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Helfrich free energy for aggregation and adhesion
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We present a theoretical study of the shape and free energy of a v@siohécroemulsion droplgt
adhered to a substrat@ther droplet based on the expression for the surface free energy by
Helfrich. Analytical formulas are presented for the shape and free energy when the rigidity constant
for bending,k, is small; i.e., whenK/ o), with o the surface tension, is small compared to the
typical dimension of the vesiclek(o)Y?<V*3 with V the vesicle volume. These formulas are
compared with numerical solutions of the shape equations such as those first provided in the work
by Seifert and Lipowsky. Results are presented when the exact formulas are applied to study the
onset of microemulsion droplet aggregation, e.g., dimer formation, in terms of the usual coefficients
in the Helfrich free energy expression, such as the rigidity constant for bending and the spontaneous
curvature. ©1999 American Institute of PhysidsS0021-96069)52406-9

The Helfrich expression for the surface free enéiggs  describe the nonspherical shapes of membranes and
been successfully applied to describe the shape and free evesiclesS to understand microemulsion phase diagrams and
ergy of membranes, vesicles, microemulsion droplets to calculate form fluctuations and polydispersity for micro-
even fluctuations of the simple liquid-vapor interfadéde-  emulsion droplet§:*
scribes the free energy ft¥endingthe surface, complement- Experiments have showhthat aggregation processes in
ing the usual surface tension energy fotendingthe sur-  microemulsions occur both with increasing and decreasing
face, in terms of two elasticity or rigidity constanksandk. ~ {€mperature depending on the microemulsion system studied
Seifertet al*® were the first to apply the Helfrich free en- (e.g., ionic or nonionic surfactant, water-in-oil or oil-in-water
ergy to describe adhesion. They calculated the shape and fri@icroemulsion. In both cases, however, aggregation pro-
energy of a vesicle adhered to a solid subst(sée Fig. 1a  CESSES take place in the direction of vanishing spontaneous
Unfortunately the differential equations derived from the CUrvature(e.g., with increasing temperature in ionic, water-
minimization of the Helfrich free energy cannot, in general,

in-oil microemulsiong eventually leading to structural
be solved analytically so that Seifezt al. had to resort to changes such as cylinder or channel formation. It thus seems
solving these shape equations numerically. However, the

natural to apply the Helfrich free energy to the onset of mi-
large number of parameters such as the prescribed Surfacroemuls!on .aggregatlon by _calculatmg, as is done in this
. L ommunication, the change in shape and free energy when
areaA, vesicle volumeV, the rigidity constants, as well as

the adhesion enerav makes numerical work tedi nd th:[wo microemulsion droplets form a dimer. In this way the
€ adhesion energy makes numerica’ Work tedious and ey yiness-parametét'? from the sticky hard-sphere-

negd arises for limiting angly.tl.cal resu!ts. In this Commun"model can be expressed in terms of the spontaneous curva-
cation we present such a limiting solution by calculating theture and rigidity constants

shape and free energy of a vesicle adhered to a substrate Although the analysis is thus more generally applicable,

u_n_der the condition that the rigidity constani._s _small. Spe- we first focus on the specific problem of a vesicle adhered to
cifically, the Iength constructed from the rigidity cons_tanta solid substratéFig. 13. We assume that the range of the
and surface tensioa must be ?/rznall lc/;)mpared to the typical jnteraction between the substrate and the vesicle is much
dimension of the systemk(o) “*<V™". smaller than the typical dimension of the vesicle. In fact, the
Our formulas can also be applied to study the onset ofyteraction will be approximated by a delta function located
droplet aggregation in microemulsions. In this case, instead; tne substrate. Our analysis is thus equivalent to a more
of a vesicle adhered to a substrate one describes the adhes'@gherm one in which the surface tension is assumed to be
of two microemulsion droplets forming a dimesee Fig. 1B gifferent on part of the closed surface. This might be due to
In the common description of aggregation of microemulsionhe presence of a substrathesioh or another closed sur-
dr0p|etS the analogy with |IQUId state theories has been US%Ce (partic|e aggregati@nbut m|ght also be due to some
treating the microemulsion droplets as hard spheres or stickyxternal force or boundary conditiof®0OC model*® see
hard sphere$! The phase separation described in terms of &yso Ref. 14, chemical modification of part of the surface,
liquid-gas transition is to be contrasted with another apsurface pinching? etc.
proach using the Helfrich free energy, originally applied to  The Helfrich form for the surface free energy of a
(weakly) curved interface introduces the Tolman length

