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Chapter 6

Emergence of massless Dirac
fermions in graphene’s
Hofstadter butterfly at
switches of the quantum
Hall phase connectivity

6.1 Introduction

The quantum Hall effect in a two-dimensional periodic potential has a
phase diagram with a fractal structure called the “Hofstadter butter-
fly” [75, 119]. In a 2013 breakthrough, three groups reported [124, 45, 78]
the observation of this elusive structure in a graphene superlattice, pro-
duced by the moiré effect when graphene is deposited on a boron nitride
substrate with an almost commensurate hexagonal lattice structure. It
was found that the magnetic minibands repeat in a self-similar way at
rational values Φ/Φ0 = p/q of the flux Φ through the superlattice unit
cell, with p, q integers and Φ0 = h/e the flux quantum.

A central theme of studies of the Hofstadter butterfly is the search for
flux-induced massless Dirac fermions [128, 76, 69, 46, 133]. It turns out
that in the graphene superlattice only the zero-field Dirac cones are ap-
proximately gapless [140, 118, 189, 89], while the flux-induced Dirac cones
are gapped [35]. Generically, Dirac fermions in the Hofstadter butterfly
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Figure 6.1. Schematic illustration of a connectivity switch in the quantum Hall
phase diagram. Upon variation of a control parameter θ the connected component
switches from topological quantum number νA to νB . At the transition a singular
point appears in the phase boundary (encircled), associated with gapless Dirac
cones in the Brillouin zone (right-most panel).

are massive.
Here we show that massless Dirac fermions do appear at singular points

in the quantum Hall phase diagram, associated with a switch of the phase
connectivity upon variation of some control parameter. (See Fig. 6.1.)
Any experimentally accessible quantity that couples to the superlattice
potential can play the role of control parameter, in what follows we will
consider the angle θ of crystallographic alignment between graphene and
substrate. We find that the phase boundaries separating regions of distinct
Hall conductance σxy = νe2/h rearrange their connectivity upon variation
of θ, switching the connected component of the phase diagram from ν to
ν ± 2q. In the magnetic Brillouin zone this transition produces a pair of
q-fold degenerate conical singularities (Dirac points), with massless Dirac
fermions as low-energy excitations.

6.2 Low energy model of the moiré superlattice
We base our analysis on the moiré superlattice Hamiltonian of Wallbank
et al. [179]. Starting point is the Dirac Hamiltonian of graphene [31, 87],

H0 = v[p− eA(r)] · σ + V (r), (6.1)

for conduction electrons near each of two opposite corners (valleys) of the
hexagonal Brillouin zone1. The Fermi velocity is v = 106 m/s and the lat-

1 The valley-isotropic Dirac Hamiltonian (6.1) acts on the spinor (ΨA,ΨB) in valley
K and (ΨB,−ΨA) in valley K′, where ΨA,ΨB are the wave amplitudes on the two
triangular sublattices that form the hexagonal lattice of graphene.



6.2 Low energy model of the moiré superlattice 115

tice constant of the hexagonal lattice of carbon atoms is a = 2.46Å. The
momentum p = −i~∇ in the r = (x, y) plane is coupled to pseudospin
Pauli matrices σx and σy acting on the sublattice degree of freedom. The
real spin plays no role and is ignored2, only the orbital effect of a per-
pendicular magnetic field B = Bẑ is included (via the vector potential
A). The electrostatic potential V is adjustable via a gate voltage. For
simplicity we assume that the mean free path for impurity scattering is
sufficiently large that disorder effects can be neglected.

The moiré effect from a substrate of hexagonal boron nitride (hBN,
lattice constant (1 + δ)a, δ = 0.018, misaligned by θ � 1) adds super-
lattice terms to the Dirac Hamiltonian. The terms that break inversion
symmetry are small and we neglect them, following Ref. [1]. Three terms
remain [179],

H = H0 + ~vbU1f+(r) + iξ~vbU2σzf−(r)
+ iξ~vU3 (σy∂f−/∂x− σx∂f−/∂y) , (6.2)

where ξ = ±1 in the two valleys and

f±(r) =
5∑

m=0
(±1)meibmr = ±f±(−r), (6.3)

bm = 4π√
3a
R̂πm/3

[
1− (1 + δ)−1R̂θ

](0
1

)
. (6.4)

The reciprocal lattice vectors bm have length b ≡ |b0| ≈ (4π/
√

3a)
√
δ2 + θ2

and are rotated by the matrix

R̂θ =
(

cos θ − sin θ
sin θ cos θ

)
. (6.5)

The periodicity of the superlattice is λ = 4π/
√

3b ≈ a/
√
δ2 + θ2.

