in modeling HIV resistance to PIs,

NNRTIs and NRTIs. This was confirmed for known sequences in

an unknown combination with a drug but also for unknown

sequences in an unknown combination with a drug. Hence we

conclude that our models describe the drug – target interaction

space, therefore it is very interesting to investigate how our models

actually derive these Log FC values from the contributions

individual mutations make.

PCM compared to sequence only linear models
To compare the performance of our PCM models with state of

the art models trained on sequence data only and to place the

results of our work in perspective, we used a dataset previously

published by Van der Borght et al. [39] We explicitly selected for

each class the 150 sequences that were predicted most inaccurate,

representing the most difficult sequences to predict (these were

mutants that seem to exhibit a different resistance profile).

Moreover, most of these sequences contained mixtures (several

mutations present on a single position) that had been discarded

from our PCM training set. The purpose of this validation was

Figure 3. The model performance in the LOSO experiments. (A) The figure visualizes the measured Log FC for a mutant – drug pair on the x-
axis. The y-axis shows the Log FC predicted for that mutant – drug pair by a model that was trained without that particular pair. Again the PIs perform
the best (RMSE 0.40 log units, R0

2 0.76, and CCP 90%) followed by the NNRTIs (RMSE 0.67 log units, R0
2 0.53 and CCP 84%) and then the NRTIs (RMSE

0.45 log units, R0
2 0.50 and CCP 74%). (B) The density to the training set as a measure of applicability domain provides a useful estimate to predict

model reliability. The x-axis shows fraction of the training set that has a similarity of 0.97 or higher to a specific mutant – drug pair. If this fraction is
larger, then the prediction error (y-axis) for that pair becomes smaller as the model is better able to extrapolate from the training set. Since this
fraction can be calculated before any model prediction is made, a maximally allowed prediction error can be predetermined before any model
predictions are made.
doi:10.1371/journal.pcbi.1002899.g003

Efficacy Prediction of HIV Inhibitors by Proteochemometrics
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therefore twofold, to assess the performance of PCM when

compared to sequence only models, and secondly to assess if the

PCM models can deconvolute the effect of individual mutations to

make accurate predictions for mixture sequences.

PCM model performance compared to previously
published models

The results of this validation are shown in Figure 4, Table 1 and

Supporting Table S2. Our PCM models clearly outperform

sequence only models. For each class the PCM models predict the

Log FC more accurately. This is indicated by the smaller RMSE

(0.53 log units versus 0.68 log units for the NRTIs; 0.65 log units

versus 0.75 log units for the PIs, and 0.85 log units versus 1.3 log

units for the NNRTIs) and also by a higher CCP (68% versus 54%

for the NRTIs, 78% versus 75% for the PIs, and 89% versus 78%

for the NNRTIs). For several PIs, the sequence only models

perform marginally better when measuring by the correlation

coefficient; however as these values are systematically slightly

overpredicted in the sequence only models, PCM still performs

better.

Furthermore, when we limit ourselves to only predicting the

Log FC for mutant mixtures, PCM still outperforms sequence only

models (supporting Table S2, supporting Table S6 and supporting

Figure S5). This is even the case while our PCM models were

trained without mixture sequences in the training set whereas

these were present in the training for the sequence only models. A

large fraction of these mixtures sequences show a low value for the

97% similarity density, hence we would expect the models to

perform suboptimal on these sequences. The applicability domain

measure therefore also holds in this case. These results underline

the added value of PCM models over sequence only models and

hence we also wanted to interpret these models.

Model interpretation (known resistance mutations)
The aim of this feature importance investigation was to explain

the average reduction in drug affinity that the presence of an

individual mutation causes. Firstly, we investigated the effect of

several known mutations from literature. To this end we compared

the features selected as being significant by our model to the

mutational overviews published by Johnson et.al. [6,40]

Figure 4. Performance of PCM based models compared with sequence based models for the 150 most difficult sequences as
published by Van der Borght et al. The PCM models (A) perform better as they have a lower prediction error for each drug class (0.53 log units
versus 0.68 log units for the NRTIs; 0.65 log units versus 0.75 log units for the PIs, and 0.85 log units versus 1.3 log units for the NNRTIs) than the
sequence based models (B). Clearly the NNRTIs are most difficult to predict. Note that these sequences contain a large fraction of mixture sequences,
which were not present in the PCM training set but were present in the sequence only training set. In addition, the PCM models also reach a higher
CCP compared to the sequence only models.
doi:10.1371/journal.pcbi.1002899.g004
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Figure 5 shows the impact of selected mutations on NNRTI

affinity. Overall, while there is a significant amount of cross-

resistance, each of the NNRTIs still possesses its own distinct

resistance profile, in agreement with the importance of personal-

ized HIV treatment approaches. Furthermore, the impact of

individual mutations varies per drug and is in line with literature

data. [6,18] Red indicates that the presence of this mutation leads

to a higher Log FC on average, whereas green indicated that the

presence of this mutations leads to a lower Log FC on average,

and white indicates that this mutation has little effect on the Log

FC (For an explanation of the abbreviations see supporting Table

S1). For instance, mutation K103N has a rather specific pattern as

it confers resistance to Nevirapine, Efavirenz, and Delavirdine but

not to Etravirine. [6,18] This pattern is reproduced by our model.

