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Chapter 3

Phase-locked
magnetoconductance
oscillations as a probe of
Majorana edge states

3.1 Introduction
Two-dimensional superconductors can support propagating edge states
that are not localized by disorder for topological reasons [177, 149, 130],
as a superconducting analogue of the metallic edge states in the quantum
Hall effect or quantum spin-Hall effect [73, 127]. Unlike the dispersionless
“flat band” edge states of nodal superconductors [84], which leave a strong
signature in the density of states, the propagating edge states have not
yet been observed. They have been predicted in a variety of materials —
including strontium ruthenate [100], heavily doped graphene [114], and
topological insulators on a superconducting substrate [61].

The symmetry-based classification of topological superconductors lists
three types of propagating edge states [138]: chiral Dirac modes, and chiral
or helical Majorana modes (see Table 3.1). A spin-singlet superconductor
with dx2−y2 + idxy orbital pairing supports edge states that propagate in
one direction only (chiral) and are not selfconjugate (Dirac fermions). For
spin-triplet px + ipy pairing the edge states are chiral and selfconjugate
(Majorana fermions). Counterpropagating (helical) Majorana modes are
also stable against localization [126, 161, 143], unlike counterpropagating
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pair potential edge state symmetry class
singlet, dx2−y2 + idxy chiral Dirac C

triplet, px + ipy chiral Majorana D
triplet, px ± ipy helical Majorana DIII

Table 3.1. The three types of propagating edge states in a two-dimensional
topological superconductor.

Dirac modes.
The topological protection allows for correlations in the electrical cur-

rent measured at distant points on the boundary connected by an edge
state [94, 151, 40, 97, 159, 96, 17]. For example, in an early study of
this type, Law, Lee, and Ng considered a superconducting disc deposited
on the surface of a three-dimensional topological insulator [94]. A chiral
Majorana mode is confined to the perimeter of the disc, when the surface
outside the superconductor is gapped by a ferromagnet [61]. Two point
contacts attached to the perimeter measure a correlated current, mediated
by the circulating edge state, and dependent on the number of magnetic
vortices inside the disc. It is essential that the contacts share a boundary.
If the disc would be replaced by a ring, with one contact at the inner and
one at the outer perimeter, then there would be no correlations.

Here we revisit this problem of edge-state mediated correlations in a
superconducting ring, to show that the physics changes qualitatively if the
ring contains a weak link forming a Josephson junction (see Fig. 3.1). The
weak link is a one-dimensional subsystem of the two-dimensional topolog-
ical superconductor, with its own topological phase transition [163]. Since
magnetic flux Φ can enter into the ring along the junction, there is no
flux quantization and we can ask for the Φ-dependence of the conduc-
tances G1 and G2 measured between the grounded superconductor and
either the inner or the outer perimeter. Dirac and Majorana modes both
produce h/e-periodic oscillations in the conductances, but only Majorana
modes can correlate the oscillations in G1 and G2. The mechanism by
which the inner and outer perimeter communicate is a closing of the ex-
citation gap when the Josephson junction undergoes a one-dimensional
topological phase transition. The same conclusion was reached recently
by Wieder, Zhang, and Kane [183].

The outline of the paper is as follows. In the next section we formulate
the scattering problem of Andreev reflection from the perimeter of a super-
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Figure 3.1. Left panel: Superconducting ring (S) containing a weak link (J),
forming a flux-biased Josephson junction. A current can be injected into the
grounded superconductor from a voltage-biased normal-metal (N) contact at the
inner or outer perimeter. The Andreev conductance Gn = I/Vn is the ratio of
the current-to-ground I and the applied voltage Vn to contact n = 1, 2 (with
V = 0 for the other contact). Right panel: Scattering processes at the outer
perimeter, involving the coupling of a chiral edge state to 2N incoming and 2N
outgoing electron-hole modes at the normal metal. This coupling introduces a
dependence of the conductance on the phase difference φ = (2e/~)Φ across the
Josephson junction and on its topological quantum number σ.

