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Abstract

Background: The prevalence of overweight is increasing globally and has become a serious health problem. Low-grade
chronic inflammation in overweight subjects is thought to play an important role in disease development. Novel tools to
understand these processes are needed. Metabolic profiling is one such tool that can provide novel insights into the impact
of treatments on metabolism.

Methodology: To study the metabolic changes induced by a mild anti-inflammatory drug intervention, plasma metabolic
profiling was applied in overweight human volunteers with elevated levels of the inflammatory plasma marker C-reactive
protein. Liquid and gas chromatography mass spectrometric methods were used to detect high and low abundant plasma
metabolites both in fasted conditions and during an oral glucose tolerance test. This is based on the concept that the
resilience of the system can be assessed after perturbing a homeostatic situation.

Conclusions: Metabolic changes were subtle and were only detected using metabolic profiling in combination with an oral
glucose tolerance test. The repeated measurements during the oral glucose tolerance test increased statistical power, but
the metabolic perturbation also revealed metabolites that respond differentially to the oral glucose tolerance test.
Specifically, multiple metabolic intermediates of the glutathione synthesis pathway showed time-dependent suppression in
response to the glucose challenge test. The fact that this is an insulin sensitive pathway suggests that inflammatory
modulation may alter insulin signaling in overweight men.
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Introduction

The low-grade inflammatory state often seen in overweight

subjects is thought to play an important role in lifestyle associated

disease development. This inflammatory state has been associated

with cardiovascular diseases [1], diabetes, insulin resistance [2]

and cancer [3]. Since the early 1990s [4], considerable effort has

been made to discover and validate biomarkers with diagnostic or

prognostic utility for lifestyle associated diseases [5,6,7]. Metabo-

lites such as cholesterol, fasting glucose and homocysteine have

long been used as biomarkers. Genomic – based technologies such

as metabolic profiling provide a new means to explore the

combination of multiple metabolites as a biomarker, which may

allow for more precise outcome predictions. Alternatively, such a

biomarker may provide a more comprehensive insight into

pathophysiological processes not previously attainable with

traditional biomarkers [8,9,10]. These markers should respond

to nutritional and pharmaceutical interventions in order to be

evaluated.

The main focus of the present study was to demonstrate and

quantify the consequence of using diclofenac to reduce inflam-

mation and its effect on metabolism. Subsequently, the study was

geared to identify multiple metabolites to be used as a potential

biomarker. Diclofenac acts as a non-selective inhibitor of the

enzymes cyclooxygenase-1 and -2. Cyclooxygenases catalyze

among other things the formation of prostaglandins that act as

messenger molecules in inflammation. Metabolic profiling has

been shown to be a valuable tool to quantify nutritional metabolic

homeostasis and disease mechanisms associated with metabolic

stress and metabolic syndrome [11,12,13]. Liquid and gas

chromatography mass spectrometric methods (LC-MS and GC-

MS) were used to detect high and low abundant metabolites in

plasma to obtain a comprehensive picture of metabolic changes

induced by a mild anti-inflammatory drug intervention. A total of

343 plasma metabolites were quantified, of which 204 could be

identified, spanning diverse chemical classes (Table S1). The

metabolic profiling approach was not only applied in fasting

(homeostatic) conditions, but also at multiple time points during an

oral glucose tolerance test (OGTT). This approach is based on the

concept that the resilience of the system can be assessed after

challenging or perturbing a homeostatic situation. Plasma

metabolic profiling combined with a glucose challenge has already
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been successfully used to differentiate between healthy individuals

and individuals with an impaired glucose tolerance [14]. Applying

a metabolic perturbation and metabolic profiling may help identify

a set of metabolites that predict differences in the responses

between treatment groups to the oral glucose tolerance test. A

similar set of metabolites might then provide novel insight into the

interplay between metabolic and inflammatory processes and

provide candidate biomarkers to be applied in (intervention)

studies aimed at lifestyle associated diseases.

Materials and Methods

Ethics statement
The study was approved by the Medical Ethics Committee of

the University Medical Centre of Utrecht (May 17, 2005). In total,

fifty subjects gave written informed consent after being informed

about the study, both verbally and in writing.

Subjects and study design
The study was conducted at TNO Quality of Life (Zeist, the

Netherlands). Overweight and mildly obese men (Body Mass

Index (BMI) between 25.1 and 34.0 kg/m2) were recruited from a

pool of volunteers. All fifty subjects completed a questionnaire on

medical history and were physically examined. Blood and urine

were collected after an overnight fast for routine analysis. In

addition, plasma hsCRP levels were determined.

Subjects met the following in- and exclusion criteria. Smokers,

subjects who reported that they were trying to lose weight or who

were on a medically prescribed diet and subjects with allergy or

hypersensitivity for non-steroidal anti-inflammatory drugs were

excluded from participation. Additionally, subjects who were on

medication that may have interfered with parameters to be

measured or with diclofenac treatment or subjects who, based on

anamnesis, were not suitable to receive diclofenac treatment

(history of current gastro-intestinal diseases including bleeding,

ulcer or perforation, history of stroke, history of current significant

haematological disorders, any significant hepatic, renal or

cardiovascular disease, asthma) or subjects with a history of

medical or surgical events that may have affected the study

outcomes were not included. Based on these criteria, 25 subjects

were eligible. Of the 25 eligible subjects, the 5 subjects with the

lowest CRP values were not included in the study. Levels of

hsCRP of the included subjects ranged from 0.41–9.72 mg/L (see

also Table 1).