Furthermore, V179F is known to lead to Etravirine resistance but

to have less effect on Nevirapine, Efavirenz, and Delavirdine,

[6,18] a resistance profile that can also be reproduced based on

our dataset. Some mutations are slightly underestimated, these

include V90I and V106I. Another interesting observation is that

mutations Y188C and G190A are predicted to render HIV more

sensitive to Etravirine according to our model. This finding is in

agreement with work by Vingerhoets et al. [41]

Related analyses for NRTI resistance and PI resistance have

been included in the supporting information (supporting Figure S6

and supporting Figure S7). Specific NRTI mutations that were

accurately reproduced include K65R, Q151M, and T215Y, while

mutations M41L and M184V are slightly underestimated,

compared to previous studies. [6] For the PIs mutations that are

accurately reproduced include D30N, I50L, V82S, and I84, while

the I64L and I93M mutations are assigned less importance than in

previous work. [6]

Hence, the PCM models applied in this study are able to

reproduce known resistance patterns as outlined above. This led us

to the next step of the study, the identification of novel mutations

(present in our dataset but not previously published) which are

found to confer cross resistance to antiretroviral treatments. This

work is similar to previous work by Van der Borght et al. [39] but

here we focus on both cross resistance conferring mutations and

drug specific mutations. Furthermore we apply the method to all

three major classes of anti-HIV drugs rather than one and can do

so directly from our models.

Model interpretation (cross resistance-conferring
mutations)

To identify cross-resistance as part of the current study, we were

limiting ourselves to mutations that have a negative effect on the

majority of drugs in a single class. However, in case of particular

interest in the resistance profile of a particular drug this analysis

can also be performed on the individual-drug level subsequently.

We selected mutants based on the following conditions:

occurrence in the dataset more than once; average Log FC for

all compounds above 0.4; standard deviation over this average

Table 1. Performance of PCM compared to sequence only models published by Van der Borght et al.

RMSE (Log units) R0
2

RMSE Sequence only (Log
Units) R0

2 Sequence only Grouping

0.66 (625) 0.41 (60.19) 0.80 (60.29) 0.22 (60.41) Drug (average)

0.65 0.54 0.75 0.56 PI (Class)

0.59 0.64 0.67 0.66 APV

0.67 0.57 0.83 0.50 ATV

0.80 0.39 0.79 0.49 DRV

0.62 0.54 0.76 0.59 IDV

0.65 0.60 0.83 0.67 LPV

0.63 0.49 0.73 0.48 NFV

0.63 0.52 0.76 0.57 SQV

0.53 0.41 0.55 0.42 TPV

0.85 0.28 1.3 0.00 NNRTI (Class)

0.93 0.39 1.1 0.10 ETR

1.5 0.12 1.8 0.00 EFV

0.72 0.00 0.95 0.00 NVP

0.53 0.51 0.68 0.27 NRTI (Class)

0.67 0.49 0.83 0.31 3TC

0.41 0.46 0.53 0.15 ABC

0.59 0.45 0.75 0.20 AZT

0.45 0.27 0.54 0.00 D4T

0.42 0.35 0.51 0.10 DDI

0.65 0.51 0.90 0.20 FTC

0.43 0.36 0.59 0.00 TDF

0.66 0.42 0.80 0.30 Overall

Validation parameters were calculated using different forms of grouping to give an unbiased error estimate. The table shows that our PCM models perform better than
sequence only models. This is indicated by the regression validation parameters RMSE and R0

2. While it should be noted that for some of the PIs, the sequence only
models tend to have a slightly higher R0

2, they also have a much higher RMSE.
doi:10.1371/journal.pcbi.1002899.t001
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below 0.4. Known mutations as published in literature were

discarded. [6,40,42,43] With these filters a number of novel

resistance conferring mutations could successfully be identified

which are listed in Table 2–4 (For an explanation of the

abbreviations see supporting Table S1). Mutations identified have

a high impact on drug affinity and which lend themselves to

experimental validation, for instance in the case of NNRTI and

NRTI resistance conferring mutation T216M. The full set of

individual mutations (both known and novel) and their effect is

included in the supporting Information as delimited text files

(Dataset S1).