conducting ring, to obtain a general formula for the electrical conductance.
The conductance G(Φ, σ) depends in general both on the enclosed flux Φ
and on the Z2 topological quantum number σ of the Josephson junction.
A topological phase transition switches σ between +1 and −1, resulting
in a jump δG of the conductance. In Sec. 3.3 we calculate the probability
distribution P (δG) in an ensemble of disordered rings, using the method of
random-matrix theory. These are model-independent results, which take
as input only the symmetry class of the topological superconductor. We
then turn, in Sec. 4.2, to specific model Hamiltonians in each symmetry
class. The numerical results for these models are discussed in Sec. 3.5
to arrive at a set of experimentally observable signatures of (1) the pres-
ence of circulating edge states and (2) their Majorana or Dirac fermionic
nature.

3.2 Scattering formula for the conductance

We formulate the scattering problem for a superconducting ring inter-
rupted by a Josephson junction, enclosing a magnetic flux Φ. The ring
is contacted at the inner or outer perimeter by a normal-metal electrode.
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Far away from any gap closings there is no transmission between the in-
ner and outer perimeter, so we can treat these two scattering problems
independently. We calculate the Andreev conductance G between the nor-
mal metal (N) and the (grounded) superconductor (S). An h/e-periodic
flux dependence of the conductance serves as a signature of edge states
circulating along the ring.

As illustrated in Fig. 3.1, the NS interface is described by a scattering
matrix S, with submatrices rN (reflection back into the normal metal),
tedge,N, tN,edge (transmission from the normal metal into an edge state, and
vice versa), and tedge (transmission along an edge state without entering
the normal metal):

S =
(

rN tN,edge
tedge,N tedge

)
. (3.1)

Incoming and outgoing wave amplitudes at the NS interface are related
by

aout
N = rNa

in
N + tN,edgea

in
edge (3.2)

aout
edge = tedge,Na

in
N + tedgea

in
edge. (3.3)

The scattering matrix SJ of the Josephson junction describes how the
edge states return back to the NS interface after encircling the ring,

ain
edge = SJa

out
edge. (3.4)

Elimination of the edge state amplitudes gives the relation aout
N = Rain

N ,
with the effective reflection matrix of the NS interface,

R = rN + tN,edge(1− SJtedge)−1SJtedge,N. (3.5)

The matrix R is unitary, RR† = 1, with electron and hole submatrices,

R =
(
Ree Reh
Rhe Rhh

)
, (3.6)

describing normal reflection (from electron to electron or from hole to
hole) and Andreev reflection (from electron to hole or vice versa). The
linear response conductance (in the zero-temperature limit) is given by

G = G0 Tr
(
1−ReeR

†
ee +RheR

†
he
)

= 2G0 TrRheR
†
he, (3.7)
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with G0 = e2/h the conductance quantum. It it convenient to rewrite this
without reference to the submatrices,

G/G0 = 1
2 Tr

(
1−RτzR†τz

)
, τz =

(
1 0
0 −1

)
. (3.8)

The Pauli matrix τz acts on the electron and hole degrees of freedom.
The edge channels of a spin-triplet p-wave superconductor are self-

conjugate Majorana modes. It is then useful, following Refs. [151, 96], to
transform from the electron-hole basis to the Majorana basis,

R 7→ URU†, U =
√

1
2

(
1 1
−i i

)
. (3.9)

Electron-hole symmetry at the Fermi level requires that the scattering
matrix elements are real in the Majorana basis, so R† = RT = R−1. Be-
cause the Pauli matrix τz transforms into UτzU† = −τy, the conductance
is given by

G/G0 = 1
2 Tr

(
1−RτyRTτy

)
, τy =

(
0 −i
i 0

)
. (3.10)

In what follows we will work in the electron-hole basis (3.8) for spin-
singlet d-wave pairing (when the modes are not self-conjugate) and in the
Majorana basis (3.10) for spin-triplet p-wave pairing.