dpresent address: Faculty of Chemical Technology, Membrane Technolog)(,REf- 16 [related to the radi_u_s _Of spontaneous cgrvaﬁa(;g
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlandsby do= 2k/R, (Ref. 3], the rigidity constant associated with
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The total free energy to be minimized with respect to the
. shape of the vesicle is the sum of the curvature free energy
4 Eq. (1), the substrate interaction energy E(), and
—ApV, whereAp equals the pressure difference between
the inside and the outside of the vesicl&=F,+F
—ApV. In the minimization of}, one can viewAp as either
the given pressure difference or as the Lagrange multiplier
fixing the volume of the vesicle. In the latter case the free
energy that is minimized i6=F,+ F4, rather thar(}, with
—ApV added tdr to fix the volume. Similarly one can view
the surface tensiomr as it appears in Eq1) as the macro-
scopically given surface tension or as the Lagrange multi-
/ plier fixing the total surface aredof the vesicle. In the case
/////////////’/////////// of a ves.icle adhered to a substrate, the most appropriate en-
semble is that of constant volume and constant surfac’area,
FIG. 1. Height profile/(r) with r the radial distance to theaxis. Lengths ~ while in a system of aggregating microemulsion droplets the
are .in uni.ts of ((/0')1/2. The dashed .Iine is the asymptotic spherical-cap- total volume is fixed in the One-phase region, Whﬂ@ is
prof_lle which meets the substrate with contac_t anglSee also inseta): fixed (Ap=0) in the two-phase region, where the micro-
vesicle adhered to a substrate located=aD; A is the surface area of the ) . . .
whole droplet including the surface aréthat is in contact with the sub- €mulsion phase coexists with an excess water or oil
strate. Insetb): two aggregated microemulsion droplets. phase1®We stress, however, that in all these ensembles the
free energy to be minimized has the form@fwith the free

) o . . energy corresponding to these different ensembles derived
bending,k, an_d the rigidity constant associated with Gausstom O by making the appropriate changes.

ian curvaturek, Below we first present the calculation for the case that
Kk . k=0, i.e., taking the expansion in E(L) only to first order
FH=J dA o— 50J+§J2+ kK |, (1) in the curvature, followed by the calculation fer=0 but
small, k/o)Y2<V1?
where ¢ is the surface tension of thglanar surface. The It follows from the shape equations that whier 0, the

above form for the free energy is the most general form in ashape of the nonattached part of the vesicle is that of a
expansion up to second order in curvature, and can bgpherical cap with radiuR (inset(a) Fig. 1). Integration of
viewed as defining the four coefficients &, k and k. It  the free energy over the surface aréandO in Egs.(1) and
features an integral over the whole surface afgapf the  (2) can then directly be carried out. In doing so one has to
total curvature,J=1/R;+1/R, and Gaussian curvaturé&  take care of a contribution proportional &arising from the
=1/(R,R,) with R; andR, the principal radii of curvature at integration of the total curvatur@ across the kink in the

a certain point on the surfad®. The rigidity constant asso- profile where the spherical part of the vesicle meets the sub-
ciated with Gaussian curvatukeis a measure of the energy Strate. This implies that it isot correct to subdivide the
cost for topological changes of the surface. In our case thétegration overA into an integration over the spherical part
topology is fixed and the term proportionalﬁjs dropped. and the flat_part(()). The result.mg free energy is now solely
To the above free energy we add a term describing the cor2XPressed in terms of the radisand contact anglé:

tact energy with the substréte Qo(R,X)=2m0R¥(1+x)+ mAcR*(1—x?)

— 4780 R(1+x)— 2780 R(1—x?)Yarcco$x)

. ) — Ap(mI3)R3(2+3x—x3), 3
where O is the area of substrate-vesicle contact and where ] )
Ao=0g,—oy is the difference in surface tension of the where we have definex=cosy and where the subscript 0 to

substrate-vesicle surface and the bare substrate. Since ti{¥ free energy denotes that we have takerD. Finally, R
integration in Eq.(1) is over thewhole surface area (in- ~ andxare determined by minimizin@o(R,x) with respect to

cluding O), we need to subtraet from Ac in the equation R@ndx. One finds

FS=J’ dO[Ao— o], 2

above. In the case of two microemulsion droplets forming a 20 S

dimer Ao = 0,/2, with o, the surface tension of the bilayer Ap= ﬁ( - §>, (4)
formed in between the two droplets. The surface tension of

the bilayer or, in fact, the complete interaction energy be- So So arcco$x)

tween the surfactant monolayers as a function of separation Ao=oX— ﬁXJF R (1_—)(2)1,2 6)