Model interpretation (drug-specific resistance-conferring
mutations)

We furthermore analyzed not only mutations that cause cross-

resistance, but also those with a particular effect on a specific

Figure 5. Model interpretation, known mutations that lead to NNRTI (cross) resistance. The pattern produced by our model correlates
with literature. [6,18] In particular the specific profiles of V106I, Y181C and G190A are reproduced well. Values in the cells represent Log FC.
doi:10.1371/journal.pcbi.1002899.g005
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drug treatment alone. The goal here was to identify mutations

that lead to large resistance for one drug but are still sensitive for

another drug from the same class. Hence this knowledge can be

of high importance in a clinical setting. For the PIs the 30 most

interesting mutations (defined as those mutations that have the

most diverse effect on the different drugs), are shown in Figure 6

(while corresponding figures for the NNRTIs and NRTIs are

included in supporting Figure S8 and supporting Figure S9). In

those figures we can observe several mutations that lead to

resistance for a single drug (Log FC on average .0.5) and at the

same time lead to higher sensitivity for another drug (Log FC on

average ,0.0).

For instance, the G48W mutant is sensitive to Darunavir

and Tipranavir, while showing some degree of resistance to all

other PIs. Furthermore, R87K is resistant to Atazanavir,

Darunavir, and Tipranavir, but sensitive to all other drugs in

the dataset. This could indicate that at this point the mutant

has over-adapted to the host environment, including the drug,

hence rendering the mutant very sensitive to changes in this

environment. Finally, N88G seems to only be sensitive to

Darunavir, while conferring resistance to all other PIs in the

dataset. Information of this type is of high relevance to

prescribe the optimal drug for an individual patient, by being

able to link the viral genotype to the clinical phenotype in a

real-world situation. Applying these models in a real world

situation on unseen clinical data is exactly what we imple-

mented in the following paragraphs.

Validation on unseen data (Stanford University data)
Given a sequence of PR and RT (and hence, a viral

genotype of a patient to be treated), our models are able to

predict which drugs will be least influenced by resistance, as

measured via the lowest Log FC. To accurately estimate our

model performance in prospective predictions, in the final step

of this study we performed a validation on unseen data. Apart

from only focusing on unseen data, in order to establish

agreement of our modeling procedure with other approaches,

we also employed data from an entirely different source –

namely, for sequences obtained from the Stanford University

HIV Drug Resistance Database (Stanford Set). [18,44] The set

we used has also been included as supporting information

(Dataset S2).

Validation on unseen data (model performance)
Applied to the Stanford Set, the PCM models developed in the

current work show an average RMSE of 0.52 log units, with the

average R0
2 being 0.59. Compared to the models above, this is a

slightly larger error compared to the validation on Virco data,

which was below 0.50 log units. (It should be noted that this is

very diverse data, including historical literature data of which we

cannot estimate reliability.) The PI model again performs the best

(with an RMSE of 0.43 log units and an R0
2 of 0.76), while the

NNRTIs are predicted with the largest error (with an RMSE of

0.62 log units and an R0
2 of 0.66), which is the result of a number

of outliers (see Figure 7 and explanation below). The NRTI

model exhibits the lowest correlation coefficient (R0
2 0.39 and

RMSE 0.61 log units), mostly due to the relatively small range of

Log FCs present in the dataset. However, also in this case we

observe a correlation between the density of sequences with a

97% similarity in the training set and modeling error, also

allowing us to establish the Applicability Domain of the model

throughout.

Validation on unseen data (discussion of outliers)
With the NRTIs and some NNRTIs there are outliers to the

Applicability Domain we established, meaning that expected and

observed errors exhibited some differences. (Note that this is

Table 2. Novel resistance conferring mutations derived from
the dataset (NNRTI).

Mutation DLV EFV ETR NVP
Average
Log FC

P9T 0.36 1.01 0.65 0.46 0.62

E79D 0.34 0.55 0.61 0.34 0.46

K101S 0.38 0.73 0.31 0.44 0.47

K102Y 0.72 0.53 0.47 0.77 0.62

S156A 0.8 1.2 0.76 0.67 0.86

M164L 0.26 0.89 0.51 0.62 0.57

T216M 0.97 1.47 0.01 0.84 0.82

Y232H 0.47 0.62 0.36 0.47 0.48

R307M 0.92 0.14 0.28 0.35 0.42

Average
Susceptibility

0.58 0.79 0.44 0.55 -

The value in the different drug columns indicates the average Log FC in the
presence of this mutation. While these mutations have been selected to confer
some resistance to all NNRTIs, each drug still has a distinct profile. Efavirenz is
the most sensitive (average Log FC 0.79) and Etravirine the least (average Log
FC 0.44) with Nevirapine (average Log FC 0.55) and Delavirdine (average Log FC
0.58) in between.
doi:10.1371/journal.pcbi.1002899.t002

Table 3. Novel resistance conferring mutations derived from the dataset (NRTI).