The study was designed as a double blind, randomized, parallel

trial, in which subjects were treated with diclofenac (n = 10) or

placebo (n = 10). Randomization of subjects to treatment groups

was restricted by hsCRP, body mass index (BMI), fasting glucose

and age. The result is a homogeneous division of these parameters

over the two treatment groups at the start of the study (see Table 1).

Subjects consumed one capsule (placebo or 50 mg diclofenac)

approximately one hour before breakfast, lunch and dinner for 9

days. Subjects were instructed to keep to their habitual diet during

the study. One person dropped out on the first day of the study for

study unrelated reasons. Nineteen men completed the study. Their

subject characteristics are presented in Table 1. Prostaglandin E2

concentrations were used as a readout for diclofenac treatment

and showed a significant reduction in subjects treated with

diclofenac (p = 0.02). Prostaglandin E2 concentrations were

unchanged in subjects treated with placebo demonstrating a

modulation of the inflammatory status in diclofenac treated

subjects (Table 2).

Blood samples were taken after an overnight fast on days 0, 2, 4,

7 and 9. Subjects underwent an oral glucose tolerance test

(OGTT) on day 0 and day 9. Blood samples were taken just before

(0 minutes) and 15, 30, 45, 60, 90, 120 and 180 minutes after the

administration of the glucose solution (75 grams). Samples were

analyzed for glucose and insulin for which the incremental area

under the response curves (AUC) was calculated. Table 2 shows

the characteristics of these parameters. No significant changes

Table 1. Demographic data of subjects that completed the study (n = 19) at screening; mean6SD (range).

All (n = 19) Placebo treatment (n = 10) Diclofenac treatment (n = 9)

Age (years) 43615 41616 (19–60) 45615(21–58)

Body weight (kg) 93.568.0 93.569.3 (81.1–105.2) 93.566.9 (85.2–104.4)

Height (m) 1.8260.08 1.8260.10(1.69–1.96) 1.8360.07 (1.70–1.92)

BMI (kg/m2) 28.161.2 28.161.0 (26.7–29.3) 28.161.5 (26.1–30.9)

hs-CRP (mg/L) 2.2262.33 2.0861.88 (0.41–6.35) 2.3762.87(0.64–9.72)

Fasting glucose (mmol/L) 6.060.5 5.960.5 (5.2–7.1) 6.060.6 (5.0–6.8)

Fasting insulin (mU/L) 13.468.1 13.468.6 (5.1–26.8) 13.368.1 (3.3–26.6)

doi:10.1371/journal.pone.0004525.t001

Table 2. Characteristics of prostaglandin E2 and OGTT parameters (insulin and glucose) measured at start and end of treatments.
AUC = area under the curve.

Placebo Diclofenac

Day 0 Mean (st dev) Day 9 Mean (st dev) Day 0 Mean (st dev) Day 9 Mean (st dev)

PGE2 [pg/mL] 56.5 (7.7) 60.8 (11.0) 55.3 (11.9) 48.9 (10.6)

AUC glucose [mmol*min/L] 409 (238) 306 (197) 365 (255) 262 (199)

AUC insulin [mU*min/L] 8986 (5356) 8935 (4821) 12140 (12037) 9965 (9078)

doi:10.1371/journal.pone.0004525.t002
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were observed between the treatments. Figure 1 shows study

design and time points at which metabolic profiling measurements

were done.

Plasma PGE2, insulin and glucose measurements
PGE2 was determined using the Prostaglandin E2 [125I] Biotrak

assay system (Amersham Biosciences, UK) with modifications. In

short, PGE2 in samples was derivatized to the methyl oximate

derivative. The resulting solution was further diluted (final dilution

5 times) in PBS and partly assayed. The assay consists of

incubation of the oximated sample PGE2, the 125I-labelled

PGE2, and a PGE2 specific antibody. After incubation, the

Amerlex-M reagent is added and the free and bound 125I labeled

PGE2 separated using centrifugation. The resulting bound

radioactivity in the pellet is determined using a gamma-counter.

Serum glucose concentrations were measured by using a

commercial test kit (Roche diagnostics GmbH, Mannheim,

Germany) on a Hitachi 911 automatic analyzer (Hitachi

Instrument Division, Ibaraki-ken, Japan), with intra-assay CVs

that ranged between 0.7% and 0.9%, depending on the

concentration. Serum insulin concentrations were measured using

an AIA-600 Immunoassay Analyzer (Tosoh Corporation,

Toyama, Japan), with intraassay CVs that ranged between 4.3%

and 5.8%, depending on the concentration.

Metabolic profiling measurements
LC-MS of lipids and fatty acids. Plasma lipids and free

fatty acids (FFA) were analyzed with electrospray LC-MS [15,16].

The instrument used was a Thermo LTQ equipped with a

Thermo Surveyor HPLC pump. Data were acquired by scanning

the instrument form m/z 300 to 1200 at a scan rate of

approximately 2 scans/s. The FFA LC-MS platform employs

the same HPLC conditions as the lipid method except for the

gradient. Detection of FFA is performed in negative ion mode, and

lipids are measured in positive ion mode. Taken together the two

methods can measure approximately 200 different identified lipids

and FFA.