The terms U1 and U2 in the Hamiltonian (6.2) represent a potential
modulation, while the term U3 is a modulation of the hopping amplitudes.
The coefficients are related by [89, 179]

{U1, U2, U3} = E0
~vb

{
1
2 ,−

1
2
√

3,−(1 + θ2/δ2)−1/2
}
, (6.6)

2 Because the spin degree of freedom is not counted, the conductance quantum is
e2/h rather than 2e2/h.
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Figure 6.2. Five-terminal geometry used to calculate the Hall conductivity
(6.7). The two-dimensional hexagonal lattice of the tight-binding model is shown,
with the superlattice potential indicated by colored sites and bonds (not to scale,
the actual lattice is much finer).

where E0 is an energy scale that sets the coupling strength of graphene
to the hBN substrate. We use the estimate E0 = 17 meV from Ref. [1],
corresponding to a ratio E0/~vb = 0.05 (1 + θ2/δ2)−1/2.

6.3 Numerical results for the Hall conductivity

We study electrical conduction in the five-terminal Hall bar geometry of
Fig. 6.2, where a current I flows from source 1 to drain 3 while contacts
2, 4, and 5 draw no current. The voltages Vn at these contacts determine
the Hall conductivity,

σxy = (V5 − V2)I
(V5 − V2)2 + (W/L)2(V5 − V4)2 . (6.7)

In linear response and at zero temperature the voltage differences are
obtained from the scattering matrix S(E) at the Fermi level EF = 0,
which we calculate by discretizing the Hamiltonian (6.2) on a tight-binding
lattice (hexagonal symmetry, lattice constant aTB = λ/20). The metallic
contacts are modeled by heavily doped graphene leads (infinite length,
widthWlead = 5λ, potential Vlead = 2 ~vb), without the superlattice (E0 =
0 in the leads) and without magnetic field. In the superlattice region
(length L = 20λ, width W = 5

√
3λ) we set V = −µ. (The sign of µ is

chosen such that the Fermi level lies in the conduction band of graphene
for µ > 0 and in the valence band for µ < 0.) We calculate σxy as a
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function of Φ and µ using the kwant tight-binding code [70]3. Results
are shown in Fig. 6.3.

Panel 6.3a shows the known spectral features of the graphene super-
lattice [124, 45, 78, 35]: A parabolic fan of Landau levels emerging from
the primary zero-field Dirac cone of graphene; secondary zero-field Dirac
cones centered at µ = ±~vb/2; and gapped tertiary Dirac cones at flux
Φ/Φ0 = p/q in a region near µ = −~vb/2 (in the valence band only,
electron-hole symmetry is strongly broken by the superlattice potential).
The phases that meet at these rational flux values have Hall conductance
differing by 2qe2/h — reflecting a two-fold valley degeneracy and a q-fold
degeneracy of the magnetic minibands. (We are not counting spin.)

Panels 6.3b–d show how the connectivity switches from Fig. 6.1 appear
in the numerical simulation when we slightly misalign the hBN lattice
relative to the graphene lattice. Each switch in the connected component
of the phase diagram is associated with the closing and reopening of the
Dirac cones in the magnetic Brillouin zone. (The gap closing at Φ = Φ0
is the one shown in Fig. 6.1.)

6.4 Transport signatures of massless Dirac fermions
We will now demonstrate that transport properties near these connectivity
switches have the characteristics of massless Dirac fermions [11]. The
effects we consider are the scale-invariant (pseudodiffusive) two-terminal
conductivity and sub-Poissonian shot noise at the Dirac point [85, 171],
and Klein tunneling through a potential step [86, 34].

6.4.1 Scale-invariant conductivity and sub-Poissonian shot
noise

To search for scale invariance we take an infinitely long graphene strip of
width W , with the potential profile shown in Fig. 6.4a. The superlattice
potential is imposed over a length L (where V = −µ), while the leads
have no superlattice (Vlead = ~vb). The two-terminal conductivity σ and
Fano factor F (ratio of noise power and current) are obtained from the
transmission eigenvalues Tn,

σ = L

W

e2

h

∑
n

Tn, F =
∑
n Tn(1− Tn)∑

n Tn
. (6.8)

3 Details of the calculation are given in the Appendix.
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Figure 6.4. Electrostatic potential profile in a graphene strip, used to study the
scale invariant conductivity (panel a, V0/~vb = 1, varying µ) and Klein tunneling
(panel b, V1/~vb = 0.645, V2/~vb = 0.613). The Fermi level EF = 0 lines up with
the flux-induced Dirac point when V ≈ 0.63 ~vb.