Mutation 3TC ABC AZT D4T DDC DDI TDF FTC Average Log FC

I63V* 0.22 n/a 1.07 0.53 n/a 0.52 0.01 0.36 0.45

I202M* 0.23 n/a 0.73 0.68 0.51 0.57 0.45 0.39 0.51

R206M 0.90 0.42 0.54 0.01 0.15 0.17 0.24 0.92 0.42

T216M 0.88 0.51 0.66 0.12 0.20 0.27 0.38 0.94 0.50

E298K* 0.33 0.43 0.44 0.38 0.65 0.32 n/a n/a 0.43

Average Susceptibility 0.51 0.45 0.69 0.34 0.38 0.37 0.27 0.65 -

The value in the different drug columns indicates the average Log FC in the presence of this mutation, when not available in the dataset the value is denoted ‘n/a’.
Mutations indicated with an asterisk were incompletely tested on all drugs in the dataset. Like the NNRTI resistance mutations, each mutation displays a different
resistance profile over all drugs. AZT is seen to be the most susceptible (average Log FC 0.69) and TDF the least susceptible (average Log FC 0.27).
doi:10.1371/journal.pcbi.1002899.t003
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usually the case, the Applicability Domain concept being a

concept based on error distributions and likelihoods, not

certainties, that a given error will be obtained in a given

situation.) It was found that these outliers were obtained from

only a small number of references (RefIDs) from the Stanford

DB. References 369, 414, 649 all contained the M184V and

T215Y mutations that are also known to differ between AVG and

Phenosense. Furthermore there was a major discrepancy between

the Log FC values reported for AZT on similar mutant which

was .2000 (log value 3.3) in one reference, while being reported

as low as 28 (log value 1.4) from another source. [45,46,47]

Reference 789 contained a sequence carrying a deletion at

position 69, which was not taken into account by our model. [48]

Reference 947 linked to unpublished data and could therefore

not be verified. Finally, reference 1261 is underpredicted for both

the NRTI tested sequences and NNRTI tested sequences and we

could not identify an apparent cause for this behaviour. [49]

(More detailed results are listed in Table 5.) The table shows that

performance per drug is very good with a low RMSE (an average

RMSE of 0.54 log units; with two outliers, AZT and FTC,

exhibiting an RMSE of .0.90 log units). Overall, when the

results are grouped per literature reference number (which is

included in the dataset) the average quality decreases and the

standard deviation increases, indicating that differences between

reported Log FC changes in literature exist and this could

adversely affect model performance.

Validation on unseen data (Clinical Cut-offs)
As each assay uses its own set of CCO values tuned for the

respective assay we used values supplied by Virco and Rhee et al.

for the Virco set and the Stanford set respectively. [44] Our

model classifies the response correctly in 84% of the cases

(Table 5). The average performance when grouped per individual

drug class was very good (PI 85%, NNRTI 89% and NRTI

79%). Also noteworthy is that the model bias is towards over

prediction rather than under prediction, something that is not

always mentioned in literature but is especially relevant in a

clinical setting.

Previous work on a high quality filtered subset of our Stanford DB

set reached 80% correct predictions of phenotype from genotype

on average (PI 78%, NNRTI 83% and NRTI 75%). [44] Other

work indicates that an expert panel reaches up to 44% correct

predictions. [50] The two outliers in the NRTI class are d4T and

TDF, for which an apparent discrepancy between AVG data and

Phenosense data has previously been described. [51]

Conclusions
In this work we report the construction of robust PCM models,

based on 300,000 bioactivity data points measured against

different HIV genotypes. In total, the model contained informa-

tion on a total of 4 (NNRTI), 8 (NRTI) or 9 (PI) drugs combined

with 10,700 (NNRTI) 10,500 (NRTI) or 27,000 (PI) mutants.

Given the nature of the PCM modeling procedure employed in

this work, we were able to combine all resistance profiles of the

three above drug classes in three single models, hence focusing on

very large target space (tens of thousands of different proteins) in this

work. Both in internal validation and validation on unseen data

our model showed performance comparable to assay reliability

and better than sequence only models; moreover, model

interpretation has been performed to identify novel resistance-

conferring mutations that lead to resistance to all drugs in a class,

such as T216M in the case of RT. In addition, we can use these

models to find mutations that lead specific sensitivity (G48W in

PR) or resistance (G68R in PR) to a single drug within a class.

Another application of our models is the support of personalized

drug regimen predictions. We have shown that our models are

able to predict clinical resistance with a high degree of reliability.

This reliability is formed by a 95% CCP when predicting clinical

response for Antivirogram data, which is the assay models were

trained on, similar studies reached 80% CCP when predicting

values for the assays they trained on. Furthermore, the CCP and is

as high as 81% when predicting clinical response for unknown

mutants. The novelty is formed by reliable predictions on unknown

mutants and even unknown mixtures. Finally, the CCP is 84% when

predicting clinical response for clinical isolates obtained from very

diverse sources (including historical literature data and data from

different assays), indicating that the model is robust and predictive.

We attribute the better performance of PCM to two reasons.

Firstly our models are trained on a very large co-linked dataset. This

large training set not only minimizes the influence and bias caused

by single experimental error, it also allows the model to detect global

patterns that are consistent over both genotype (sequence similarity)

and chemo type (drug similarity). The second reason is related to the

first, as the encoding of the full sequences using physicochemical

properties rather than presence or absence of mutations allows for a

better similarity measure between two sequences.