In summary, 10 ml of plasma was extracted with 300 ml of

isopropanol containing several internal standards (IS: C17:0 lyso-

phosphatidylcholine, di-C12:0 phosphatidylcholine, tri-C17:0

glycerol ester, C17:0 cholesterol ester and heptadecanoic acid

(C17:0)). Each extract was injected three times (10 ml), once for the

LC-MS FFA platform and two times for the LC-MS lipid

platform. Furthermore, a quality control (QC) sample was

prepared by pooling of plasma from all subjects. The pool was

divided into 10 ml aliquots that were extracted the same as the

study samples. The QC samples were placed at regular intervals in

the analysis sequence (one QC after every 10 samples). The QC

samples served two purposes. The first is a regular quality control

sample to monitor the LC-MS response in time. After the response

has been characterized, the QC samples were used as standards of

unknown composition to calibrate the data [17].

In the plasma samples, the 6 dominant lipid classes observed

with these two methods are the Lyso-phosphatidylcholines (IS

used: C17:0 lyso-phosphatidylcholine), Phosphatidylcholines (IS

used: di-C12:0 phosphatidylcholine), Sphingomyelines (IS used:

di-C12:0 phosphatidylcholine), Cholesterolesters (IS used: C17:0

cholesterol ester), Triglycerides (IS used: tri-C17:0 glycerol ester),

and free fatty acids (IS used: C17:0 FFA). In addition to these

lipids, the extracts also contain minor lipids, but these were either

not detected (concentration too low relative to very abundant

lipids like phosphatidylcholines and triglycerides) or they were not

included in data processing. The LC-MS lipid and LC-MS FFA

data were processed using the LC-Quan software (Thermo).

LC-MS polar. Polar plasma metabolites were analyzed using

LC-MS after derivatization (butylation). The metabolites were

extracted from 10 ml plasma with 200 ml methanol containing

internal standards (deuterated amino acids). After the methanol

evaporated, the extract was dissolved in 100 ml n-butanol

containing 4 M/l hydrochloric acid and heated to 65uC for

Figure 1. Overview of study design, time points at which metabolome was measured and multivariate data analyses. To determine
metabolites that were modulated by the diclofenac treatment the following multivariate data comparisons were performed to identify metabolites
that were modulated by the diclofenac treatment: a) PLS-DA on metabolic profiling data from day 9 subtracted by metabolic profiling data from day
0, on fasted plasma samples; b) n-PLS-DA on metabolic profiling data from day 0, 2, 4, 7 and 9, on fasted plasma samples; c) n-PLS-DA on metabolic
profiling data from day 9 subtracted by metabolic profiling data from day 0, using the fasted plasma samples and the samples after glucose
administration, thus metabolic profiling data on 0, 15, 30, 45, 60, 90, 120 and 180 minutes after glucose administration. The multivariate data
comparisons from a-c were performed per metabolite platform, thus multivariate models were created for GC-MS global, LC-MS polar, LC-MS lipids
and LC-MS free fatty acids data.
doi:10.1371/journal.pone.0004525.g001
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60 min. After freeze drying the extracts were dissolved in 100 ml

0.1% formic acid in water, and 10 ml was injected for LC-MS

analysis using a Thermo LTQ equipped with an ESI interface and

a Surveyor HPLC system. QC samples, prepared from pooled

plasma, were analyzed after every 6th study sample. The mass

spectrometer was operated in positive ion mode and data were

acquired by scanning from m/z 125 to 1000 at approximately 2

scans/s. The HPLC method consisted of an Intersil ODS 3

column (10063 mm id) in combination with an acetonitrile

gradient (5 to 80% in 20 min at a flow of 0.3 ml/min) in 0.1%

formic acid.

Data were processed with TNO comprehensive peak picking

software (IMPRESS, [18,19] to find consistent features in the LC-

MS files. These features, after de-isotoping, were used for data

processing with Thermo LC-Quan software.

GC-MS global. The GC-MS method used for analyzing a

broad range of metabolites was identical to the method reported

for microbial metabolic profiling [20], except for the sample type.

Plasma samples (100 ml) were extracted with methanol and after

evaporation the metabolites were derivatized (oximation and

silylation). QC samples, prepared from pooled plasma, were

analyzed after every 10th study sample.

Performance of metabolic profiling platforms. The

performance of the applied metabolic profiling platforms is

assessed through the frequent analysis of the QC sample [17].

This QC sample, prepared by pooling selected study samples,

represents the full biochemical diversity of the study samples and

allows the calculation of the analytical precision for all metabolites

measured. The QC sample data is also used to correct systematic

errors (e.g. batch to batch response differences) by a single point

calibration model. Typically, this procedure offers excellent

precision for a large majority of metabolites (e.g. 50% of the

metabolites have an RSD of less than 10%, 75% with an RSD less

than 20%). Metabolites with very high imprecision e.g.

RSD.50%, were removed from the data unless large

differences between treatment groups were observed.

