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Chapter 5

Extended topological group
structure due to average
reflection symmetry

5.1 Introduction

Topological insulators (TI) are states of matter in which the bulk is
gapped, but which host protected gapless edge states [73, 127]. This be-
havior was first studied in connection to the quantum Hall effect [72, 28], a
two-dimensional system, and later generalized to include arbitrary dimen-
sions, as well as boundary states protected by the fundamental symme-
tries of the system: time-reversal T , particle-hole P, and chiral symmetry
C [92, 148]. In each case, the gapless nature of boundary states is a conse-
quence of the system’s bulk properties. This enables obtaining topological
invariants, quantities determined from the bulk which count the number
of protected states at a termination of the system. For single-particle sys-
tems, the group structure of topological invariants (Z or Z2) is listed in the
so-called periodic table of topological insulators, which shows that in any
dimension 5 out of the 10 Altland-Zirnbauer [7] (AZ) symmetry classes
can be topologically non-trivial. As long as the protecting symmetries
are not broken, the invariant cannot change without closing the bulk gap,
explaining the robustness of the boundary states to perturbations such as
disorder.

Topologically non-trivial behavior can occur also due to symmetries
of the underlying lattice. This enables weak and crystalline topologi-
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Table 5.1. Group structure of single-particle topological invariants in the ten
AZ symmetry classes, with average reflection symmetry preserved along all di-
rections. The strong invariants of the original TI table are shown in blue and
those protected by ARS in black.

Symmetry class Dimension
1 2 3

A Z Z2
3

AIII Z Z2
2 Z×Z2

3

AI
BDI Z Z2

2 Z2
3

D Z2 Z×Z2
2 Z2

6

DIII Z2 Z2×Z2
2 Z×Z2

6

AII Z2 Z2×Z2
3

CII Z Z2
2 Z2×Z2

3

C Z Z2
3

CI Z

cal insulators in the presence of translational symmetry, or point group
symmetries (rotation, reflection, etc.) [106, 136, 59, 63, 77]. Many gen-
eralizations of the periodic table have been considered by examining the
interplay between T , P, C, and different lattice symmetries [157, 79, 37,
4, 164, 191, 14, 107, 38].

Disorder breaks all symmetries of the lattice, leading to a distinction
between strong and weak topological insulators (WTI) and their asso-
ciated invariants. Despite owing their protection to lattice symmetries,
the boundary states of some WTIs may still survive disorder. This was
first shown for a stack of quantum spin-Hall layers [135, 105, 64], a three-
dimensional WTI belonging to symmetry class AII in the AZ classification,
and later generalized to systems of different dimensionality and symmetry
class, dubbed statistical topological insulators [68]. Here, protection is
not given by an exact symmetry, but by one which only holds on aver-
age. Whereas the original invariants belong to Z or Z2, those stabilized
by average symmetries only have a Z2 group structure.

Motivated by the robustness of boundary states in statistical topolog-
ical insulators, we study how the classification of TIs and topological de-
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fects are extended by average symmetries. For concreteness, we will focus
on disordered systems which preserve average reflection symmetry (ARS),
a situation which occurs in many condensed matter systems [162, 50, 188].
Each element of the disordered ensemble of Hamiltonians, H, appears with
equal probability as its reflected counter part, R−1

j HRj , withRj a unitary
reflection operator about the j-direction. Oblique reflection gives the same
physics as the ordinary one, thus in the examples we will consider only
the ordinary one. For us the relevant cases are when the reflection plane
passes through a lattice site of the system, such that the symmetry can
be broken by staggering the strength of consecutive hopping amplitudes.

We find that the group structure of topological invariants is exponen-
tially enlarged by ARS, since weak invariants of all dimensions d > 0 con-
tribute simultaneously and independently to the classification presented in
Table 5.1. Some of the physical consequences of this extension include the
possibility of disordered topological phase transitions governed only by a
change in the weak invariant. We find a particularly interesting situation
when the system possesses a nonzero strong index on both sides of such a
transition. Then the conductance of the boundary is non-trivial and iden-
tical in both phases, while at the transition the bulk gap must close in the
presence of ARS. Additionally, we show that the extended classification
applies also to topological defects [163]. It allows us to define a new class
of gapless statistical topological defects, which are robust to disorder but
can only exist in the presence of average symmetries.