Methods

Dataset
The main dataset was obtained from Virco (Beerse, Belgium)

and consisted of mutants (both PR and RT sequences) and fold

change (Log FC) in pIC50 (log units) data in the AVG assay

collected by Virco up to January 2011. [12,25,28] Mixtures,

consisting of multiple mutants that were identified in a single

clinical isolate) were removed from the set and the total size of the

dataset is listed in Table 6. The Log FC data was used as is, since it

already consisted of log units difference to a single mutant defined

Table 4. Novel resistance conferring mutations derived from the dataset (PI).

Mutation APV ATV DRV IDV LPV NFV RTV SQV TPV Average Log FC

Q18N 0.55 0.52 0.56 0.61 0.58 0.49 0.56 0.50 0.65 0.56

V32T* 0.63 0.65 0.07 0.67 0.45 0.67 0.68 0.81 n/a 0.58

N88G 0.39 0.97 -0.27 0.77 0.18 1.14 0.10 0.49 0.22 0.44

Average Susceptibility 0.52 0.71 0.12 0.68 0.40 0.77 0.45 0.60 0.44 -

The value in the different drug columns indicates the average Log FC in the presence of this mutation, when not available in the dataset the value is denoted ‘n/a’.
Mutations indicated with an asterisk were incompletely tested on all drugs in the dataset. Here Nelfinavir is the most susceptible (average Log FC 0.77) and Darunavir
the least (average Log FC 0.12).
doi:10.1371/journal.pcbi.1002899.t004
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as wild type. The wild type was defined as the HXB2 isolate

(Uniprot accession P04585 and Genbank accession K03455),

shown in Table 6 are the mean number of mutants present per

sequence compared to HXB2. [22]

Furthermore, little duplicate sequences were actually in the

dataset, specifically: NNRTI 1,501 duplicates (of 10,723 sequenc-

es), NRTI 1,411 duplicates (of 10,501 sequences), PI 9,803

duplicates (of 27,081 sequences).

Figure 6. Model interpretation, mutations leading to PI specific resistance. Shown are the 30 mutations that have the most diverse effect
over the different members of the PI drug class. The figure contains a number of known mutations (e.g. M46L, [6] A71T, [6] V82A, [6] V82S [6]) but also
several novel mutations (e.g. G48W, N88G). Values in the cells represent Log FC.
doi:10.1371/journal.pcbi.1002899.g006
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Mutant descriptors
Sequences were subsequently encoded using the first three Z-

scales. [52,53] The Z-scales are a previously published set of

descriptors that characterize the physicochemical properties of the

amino acids side chains. The resulting scales correlate to

lipophilicity, size and polarity for each amino acid. For PR the

full sequence was used and for RT only the first 400 amino acids

were sequenced as the final 160 residues form an RnaseH domain

and are not directly relevant in (N)NRTI resistance. These Z-

scales were subsequently used to train models.

Drug descriptors
Structures of the drugs were normalized and ionized at pH 7.4,

they were assigned 2D coordinates and subsequently converted to

Scitegic circular fingerprints of type ECFP_8, ECFP_10 and

ECFP_12 (depending on drug class, as described below). [54,55]

All this was done in Pipeline Pilot Student Edition version 6.1.5.

[56] Circular fingerprints employ all possible substructures for a

molecule up to a predefined maximal bond diameter. Each

substructure is then encoded as a bit given the value ‘1’ when

present and ‘0’ when absent. The reason for employing circular

fingerprints is that they have previously been shown to give very

high retrieval rates in comparative studies. [57] The NRTI dataset

employed ECFP_10 fingerprints while the NNRTI dataset used

ECFP_8 and the PI dataset ECFP_12 fingerprints.

In order to create a numeric descriptor for each drug, a

similarity matrix was constructed using the fingerprints and based

upon the Tversky Similarity coefficient. [58] Here fingerprints

were converted to a fixed length array of counts with maximal

length of 256 bits where the most descriptive bits were sorted to be

at the beginning of the array. The value for a was 0.1 and the

value for b was 0.9, putting more weight on the unique features of

the target molecules compared to the reference molecule. For each

drug in a class, the similarities to all other drugs from that class

were then used as a descriptor (Tables S7, S8, S9).