Furthermore, method performance was carefully monitored

using multiple internal standards (5 to 10 depending on method,

including analogues, 2H and 13C labeled metabolites) and

duplicate analysis of samples. The metabolite data used for

statistical data analysis in this study met all of our quality

requirements.

Preprocessing of metabolic profiling data
Data for each subject were corrected for the recovery of the IS

for injection. Batch to batch differences in data were removed by

synchronizing medians of QC-samples per batch. For all

platforms, duplicate measurements were combined into a single

measurement. When both analytical duplicates had a zero value

or when both had a non-zero value, measurements were

averaged. The single value was taken when only one of the

duplicates was above zero [15]. To avoid trivial results, data were

additionally optimized by removing glucose-related metabolites

and IS-isotopes in the LC-MS polar data and two glucose

metabolites in the GC-MS global data set. The correlation

between these glucose peaks and glucose measured by a

commercial test kit (Roche Diagnostics GmbH, Mannheim,

Germany) on a Hitachi 911 automatic analyzer (Hitachi

Instrument Division, Ibaraki-ken, Japan) was 0.97 and 0.98

respectively. Finally, the LC-MS FFA data set contained 14

metabolites, the LC-MS Lipids data set consisted of 61

metabolites, 120 metabolites were included in the LC-MS polar

data set and the GC-MS data set contained 137 metabolites.

Multivariate analysis of metabolic profiling data
Two-way analysis: PLS-DA. Partial Least Squares

Discriminant analysis (PLS-DA) [21] was used to identify

metabolites that differ in their change between day 0 and day

9 in fasted conditions between treatment groups (Figure 1,

analysis a). In PLS-DA, a Y-variable containing class

membership information is correlated to a data matrix (X-

block). The subjects who received the placebo treatment were

assigned to class ‘0’ and the subjects who received diclofenac

were assigned to class ‘1’. Since the interest was in intra-

individual differences between day 0 and day 9, the X-block was

defined for each metabolite platform by subtracting the day 0

values from the day 9 values, which removed differences in

baseline.

Two-way analysis: model validation and

optimization. Cross-validation was used to validate the

PLS-DA models, using a ‘leave-one-out’ cross-validation

scheme [22]. Data of one subject were left out in the first

cross-validation step, a PLS-DA model was built, and the

treatment class membership of the subject that was left out was

predicted. This was repeated until all 19 subjects were left out

once. The error rate of the model was determined by comparing

the original class membership and the predicted one. The

optimal number of LVs was determined based on the minimum

value of this error rate. The final fit of the model was made

using this number of optimal LVs.

PLS-DA models for which an error rate was found below 35%

were optimized by performing metabolite selection based on a

jackknife approach [22]. Data of one subject were left out and a

PLS-DA model was made using the same number of LVs that was

used for the final model. This was repeated until all 19 subjects

were left out once. This resulted in 19 sets of regression

coefficients, of which the standard deviation was used to determine

the relative standard devations (RSDs) of each regression

coefficient. Only those metabolites that had a RSD of less than

50% were included in a new data set. This set was used to build a

second PLS-DA model. Metabolites that contributed to treatment

differences were identified based on absolute regression coefficients

of this second model.

Three-way analysis: n-PLS-DA. To identify metabolites

that differed in changes over time between the treatment groups, it

was necessary to discriminate between the time and the metabolite

information. Basic multivariate data analysis tools like Principal

Component Analysis (PCA; [23,24,25,26]) and Partial Least

Squares Discrimant analysis (PLS-DA; [21]) are not sufficient to

analyze the data sets, since these methods do not separate the time

factor from the metabolites. Therefore, the multi-way

generalization of these two-way techniques, nPLS-DA, [27,28]

was used for the analyses. A so called 3-way matrix was created,

having size 196J6T where J is equal to the number of metabolites

of a particular platform and T is equal to the number of time

points, which were either the days 0, 2, 4, 7, and 9 (Figure 1,

analysis b) or the time points after glucose administration on day 0

and 9 (Figure 1, analysis c). In order to focus the analysis on

changes over time within a subject, the day 0 data were subtracted

from the day 9 data.

The GC-MS global and LC-MS polar data sets were centered

across subjects and followed by scaling within the metabolite-mode

J, whereas the LC-MS lipids and fatty acids data sets were only

centered across subjects. The centering step was performed to

remove constants between the subjects, whereas scaling within the

metabolite mode resulted in standardized metabolites. By

performing the scaling step after the centering step, the prior

centering remained unaffected [29,30,31].

Metabolic Profiling & OGTT

PLoS ONE | www.plosone.org 4 February 2009 | Volume 4 | Issue 2 | e4525



Three-way analysis: model validation and

optimization. Cross-validation was used to validate the nPLS-

DA models, using a ‘leave-one-subject-out’ cross-validation

scheme. Data of one subject (all measurements for all

metabolites for one subject) were left out in the first cross-

validation step, an nPLS-DA model was built using data of the

remaining subjects, and the treatment class membership of the

subject that was left out was predicted. This was repeated until all

19 subjects were left out once. The error rate of the model was

determined by comparing the original class membership and the

predicted one. The optimal number of LVs of the nPLS-DA

model was determined based on the minimum value of this error

rate.