In the following, we begin our discussion by motivating the need for
an extended topological classification with some concrete examples. In
Section 5.2 we introduce a model for a two-dimensional (2d) topological
superconductor in symmetry class D, exhibiting disordered phase transi-
tions across which the strong invariant remains constant, and only a weak
index changes. To show how this behavior escalates in higher dimensions,
we consider a three-dimensional topological superconductor (class DIII)
in Section 5.3. Its disordered phases are distinguished by a second gener-
ation weak index, i.e. one which is two dimensions lower than the system
dimension, even if the strong and 2d weak invariants don’t change. We
generalize these results to arbitrary dimension and symmetry class in Sec-
tion 5.4 showing that ARS enlarges the topological classification of both
bulk Hamiltonians and topological defects alike. We conclude in Section
5.5.
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5.2 Topological superconductor in class D

Figure 5.1. Bulk thermal conductance of a disordered system with Hamiltonian
(5.2) as a function of µ and td. Parameters are tx = 1, ty = 1/2, ∆x = 2, ∆y = 1,
and disorder strength U = 1. Each phase is labeled according to its strong and
weak topological invariants: ν, νx, νy. With average reflection symmetry (left
panel) the crossings are protected by the weak invariants. Breaking ARS in
either the x- or the y-directions destroys the corresponding invariant (marked
with ×) and leads to an anticrossing, as shown in the middle and right panels.
In the middle panel the staggering strength in the x-direction is sx = 0.2, while
in the right panel the y-direction hoppings are staggered with sy = 0.4.

5.2.1 Model Hamiltonian

Two-dimensional superconductors with broken time-reversal as well as
spin-rotation symmetry belong to symmetry class D in the AZ classifi-
cation. The minimal topological model is a 2 × 2 Bogoliubov-De Gennes
Hamiltonian describing spinless fermions in the presence of a p-wave order
parameter, ∆(k) ∼ k. The only constraint is provided by the particle-hole
symmetry, and reads:

τxH(k)τx = −H∗(−k), (5.1)

in terms of the Pauli matrices τi acting on the particle-hole degree of
freedom.

We use a tight binding Hamiltonian of the form

H(k) = ε(k)τz + ∆xτx sin(kx) + ∆yτy sin(ky), (5.2)

with

ε(k) = −2tx cos(kx)− 2ty cos(ky)− µ
−2td cos(kx + ky)− 2td cos(kx − ky). (5.3)
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Here, ∆x,y is the strength of the p-wave pair potential, tx,y are the
anisotropic hopping amplitudes in the x- and y-directions, and µ is the
chemical potential. The Hamiltonian (5.2) is discretized on a square lattice
of Lx×Ly = 50×50 sites (lattice constant a = 1), with the last two terms of
Eq. (5.3) leading to next nearest neighbor hoppings, parametrized by the
diagonal hopping amplitude td. Disorder is modeled by random variations
of the chemical potential, drawn independently for each site from the
uniform distribution [µ− U, µ+ U ]. In the following we set tx = 1 and
express all other Hamiltonian parameters relative to this energy scale. All
tight binding simulations are performed using the Kwant code [70].

5.2.2 Group structure of phases distinguished by strong
and weak invariants

We attach disorder free leads at x = 0, Lx connecting the system to reser-
voirs at temperatures T0 and T0 + δT . The Fermi level (E = 0) scattering
matrix,

S =
(
r t
t′ r′

)
, (5.4)

enables us to compute the thermal conductance G = G0 Tr t†t, G0 =
π2k2

BT0/6h, in the low-temperature, linear response regime, as well as
the topological invariants of the system. The Chern number, the strong
topological invariant of the system, reads [66, 65]

ν = 1
2πi

ˆ 2π

0
dφ

d

dφ
ln det r(φ), (5.5)

while the weak Z2 invariants are given by

(−1)νy = sign det r(φ = 0). (5.6)

In Eqs. (5.5) and (5.6) r(φ) is the reflection block of the scattering
matrix in the presence of twisted boundary conditions applied to the states
in the y direction: ψ(x, 0) = eiφψ(x, Ly). The weak invariant in the x-
direction is evaluated in a similar fashion, by attaching leads in the y-
direction and using periodic boundary conditions (φ = 0) along x. Both
the strong and the weak invariant is defined such that ν, νy = 0 is trivial,
while phases with non-zero invariants are non-trivial, either in the strong
or weak sense.
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As a function of µ and td, the system shows a variety of topological
phases separated by phase transitions at which the bulk gap closes (see
Fig. 5.1, left panel). The phases are strong topological insulators whenever
the Chern number is nonzero, with chiral Majorana zero modes on all
edges. When ν = 0, we also find weak topological insulators, where two
out of four edges avoid localization in the presence of disorder, hosting
counter-propagating Majorana edge modes – so-called Kitaev edges [48].

