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A B S T R A C T

We investigated the effects of cortisol administration on approach and avoidance tendencies in 20

patients with social anxiety disorder (SAD). Event-related brain potentials (ERPs) were measured during

a reaction time task, in which patients evaluated the emotional expression of photographs of happy and

angry faces by making an approaching (flexion) or avoiding (extension) arm movement. Patients showed

significant avoidance tendencies for angry but not for happy faces, both in the placebo and cortisol

condition. Moreover, ERP analyses showed a significant interaction of condition by severity of social

anxiety on early positive (P150) amplitudes during avoidance compared to approach, indicating that

cortisol increases early processing of social stimuli (in particular angry faces) during avoidance. This

result replicates previous findings from a non-clinical sample of high anxious individuals and

demonstrates their relevance for clinical SAD. Apparently the cortisol-induced increase in processing of

angry faces in SAD depends on symptom severity and motivational context.

� 2009 Elsevier B.V. All rights reserved.
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In a recent study, we investigated the effects of cortisol
administration on threat processing and approach and avoidance
behavior in a non-clinical sample of high and low anxious students
(van Peer et al., 2007). The results of that study showed relatively
faster avoidance behavior as well as enhanced positive amplitudes
(P150 and P300) on midline electrodes during avoidance of angry
faces after cortisol administration, indicating increased processing
of threat stimuli during threat avoidance. Importantly, these
effects were found only in high and not low anxious participants,
suggesting a context-specific effect of cortisol on threat processing
in participants highly sensitive to threat signals. These findings
may be very relevant for patients characterized by strong
avoidance tendencies and sensitivity to social threat, in particular
patients with social anxiety disorder (SAD). Therefore, with the
present study we aimed to replicate and extend these findings in a
clinical group of patients with generalized SAD.

The stress hormone cortisol (corticosterone in animals) plays an
important role in the regulation of social motivational behavior (e.g.,
Kalin et al., 1998a; Roelofs et al., 2005, 2007, 2009b; Sapolsky et al.,
2000; Van Honk et al., 1998, 2000; van Peer et al., 2007). In addition,
* Corresponding author. Tel.: +31 71 5273835; fax: +31 71 5274678.
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dysregulation of cortisol levels is implicated in the development and
maintenance of various mood and anxiety disorders (e.g., Roelofs
et al., 2009b; De Kloet et al., 2005; Holsboer and Ising, 2008).
However, studies investigating the effects of cortisol on cognitive–
emotional processes have focused heavily on declarative memory
(see Lupien et al., 2007 for a comprehensive review) and studies
examining cortisol effects on threat processing and avoidance
behavior in humans are scarce. Nevertheless, the results of some
recent studies in healthy human subjects show that cortisol can
affect threat processing and avoidance behavior, especially in high
anxious individuals. Putman et al. (2007a) found acute cortisol
administration in healthy participants to result in an increased
performance bias for angry (compared to neutral) faces on a
computerized object-relocation task, which was suggested to reflect
a cortisol-induced increase in preferential processing of angry faces.
In line with these results, in a study using a reaction time task to
measure approach and avoidance responses to happy and angry
faces, we found increased ERP amplitudes and relatively faster
avoidance responses in reaction to angry faces after acute cortisol
administration in high anxious healthy participants (van Peer et al.,
2007). These results are in line with animal studies showing that
high levels of cortisol are associated with increased fearful
temperament and threat avoidance (Kalin et al., 1998a,b, 2000;
Sapolsky, 1990), as well as with studies in humans showing
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Table 1
Patient characteristics (n = 20).

Measure M SD

Age (years) 32.8 10.2

BMI 22.2 3.2

BDI 12.2 6.1

LSAS fear 42.1 8.0

LSAS avoidance 36.3 10.0

LSAS total 78.4 16.2

SPAI social phobia 131.0 21.0

SPAI agoraphobia 26.8 10.9

SPAI difference 104.2 21.6

STAI trait 50.6 8.1

BIS 25.1 3.3

BAS totala 36.3 6.2

Axis-1 comorbidityb

Comorbid anxiety disorderc N = 1*

Current mood disorderd N = 0

Past major depressive episode N = 7

Note: (scale range between parentheses). BMI, body mass index; BDI, Beck

Depression Inventory (0–63); LSAS, Liebowitz Social Anxiety Scale (fear 0–72,

avoidance 0–72, total 0–144); SPAI, Social Phobia and Anxiety Inventory (social

phobia 0–192, agoraphobia 0–78); STAI, State-Trait Anxiety Inventory (20–80); BIS,

Behavioral Inhibition Scale (7–28); BAS, Behavioral Activation Scale (13–52).
a NB n = 19 due to a missing value.
b Assessed using the Structured Clinical Interview for DSM-IV Axis-I Disorders

(SCID-I).
c Including panic disorder, agoraphobia, specific phobia*, obsessive compulsive

disorder, post-traumatic stress disorder and generalized anxiety disorder.
d Including current major depressive episode, mania, hypomania, dysthymic

disorder, and bipolar disorder.
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increased threat processing (Mathews and Macleod, 1994) and
threat avoidance (Roelofs et al., 2009b) in high anxious participants
under stressful conditions.