In order to optimize the nPLS-DA models, metabolite selection

has been performed using a jackknife approach. Data of one

subject (all measurements for all metabolites for one subject) were

left out and an nPLS-DA model was made using the same number

of LVs that was used for the final model. This was repeated until

all 19 subjects were left out once. This resulted in 19 sets of

regression coefficients, of which the standard deviation was used to

determine the RSD’s of each regression coefficient for each

metabolite and each time point. A second nPLS-DA model was

build using only those metabolites which showed relatively

constant regression coefficients over time.

A permutation test was performed to test whether the treatment

differences were indeed true differences similar as described by

Bijlsma et al [15]. Therefore, the Y-variable containing class

membership information was randomized a 10000 times. For each

random vector, a multilevel nPLS-DA model was made using the

same (optimal) number of LVs as determined previously. For every

nPLS-DA model built, a sum of squares between/sum of squares

within ratio (B/W) was calculated for the class assignment

predictions. These distributions of random class assignments can

be plotted in a histogram and compared to ratio for the original

model. The model is classified as ‘bad’ if the B/W of the model is

plotted in the lower half of the B/W distribution of random class

assignments; the model is classified as ‘moderate’ if the B/W of the

model is plotted in the upper half of the B/W distribution of

random class assignments; the model is classified as ‘good’ if the B/

W of the model is larger than the B/W distribution of random

class assignments.

All analyses were performed using Matlab Version 7.0.4 R14

(The Mathworks, Inc.) and the n-way toolbox version 2.11 [32].

Annotation and Identification of metabolites
The nPLS-DA model resulted in a regression matrix of size J*6K,

in which J* is the number of metabolites after variable selection. To

determine the variables which contributed most to treatment

differences, the regression coefficients were sorted by their absolute

value in descending order per time point. Since the regression

coefficients decreased gradually between the highest and the lowest

value due to the use of autoscaled data, there was no sharp cutoff.

Therefore, for each time point the first ten peaks with unknown

identity were selected and used for metabolite identification.

Metabolites were annotated using an in-house metabolite

database containing retention time information, MS spectra (EI

for GC-MS data), MS/MS spectra (LC-MS) and accurate mass

data (LC-MS) of reference substances. The confidence of

identification is 100% unless indicated otherwise. Accurate mass

MS and MS/MS data of reference substances and metabolites in

the study samples were acquired using Thermo LTQ-FT and

Thermo LTQ-Orbitrap instruments.

Biological interpretation of metabolic profiling data
For each metabolite, the mean treatment effect difference

between day 9 and day 0 during the OGTT time course was

calculated as follows:

xm~
XT

t~1

100 � x9m{x0mð Þt{ y9m{y0mð Þt
� ��

y0mt

� ��
T

Where

N xm = mean treatment effect for metabolite m in differences

between day 9 and day 0 (%)

N x9m = mean intensity for metabolite m on day 9 for the

diclofenac treatment group

N x0m = mean intensity for metabolite m on day 0 for the

diclofenac treatment group

N y9m = mean intensity for metabolite m on day 9 for the placebo

group

Table 3. Multivariate data analysis of various metabolic profiling datasets.

Method GC-MS LC-MS LC-MS LC-MS

global polar Lipids FFA

# metabolites 137 130 61 14

PLS-DA

Day 9 vs Day 0 42.00% 53.00% 37.00% 37.00%

n-PLS-DA

Day 0, 2, 4, 7 and 9 57.00% 42.00% 52.50% 47.00%

n-PLS-DA

Day 9 vs Day 0; 0–15–30–45–60–90–120 and 180 min 31.50% 31.50% 21.00% 31.50%

n-PLS-DA after metabolite selection

Day 9 vs Day 0; 0–15–30–45–60–90–120 and 180 min # = 77 # = 31 # = 25 NA

10.50% 5.00% 16.00%

The results of the different multivariate models are expressed as error rates.
Metabolite selection was only applied if the error rate of the original model of the complete dataset was below 35% and the dataset contained more than 50
metabolites. NA, not analyzed.
doi:10.1371/journal.pone.0004525.t003
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N y0m = mean intensity for metabolite m on day 0 for the placebo

group

N T = total number of time points (t = 1 … 8)

Ranges in terms of percentages were calculated per metabolite

as the minimum and maximum value of the treatment effects

calculated per time point. The minimum and maximum value of

treatment effects were calculated per time point per metabolite

and these values were used to determine the ranges of treatment

effects in terms of percentages.

Detailed pathway and biological network analysis was per-

formed in Metacore version 4.3 (GeneGo Inc., St. Joseph, MI,

USA). Only curated interactions were used for biological network

analysis. The following metabolites were not available in Metacore

and therefore not used for pathway and network analysis: 1,2-

diglyceride (C36:2), 2,3,4-trihydroxybutanoic acid and 2-amino-2-

methyl butanoic acid, 1-aminocyclopentanecarboxylic acid. Path-

way maps were edited in Mapeditor (GeneGo Inc., St. Joseph, MI,

USA) version 2.1.0.

Results

Statistical selection of relevant metabolites for diclofenac
treatment

Metabolites that changed due to diclofenac treatment were

identified using various multivariate comparisons. Table 3 shows

the results of these multivariate analyses of the different datasets

derived from the four metabolic profiling platforms.