For 2q gapless Dirac cones we expect at the Dirac point the scale invariant
values [85, 171]

σD = 2qe2/πh, FD = 1/3. (6.9)

We varyW at fixed aspect ratioW/L to search for this scale invariance.
We have examined several flux values, here we show representative results
for Φ = Φ0 (so q = 1). From Fig. 6.3 we infer that the connectivity switch
at this flux value happens near θ = 0.01 and µ = −0.6 ~vb. Indeed, in Fig.
6.5 both σ and F become approximately independent of sample size near
these parameter values. The limiting Fano factor is close to the expected
1/3; the limiting conductivity is a bit larger than the expected value, which
we attribute to an additional contribution of order (L/W )e2/h from edge
states. These are zero-temperature calculations, but the characteristic
temperature scale can be quite large for a sample of the size shown in Fig.
6.5, where the required energy resolution is of order 0.01 ~vb ' 40 K.

6.4.2 Klein tunneling

Klein tunneling is the transmission with unit probability at normal in-
cidence on a potential step that crosses the Dirac point. It is a direct
manifestation of the chirality of massless Dirac fermions [86]. We search
for this effect using the potential profile of Fig. 6.4b, which for Φ = Φ0 and
θ = 0.01 is symmetrically arranged around the flux-induced Dirac point.
In order to avoid spurious reflections from the leads we now apply the
superlattice potential and the magnetic field to an unbounded graphene
plane. We calculate the transmission probability T (ky) as a function of
transverse wave vector ky in the magnetic Brillouin zone.
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Figure 6.5. Conductivity (solid curves, left axis) and Fano factor (dashed
curves, right axis) calculated in the two-terminal graphene strip of Fig. 6.4a,
for different system sizes at fixed aspect ratio W/L. The scale invariance at
µ ≈ −0.63 ~vb signals the appearance of massless Dirac fermions at flux Φ = h/e
through the superlattice unit cell. The horizontal solid and dashed lines indicate
the limits (6.9) expected from the Dirac equation.

The dependence on the angle of incidence φ of the transmission proba-
bility of massless Dirac fermions depends exponentially on the step length
L [34],

T (φ) = exp(−π~−1pFL sin2 φ), (6.10)

for a symmetric junction with the same Fermi momentum pF at both
sides of the potential step. (The step should be smooth on the scale of
the lattice constant, so L � λ is assumed.) The transverse momentum
appearing in the Dirac equation is measured from the Dirac point, py =
~(ky − Ky). (The flux Φ = Φ0 creates two Dirac cones, both with the
same value of Ky.) Inspection of the band structure gives Ky = 1.723/λ
and Fermi velocity vF = 2.04 v, nearly twice the native Fermi velocity v
of graphene. The angle of incidence then follows from sinφ = py/pF, with
pF = 0.23 ~/λ, so we expect a transmission peak described by

T (ky) = exp(−π~L(ky −Ky)2/pF). (6.11)

The resulting curves are shown in Fig. 6.6 (dashed curves), for different
values of L. There is a good agreement with the numerical simulations
(solid curves).
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Figure 6.6. Transmission probability T through the potential step of Fig. 6.4b,
as a function of transverse wave vector ky for different step lengths L. The
flux-induced Dirac point is at ky = 1.723/λ. The solid curves result from the
numerical simulation of the graphene superlattice at Φ = Φ0, θ = 0.01, the
dashed curves are the analytical prediction (6.11) for Klein tunneling of massless
Dirac fermions. (There is no fit parameter in this comparison.)

The angle-resolved detection in these simulations is convenient to di-
rectly access the strongly peaked transmission profile (6.11). Experimen-
tally this signature of Klein tunneling can be observed without requiring
angular resolution in a double potential step geometry [190].