While typically the Chern number changes across a phase transition,
in the model (5.2) there are also transitions across which the strong in-
variant remains constant, and only the weak invariants change. They are
the crossings in Fig. 5.1, occurring at (µ, td) = (1, 1/2) and (2, 1/4). At
td = 1/4, varying the chemical potential causes a change of the weak in-
variant νy, while the other weak invariant, νx, is responsible for the phase
transition at td = 1/2. The bulk gap is closed at (µ, td) = (2, 1/4) even
though there are the same number of chiral Majorana edge modes with
the same chirality both for µ < 2 and µ > 2.

In the clean case (U = 0) these anomalous topological phase transitions
are protected by the exact reflection symmetry of the system. We find in
our simulations that they persist when disorder is added, up to values of
U comparable to the bulk gap, when a thermal metal phase develops [150,
51, 103]. Note that in Fig. 5.1 we plot the bulk thermal conductance of a
single system at strong disorder, showing that at large enough system sizes
ARS can protect not only the properties of the disordered ensemble as a
whole, but its individual elements as well. The presence of crossings in
the disordered phase diagram of Hamiltonian (5.2) shows that the Chern
number, a Z index, is insufficient to describe class D two-dimensional
disordered superconductors with ARS. The full topological classification
is in fact Z× Z2

2.

We verify this group structure by selectively removing average symme-
tries from the system. This is done by staggering the x- and/or y-direction
hoppings as tx,y → tx,y(1 + (−1)x,ysx,y). For s 6= 0, consecutive hoppings
in the same direction have alternating strength, such that ARS no longer
holds. Breaking either of the average symmetries removes the protection
of the associated weak invariant, and therefore splits the corresponding
crossing, as shown in the middle and right panels of Fig. 5.1. This sig-
nals that the two average symmetries act independently, justifying the
extended Z× Z2

2 group structure.
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Figure 5.2. Bulk thermal conductance of a single disordered system with Hamil-
tonian (5.7) as a function of µ and td. Parameters are tx = 1, ty = 1/2, tz = 0.05,
∆x = 3, ∆y = 1.5, ∆z = 0.15, K = 0.2, and disorder strength U = 1. Phases
are labeled by their topological invariants Qz2, Qx1 , and Q

y
1, with × marking an

invariant destroyed by breaking ARS. In the absence of staggering, phases are
distinguished by both first and second generation weak invariants (left panel).
Staggering in the x- and y-directions are set to sx = 0.25 in the middle panel
and sy = 0.5 in the right panel, respectively.

5.3 Topological superconductor in class DIII

5.3.1 Model Hamiltonian

To demonstrate the protection of an insulating phase by a second genera-
tion weak invariant, i.e. an invariant two dimensions lower than the system
dimension, we choose a model in symmetry class DIII, with Hamiltonian

H(k) = ε(k)σ0 ⊗ τz +Kσy ⊗ τy + ∆x sin(kx)σz ⊗ τx
+ ∆y sin(ky)σo ⊗ τy + ∆z sin(kz)σx ⊗ τx, (5.7)

where

ε(k) = −2tx cos(kx)− 2ty cos(ky)− 2tz cos(kz)
− 2td cos(kx + ky)− 2td cos(kx − ky). (5.8)

The Pauli matrices τi and σi act on the particle-hole and time-reversal
degree of freedom, respectively. Here, tx,y,z and ∆x,y,z are the anisotropic
hopping amplitudes and the p-wave pairing amplitudes in the x-, y-, and
z-directions (as before, we set tx = 1). The chemical potential is µ, while
K models an s-wave order parameter coupling the two spin blocks. The
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model is constrained by particle-hole and time-reversal symmetry:

τxH(k)τx = −H∗(−k), (5.9)
σyH(k)σy = H∗(−k). (5.10)