3.3 Random-matrix theory
The effect on the Andreev conductance of a topological phase transition
at the Josephson junction can be analyzed in a model-independent way
by means of random-matrix theory. We will first do this for an unpaired
chiral Majorana mode and then for a pair of helical Majorana modes.
The Josephson junction cannot undergo a topological phase transition for
chiral Dirac modes, and will generically not for an even number of chiral
Majorana modes, so these two cases are not considered in this section.

3.3.1 Chiral Majorana mode

The conductance depends on the magnetic flux in a way which is restricted
by electron-hole symmetry at the Fermi level. The restrictions are most
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severe for an unpaired chiral Majorana mode: The only phase shift allowed
by electron-hole symmetry is π (mod 2π), so the conductance remains flux
independent except when the enclosed flux is h/4e (mod h/2e). Let us
investigate this case in some detail.

A single Majorana mode corresponds to scalars SJ and tedge, to a row
vector tedge,N, and to a column vector tN,edge. The contraction tedge,Nτyt

T
edge,N

produces a scalar, which vanishes because τy is an antisymmetric matrix.
This eliminates one term when we substitute Eq. (3.5) into Eq. (3.10).
What remains is

G/G0 = 1
2 Tr

(
1− rNτyr

T
Nτy

)
− SJ

1− SJtedge
tedge,Nτyr

T
NτytN,edge. (3.11)

Because SJ is an orthogonal matrix consisting of a single matrix ele-
ment, it can only equal ±1. Including a π phase shift from the winding
around the ring, we define

σ = −SJ ∈ {+1,−1} (3.12)

as the topological quantum number of the Josephson junction. The effec-
tive reflection matrix R of the NS interface, constructed from Eq. (3.5),
inherits this topological quantum number,

DetR = σ. (3.13)

This follows from general considerations for a topological quantum number
in symmetry class D [3], but one can check it explicitly from Eq. (3.5).

The conductance for a ring with an unpaired Majorana mode is flux
independent — except at topological phase transitions, when σ changes
sign and the conductance jumps by an amount ±δG with

δG = G(σ = 1)−G(σ = −1). (3.14)

Using Eq. (3.11) this can be written as

δG/G0 = 2
1− t2edge

tedge,Nτyr
T
NτytN,edge. (3.15)

For a disordered NS interface we may consider an ensemble of scatter-
ing matrices S, generated by varying the disorder realization. A simple
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choice is the circular real ensemble (CRE) of class-D random-matrix the-
ory [151, 7, 12], for which S is uniformly distributed in SO(2N + 1): The
group of orthogonal (2N + 1)× (2N + 1) matrices O with DetO = 1. The
integer N counts the number of modes in the contact with the normal
metal, including the spin degree of freedom. The factor of 2 in 2N + 1
accounts for the electron-hole degree of freedom and the +1 refers to the
unpaired Majorana mode.

The effective reflection matrix R, constructed from S via Eq. (3.5),
inherits the uniform CRE distribution in Oσ(2N) — the set of 2N × 2N
orthogonal matrices with determinant σ. The uniformity of R ∈ Oσ(2N)
is a consequence of the uniformity of S ∈ SO(2N + 1) because the trans-
formation S 7→ S · (U0⊕1) with U0 ∈ SO(2N) maps R onto R ·U0 without
changing the determinant.

If N = 1 or N = 2 the distribution of δG follows directly from the
known [12] distribution Pσ(G) of the conductance in the CRE: In both
these cases P−(G) = δ(G − 2G0) is a delta-function distribution, so we
may equate P (δG) = P+(G = δG+ 2G0). Since P+(G) = δ(G) for N = 1
and uniform in [0, 4G0] for N = 2, we arrive at

P (δG) = δ(δG+ 2G0), for N = 1,
P (δG) = 1/4G0, −2G0 ≤ G ≤ 2G0, for N = 2.