The present study was set up as a follow-up of the study of van
Peer et al. (2007) in a group of participants with clinical (social)
anxiety. This study is particularly relevant in the light of recent
studies (Aerni et al., 2004; De Quervain and Margraf, 2008;
Schelling et al., 2006; Soravia et al., 2006) showing effects of acute
glucocorticoid administration with potential implications for the
treatment of anxiety disorders such as PTSD and (spider and social)
phobia. The results of one of these studies (Soravia et al., 2006)
showed that cortisone administration 1 h before exposure to a
socio-evaluative stressor resulted in a reduction in self-reported
phobic fear during anticipation, exposure and recovery of this
stressor in social phobic patients. Although the authors proposed
inhibition of aversive memory retrieval as a likely mechanism
underlying this fear reduction, alternative processes such as an
anxiolytic effect or modulation of other systems involved in the
expression of fear may also play a role (see e.g., Putman et al.,
2007b). Hence, it is important to assess the effects of cortisol
administration on other key processes that have been implicated in
the etiology and maintenance of anxiety disorders, such as
attention towards threat stimuli and avoidance behavior (e.g.,
Bishop, 2008; Bögels and Mansell, 2004; Mathew and Ho, 2006;
Mathews and Macleod, 2005; Roelofs et al., 2009b).

Evidence for the presence of preferential processing of
threatening information in high anxious subjects is primarily
based on behavioral studies showing impairments in interference
paradigms, such as Emotional Stroop or dot probe tasks (e.g.,
Bögels and Mansell, 2004; Mathews and Macleod, 2005 for
reviews). Another useful method to investigate this processing
bias, however, is by recording event-related potentials (ERPs) from
the scalp. Since ERPs are sensitive to both the extent (amplitude)
and speed (latency) of cerebral processing, they can provide
valuable information about early and rapid stages of attentional
processing that is not reflected in behavioral measures (e.g., Bar-
Haim et al., 2005; Thomas et al., 2007). Hence they provide suitable
tools to examine more closely the claim that threatening stimuli
are associated with enhanced attention in anxiety disorders, and to
investigate the effects of cortisol administration on these
processes.

ERP responses during processing of emotional material have
been extensively studied using pictures of human faces, due to
their social significance and affective salience (e.g., Bradley et al.,
1997; Rolls, 2000). Results of these studies in healthy human
subjects have shown very rapid effects (i.e., <250 ms post-
stimulus) suggesting early preferential processing of threat-
related emotional faces (Ashley et al., 2004; Bar-Haim et al.,
2005; Eger et al., 2003; Eimer and Holmes, 2002; Williams et al.,
2006), as well as modulation of later stages of ERP responses
(Eimer and Holmes, 2002; Schupp et al., 2004; Williams et al.,
2006).

Considering the suitability of the ERP technique to study
processing of emotional material, studies using ERPs to investigate
threat processing in anxiety disorders are surprisingly scarce. Two
recent studies investigated these processes using an emotional
facial Stroop task in a clinical sample of patients with social anxiety
disorder (Kolassa and Miltner, 2006; Kolassa et al., 2007).
Abnormalities in processing of angry faces were found in one of
these studies (Kolassa and Miltner, 2006), but not in the other
(Kolassa et al., 2007). However, both studies focused only on
occipito-temporal electrodes, and did not report on the early and
late midline positive components described above, which are
considered among the components most consistently demonstrat-
ing emotional expression ERP effects (see Holmes et al., 2008 for a
review). Indeed, in a recent study Bar-Haim et al. (2005) found
increased early positive (P2) amplitudes at the vertex for angry
faces in high anxious compared to low anxious healthy partici-
pants, indicating enhanced early threat processing. Similarly, in
our previous study we found the most pronounced effects of
cortisol on threat processing in high anxious students on these
early and late positive amplitudes (P150 and P300) at the vertex
(van Peer et al., 2007). For these reasons we focused on the P150
and P300 midline components in the present study.

In specific, we investigated the effect of acute cortisol
administration on threat processing and behavioral avoidance in
individuals with social anxiety disorder. Approach and avoidance
reactions were assessed in reaction to positive and threatening
social stimuli (i.e., happy and angry faces) using a reaction time
affect-evaluation task (the approach–avoidance task, Rotteveel
and Phaf, 2004), and threat processing was measured by recording
event-related potentials during task performance. The approach–
avoidance task provides a reliable tool to investigate overt
avoidance behavior (see e.g., Chen and Bargh, 1999; Rotteveel
and Phaf, 2004; Solarz, 1960) and has been shown to be sensitive to
social anxiety and cortisol manipulations in healthy populations
(Heuer et al., 2007; Roelofs et al., 2005; van Peer et al., 2007). Based
on earlier findings with high anxious healthy participants (van
Peer et al., 2007) we expected relatively increased avoidance (i.e.,
slower approach or faster avoidance responses) and enhanced
processing (i.e., increased early (P150) and later (P300) positive
ERP amplitudes) of angry faces after cortisol administration.