5.3.2 Group structure of phases distinguished by first and
second generation weak invariants

Like in the previous model, we introduce disorder by random spatial vari-
ations of the chemical potential, with disorder strength U . We discretize
the Hamiltonian (5.7) on a cubic lattice of linear size Lx,y,z = 16. Ideal
leads are attached along one direction, and twisted boundary conditions
are imposed in the other two, as ψ(0, y, z) = eiφxψ(Lx, y, z), ψ(x, 0, z) =
eiφyψ(x, Ly, z), or ψ(x, y, 0) = eiφzψ(x, y, Lz). In each case the reflection
matrix is a function of two out of the three twist angles φx,y,z. Owing to
time-reversal symmetry, the reflection block can be brought to an anti-
symmetric form whenever the twist angles are 0 or π (periodic or anti-
periodic boundary conditions), making its Pfaffian, Pf r, well defined. As
in the class D model, the system shows different disordered topological
phases as a function of µ and td, protected by 1d or 2d weak invariants
(see Fig. 5.2). The relevant two-dimensional weak index reads [66, 65]

(−1)Qz2 = sign [Pf r(φy = 0, φz = 0) ×
Pf r(φy = π, φz = 0)] ,

(5.11)

and is responsible for gapless modes on all side surfaces, i.e. surfaces
parallel to the z-direction. Non-trivial 1d weak invariants appearing in
Fig. 5.2 are

(−1)Qx1 = sign [Pf ir(φx = 0, φz = 0)] , (5.12)

and
(−1)Q

y
1 = sign [Pf ir(φy = 0, φz = 0)] , (5.13)

leading to protected gapless modes on side surfaces parallel to the x- and y-
directions, respectively. Three-dimensional class DIII systems also allow
for a strong invariant, but this one remains zero throughout the phase
diagram of Fig. 5.2, since the top and bottom surfaces are insulating
whenever the bulk is gapped.

Unlike the two-dimensional model of Section 5.2, in which topologi-
cally different phases were separated by insulator-to-insulator phase tran-
sitions, the three dimensional Hamiltonian (5.7) has finite-extent metallic
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regions [67]. Nevertheless, insulating phases are not connected in the
presence of ARS. We find that the weak 1d and 2d invariants are robust,
leading to surfaces which do not localize once disorder is added. Breaking
average reflection symmetry by staggering consecutive hoppings in the
x- or y-directions destroys the corresponding invariants, connecting the
phases as shown in the middle and right panels of Fig. 5.2. Note that
staggering in the z-direction destroys all of the invariants of Eqs. (5.11),
(5.12), and (5.13), turning the entire phase diagram into a topologically
trivial insulator.

5.4 Extended topological classification

In the previous Sections we have presented models showing topological
phase transitions protected by average reflection symmetry, which we
dub statistical topological phase transitions, following nomenclature of
Ref. [68]. Since the strong index remains constant across these transi-
tions, we need to extend the topological group structure of the periodic
TI table in order to properly label the protected phases. In this Section,
we discuss this extension in the context of the models presented above,
and show how it applies to systems of any dimensionality and symmetry
class.

5.4.1 Topological protection in 2d, class D

The phase diagram of the 2d system, Fig. 5.1, has two statistical topolog-
ical phase transitions. The lower one, µ = 2 and td = 1/4, happens at a
vanishing Chern number, ν = 0. The corresponding phases are a trivial
system (ν = νy = 0), µ > 2, and a WTI (νy = 1) for µ < 2. As such,
its robustness to disorder can be understood in the language of Ref. [68],
namely in terms of the different edge localization properties of the two
phases. In the trivial phase the edge is localized: its thermal conduc-
tance G ∼ exp(−L/ξ) decays exponentially as a function of system size
L, with the localization length ξ. The WTI on the other hand has edge
states which avoid localization even in the presence of disorder. They form
so-called Kitaev edges [48], characterized by a super-Ohmic conductance
G ∼

√
l/L (with l the mean free path), which scales in a way typical for

disordered one-dimensional systems at a critical point [23, 24, 108, 71].
Due to bulk-boundary correspondence, the difference in edge localization



104 Chapter 5. Extended topological group structure. . .

Figure 5.3. Conductance through a Kitaev domain wall as a function of its
length, with and without average reflection symmetry (blue solid and red dashed,
respectively). The inset shows the measurement setup, in which conductance
flows both through the domain wall and the chiral Majorana edge modes. The
quantized edge mode contribution has been subtracted from the plot (vertical
axis label). Both the top and bottom halves are described by Eq. (5.2), using
µtop = 1.5 and µbottom = 0.5, and keeping all other parameters the same as in
Fig. 5.1.

properties implies that the two phases are topologically distinct, explain-
ing the phase transition’s robustness to disorder.