6.5 Conclusion

In summary, we have identified a mechanism for the production of massless
Dirac fermions in the Hofstadter butterfly spectrum of a moiré superlat-
tice. Generically, the flux-induced clones of the zero-field Dirac cones are
gapped, but the gap closes at a switch in the connected component of the
quantum Hall phase diagram. We have presented a model calculation for
graphene on an hexagonal boron nitride surface that exhibits these connec-
tivity switches upon variation of the crystallographic misalignment. Only
a slight misalignment is needed, on the order of 1◦, comparable to what
has been realized in experiments [124, 45, 78, 187]. Numerical simula-
tions of transport properties at unit flux through the superlattice unit cell
reveal the scale invariant conductivity and Klein tunneling that are the
characteristic signatures of ballistic transport of massless Dirac fermions.
These should be observable in small samples, in larger samples the effects
of disorder remain as an interesting problem for further research.
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6.6 Appendix

6.6.1 Derivation of the tight-binding Hamiltonian for the
moiré superlattice

Our numerical simulations are based on a tight-binding discretization of
the moiré superlattice Hamiltonian (6.2) for graphene on an hexagonal
substrate. Here we provide a derivation of the tight-binding Hamiltonian,
arriving at Eq. (6.28). This is not quite straightforward, because of the
need to accomodate two lattices, of graphene and of the substrate, in a
single discretization. We start with zero magnetic field (A = 0).

In order to achieve a commensurate discretization of the bare graphene
Hamiltonian (6.1) and the moiré superlattice defined by reciprocal lattice
vectors bm(θ), for arbitrary alignment angle θ, we make use of the in-
variance of H0 under a simultaneous rotation of space and pseudospin
(sublattice degree of freedom). A rotation by

−φ = − arctan
( sin θ

cos θ − (1 + δ)

)
(6.12)

leaves H0 invariant,

vp · σ + V (r) 7→ vp̃ · σ̃ + Ṽ (r̃), (6.13)

while bringing the reciprocal lattice vectors in alignment with bm(θ = 0).
The first two terms of the moiré modulation transform into

~vbU1f+[r(x̃, ỹ)] + iξ~vbU2f−[r(x̃, ỹ)]σz
= ~vbU1f̃+(r̃) + iξ~vbU2f̃−(r̃)σ̃z, (6.14)

1
2 f̃+(r̃) = cos(g1r̃) + cos(g3r̃) + cos(g5r̃), (6.15)
1
2 if̃−(r̃) = sin(g1r̃) + sin(g3r̃) + sin(g5r̃). (6.16)

The rotated reciprocal superlattice vectors

g1 = b

2

(
−
√

3
1

)
, g3 = b

(
0
−1

)
, g5 = b

2

(√
3

1

)
, (6.17)

depend on θ only in their length b = (4π/
√

3a)
√
δ2 + θ2, but unlike bm

not in their direction.
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The third term of the moiré modulation transforms into

iξ~vU3

[
−f−[r(x̃, ỹ)]

∂ỹ

∂y

∂ỹ
(σ̃x cosφ− σ̃y sinφ)

+ f−[r(x̃, ỹ)]
∂x̃

∂x

∂x̃
(σ̃y cosφ+ σ̃x sinφ)

]
= ξAx(r̃)σ̃x + ξAy(r̃)σ̃y.

(6.18)

We have introduced the fictitious vector potential

A(r̃) =
(
Ax(r̃)
Ay(r̃)

)
= −~vbU3

(
cos(g1r̃) + cos(g5r̃)− 2 cos(g3r̃)√

3[cos(g1r̃)− cos(g5r̃)]

)
.

(6.19)

The full Hamiltonian in the rotated basis reads

H̃ = vp̃ · σ̃ + Ṽ (r̃) + ξ~vbU1f̃+(r̃) + iξ~vbU2f̃−(r̃)σ̃z
+ ξA(r̃) · σ̃ . (6.20)

In the following we will work in this rotated basis, but in favor of a simple
notation we will drop the tilde .̃

Figure 6.7. Hexagonal lattice of the tight-binding model, with lattice vectors
a1, a2 and nearest-neighbor displacement vectors δ1, δ2, δ3. The two sublattices
have sites labeled A (filled dots) and B (open dots). The vector rij = ia1 + ja2
denotes the center of unit cell (i, j).
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We discretize the Hamiltonian (6.20) in the rotated basis on the hexag-
onal lattice, defined by the lattice vectors

a1 = aTB

(
1
0

)
, a2 = 1

2aTB

(
1√
3

)
, (6.21)

and the three nearest neighbor displacement vectors

δ1 = aTB

(
0

1/
√

3

)
, δ2 = 1

2aTB

(
−1
−1/
√

3

)
,

δ3 = 1
2aTB

(
1

−1/
√

3

)
. (6.22)

The vector rij = ia1 + ja2, with i, j integer, denotes the center of unit
cell (i, j). As shown in Fig. 6.7 we put the sites belonging to the A(B)-
sublattice at rij − (+)δ1/2 to have inversion symmetry about the origin.