1. Methods

1.1. Participants

Twenty-one unmedicated patients with SAD participated in the experiment for

financial compensation (i.e., s40 and traveling expenses). Demographic variables

and group characteristics are presented in Table 1. Patients were recruited at the

outpatient anxiety departments of three community mental health centers and

through advertisements on Internet forums. Inclusion criteria were: a primary

diagnosis of generalized SAD (according to DSM-IV criteria) and a total score>60 at

the Liebowitz Social Anxiety Scale (Liebowitz, 1987), right-handedness, normal or

corrected-to-normal vision, and age 18–55 years. Exclusion criteria were current

diagnosis of major depressive disorder, pregnancy or breast-feeding, clinical

significant medical disease, past head injury with loss of consciousness>5 min, use



Fig. 1. Examples of a happy and angry face stimulus used in the AA task.
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of psychotropic medication, use of corticosteroids in the 6 months prior to

participation, use of cannabis more than once a week or use of any drugs other than

cannabis in the 3 months prior to participation, and use of more than 3 glasses of

alcohol or 20 cigarettes per day. Participants were instructed to minimize physical

exercise, not to take large meals, chocolate or caffeine during the morning

preceding the experiment, and not to eat, drink low pH drinks or smoke cigarettes in

the hour before the start of the experiment, because these variables can affect saliva

cortisol measures. All participants provided written informed consent prior to

participation in the study, which was approved by the Medical Ethical Committee of

the Leiden University Medical Center. Of the 21 patients tested, one had to be

excluded because of missing reaction time data due to technical problems, leaving a

total number of 20 participants (9 male, 11 female).

Participants were screened using the Structured Clinical Interview for DSM-IV

Axis-I Disorders (SCID-I: First et al., 1996) by a trained psychologist at the end of the

first testing day to confirm diagnosis for social anxiety disorder and to exclude

current major depressive disorder. Participants also completed Dutch versions of

the Social Phobia and Anxiety Inventory (SPAI: Turner et al., 1989), the Beck

Depression Inventory (Beck et al., 1979), the State-Trait Anxiety Inventory

(Spielberger, 1983), and the Behavioral Inhibition and Behavioral Activation Scales

(BIS/BAS: Carver and White, 1994). See Table 1 for questionnaire values.

1.2. Materials and procedure

For this study we used the same materials and procedure as reported by van Peer

et al. (2007). All participants were tested in a hydrocortisone (50 mg) and a placebo

condition in a double-blind, within-subject crossover design. The order of cortisol or

placebo administration was random and balanced over all participants. The two

experimental sessions were 1 week apart. On the days of testing, participants

arrived at the laboratory at 12.15 p.m. After a short introduction, drugs were

administered orally at 12.30 p.m., followed by a resting period of 1 h to allow for the

cortisol to take effect. During this period, participants completed questionnaires

and practiced with the response device for the approach–avoidance task, after

which the electrodes for the electrophysiological measurements were placed.

Subsequently, the experiment started with a short recording (�15 min) of the

electroencephalogram (EEG) during rest, after which the approach–avoidance task

was administered, followed by a number of additional cognitive tests of which the

results will be reported elsewhere. During task performance, participants sat in an

air-conditioned and sound-attenuated room in front of a computer monitor, and the

experimenter sat in an adjacent room where the EEG apparatus was located.

1.2.1. Cortisol and subjective measures

Saliva samples were obtained using Salivette collection devices (Sarstedt,

Rommelsdorf, Germany). Samples were obtained at four assessment points over a

165 min period, at respectively �5 min (T0), +60 min (T1), +120 min (T2), and

+160 min (T3) with reference to capsule ingestion. Biochemical analysis of free

cortisol in saliva was performed using a competitive electrochemiluminescence

immunoassay (ECLIA, Elecsys 2010, Roche Diagnostics), as described elsewhere

(Van Aken et al., 2003).

Self-reported mood (tension, fatigue, depression, anxiety, and activation at T0,

T1, and T3) and motivation and concentration (directly before and after the AA task)

were rated on 100 mm visual analogue scales (VAS). In addition, state anxiety (STAI-

state: Spielberger, 1983) was measured at T0 and T3.

1.2.2. Approach–avoidance task

In this affect-evaluation task (Rotteveel and Phaf, 2004; van Peer et al., 2007),

stimuli consisted of 60 grayscale photographs with happy and angry facial

expressions (Ekman and Friesen, 1976; Matsumoto and Ekman, 1988; Lundqvist

et al., 1998). Both the happy and the angry expression were taken from the same

model (total of 30 models, 50% female). Each picture measured 12.4 cm � 8.9 cm

(h �w), and was presented against a black background at the center of a 15 in.

computer screen at 70 cm viewing distance (see Fig. 1).

Each trial started with the appearance of a central fixation point (100 ms),

followed after an interval of 300 ms (black screen) by presentation of the stimulus

(100 ms). The inter-stimulus-interval was randomized between 1500 and 2500 ms.

Responses were registered by means of three buttons that were fixed to a vertical

stand (see Rotteveel and Phaf, 2004, Fig. 1) at the right side of the participant.

Participants were instructed to push the ‘‘home’’ (middle) button loosely with the

back of their right hand as long as no response was given, and to respond as fast and

accurate as possible to the stimuli by releasing the home button and pressing one of

the two response buttons (positioned 10.3 cm above and below the home button,

allowing participants to simply flex or extend their arm in responding). After this,

they had to return their hand to the home button.