distance, is, in principle, experimentally accessible by sur-
face force apparatusSFA) measurements. Recently The first equation is the well-known Laplace equation with
Fletcher and Pets&Vconsidered the effect of the full inter- the Tolman correction. In fact, the Tolman length is usually
action potentialvan der Waalg including increased droplet defined by the above equati6hThe second equation deter-
deformability with vanishing spontaneous curvature, on thanines the value of the contact angle. It reduces to Young'’s
aggregation of microemulsion droplets. equatio® o, = o+ o coSf when one insert$=0.
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Whenk+# 0 the shape of the nonattached part of the sur-
face is not necessarily spherical, just as the shape of the free
vesicle will generally differ from that of a sphetdzor small Q
k the difference with sphericity is dominantly located near
the kink. The underlying physics behind this is the infinite
contribution from the kink to the bending energy. The result
is that for any finite value of the rigidity constant, the first
derivative of the vesicle profile’(r), wherer is the radial
distance(see Fig. 1, mustbe continuous. Seifegt al fur-
thermore showed that the radius of curvature at the substrate
is related to the interaction energy with the substrate by
1R;=(2(c—Ao)/k)Y% It was also remarked by Seifert
et al? that for smallk the typical length scale over which the
profile differs from the spherical-cap-profile near the kink is —600_1 5 _65 0.0 0'5 1.0
determined by K/o)Y?, while the difference of the rest of ' ' ' T ox '
the profile with the spherical-cap-profile is 6f(k/oR?). In
the following we expand around the spherical-cap-profile neF:Ss-szu-r:fs% eer”eifcge& i;‘kar*iigg“yTlr’]';itZXazss‘;zzC“‘;fr‘;ﬁ ﬁtg{// g )fng ﬁ)(;eld
glecting al_l terms on(lle). Furthermore we assume gircles and squarespare the .results ol?tained bs numerical solutio.n.of the
?ljR)lg/eStmg corrections iné/R to the same order as profile fodrf:o an(dz)3=0.rili(respfectively. T(r;e dashed and th(—:‘I dotLed—dehed

oz . curve aref) in Eq. (8) with k=0 for =0 andé=0.1, respectively. The soli

With the condition that the contact angle is equal to zerogurves are the full free enerdy in Eq. (8).
the height profile(r) can be calculated, analytically, from
the minimization of the free energy. It is given in terms of
the asymptoticcontact angled defined by/”(r)—tand, whereR,=2¢/Ap andx,=Ag/o are the radius and contact
Wn_er%reoo f(see Fig. %cand para:met.rlzed by the angie  ,hgie respectively, to leading order in the expansion in
which runs from 0 y—) to 6 (y=0): (k/o) ¥R and 5/R (see Eqs(4) and (5)).

The above calculation can also be carried out in the con-
tar(g )—In tar( ) stant volume ensemble instead of the constant pressure en-
4
« 0
2 cos{ 0 5 +2 cos(z,

2sirl o— &) +2 s 2
\ —<£ Sl _E SIE,

wherey is the radial distance shifted so that’(y=0)=0.
Furthermore” andy are rescaled byk{o)”2. One can show

that this profile obeys the relation by Seifettal.” concern- in Fig. 2. Here we have choset/¢r)¥2=0.1 in some arbi-

ing the_ radiu; of cgrvaturg at the substrate. trary microscopic length unit, and fixed the pressure differ-
Using this profile one is now able to calculate the Iead—enceA p/k=100 so thaR, =2, large compared tok(c") 2
. . p 1 .
'E% orger co(rlretélonﬂl((oR,lﬁ)qzto (t)he ];r.eg energy(}(R.x) The circles and squares in Fig. 2 are the numerically exact
=Lo(R.X) + 24(R.X) +O( ). One finds results for6=0 and §=0.1, respectively. The dashed curve
(6=0) and the dotted-dashed curvé=0.1) are the free
_ 125112 1U2r 5312 12
0.(Rx)=27R(ko) 214 1-x) "] 2%%(1+x) energyQ, found by settingk=0 in Eq.(8). The solid curve
—(2+x)—Adglo]. (7) s the full free energy) in Eq. €)) for both 6=0 and6=0.1..
As can be seen, it agrees well with the numerically obtained

It should be noted that the leading order correction to the fred€€ €nergy whe.n the contact angle is not too close to
energy due to the presence of a finite rigidity thus scales a%= — 1 (#=1809; the complete wetting limit in which the
k' i.e., the free energy isot analyticin k. Minimization of vesicle completely spreads onto the solid substrate.