Machine learning
Models were constructed in the academic version of Pipeline

Pilot 6.1.5 using the R-statistics package. [59] Support vector

machines (SVM) with a radial basis function kernel as coded in the

e1071 package were used for model creation. [60] Parameters

gamma and cost were tuned over an exponential range and

Figure 7. Model performance predicting the Stanford University dataset. (A) The isolates predicted were not included in the training set,
still performance is robust. Based on CCP, the NNRTIs perform the best (RMSE 0.62 log units and CCP 90%), followed by the PIs (RMSE 0.43 log units
and CCP 85%) and then the NRTIs (RMSE 0.61 and CCP 79%). (B) The density to the training set as a measure of applicability domain provides a useful
estimate to predict model reliability. The x-axis shows fraction of the training set that has a similarity of 0.97 or higher to a specific mutant – drug pair.
The larger this fraction, the smaller the prediction error (y-axis) for that pair as the model is better able to extrapolate from the training set.
doi:10.1371/journal.pcbi.1002899.g007
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epsilon was set at 0.25. It has been shown that setting epsilon to

the approximate data error is the optimal value for training. [61]

The optimal model was determined using 5 fold cross validation

before proceeding to external validation of the model. The

parameters used for validation were R0
2, R2, and RMSE. [36,62]

Density based applicability domain
As our models are trained on a database of different HIV

mutants, applicability domains based on a single wild type

sequence are expected to perform sub optimal. Rather we choose

to determine the applicability domain based on the density of the

nearest neighbors in the training set. This density was expressed as

the fraction of the total number of sequences meeting a certain

similarity criterion. Therefore this density score will be between 0

(0%, no sequences meeting the similarity criterion) and 1 (100%,

all sequences meeting the similarity criterion). We calculated the

density at a large number of similarity thresholds between 99%

and 70%. Optimal performance was reached at 97%, similarity

Table 5. Performance in validation on isolates not present in the original dataset.

RMSE (Log units) R0
2

Correctly Classified
Percentage

Overpredicted
Percentage

Underpredicted
Percentage Grouping

0.54 (60.28) 0.56 (60.27) 0.85 (60.13) 0.09 (60.11) 0.06 (60.09) RefID (average)

0.45 (60.33) 0.62 (60.34) 0.84 (60.24) 0.11 (60.20) 0.06 (60.15) IsolateName (average)

0.44 (60.34) 0.62 (60.34) 0.84 (60.24) 0.10 (60.20) 0.06 (60.15) SeqID (average)

0.54 (60.18) 0.58 (60.19) 0.83 (60.10) 0.11 (60.10) 0.06 (60.06) Drug (average)

0.44 0.75 0.85 0.11 0.03 PI (Class)

0.43 0.74 0.86 0.10 0.04 ATV

0.37 0.75 0.72 0.28 0.00 IDV

0.39 0.83 0.91 0.03 0.06 LPV

0.44 0.76 0.9 0.05 0.04 NFV

0.44 0.78 0.91 0.05 0.03 RTV

0.49 0.75 0.88 0.07 0.05 SQV

0.52 0.38 0.70 0.20 0.02 TPV

0.68 0.65 0.89 0.05 0.06 NNRTI (Class)

0.64 0.63 0.83 0.10 0.07 DLV

0.60 0.70 1.00 0.00 0.00 EFV

0.76 0.65 0.87 0.04 0.09 NVP

0.61 0.39 0.79 0.12 0.09 NRTI (Class)

0.47 0.49 0.85 0.09 0.07 ABC

0.90 0.56 0.84 0.09 0.07 AZT

0.41 0.37 0.64 0.12 0.23 D4T

0.42 0.35 1.00 0.00 0.00 DDC

0.39 0.41 0.74 0.17 0.10 DDI

1.01 0.66 0.85 0.00 0.15 FTC

0.44 0.12 0.66 0.30 0.04 TDF

0.53 0.65 0.84 0.10 0.06 Overall

Validation parameters were calculated using different forms of grouping to give an unbiased error estimate. Class wide values are indicated in italic and the global
average performance is indicated in bold and italic. For larger groups (RefID, SeqID, Isolatename and per drug) the average value and standard deviation are given. For
three drugs (RTV, DLV, DDC) no Virco cut-off was available, here the Stanford cut off was used for both, for SQV no Stanford cut-off was available so the Virco cut-off was
used for both. The table shows that our PCM models perform robustly in predicting the Log FC as indicated by the regression validation parameters RMSE and R0

2. More
importantly, the correctly classified percentage is 84% overall.
doi:10.1371/journal.pcbi.1002899.t005

Table 6. Description of the dataset used in the current study (Obtained from Virco).

Target Amino acids Binding Site Drug Class Drugs Mutant Sequences Data points
Mean number of
mutations

Reverse Transcriptase 400* Orthosteric NRTI 8 10,501 72,727 22 (69)

Reverse Transcriptase 400* Allosteric NNRTI 4 10,723 35,249 22 (69)

Protease 99 Orthosteric PI 9 27,081 180,162 10 (66)

*For Reverse Transcriptase only the first 400 amino acids were sequenced. The total size of the dataset is unlike any other dataset used in PCM. The number of
mutations shown in the last column is the average per sequence and standard deviation when compared to HXB2.
doi:10.1371/journal.pcbi.1002899.t006
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defined as 1 minus the euclidean distance. Furthermore, this

similarity was based on full sequence similarity rather than binding

site similarity.

Hence for each sequence, the total number of sequences being

97% similar or more can be between 0.0 (none) and 1.0 (all). We

found that in practice the total fraction did not exceed 0.3 (30% of

the sequences in the training set 97% similar or more).