Several studies (see e.g., Chen and Bargh, 1999; Rotteveel and Phaf, 2004; Solarz,

1960) have shown that arm flexion is associated with approach (as when pulling

objects towards oneself), whereas arm extension is associated with avoidance (as

when pushing something away). As a result, reaction times on the approach–

avoidance task are typically faster when participants respond with arm flexion

(approach) to positive stimuli and with arm extension (avoidance) to threatening

stimuli (affect-congruent condition) than the other way around (affect-incongruent

condition).
Participants received alternately an affect-congruent or an affect-incongruent

instruction. The affect-congruent instruction indicated pressing the upper response

button (arm flexion, approach movement) for happy faces and the lower button

(arm extension, avoidance movement) for angry faces. The affect-incongruent

condition involved the opposite stimulus-response mapping (angry up, happy

down). No reference was made in the instructions to congruence and incongruence,

approach and avoidance, or arm flexion and extension.

The task consisted of four series of 60 trials, which were administered with either

a congruent–incongruent–congruent–incongruent or an incongruent–congruent–

incongruent–congruent order of instructions (counterbalanced across partici-

pants). Within each series all stimuli were presented once in a semi-randomized

order (with a maximum succession of three happy or angry and three male or

female pictures). Between each series participants performed an unrelated working

memory task that served to ease the transition from affect-congruent to affect-

incongruent instruction or vice versa. Each of the four series was divided into three

blocks of 20 trials, with a short break (�30 s) between blocks, and was preceded by

20 practice trials of stimuli that were not included in the experimental series.

The task provided three behavioral measures: error rates (percentage incorrect

responses) and two reaction time (RT) measures. The initiation time (IT) is the time

between stimulus onset and the release of the home button. The movement time

(MT) is the time between the release of the home button and the pushing of the

response button.

1.2.3. Electrophysiological recording and data analyses

The electroencephalogram (EEG) was recorded from 19 scalp locations according

to the international 10–20 system and referred on-line to C3/C4. An average earlobe

reference was derived off-line. Vertical electro-oculogram (EOG) was recorded

bipolarly from the supraorbital and the infraorbital ridge of the right eye, and

horizontal EOG from the outer canthi of both eyes. The ground electrode was

located at Fpz. EEG impedances were kept below 5 kV. The EEG and EOG signals

were digitized at 500 Hz and segmented off-line (using Brain Vision Analyzer

software, version 1.05, Brain Products GmbH, 1998–2004) into 1000 ms epochs,

from 200 ms before to 800 ms after stimulus onset. Single trials were corrected for

the effects of eye blinks and eye movements using a standard procedure (Gratton

et al., 1983). Data were filtered digitally with a 0.01 Hz high-pass filter (24 dB/oct

roll-off) and a 35 Hz low-pass filter (12 dB/oct). Artifact rejection was performed by

removing epochs with activity below 0.50 mV and amplitudes exceeding �75 mV in

the C3, C4, Cz, F3, F4, Fz, P3, P4, and Pz electrode channels (average 1.2% of total

dataset).

Separate averages were computed for happy and angry faces as a function of arm

movement (approach/flex or avoid/extend). Based on the results of our previous

study (van Peer et al., 2007) analyses focused on the P150 and P300 components at

midline electrodes (Fz, Cz, Pz). Peak amplitudes of these components were

identified as local maximum relative to baseline in two successive time windows:

P150 (the first major positive wave occurring 120–200 ms post-stimulus) and P300

(second major positive wave, 270–400 ms). Time windows for peak detection were

based on visual inspection of the grand average ERPs, averaged across all

participants and categories. Incorrect responses and responses with ITs < 150 ms or

>1000 ms (total 4.7% of trials) were excluded from the RT and ERP analyses. Error

rates were consistently low in all conditions (M = 3.0 � 1.8%) and are therefore not

reported.

The influence of cortisol administration on subjective measures, salivary cortisol,

AA task performance, and ERP peak amplitudes were tested with repeated measures

analyses of variance (ANOVAs rm) using the Statistical Package for the Social

Sciences (SPSS 14.0, SPSS Inc., 1989–2005). Since previous studies have shown that

both ERPs related to processing of threatening faces (see e.g., Bar-Haim et al., 2005;

Holmes et al., 2008) and the effects of cortisol on approach–avoidance tendencies
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(van Peer et al., 2007; Roelofs et al., 2005) can be moderated by individual

differences in anxiety, we included social anxiety (SPAI Social Phobia Score) as a

continuous variable (ANCOVA) in our behavioral and ERP analyses (see Judd et al.,

2001). Significant effects including this variable were further investigated by

calculating Pearson correlations between this factor and the within-subject effects.

All statistical analyses employed a two-tailed alpha of .05. Effect sizes are reported

as proportion of explained variance (partial eta squared [h2]). The Greenhouse–

Geisser correction was used when appropriate (epsilon [e]).