A comparison of the fasting state metabolomes between the

subjects treated with placebo and diclofenac on day 9 compared to

day 0 resulted in PLS-DA models (Figure 1, analysis a) with high

error rates. This indicated that there was no significant difference

in fasted plasma samples.

Expanding the n-PLS-DA models with the metabolic profiling

data from the plasma samples taken in fasted conditions on

several intermediate days (Figure 1, analysis b) during the

intervention for the various metabolic profiling platforms also

resulted in high error rates. This confirms that differences in

metabolic changes could not be detected between subjects

Table 4. Overview of most discriminating metabolites, their treatment effect and their metabolite response in the OGTT time
course.

Metabolite Treatment effect (%): Diclofenac vs placebo

Mean Range Response type

GC-MS Uric acid 212 218 1 A

1,2-diglyceride (C36:2) 218 228 29 A

Proline 9 6 13 A

Isoleucine 218 222 213 A

1-aminocyclopentanecarboxylic acid 22 25 2 A

Threonine 213 215 211 A

4-Hydroxyproline 259 272 251 A

2,3,4-Trihydroxybutanoic acid 15 9 24 A

Aminoadipic acid 226 243 216 A

Arabitol, ribitol, or xylitol 10 5 13 A

Ornithine 212 220 2 A

Mannose or galactose 10 6 14 A

Palmitoleic acid (C16:1) 23 22 55 A

Palmitic acid (C16:0) 6 213 24 A

LC-MS Isoleucine 223 234 215 A

Glycine 8 B

2-Amino-2-methyl butanoic acid 24 29 21 A

5-Oxoproline 14 B

1-Aminocyclopentanecarboxylic acid 269 291 235 A

4-Hydroxyproline 252 261 238 A

Isoleucine & Leucine (not resolved) 28 213 21 A

Hippuric acid 63 48 75 A

5-Oxoproline (acetonitrile adduct) 8 B

Aspartic acid 9 B

Glutamic acid 4 B

Citric acid 210 218 6 A

Per analytical platform the metabolites are ranked according to their importance to the model, thus uric acid and isoleucine contributed most in the discrimination
between the treatment groups.
Only identified metabolites are shown in Table 4. The column ‘response type’ refers to Figure 2; metabolites with response type A showed a treatment difference over
the whole time course and metabolites with response type B showed a treatment difference only in the second part of the time course (a response of the metabolite in
the placebo group, whereas no change in the diclofenac treated group). For metabolites with response type B the mean is calculated over the time points with a
treatment difference.
doi:10.1371/journal.pone.0004525.t004
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treated with placebo and diclofenac in the fasted (homeostatic)

condition.

Metabolic perturbation by the OGTT improved the meta-

bolic profiling-based differentiation between the treatments. The

n-PLS-DA models on plasma samples taken at 8 point time

course after the glucose administration to subjects on day 9 vs

day 0 (Figure 1, analysis c) resulted in improved error rates. This

was true for all metabolic profiling platforms as compared to

PLS-DA and n-PLS-DA models based on plasma in fasted

conditions, between the control and anti-inflammatory treat-

ment. The n-PLS-DA models for metabolome data from GC-

MS global, LC-MS polar and LC-MS lipids were analyzed

Figure 2. OGTT time course mean metabolite response with standard error on day 9 corrected for concentrations on day 0 for
subjects on placebo and diclofenac treatment. A) for the metabolite isoleucine that contributes to treatment differences over the whole time
course and B) for the metabolite glycine that contributes to treatment differences only in the second part of the time course. Legend to Figure 2:
Dashed line: Diclofenac treated subjects; Solid line: Placebo treated subjects.
doi:10.1371/journal.pone.0004525.g002
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further with metabolite selection methods. The n-PLS-DA

models after metabolite selection for GC-MS global and LC-

MS polar metabolome data resulted in models with error rates

of 10.5% and 5.0% respectively, indicating that the GC-MS

global model and the LC-MS polar model only misclassified

respectively 2 and 1 persons of the total 19. The model of the

LC-MS lipids-dataset resulted in a model with an error rate of

16%, indicating that 3 out of 19 total subjects were misclassified.

Permutation tests were performed on these 3 models to validate

the significance of the treatment differences. The results of the

GC-MS global and LC-MS polar permutation test were ‘good’,

in contrast to the results for the LC-MS lipids model which were

‘moderate’.

Overall, significant metabolic changes due to the treatment

could be detected only in the metabolic profiling data of the

OGTT time course. Only metabolome data from the models with

‘good’ results for the permutation test, thus the LC-MS polar and

GC-MS global models (after metabolite selection), were used for

further interpretation in the statistical analysis.

Metabolite identification
The metabolites with the highest absolute regression coefficients

per time point (thus 0, 15, 30, 45, 60, 90, 120 and 180 minutes)

were selected from the LC-MS polar and GC-MS global n-PLS-

DA models as being most discriminative between subjects treated

with diclofenac and placebo. The intersection of the regression

coefficients per time point resulted in a total of 15 unique

metabolites from the GC-MS global dataset and in a total of 24

unique metabolites from the LC-MS polar dataset for metabolite

identification. Ultimately, 69% of the selected metabolites could be

identified (14 out of 15 in the GC-MS global dataset; 13 out of 24

in the LC-MS polar dataset). Table 4 lists the most discriminating

metabolites that could be identified. Only the identified metab-

olites were used for further interpretation.