The situation is different for the upper crossing in Fig. 5.1, at µ = 1 and
td = 1/2. On both sides the strong topological invariant is ν = −1, and as
such all edge states avoid localization in both phases. In fact, the thermal
conductance of the edge is identical in both systems, G = |ν|G0 = G0, so
the above argument cannot be applied.

Instead, we look at the localization properties of an interface formed
between them. Consider a one-dimensional domain wall formed between
systems in the two phases (td = 1/2, µ < 1 and µ > 1). The key observa-
tion is that if one of the weak indices differs, the corresponding interface
between two strong TIs will behave like the edge of a WTI – in this case a
Kitaev edge, or rather, a Kitaev domain wall. Since the index νx changes,
the interface parallel to the x-direction avoids localization as long as aver-
age reflection symmetry is preserved (see Fig. 5.3). The mobility gap must
close along this interface, showing that the two phases are topologically
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distinct. Therefore, ARS protects weak invariants also when the strong
index is nonzero, leading to a Z×Z2

2 classification for disordered class D
systems in two dimensions.

5.4.2 Topological protection in 3d, class DIII

The situation is similar for the 3d model in class DIII, whose phase di-
agram is shown in Fig. 5.2. At td = 1/4, the systems goes from a WTI
with Qy1 = 1 to a trivial insulator as a function of µ, so the different sur-
face localization properties of the two disordered phases imply they are
topologically distinct. At td = 1/2 on the other hand, the effect of 1d
invariants is obscured by the 2d non-trivial invariant Qz2, which makes all
side surfaces delocalized. As before, robustness of the topological phases
on either side of the crossing can be determined by considering an inter-
face between them. Our simulations indicate that in this case the interface
avoids localization, such that the two phases cannot be continuously con-
nected without closing the mobility gap.

5.4.3 Generalized topological protection by average sym-
metry

In general, strong and multiple generations of weak invariants may af-
fect the localization properties of states at the same boundary. However,
contributions of different indices can always be isolated by forming an in-
terface between two phases with only one index changed. This is, in fact,
analogous to studying the boundaries of a system which is only non-trivial
with respect to that particular invariant (see Fig. 5.4).

For a d-dimensional Hamiltonian H, the robustness of one of its topo-
logical indices can be determined by studying an auxiliary Hamiltonian in
the same symmetry class [163, 182]:

H̃ = H ⊕H ′R ≡
(
H Λ
Λ† H ′R

)
, (5.14)

with Λ a symmetry preserving coupling matrix. Choosing H ′R such that
only one nonzero index of H is also nonzero in H̃, with all others triv-
ial, allows us to use the results of Ref. [68] to show its boundaries avoid
localization in the presence of average symmetries.

For example, ifH is given by Eq. (5.2) with ν = −1, νx = 1, as happens
for µ = 0 and td = 1/2, one can choose H ′R to have ν = 1, νx = 0,
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Figure 5.4. We consider two systems with the same strong indices ν, but
different weak indices νx and ν′x corresponding to the Hamiltonians H and H ′.
We combine them in one of two ways: on the left we invert the invariants of
the second system to H ′R with indices −ν and −ν′x and combine it with the
first system using Eq. (5.14). We make the coupling matrix Λ local and having
support throughout the bulk of both systems. The combined system has indices 0
and νx−ν′x making it non-trivial only in the weak sense. On the right we put the
two systems together with a coupling only over their common edge. Then a weak
domain wall is formed with gapless states protected by the non-zero difference
νx−ν′x. This is the generalization of the Kitaev domain wall introduced earlier.

making the combined system [163, 182, 129] a WTI only with respect
to νx. The connection between the Kitaev domain wall formed at the
interface between two strong TIs and the auxiliary Hamiltonian introduced
in Eq. (5.14) is summarized in Fig. 5.4. The combined Hamiltonian can
be visualized as the system in the inset of Fig. 5.3, where the two halves
touching at the domain wall have been folded on top of each other. The
Majorana edge modes become counter-propagating after folding, such that
ν = 0, and the domain wall in the original setup becomes the boundary of
the folded system. As such, in the following we will restrict ourselves to
boundary localization properties, with the understanding that the same
results will be reached when multiple non-trivial invariants coexist, either
by considering interface properties, or auxiliary Hamiltonians of the form
(5.14).