2. Results

2.1. Cortisol and subjective measures

Salivary cortisol (nmol/L) measures (see Table 2) were skewed
and therefore log transformed before statistical analysis. The
results of a 2 � 4 ANOVA rm with condition (placebo, cortisol) and
time (T0, T1, T2, T3) yielded a significant interaction of
condition � time (F(3,48) = 78.47, p = .000, h2 = 0.83). This result
indicates that, as expected, salivary cortisol levels did not differ
between conditions before capsule intake (T0: F(1,17) = .01,
p = .92), but were significantly increased after cortisol adminis-
tration compared to placebo from one hour after capsule intake
until the end of the experiment (T1: F(1,16) = 147.85, p = .000; T2:
F(1,17) = 214.16, p = .000; T3: F(1,17) = 124.08, p = .000). Note that
the AA task was administered between T1 and T2 (i.e., between one
and two hours after capsule intake).

To investigate effects of cortisol administration on subjective
mood (data not shown) we conducted separate ANOVAs rm with
condition (placebo, cortisol) � time for STAI-state (T0, T3) and VAS
tension, fatigue, depression, anxiety, and activation (T0, T1, T3).
Results showed no significant main or interaction effects of
condition on STAI-state anxiety, VAS tension, fatigue, depression,
or anxiety (all F < 2.4, p > .14). We did find a significant main
effect of condition on VAS activation (F(1,18) = 7.65, p = .013).
However, follow up analyses revealed that reported activation was
higher in the placebo than the cortisol condition before capsule
intake (T0: F(1,18) = 9.59, p = .006). Consequently, to control for
pre-drug differences in activation level we performed an additional
analysis using the pre-drug activation level (average of T0 in
placebo and cortisol condition) as a covariate. The results of this
analysis revealed no difference between conditions in post-drug
activation levels (F(1,17) = 0.26, p = .62), indicating that cortisol
administration did not affect mood.

2.2. Behavioral results

2.2.1. Initiation times (IT)

For the initiation times we found the expected congruency effect:
A significant emotion� arm movement interaction (F(1,18) = 5.64,
p = .029, h2 = .24) showed that patients were faster in initiating
affect-congruent (approach happy: M = 495 � 62 ms; avoid angry:
M = 509 � 59 ms) than affect-incongruent arm movements (avoid
happy: M = 524 � 68 ms; approach angry: M = 521� 64 ms). In
Table 2
Mean free salivary cortisol levels (nmol/L) after placebo and cortisol administration

relative to time of capsule intake (t = 0).

Time (min) Placebo Cortisol

M SD M SD

�5 9.7 3.5 9.7 3.6

+60*** 8.3 2.7 294.2 213.5

+120*** 7.3 2.5 230.0 186.5

+165*** 6.7 2.4 151.2 155.1

Note: N = 17 due to missing values (unreliable saliva measurements n = 2) and

missing data AA task (n = 1).
*** p < .001 placebo vs. cortisol.
contrast to our expectations, this AA congruency effect was not
modulated by cortisol administration (condition � emotion� arm
movement: F(1,18) = 1.05, p = .31). For social anxiety we found a
significant main effect, reflecting faster initiation times for patients
with higher levels of social anxiety (F(1,18) = 6.59, p = .019, h2 = .27,
R = �0.52), but no modulation of the AA congruency effect (emo-
tion � arm movement� social anxiety: F(1,18) = 2.48, p = .13). The
results showed no other significant effects on initiation times (All F <

1.83, p > .19).

2.2.2. Movement times (MT)

There was a main effect of emotion (F(1,18) = 4.80, p = .042),
indicating faster movement times for happy than angry faces. In
line with the results on initiation times, this effect was modulated
by a trend towards an interaction of emotion � arm movement
(F(1,18) = 3.62, p = .073, h2 = .17), suggesting that patients tended
to be faster in executing affect-congruent (approach happy:
M = 189 � 89 ms; avoid angry: M = 184 � 74 ms) than affect-incon-
gruent arm movements (avoid happy: M = 188 � 68 ms; approach
angry: M = 199 � 77 ms). In addition, we found a significant
interaction of emotion � social anxiety (F(1,18) = 5.60, p = .029), as
well as an interaction of emotion � arm movement � social anxiety
(F(1,18) = 5.39, p = .032, h2 = = 0.23). Follow up analyses to deter-
mine the nature of this interaction revealed a significant interaction
of emotion � social anxiety for approaching (F(1,18) = 10.70, p = .004,
h2 = .37) but not for avoiding arm movements (F(1,18) = .048, p = .83).
Calculation of the Pearson correlation between the social anxiety
levels and the emotion difference score (MT angry minus MT happy)
for approach movements showed that the direction of this relation
was positive (R = 0.61; for avoidance R = 0.05), indicating that high
levels of social anxiety were associated with significantly longer
movement times for approach of angry compared to happy faces.
Follow-up analyses of the movement � social anxiety interaction
separately by emotion were not significant (happy: F(1,18) = 3.24,
p = .089; angry: F(1,18) = 0.85, p = .37). We did not find any significant
effect of cortisol administration on movement times (all F < 0.91,
p > 0.34).

2.3. ERP results

Fig. 2 presents grand average ERPs at Pz electrode (where the
effects were most pronounced) on trials with approach and
avoidance responses in reaction to happy and angry faces.