Learning curves
The learning curves provide an estimate for the maximal

performance that can be achieved on these datasets, simulta-

neously they represent external validation. The learning curves

show that the models gradually improve when trained on a larger

dataset. The results show that PCM is not only able to create

models on this data, but also that these models are robust with

good validation parameters. The PI model shows the best

performance, RMSE = 0.42 log units when trained on 5% of the

full set and ,0.30 log units when trained on 70% of the dataset.

The NNRTI model the worst performance, RMSE = 0.70 log

units when trained on 5% of the full set and ,0.50 log units when

trained on 70% of the dataset (supporting Figure S1).

Y-Scrambling
Subsequent to learning curve creation, y-scrambled models

were created. Here the measured value (i.e. Log FC) was randomly

permutated over the drug – mutant combination. The rationale

being that no correlation should remain as the presence of a

certain mutation will no longer be associated with a lower Log FC

value but with mixed Log FC values. Supporting Table S2 display

the lack of correlation between measured and scrambled values.

Models that were trained on this scrambled set and validated on

30% the data that was kept unscrambled produced very high

RMSE values. These values were (in log units); 0.83 (PIs, versus

0.27 for predictive models), 1.10 (NRTIs, versus 0.31 for predictive

models) and 1.11 (NNRTIs, versus 0.45 for predictive models).

Furthermore, the values for the R0
2 were very low; 20.06 (PIs,

versus 0.89 for predictive models), 20.20 (NRTIs, versus 0.75 for

predictive models) and 20.21 (NNRTIs, versus 0.79 for predictive

models) (Supporting Table S2). Finally the cross validation

parameters for the models trained on these scrambled sets

demonstrated a lack of correlation; RMSE in log units was highly

similar to the external validation; 0.87 (PIs), 1.11 (NRTIs) and 1.12

(NNRTIs). The corresponding correlation coefficient was 0.00 for

all three models.

Model interpretation
To determine the effect of individual residues, for each sequence

each residue was mutated back to wild type in silico by replacing

the descriptors of the mutant amino acid with the descriptors of

the corresponding wild type residue as was done previously. [33]

Subsequently for all drugs the model prediction on the original

mutant sequence was compared with the prediction of the model

on the in silico changed mutant sequence. The difference was

interpreted as the change in pIC50 induced by that particular

residue, hence providing model interpretability. Changes that led

to a 0 value shift in pIC50 were removed in the calculation of the

average influence of mutations in a particular position, since in all

cases this was caused by substitution of identical amino acids.

Known resistance mutations
Known resistant mutations were retrieved from earlier publi-

cations by Johnson et al. and compared to our model interpreta-

tion. [6,40] While these papers only mention high impact

mutations and are gathered over the full population, they are a

good frame of reference for our model interpretation. We used

both the most recent publication and one from 2006 as

Delavirdine (DLV) has been removed from these overviews due

to the fact that it is only used rarely.

Full sequence resistance mutation identification
Mutations were filtered using the following parameters: have a

negative effect on the majority of drugs in a single class;

occurrence in the dataset more than once; average Log FC for

all compounds .0.4; standard deviation over this average ,0.4.

This provided us with a number of mutations that lead to an

increase in fold change on average, again using literature we

discarded any previously known mutations and kept those

mutations that were novel. [6,18,40]

Drug specific resistance mutation identification
For all interpretable mutations, the standard deviation was

calculated over the average Log FC values per drug within a

class. Subsequently all mutations were ranked and the top 30

were retained here. The goal here was to find mutations that

have the most diverse effect over the different drugs within a

class.

Benchmark dataset for sequence only model comparison
The dataset we used to compare the performance of PCM

models with sequence only models was obtained from Van der

Borght et al. [39] From the paper the 150 sequences with the

largest prediction error were selected per drug class. For mixtures

present in this set the average value of each z-scale for each of the

present variants at a single position was used as descriptor.

Mixtures with more than four possible variants at a single position

were discarded leading to a total of 146 NNRTI sequences, 146

NRTI sequences, and 149 PI sequences.

Stanford University validation set
Prediction of the Stanford University set is of is of particular

interest since the correlation between Phenosense and AVG has

previously been shown not to be very strong. [63,64] Yet it should

also be noted that the Phenosense assay is in fact more

quantitative. AVG measures cell death which can be sensitive to

slight differences in the state of the host cells used to grow virus. In

particular for mutations M41L, M184V, and T215Y there are

differences in Phenosense predictions compared with AVG. [65]

While the correlation between Phenosense and VircoTYPE

(trained on AVG) is slightly better, there are discrepancies. For

instance the resistance profile of d4T and TDF, have been shown

to have a Pearson’s correlation coefficient ,0.8 between the two

assays. [51] The reference set was downloaded from the Stanford

website (version 5.0, July 30, 2010), from this set the sequences by

Virco were removed (as they are presumed to be in the training

set, and this would artificially boost the results). The mixtures were

removed and this provided us with the following numbers of

sequence – compound pairs: 1,252 (NNRTI), 2,190, (NRTI), and

4,356 (PI).