Before proceeding to extend the table of topological insulators to the
case where average reflection symmetry is preserved, we shortly review
the results of Ref. [68]. We give here only a brief summary, expressed in
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Figure 5.5. Surface of a stack of quantum spin Hall layers. Horizontal ar-
rows denote the helical edge modes of each layer, and solid/dotted lines indicate
strong/weak inter-layer coupling. Reflection symmetry about one layer can be
broken in two different ways (left/right panels), leading to different surface in-
variants ν. On the left the surface is gapped and trivial, whereas on the right the
reflected configuration of inter-layer coupling leaves helical edge modes on the
surface boundaries (dark color), signaling a non-trivial surface invariant ν = 1.

the language of a concrete physical example, and refer the reader to that
paper for the full, detailed derrivation. This discussion is necessary in
order to distinguish between Z and Z2 weak invariants.

In the absence of disorder, WTIs have gapless boundary states. They
can be thought of as systems formed of weakly coupled layers, where each
one caries a strong lower dimensional invariant. Depending on whether
the layer index is Z or Z2, we consider two constructions: adjacent layers
can either have the same value of a Z2 index, or opposite Z invariants, Q
and −Q. A 3d example of the former is a stack of weakly coupled quantum
spin Hall systems [135], while the latter is an anti-ferromagnetic stack of
quantum Hall systems [104, 10]. In each case, dimerization of the layers
can gap out the boundary states, but this is forbidden by exact reflection
symmetry.

Note that one can also consider stacked systems in which each layer
has the same value of a Z invariant. In this construction however, the
boundary cannot be gapped irrespective of lattice symmetries, so we will
not discuss it in the following.

When disorder is added, reflection symmetry is explicitly broken, be-
coming instead an average symmetry of the disordered ensemble. Let us
use the stack of coupled quantum spin Hall systems as an example, and
assume that the gapless surfaces protected by exact reflection symmetry
do indeed become gapped once disorder is introduced. In the presence of
a surface gap, we can define surface topological invariants for all elements
of the disordered ensemble. Since in 2d (and in general in all dimensions
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d ≥ 1) the topological invariant is a self-averaging quantity, it should have
the same value for any surface as it does for its reflected counterpart.
However, there are two distinct ways of breaking reflection symmetry on
the surfaces of a stack of quantum spin Hall layers, with surface invariants
that differ by an odd amount, as shown in Fig. 5.5. Disorder which re-
spects ARS is equally likely to break reflection symmetry in either of the
two ways, seemingly contradicting the self-averaging nature of the topo-
logical index. The only resolution to this apparent paradox is to invalidate
the original assumption, that of a gapped surface.

Ref. [68] showed that boundary states avoid localization whenever the
average symmetry changes surface invariants by an odd amount, resulting
in a new class of topological phases: statistical topological insulators.
With average reflection symmetry, this happens for layered systems in
which each layer has a strong Z2 index, since a change of a Z2 number
can only be odd. Additionally, it was shown this happens for layers with
an alternating Z index ±Q, whenever Q itself is odd. As such, both cases
lead to a weak invariant of the disordered bulk system which is Z2.

The weak invariants found to survive disorder thanks to the above
arguments can then be used iteratively to extend the classification to
higher dimensional systems. This is done by studying a system in the same
symmetry class but one higher dimension, and considering odd changes
in the weak surface invariants. Then, the same procedure leads to second
generation statistical topological insulators, such as the phase appearing
at µ = td = 0 in the DIII model (Fig. 5.2). The simultaneous presence
of two independent average reflection symmetries is required in this case:
one guarantees the existence of a weak surface invariant, while the second
one changes the value of this weak invariant by an odd amount. Therefore,
each strong index, Z or Z2, gives rise to infinitely many higher dimensional
Z2 statistical topological insulators in the same symmetry class, which
require a larger number of average symmetries for larger dimensionality
of the system.