(3.16)

ForN > 2 the knowledge of Pσ(G) is not sufficient to determine P (δG),
but it can be determined directly from the uniform distribution of S in
SO(2N + 1). We have carried out this calculation numerically for small
N , see Fig. 3.2.

For large N we can approximate the matrix elements of S by inde-
pendent Gaussians, of zero mean and variance 1/2N . We define the unit
vectors

û = itedge,Nτy
(1− t2edge)1/2 , v̂ = iτytN,edge

(1− t2edge)1/2 , (3.17)

so that the conductance change (3.15) is given by

δG/G0 = −2
2N∑

n,m=1
ûnv̂m(rN)mn. (3.18)

In the large-N Gaussian approximation, δG/G0 is the sum of Gaus-
sians with zero mean and variance (2/N)(ûnv̂m)2, so its distribution is
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Figure 3.2. Probability distribution of the change δG in the conductance of the
superconducting ring when the Josephson junction switches from topologically
trivial to nontrivial. These are results from random-matrix theory in the circular
real ensemble (CRE, symmetry class D), for an unpaired chiral Majorana mode
circulating along the ring and N modes in the contact to the normal metal.
The solid lines for N = 1, 2 are from Eq. (3.16), the histograms are obtained
numerically by averaging the scattering matrix S uniformly over SO(2N + 1),
and the dashed curves are the large-N Gaussian limit (3.19).

again a Gaussian with zero mean and variance

Var (δG/G0) = 2
N

2N∑
n,m=1

(ûnv̂m)2 = 2
N
, N � 1. (3.19)

3.3.2 Helical Majorana modes

Spin-triplet pairing with time-reversal symmetry can produce a pair of
counterpropagating (helical) Majorana modes. This is symmetry class
DIII. In the Majorana basis the scattering matrix is orthogonal, as in
class D, with the additional time-reversal symmetry condition [7]

S = τyS
Tτy. (3.20)

This is equivalent to the requirement that the matrix product S̃ ≡ iτyS
is both orthogonal (S̃† = S̃T = S̃−1) and antisymmetric (S̃T = −S̃). The
class-DIII random-matrix ensemble (T-CRE) is generated by drawing a
matrix O from the CRE and constructing

S̃ ≡ iτyS = O · iτy ·OT, O ∈ SO(4M + 2). (3.21)
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The channel number M = N/2 again only refers to the orbital degree of
freedom, each mode having a twofold Kramers degeneracy.

The Josephson junction breaks time-reversal symmetry, for φ 6= 0
(mod π), so it may couple the two edge states and cause backscattering
at the junction. In the simplest description (not made in the numerical
calculations of the next section) we neglect this coupling and set

SJ = −σ
(

1 0
0 1

)
⇒ S̃J ≡ iτySJ = −iστy. (3.22)

The Pfaffian of S̃J is the class-DIII topological invariant [65],

σ = −Pf S̃J ∈ {+1,−1}. (3.23)

The effective reflection matrix R, constructed from S and SJ via Eq.
(3.5), inherits this topological invariant,

Pf (iτyR) = σ, (3.24)

and also inherits the uniform distribution of the T-CRE:

R̃ ≡ iτyR = O · iτy ·OT, O ∈ Oσ(4M). (3.25)

We seek the probability distribution P (δG) of the conductance change
upon a topological phase transition in the T-CRE. For N = 2M = 2
the known [12] probability distribution Pσ(G) of the conductance gives
sufficient information, since P−(G) = δ(G − 4G0) ⇒ P (δG) = P+(G =
δG+ 4G0), resulting in

P (δG/G0) = 1
8
√

1 + δG/4G0
, −4 ≤ δG/G0 ≤ 0,

for N = 2. (3.26)

The distribution P (δG) for M > 1 has been obtained by generating
random matrices O uniformly in SO(4M + 2) and then constructing S in
the T-CRE via Eq. (3.21). Results are shown in Fig. 3.3. For N � 1 we
have again a Gaussian distribution with zero mean and variance