Analysis of metabolite response during OGTT time
course

The metabolite response was tracked by plotting the mean

difference between day 9 and day 0 per time point per treatment

group. In general, two different metabolite challenge test

responses were distinguished as illustrated in Figure 2. Most of

the selected metabolites (81%, Table 4) showed a difference in

offset that is constant during the OGTT time course (Figure 2A,

response type A). In other words, these metabolites are

discriminating between the treated and untreated subjects

independent of time during the OGTT time course. This

indicates that only minor differences exist between the treatment

groups and that these differences can only be identified by

repeated measurements. Indeed, time independent PLS-DA

analysis yielded a similar error rate (11%).

Some of the selected metabolites (19%), however, showed only a

contribution to treatment differences in the second part of the

OGTT time course (Figure 2B, response type B). This indicates

that these 4 metabolites only differed between treatments when

challenging the metabolic situation, leading to alterations in

dynamic response to the perturbation. Indeed, time independent

PLS-DA analysis increased the error rate of the LC-MS polar

model (26%).

Furthermore, Table 4 shows the semi-quantified treatment

effects, expressed as the mean change (in %) over time. The

Figure 3. Day 0 insulin response in OGTT time course. Day 0 insulin mean response with standard error is shown in OGTT time course for all
subjects. Insulin concentrations show a maximum at ,65 minutes after glucose intake.
doi:10.1371/journal.pone.0004525.g003
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majority of the metabolites that had a constant contribution to

treatment differences over time (categorized as response type A)

showed a decreased concentration in plasma in response to

diclofenac treatment compared to subjects treated with placebo.

Several amino acids (n = 6), organic acids (n = 7), carbohydrates

(n = 2) and fatty acids & lipids (n = 3) were categorized with a

response type A. Some metabolites were identified as being

discriminating between the treatments in data from both analytical

platforms (isoleucine, 1-aminocyclopentanecarboxylic acid and 4-

hydroxyproline), validating their contribution to the differences

between the treatment groups.

All metabolites that specifically showed a dynamic response to

the perturbation (categorized as response type B), showed higher

concentrations in the diclofenac treated group. Based on plots of

mean changes over time, it appeared that mean concentrations of

diclofenac treated subjects remained constant, whereas mean

concentrations of placebo treated subjects dropped during a

specific phase of the time course (Figure 2b). The amino acids

glycine, aspartic acid and glutamic acid and the organic acid 5-

oxoproline were categorized with a response type B.

Discussion

A primary goal of research into lifestyle associated diseases is

to optimize health so that the onset of disease can be prevented

or delayed. In identifying the key changes involved in the

development of lifestyle associated diseases, experimental

approaches have to deal with large inter-individual variety and

the robustness of homeostasis. The current study deliberately

recruited healthy overweight men with slightly increased

inflammation parameters and successfully applied a relatively

mild anti-inflammatory intervention so that only subtle changes

were to be expected. The study authors aimed to demonstrate

that an experimental design using metabolic profiling in concert

with a challenge test is a good strategy for the unraveling of

biomarkers in intervention studies where only subtle changes are

to be expected.

The conventional metabolic profiling approach of measuring

blood samples in fasting conditions – even in a time course –

and the classical biomarkers (i.e. glucose, insulin, sialic acid,

HOMA index, and adiponectin; van Erk et al, in prep) were not

Figure 4. Glutathione synthesis pathway and its connection to glucose and insulin. High levels of glucose inhibit and high levels of insulin
activate glutathione synthesis via the enzyme c-glutamylcysteine synthetase. Legend to Figure 4: Connection arrows with color red represent
inhibition and color green represent activation. Purple hexagons represent metabolites; purple hexagons with white star represent metabolites
measured with one of the metabolic profiling platforms; orange symbols represent enzymes. Red arrows upwards indicate that higher plasma
concentration levels were found in the diclofenac treated group in response to oral glucose tolerance test. Abbreviations: AA, amino acid; Cys-Gly,
cysteinylglycine. These figures were created by using MapEditor version 2.1.0 (GeneGo Inc, St Joseph, MI).
doi:10.1371/journal.pone.0004525.g004
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able to reveal changes in response to diclofenac treatment. In

this study, the subtle metabolic changes resulting from diclofenac

treatment could only be determined using an OGTT time

course. This can have at least two reasons. Firstly, most of the

treatment differences became significant by repeated confirma-

tion of subtle homeostatic alterations in metabolite concentra-

tions (metabolites with response type A) without dealing with

any day-to-day variations like in the ‘long-term’ fasted time

course. Secondly, by perturbing a homeostatic metabolic

situation, metabolite differences with a dynamic response to

the oral glucose tolerance test became visible (response type B

metabolites).