5.4.4 Extended topological group structure

So much for the summary of Ref. [68]. We extend its conclusions to the
case when multiple invariants coexist. For a d-dimensional system in any
symmetry class, the classification due to the strong invariant, if any, is
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extended by each non-trivial invariant of lower dimension, d′ = d− k, as

Z2
α, α =

(
N
k

)
, (5.15)

where α is a binomial coefficient and N ≤ d is the total number of average
reflection symmetries. The binomial coefficient in Eq. (5.15) is reminiscent
of that found for systems in the absence of disorder [92, 182], with some
important differences. First, it does not go up to the full dimension of the
system, but rather to the number of average reflection symmetries which
protect the invariants. Second, only Z2 groups appear, irrespective of
whether the lower dimensional index is Z or Z2. Lastly, the extension only
involves invariants in dimensions d > d′ > 0, since in zero dimensions the
topological invariant is not a self-averaging quantity, making the results
of Ref. [68] inapplicable.

We assemble the resulting classification into a new table of topological
insulators, which is now no longer periodic, but shows an exponential en-
largement of groups with the number of spatial dimensions (see Table 5.1).
In two dimensions we recover the result of Section 5.2 for class D, with a
group structure Z×Z2

2. In 3d class DIII (Section 5.3), the group is Z×Z2
6

with ARS along all directions: there is one integer valued strong index,
three 2d weak indices, and three second generation, 1d invariants. If ARS
is broken along one direction, by staggering the system for instance, the
group becomes Z× Z2

3 instead. In that case, only two 2d invariants and
one 1d weak index survive.

The extended classification of Table 5.1 applies not only to bulk Hamil-
tonians, but also to Teo and Kane’s classification of topological defects [163],
enabling us to distinguish between strong and statistical topological de-
fects. An example of the latter is in fact shown in Fig. 5.3. It’s the
Kitaev domain wall, a one-dimensional topological defect protected from
localization by ARS.

Since topological defects are classified in terms of the topological prop-
erties of Hamiltonians surrounding the defect, they share the same ex-
tended group structure as bulk Hamiltonians. Therefore, statistical topo-
logical phase transitions in which the strong defect invariant does not
change are possible. By using the same interface construction as before,
Fig. 5.3, one can understand these transitions in terms of the properties
of the Hamiltonians surrounding them. We show an example in Fig. 5.6,
where the Hamiltonians surrounding two defects with the same strong in-
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Figure 5.6. One-dimensional topological defect embedded in a three-
dimensional bulk, such as the Hamiltonian (5.7) or stacked copies of (5.2). At
some point along the defect one of its weak invariants changes, leading to the for-
mation of a Kitaev domain wall. The defect Hamiltonians HD and H̃D have the
same strong invariant, but cannot be deformed into each other without closing a
gap, due to the presence of ARS.

variant cannot be adiabatically deformed into each other, since they differ
in one of their weak invariants.

5.5 Conclusion

We have shown how the topological structure of single-particle systems
is enhanced by the presence of average symmetries. For concreteness,
we have focused on protection due to average reflection symmetry in the
presence of disorder, a situation which occurs naturally in many condensed
matter systems. We have found that all weak invariants of lower dimen-
sions d ≥ 1 contribute to the classification at the same time, leading to a
group structure which grows exponentially with the number of dimensions.

In general, when multiple invariants affect the localization properties of
the same boundaries, the effect of average symmetries can be treated with
the construction of Eq. (5.14), or by forming interfaces between systems.
This enables the robustness of each invariant to be studied independently
of the others.

Since we focus on the effects of disorder, our classification scheme is
different from, and applies also to existing works which generalize the pe-
riodic TI table. The same arguments can be applied to any symmetry
compatible with the criterion of Ref. [68]. In particular, one may con-
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sider instead rotational symmetry, which has also been shown to lead to
topologically non-trivial phases and defects [79, 164, 14]. Here too the
inclusion of disorder would result in an average rotational symmetry, ex-
tending the topological group structure in a similar fashion. This opens
possibilities for numerous theoretical studies and widens the possibilities
for the experimental observation of the suggested effects.

We have also discussed some of the physical consequences of the ex-
tended classification. It can lead to statistical topological phase transi-
tions, governed only by a change in one of the weak invariants. In the
presence of average symmetries the bulk gap must close at the transition,
even if the topological insulators on either side have the same boundary
conductance. Additionally, the extended classification can lead to sta-
tistical topological defects, which host gapless modes that are robust to
disorder, but which could not exist in the absence of average symmetries.
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