After we predicted the Log FC values for individual drug –

mutant pairs using our models, the validation parameters were

calculated grouped by: Sequence ID (average and standard

deviation), per Isolate (average and standard deviation), per

Reference ID (average and standard deviation), per drug (average

and standard deviation), per class (total), and per individual drug

(total) (Table 5). The predictions per class are also included in

Figure 7. Note that the raw data was used and no selection for high

Efficacy Prediction of HIV Inhibitors by Proteochemometrics

PLOS Computational Biology | www.ploscompbiol.org 15 February 2013 | Volume 9 | Issue 2 | e1002899



quality data was made, furthermore, the data was gathered at

different labs, using different assays.

Clinical Cut-offs
Resistance was also classified using clinical cut-offs (CCOs), here

we used the values provided on the Stanford website and the

values from AVG were obtained from Virco (supporting Table

S10 and supporting Table S11). Subsequently CCP was calculated

as a fraction of the total, in addition the fraction of overpredicted

clinical response (resistance is predicted higher than measured

experimentally) and underpredicted clinical response (resistance is

predicted lower than measured experimentally) is included.

Supporting Information

Dataset S1 Archive file containing tab delimited text
files listing all present mutations for each drug type
(NNRTI, NRTI and PI) and their effect as described by
our final models.

(ZIP)

Dataset S2 Archive file containing an sdf file with the
Stanford set formatted to be used in PCM modeling. This

file can be opened using most chemical software packages.

(ZIP)

Figure S1 Learning curves for each drug class. The

curves serve to give an estimate of the maximal performance

possible on this dataset.

(TIF)

Figure S2 30% validation plots for individual NNRTIs.

(TIF)

Figure S3 30% validation plots for individual NRTIs.
Note that a small range appears to translate in a lower R0

2.

(TIF)

Figure S4 30% validation plots for individual PIs.

(TIF)

Figure S5 PCM model performance when predicting
Log FC values for unseen mixtures. The performance is

decreasing somewhat compared with the performance on non-

mixtures sets, but overall the models are shown to be predictive.

Note that the similarity measure shows the large distance between

these sequences and the training set as indicated by the small

fraction with a (full sequence) similarity larger than 0.97.

(TIF)

Figure S6 Effects of known RT mutations on NRTI
pIC50 according to the model. As was the case with the

NNRTIs, the model accurately reproduces resistance of mutations

known from literature. Values in the cells represent Log FC. Red

colored cells indicate a high Log FC (as shown in the legend),

green cells represent a negative Log FC and white cell indicate a

Log FC near to 0.

(TIF)

Figure S7 Effects of known PR mutations on PI pIC50

according to the model. As was the case with the NNRTIs, the

model accurately reproduces resistance of mutations known from

literature. Values in the cells represent Log FC. Red colored cells

indicate a high Log FC (as shown in the legend), green cells

represent a negative Log FC and white cell indicate a Log FC near

to 0.

(TIF)

Figure S8 Top 30 mutations that have a diverse effect on
NNRTIs pIC50. Note that some values are missing (e.g. the

combination T216I – NVP). Values in the cells represent Log FC.

Red colored cells indicate a high Log FC (as shown in the legend),

green cells represent a negative Log FC and white cell indicate a

Log FC near to 0. Note that some values are missing (white cells)

this is as these particular mutations did not occur in combination

with the drug listed.

(TIF)

Figure S9 Top 30 mutations that have a diverse effect on
NRTIs pIC50. Note that some values are missing (e.g. the combination

Q145V – FTC). Values in the cells represent Log FC. Red colored cells

indicate a high Log FC (as shown in the legend), green cells represent a

negative Log FC and white cell indicate a Log FC near to 0. Note that

some values are missing (white cells) this is as these particular mutations

did not occur in combination with the drug listed.

(TIF)

Table S1 Abbreviations for the different drugs.
(DOC)

Table S2 Performance of PCM compared to several
benchmark approaches.
(DOC)

Table S3 Model validation (CCP) on sequences present
in the training set (different drugs).
(DOC)

Table S4 Model validation (CCP) on sequences not
present in the training set.
(DOC)

Table S5 Model validation (CCP) LOSO.
(DOC)

Table S6 Performance of PCM compared to sequence
outliers models (mixtures only).
(DOC)

Table S7 Similarity matrix that was used as NNRTI
descriptor.
(DOC)

Table S8 Similarity matrix that was used as NRTI
descriptor.
(DOC)

Table S9 Similarity matrix that was used as PI
descriptor.
(DOC)

Table S10 Clinical cut-off and biological cut-off values
used for the NRTIs and NNRTIs.
(DOC)

Table S11 Clinical cut-off and biological cut-off values
used for the PIs.
(DOC)
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