Figure 5. Dynamic response of glutathione synthesis pathway intermediates in OGTT time course. A) glutathione mean response with
standard error on day 9 corrected for concentrations on day 0 for subjects on placebo and diclofenac treatment. Glutathione showed a treatment
difference only in the second part of the time course. B) Cysteinylglycine mean response with standard error on day 9 corrected for concentrations
on day 0 for subjects on placebo and diclofenac treatment. Cysteinylglycine showed a treatment difference only in the second part of the time
course. Legend to Figure 5: Dashed line: Diclofenac treated subjects; Solid line: Placebo treated subjects.
doi:10.1371/journal.pone.0004525.g005
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Diclofenac is known to inhibit and activate several enzymes

and transporters [33–41]. CD13 is a broad specificity

aminopeptidase that cleaves specifically the N-terminal bound

neutral amino acids from oligopeptides. The inhibition of the

enzyme aminopeptidase N (CD13) by diclofenac corresponds to

the lower plasma concentrations of several neutral amino acids

such as L-isoleucine, L-threonine, and L-leucine. Such

consistent lowering is reflected in a type A response.

In the current study, the diclofenac intervention applied was

successfully shown by significantly reduced concentrations of

PGE2 (see Materials and Methods). Metabolic profiling revealed

that the diclofenac treatment resulted in lower plasma levels of uric

acid. Elevated serum uric acid levels are positively associated with

metabolic syndrome, insulin resistance and diabetes type II [42,43]

and has been proposed as risk factor for hypertension and

cardiovascular diseases [44,45]. Subsequently, elevated levels of

uric acid are associated with inflammation and oxidative stress

[42,43,46]. The current results suggest that inhibition of

cyclooxygenase mediated inflammation (shown by significantly

reduced concentrations of PGE2) could be associated with reduced

concentrations of uric acid and therefore might lead to a reduction

of risk on several metabolic diseases. However, this needs to be

further explored.

Most interestingly in this study are the metabolites that

showed a differential response between the treatments groups to

the OGTT (metabolites identified with a response type B). All

metabolites with response type B showed the largest difference

between the treatments at time point 90 and/or 120 minutes

after intake of glucose. Insulin peaks at an average of 65 minutes

after glucose intake (Figure 3). This suggests that differences in

response to the OGTT may be attributed to the action of

insulin.

Of the 26 peaks that were most discriminative in the nPLS-

DA models (Table 3), five peaks were found with this response

type B profile of which two were annotated as 5-oxoproline and

the others as the amino acids glycine, aspartic acid and glutamic

acid. Three of these - 5-oxoproline, glycine and glutamic acid -

are known to be involved in the glutathione synthesis pathway

(Figure 4). Therefore, the response of other intermediates in the

glutathione synthesis pathway was also studied. It appeared that

glutathione and cysteinylglycine showed a similar dynamic

response to the OGTT as the other type B responders

(Figure 5), with the exception of plasma cysteine. Figure 4

provides and overview of the glutathione synthesis pathway and

its relationship to glucose and insulin. Higher clearance of

plasma L-5-oxoproline is known in case of lower GSH synthesis

[47]. GSH synthesis is predominantly regulated by activity of c-

glutamylcysteine synthetase (GCS) and availability of the rate-

limiting substrate cysteine [48]. Interestingly, it is known that

insulin action increases and glucose decreases the regulation of

GSH synthesis by GCS [48–50]. In this study, the average

plasma glutathione concentrations declined to their minimum

concentration at 60 minutes after glucose intake and increased

again at 90 to 120 minutes after glucose intake (Figure 6). In the

current study, the control group showed significant lower

concentrations of glutathione synthesis pathway intermediates

at 90 to 120 minutes after glucose intake compared to diclofenac

treated subjects. This might indicate that diclofenac treatment

resulted in a higher GSH synthesis response after the glucose

bolus, which might be related to altered insulin signaling with

Figure 6. Day 0 glutathione response in OGTT time course. Day 0 glutathione mean response with standard error is shown in OGTT time
course for all subjects. Glutathione showed declined concentrations in the first part of the time course with a minimum concentration at 60 minutes
after glucose intake. In the second part of the time course concentrations increase again.
doi:10.1371/journal.pone.0004525.g006
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diclofenac treatment. It has been shown earlier that a selective

inhibition of cyclooxygenase-2 results in increased insulin

sensitivity in overweight or obese subjects [51]. However, no

differences were found in classical insulin sensitivity indexes

(HOMA index, ISIcomp, MCRest and Gutt-index) between

diclofenac and placebo treated subjects in this study. A possible

explanation is that the combination of multiple metabolites as

biomarker in concert with an oral glucose tolerance test

allows for an earlier detection of changes in insulin sensitivity,

however this is speculation at this stage and should be further

explored.

This first exploratory study shows that subtle metabolic changes

resulting from an anti-inflammatory treatment could only be

determined using a metabolic perturbation test in a well-designed

clinical study using metabolic profiling analysis. Differences in

dynamic response to the challenge (response type B metabolites)

might be derived from insulin regulated processes such as the

insulin regulated glutathione synthesis pathway. Our study

demonstrates that the use of metabolic profiling in concert with

a challenge test may open new avenues for biomarker discovery

that could be useful in developing preventive strategies for lifestyle

associated diseases.

Supporting Information

Table S1 GCMS global platform nr 1 LCMS polar platform nr

2 LCMS lipids platform nr 3 LCMS Free Fatty Acids platform nr

4 Abbreviations: LPC, lysophosphatidylcholine; PC, phosphati-

dylcholine; SPM, sphingomyeline; ChE, cholesterolester; TG,

triglyceride; FA, fatty acid.

Found at: doi:10.1371/journal.pone.0004525.s001 (0.52 MB

DOC)
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