2.4. P150 amplitude

For the P150 on midline electrodes we found a significant
interaction of condition � arm movement (F(1,18) = 6.97, p = .017),
which was further modulated by a significant 3-way interaction of
condition � arm movement � social anxiety1 (F(1,18) = 6.99,
p = .016, h2 = 0.28). Follow-up analyses showed that this finding
reflects a significant arm movement � social anxiety interaction
after cortisol administration (F(1,18) = 6.39, p = .021, h2 = 0.26) but
not after placebo (F(1,18) = 1.52, p = .23). In addition, the interac-
tion of condition � social anxiety was marginally significant for
avoidance movements (F(1,18) = 3.99, p = .061), but not significant
for approach movements (F(1,18) = 0.36, p = .56). The significant 3-
1 A second analysis for P150 and P300 amplitude was conducted with F3, F4, C3,

C4, P3, and P4 as additional electrodes, and with laterality (left, midline, right) as an

additional factor. This analysis only showed one significant interaction with

laterality for P150 amplitude, i.e. Condition � Arm movement � Social anxie-

ty � Laterality (F(2,36) = 3.42, p = .046, e = 0.96, h2 = 0.16). Post hoc testing revealed

that the interaction of Condition � Arm movement � Social anxiety was most

pronounced at the midline electrodes, and only marginally significant at the left

(F(1,18) = 3.06, p = .097) and right lateral electrodes (F(1,18) = 3.23, p = .089).

Therefore, only results of midline electrodes are presented.



Fig. 2. Stimulus synchronized grand average ERP waveforms at Pz electrode. To show the effects of cortisol and social anxiety, waveforms are presented separately for the

placebo (upper panel) and cortisol (lower panel) conditions, and for patients with relatively low (left) and patients with relatively high (right) social anxiety scores. For

presentation purposes, patient groups are formed based on a median split on SPAI Social Phobia Scores (median = 130.3, N = 10 in each group). Note that in the statistical

analyses social anxiety was included as a continuous measure and not as a group factor. Results showed a significant condition by arm movement by social anxiety

interaction, reflecting relatively increased P150 amplitudes for avoidance compared to approach after cortisol administration in patients with higher levels of social anxiety.

This effect was most strong (and only significant) for angry faces.

Fig. 3. Correlation between social anxiety (SPAI Social Phobia Scale) and cortisol-

induced change in P150 amplitude for avoidance compared to approach (i.e., [D
avoid–approach cortisol] minus [D avoid–approach placebo]). Positive numbers for

the DAA effect indicate larger P150 amplitudes on midline electrodes (Fz, Cz, Pz) for

avoidance than approach in the cortisol condition, compared to the placebo

condition. The scatterplot shows that high levels of social anxiety are associated

with increased P150 DAA effects after cortisol administration, indicating an

increase in processing of emotional faces during avoidance compared to approach.
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way interaction indicates that the effect of cortisol administration
on P150 amplitude during avoidance compared to approach
correlated significantly with the patients’ social anxiety levels.
Pearson correlations between social anxiety levels and the cortisol-
induced change in P150 amplitude for avoidance compared to
approach (i.e., [P150 amplitude avoid–approach cortisol] minus
[P150 amplitude avoid–approach placebo]) showed that the
direction of this correlation was positive (R = 0.53), indicating
that patients with higher social anxiety levels showed a larger
cortisol-induced increase in P150 amplitude for avoidance
compared to approach (see Fig. 3). We found no significant
interaction with emotion (all F < 2.3, p > .14), suggesting that this
effect was not significantly different for happy and angry faces.
However, since we specifically expected effects for processing of
threat, we conducted a planned comparison to investigate whether
this effect would hold when testing angry faces separately. Indeed,
the effect was most strong and significant for the angry faces
(R = 0.52, p = .019) whereas it was not significant for happy faces
(R = 0.19, p = .42).

We found no significant effects on P300 midline amplitudes (all
F < 2.14, p > .16).

3. Discussion

The aim of the present study was to investigate the effects of
cortisol administration on threat processing and approach and
avoidance behavior in a clinical sample of patients with general-
ized social anxiety disorder. In line with earlier findings of a very
similar study with high anxious healthy participants (van Peer
et al., 2007) we expected relatively increased avoidance (i.e.,
slower approach or faster avoidance responses) and enhanced
processing (i.e., increased early (P150) and later (P300) positive
ERP amplitudes) of angry faces after cortisol administration.

First, our behavioral results showed the expected emotion by
arm movement interaction (congruency effect) in reaction times,
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indicating that the patients were faster in initiating affect-
congruent (approach happy, avoid angry) than affect-incongruent
(approach angry, avoid happy) arm movements, consistent with
the findings of several previous studies in healthy participants
(Roelofs et al., 2005; Rotteveel and Phaf, 2004; van Peer et al.,
2007). In contrast to our expectations and previous findings (van
Peer et al., 2007); however, we did not find an effect of cortisol
administration on initiation times in the present study. Since the
experimental procedure was the same as in our previous study it is
difficult to account for the current absence of this effect, although it
could be due to the heterogeneity of the current sample compared
to the relatively homogeneous male sample of our previous study.

For the movement times the emotion by arm movement
interaction was modulated by the severity of patients’ social
anxiety. Post hoc testing revealed that the execution of approach
movements to angry faces (compared to happy faces) was
significantly slower for patients with higher levels of social
anxiety. Reaction times for affect-incongruent responses, such as
approaching an angry face, reflect the costs of inhibiting an
intuitive response tendency i.e., to avoid the angry face, in favor of
the instructed response (Roelofs et al., 2009a). This slowing of
approach responses towards angry faces is therefore consistent
with a relatively increased tendency to avoid threat in patients
with higher levels of social anxiety.