Qo(R,x)+Q4(R,x) with respect taR andx now yields Finally we come back to droplet aggregation in micro-
emulsions. With the formulas derived above we are able to

calculate the free energy for the formation of dimers and
construct the phase diagram for droplet-dimer coexistence.
—27750Rp(1—x§)1/2arcco$x0) This is an important first step but for a full understanding of
aggregation in microemulsions, entropy must be included
+4mRy(ko) YA 1-x5) " 12— 21+ %)"], (8  (which we neglect since curvature energy is expected to be

—200 |

-400 ~

r

y(a)=cosé|In

AR

F=moR%(2+3xy—Xx3) — 47 SaRy(1+X)

/(y)=A{ (6) — 2760 Ry(1—x3)Yarccosx,)

/(a)=sind|In

AR

+4mRy(ko)Y(1—-x0) Y 2—2Y41+x0) %, (9)

whereRy=[3V/m(2+ 3x,—x3)]* is the radius to leading
order in the expansion irk(a)Y?R.

In order to test the accuracy of E@), we compare it to
the exact free energy, found by solving the shape equations
numerically, as a function ofy=Ao/o. The result is shown

Q= (m/3)oR(2+3Xg—x3) — 4w S Ry(1+Xo)
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FIG. 3. Phase diagram for the dimerization transition in a microemulsiol
system as a function of R and w=V/A. The solid curve SL is the solu-
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limit curve as the lower boundary. The upper part with the
upper phase boundary above which two microemulsion
phases form, usually described in terms of a liquid-gas tran-
sition, is not shown.

The two solid curves in Fig. 3 are the loci of the
monomer-dimer transition fog=2.1 (left curve and f=6
(right curve without rigidity. The transition from monomers
to dimers indeed occurs with decreasinBgl(increasingw).
Keeping in mind the assumptions made in our calculation,
this seems to prove that curvature energy is the driving force
behind the attraction between droplets that ultimately may
lead to phase separatifri Since the monomer droplet radius
Rm=3w, dimerization occurs also with increasing droplet
radius. This has indeed been observed by Hueing ?? in
small angle neutron scattering experiments. The dimerization
Jtransition is continuous(second order when B<p.=2
+3%/3=4.30 ... andirst order when3> g.. The locus of

bilization limit beyond which the internal component is present as an excesgontinuous transitions is determined by

phase. We have chosen,/o=1, (k/c)¥?>=0.1 and two values fop. The
solid curves denote the dimerization transition 2.1 (left) and 8=6

(right) without rigidity. The dashed curve is the dimerization transition for

=6 with rigidity.

the dominant contribution to the free enety$h, and the
possible formation of higher aggregates needs to be cons
ered.

For a given microemulsion the total volume and surfac

1 3w Bo—oy

Ry, 8k B-2°
The presence of rigidity shifts the first order transition to
lower 1R, (higherw) as can be seen by the dashed curve in
Fig. 3. To leading order ik, however, the presence of ri-
idridity does not affect the location of ttedntinuoustransi-
tion.
e In conclusion we have shown that the curvature energy

(11)

area of all the droplets is fixed by the total amount of theof the surfactant layer accounts for the experimentally ob-

internal componentthe componeninside the microemul-

served tendency of microemulsion droplets to form dimers

sion droplet and surfactant, respectively. Considering the(and eventually larger aggregakés the direction of vanish-

formation of dimers, lelN,, and Ny denote the number of
monomers and dimers with radil, andRy, respectively.
Then Vtot: Nme+ NdVd and AtOt: NmAm+ NdAd+ Nd(ﬁ
—2)0O4, where the parametgt is the ratio of the number of

ing spontaneous curvature. This phenomenon could not be
sufficiently explained by liquid state theoriéike the sticky
hard sphere modekince aggregation is observed both with
increasing and decreasing temperature, while liquid state

surfactants per unit area in the bilayer to those in the monctheories assume aggregation to be driven by entropy thus
layer. Realistically one expects this ratio to be close to 2. Th@nly occurring in one temperature direction. Since curvature
volume and surface area of the single droplet are simplgnergy is expected to be the dominant contribution to the
given by V= %wan and Am=4wan, whereas the volume free energy(see, for example, Refs. 10 and)2the point we

of the dimerVy=(m/3)R3(2+3x—x%). The total surface have made concerning the formation of dimers in the direc-
area of the dimeA, and surface area of the flat p&@ of  tion of vanishing spontaneous curvature will not be signifi-
the dimer are given by cantly affected by the inclusion of entropy.

Ag=27Rj (3+2x—x?)+8mRy(1—x) 4kl o)/ The authors wish to express their gratitude to Dirk Jan
X[ (1+x)1/2— 212 Bukman for his help with deriving Eq3). The research of
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