To ensure that the discretization (lattice constant aTB) is commensu-
rate with the moiré superlattice (lattice constant λ), we take an integer
ratio λ/aTB = Λ, so

aTB = λ

Λ = a

Λ
√
δ2 + θ2

. (6.23)

The accuracy of the discretization is improved by increasing Λ. (In the
simulations we take Λ = 20.)

The bare graphene Hamiltonian (6.13) is produced by nearest-neighbor
hopping on the hexagonal lattice,

H̃0 = −
∑
i,j

3∑
α=1

t
[
a†(rA

ij)b(rA
ij + δα) + H.c.

]
+
∑
i,j

Ṽ (rij). (6.24)

Here rA
ij denotes the positions of sites on sublattice A, a† and b† are

creation operators on the A and B sites, and t is the hopping amplitude,

t = 2v√
3aTB

= 2v√
3a

Λ
√
δ2 + θ2 . (6.25)

The superlattice term U1 in Eq. (6.14) corresponds to a periodic spa-
tial modulation of the on-site energy, the same for A and B sites, while
the term U2 has an additional staggering — acting on A and B sites with
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opposite sign. To maintain the spatial inversion symmetry of the contin-
uum model we evaluate both terms at the center of each unit cell. The
resulting terms are given in Eqs. (6.29) and (6.30).

The superlattice term U3 with the fictitious vector potential in Eq.
(6.18) represents a periodic spatial modulation of the nearest-neighbor
hopping amplitudes in the tight-binding Hamiltonian (6.24). The replace-
ment t 7→ t + δtα(rij) produces in the continuum limit the vector poten-
tial [31]

A(r) =
3∑

α=1
δtα(r)e−iKδα = Ax(r) + iAy(r) . (6.26)

The vectorsK = (4π/3aTB)x̂ and−K locate the two Dirac cones (valleys)
in the hexagonal Brillouin zone. We seek to discretize a given fictitious
vector potential on the lattice, in other words we need to invert (6.26).
The complex field A is constructed from three real hoppings, so we have
some freedom in choosing the δtα. We take

δt1 = 2Ax/3 , δt2 = Ay/
√

3−Ax/3,
δt3 = −Ay/

√
3−Ax/3 . (6.27)

To avoid a spurious breaking of inversion symmetry we evaluate A in the
middle of each bond, rather than on the lattice site.

Collecting results, we arrive at the tight-binding Hamiltonian

H =
∑
i,j

[
(εi,j+ + εi,j− + Ṽ (ri,j))a†i,jai,j + (εi,j+ − ε

i,j
− + Ṽ (ri,j))b†i,jbi,j

]
−
∑
i,j

[
ti,j1 a†i,jbi,j + ti,j2 a†i,jbi,j−1 + ti,j3 a†i,jbi+1,j−1 + H.c.

]
. (6.28)

The energies

εi,j+ = E0
~vb

δ√
δ2 + θ2

2π
Λ [cos(g1ri,j) + cos(g3ri,j) + cos(g5ri,j)] , (6.29)

εi,j− = E0
~vb

−
√

3δ√
δ2 + θ2

2π
Λ [sin(g1ri,j) + sin(g3ri,j) + sin(g5ri,j)] , (6.30)

correspond to the periodic on-site contributions of the moiré super-lattice
potential which are symmetric (εi,j+ ) and antisymmetrc (εi,j− ) with respect
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to a swap of the A and B sublattice. The hoppings

ti,j1 = t− 2Ax(ri,j)/3, (6.31a)
ti,j2 = t−Ay(ri,j − δ1/2 + δ2/2)/

√
3

+Ax(ri,j − δ1/2 + δ2/2)/3, (6.31b)
ti,j3 = t+Ay(ri,j − δ1/2 + δ3/2)/

√
3

+Ax(ri,j − δ1/2 + δ3/2)/3, (6.31c)

include both the isotropic contribution t of native graphene and the pe-
riodic modulation from the moiré superlattice, produced by the fictitious
vector potential

A(r) =
(
Ax(r)
Ay(r)

)
= E0

~vb
−δ2

δ2 + θ2
2π
Λ

×
(

cos(g1r) + cos(g5r)− 2 cos(g3r)√
3[cos(g1r)− cos(g5r)]

)
. (6.32)

Finally, the orbital effect of the magnetic field B = Bẑ is included by
adding a Peierls phase 2π(Φ/Φ0)Λ−2ri,j · x̂ to the hopping amplitude ti,j1 ,
where Φ is the flux through the superlattice unit cell.