Most importantly, results of the ERP analyses showed a
significant interaction of cortisol by social anxiety on early positive
(P150) amplitudes: Cortisol administration resulted in a significant
increase in P150 amplitudes during avoidance compared to
approach of emotional faces for patients with high levels of social
anxiety. This result is largely in line with our previous finding of
enhanced P150 amplitudes during avoidance of angry faces after
cortisol administration in high trait avoidant healthy participants
(van Peer et al., 2007). Although the lack of a significant interaction
with stimulus emotion in the present study implies that this effect
was not significantly different for happy and angry faces, the effect
was still significant when tested for the angry (but not the happy)
faces separately. This is in line with the findings of our previous
study, as well as with other studies showing sensitivity to social
threat in patients with social anxiety (see e.g., Bishop, 2008; Bögels
and Mansell, 2004; Mathew and Ho, 2006; Mathews and Macleod,
2005).

Increased amplitudes of early (as well as late) positive midline
ERP components in reaction to threat-related emotional faces have
been consistently reported in studies in healthy participants, and
are generally interpreted as reflecting increased allocation of
processing resources to motivationally significant stimuli (Bar-
Haim et al., 2005; Eimer and Holmes, 2002; Eimer et al., 2003;
Williams et al., 2006). Furthermore, Bar-Haim et al. (2005) found
enhanced P2 amplitudes to angry faces in high compared to low
anxious healthy participants, indicating that early threat proces-
sing is modulated by trait anxiety level (although cf. Holmes et al.,
2008; Moser et al., 2008). The results of our studies suggest that
this process is sensitive to cortisol administration, resulting in
enhanced processing of social threat in high socially anxious
participants. This is in line with behavioral findings indicating
increased preferential processing of angry faces after cortisol
administration (Putman et al., 2007a). Most importantly, the
present study is the first to show an effect of cortisol adminis-
tration on threat processing in a clinical sample of patients with
generalized social anxiety disorder.

Although the timing of the ERP effect in the present study
suggests that early stages of information processing are involved, it
most likely does not reflect pre-attentive classification processes
(Eimer and Holmes, 2007). Instead, such an early midline positive
ERP effect is proposed to reflect higher order and attention-
dependent processing in neocortical areas, where representations
of emotional content are generated in a strategic and task-
dependent fashion for the adaptive intentional control of behavior
(Eimer and Holmes, 2007). Recent findings by Amodio and
Potanina (2008) support this notion by showing that the P200
component reflects motivated attention to cues related to response
control. Interestingly in this respect is our finding, in the present as
well as our previous study (van Peer et al., 2007), that after cortisol
administration in high anxious participants the P150 amplitude in
reaction to angry faces was significantly higher for avoidance
compared to approach movements. This implies that the effect of
cortisol administration on early threat processing is also modu-
lated by the behavioral response mode, suggesting that early
processing is indeed related to behavioral control mechanisms. In
our design, affect-congruent and affect-incongruent responses
were blocked in separate instruction conditions, which may have
resulted in priming of response-congruent stimulus processing.

Together our findings suggest that cortisol-induced enhance-
ment of emotional face processing depends on symptom severity
and motivational context in SAD. There are, however, some
limitations that should be discussed. First, the present study aimed
to replicate and extend previous findings in high anxious healthy
participants (van Peer et al., 2007) to patients with clinical SAD,
and therefore we did not include an additional non-anxious control
group. The current within-subject design allowed us to control for
individual differences in symptom severity, which proved to be an
important moderating factor. Nevertheless, a matched control
group would have offered more information regarding the
specificity of the effects of cortisol on threat processing for social
anxiety. We cannot draw conclusions about this specificity based
on the present study. The results of previous studies of our group,
investigating the effects of cortisol on approach–avoidance in high
versus low anxious healthy participants (van Peer et al., 2007) and
in patients with SAD versus patients with PTSD and healthy
controls (Roelofs et al., 2009b), however do suggest that the
association of high cortisol levels with increased social avoidance
tendencies may be specific to high socially anxious individuals.

Second, in contrast to our expectations and previous findings
(van Peer et al., 2007), we did not find an effect of cortisol on the
behavioral results in the present study. As we suggested above, this
could be due to the heterogeneity of the current sample compared
to the relatively homogeneous male sample of our previous study.
On the other hand, modulation of ERP components in absence of
behavioral effects has been reported by several other authors (see
e.g., Bar-Haim et al., 2005; Holmes et al., 2008; Thomas et al., 2007)
and it has been suggested that ERPs may provide a more sensitive
measure of attentional biases compared to reaction times. In
addition, early positive ERP components in particular have been
associated with enhanced attentional vigilance for threat-related
material in high anxious participants (e.g., Bar-Haim et al., 2005;
Holmes et al., 2008). In both of our studies, the effects of cortisol
administration on ERP components related to threat processing
were more pronounced on these early (P150) compared to later
(P300) amplitudes.

Together, our findings suggest that a mechanism of early threat
processing – that is enhanced by cortisol in high anxious healthy
participants – is similarly affected in patients diagnosed with
generalized SAD. Although the present study is the first ERP study
on cortisol administration in SAD and the results should be
replicated to allow definite conclusions, these findings may have
some valuable methodological and clinical implications.

First, it underscores the usefulness of the ERP methodology as a
sensitive measure for both the study of attentional processes in
anxiety (e.g., Bar-Haim et al., 2005; Thomas et al., 2007) and the
study of the effects of cortisol on motivational processes.

Second, our findings suggest that it is important to take
motivational processes into consideration when investigating
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effects of cortisol and anxiety on threat processing. A few recent
studies have investigated ERPs related to threat processing in
anxiety (Bar-Haim et al., 2005; Holmes et al., 2008; Kolassa and
Miltner, 2006; Kolassa et al., 2007; Moser et al., 2008), and results
thus far have been rather inconsistent (see Holmes et al., 2008 for a
review). Our finding that after cortisol administration the P150
amplitude for angry faces was significantly higher for avoidance
compared to approach movements suggests that it is important to
take motivational behavior into account (see also Amodio and
Potanina, 2008). This may help resolve inconsistencies not only in
the ERP literature on emotional processing and anxiety, but also in
the reported effects of cortisol administration on ERPs related to
stimulus processing (Born et al., 1987, 1988; Hartmann et al., 1995;
Hsu et al., 2003; Kopell et al., 1970).

Third, the interaction with social anxiety in the present study
indicates that it may be important to take individual differences in
symptom severity into account when studying emotional proces-
sing in patient groups (see also Kolassa and Miltner, 2006; Roelofs
et al., 2009b) as has been demonstrated earlier in samples of
healthy participants (see Holmes et al., 2008; Roelofs et al., 2005;
van Peer et al., 2007).

Fourth, our finding that cortisol administration affects threat
processing in a clinical sample of patients diagnosed with general-
ized SAD is important in light of the recent interest in cortisol
administration as a possible treatment for anxiety disorders (see De
Quervain and Margraf, 2008; Soravia et al., 2006). Our results
indicate that in addition to memory processes or subjective fear
responses, as put forward earlier by several authors (e.g., De
Quervain and Margraf, 2008; Soravia et al., 2006), cortisol
administration can also affect initial attention-related threat
processing in social anxiety, which has been proposed as another
important mechanism in the etiology and maintenance of this
disorder (see e.g., Bögels and Mansell, 2004; Mathews and Macleod,
2005 for reviews). At first sight our findings may seem in contrast
with the findings of Soravia et al. (2006) which indicated a reduction
in subjective fear in SAD after cortisol administration. There are,
however, some important differences between the studies:

First, they focus on different aspects (phases) of emotional
processing. Whereas Soravia et al. (2006) studied subjective fear
responses (proposed to be mediated by retrieval of fear memory),
the main effect of cortisol in our study was found on early attention
processes (i.e., P150). It is presently unclear how enhanced early
processing of threat cues, as reflected by ERPs, is exactly related to
subsequent subjective fear responses. We suggest that enhanced
early ERP amplitudes do not themselves indicate increased
anxiety, but rather reflect increased vigilance or motivated
attention to the threat stimuli (a view supported by studies where
such increased attention to threat occurred in the context of anger-
related approach motivation, see e.g., Bertsch et al., 2008; Putman
et al., 2007a). According to cognitive theories of anxiety, not only
the initial vigilance but also subsequent higher order processes
(e.g., coping behavior) are relevant for predicting emotional
reactions to the threat stimuli (see e.g., Mathews and Mackintosh,
1998). For instance, if increased threat processing is followed by
increased avoidance behavior, this can reduce immediate sub-
jective anxiety (see the vigilance–avoidance hypothesis, e.g., Mogg
et al., 1997), although in the long term this behavior may maintain
anxiety by preventing reappraisal of the threat.

Another important difference between our studies is the
context in which the effects of cortisol were studied. Whereas
Soravia et al. (2006) studied the effects of cortisol administration
during exposure to a stressful situation, in our study the testing
situation was relatively relaxed. As shown by Tops et al. (2006), the
effects of cortisol administration are context-sensitive and can
have opposite effects depending upon the stressfulness of the
testing situation. Although the literature on this topic is scarce,
there are several studies suggesting that cortisol administration in
a stress context can lead to a reduction in negative mood and
avoidance motivation (see e.g., Het and Wolf, 2007; Reuter, 2002;
Soravia et al., 2006; Tops et al., 2006), whereas cortisol
administration in absence of stress results in enhanced processing
of threatening information and relatively increased avoidance
motivation (see Putman et al., 2007a; Tops et al., 2005, 2006; van
Peer et al., 2007; cf. Buchanan et al., 2001). This notion that effects
of cortisol administration are context-dependent is in line with
extensive animal literature (see e.g., De Kloet et al., 1999; Lupien
et al., 2007). More research is warranted to investigate the effects
of cortisol administration on different phases of emotional
processing and the effect of different experimental contexts.

To conclude, this study is the first to investigate the effect of
cortisol administration on threat processing and avoidance in a
clinical sample of patients with generalized social anxiety disorder,
and shows that cortisol-induced enhancement of emotional face
processing in these patients depends on symptom severity and
motivational context.
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