Var (δG/G0) = 8
N
, N � 1, (3.27)

four times larger than Eq. (3.19) because of the twofold Kramers degen-
eracy.
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Figure 3.3. Probability distribution of the conductance change upon a topolog-
ical phase transition in symmetry class DIII, involving a pair of helical Majorana
modes circulating along the ring. The contact to the normal metal has M or-
bital modes, each with a twofold Kramers degeneracy. The results are from the
time-reversally invariant circular real ensemble (T-CRE) of random-matrix the-
ory. The solid line for M = 1 is from Eq. (3.26), the histograms are obtained
numerically, and the dashed curves are the large-N Gaussian limit (3.27).

3.4 Results for model Hamiltonians
The analytical considerations of the previous section rely only on the fun-
damental symmetries of the Hamiltonian, without reference to a particular
model. Here we present numerical results for model Hamiltonians in the
various symmetry classes.

3.4.1 Chiral pair potentials

We consider a two-dimensional superconductor in the x-y plane, with
pair potential ∆̂ dependent on the momentum p = −i~(∂x, ∂y). The
Bogoliubov-De Gennes Hamiltonian, in the electron-hole basis, has the
form

H =
(
H ∆̂
∆̂† −H∗

)
. (3.28)

It contains the single-particle Hamiltonian

H = (p− eA)2/2meff − µ+ U, (3.29)

with A(r) the vector potential, meff the effective mass, µ the chemical
potential, and U(r) an electrostatic disorder potential. (We conveniently
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set the electronic charge to +e.)
The electron-hole symmetry relations are different for the different

symmetry classes,

∆̂†D = −∆̂∗D ⇒ HD = −τxH∗Dτx, (3.30a)

∆̂†C = ∆̂∗C ⇒ HC = −τyH∗Cτy. (3.30b)

As specific models we take in class D the spin-triplet chiral p-wave pairing

∆̂D = p−1
F {∆(r), px + ipy}, (3.31)

with operators symmetrized by {a, b} = 1
2(ab + ba). In class C we take

the spin-singlet chiral d-wave pairing

∆̂C =
∑
α,β

(p− eA)αMαβ(p+ eA)β, (3.32a)

M(r) = p−2
F ∆(r)

(
1 i
i −1

)
. (3.32b)

Both pair potentials properly produce a gauge invariant Bogoliubov-De
Gennes Hamiltonian, 1

e−iχτzH(A,∆)eiχτz = H
(
A− ~

e
∇χ, e−2iχ∆

)
. (3.33)

Since ∆̂D = ∆0e
iθ and ∆̂C = ∆0e

2iθ when ∆(r) = ∆0, A = 0, and
p = pF(cos θ, sin θ), the magnitude of the gap is independent of the ori-
entation. We expect that more general anisotropic models will give the
same qualitative results — provided that the gap does not vanish in any
direction.

The ring has a weak link of length Router − Rinner, with Rinner and
Router the inner and outer radius of the ring. We assume that the ring is
wide compared to the London penetration depth λL but narrow compared
to the Josephson penetration depth λJ,

λL � Router −Rinner � λJ. (3.34)
1The symmetry requirement (3.30) and the requirement of gauge invariance (3.33)

constrain the functional form of the pair potential in the Bogoliubov-De Gennes Hamil-
tonian, but some freedom is left. An alternative gauge invariant d-wave pair potential
was introduced by Vafek et al. [172]
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The first inequality ensures that the magnetic field is screened from the
ring except at the weak link, along which a flux Φ can enter. The second
inequality prevents vortices to appear inside the weak link. The gauge
invariant phase difference across the weak link then has a uniform value
φ = (2e/~)Φ. We will use a gauge with a real uniform order parameter
∆(r) = ∆0 and a delta-function vector potential

A = Φ θ(−y)δ(x)x̂, (3.35)

for a Josephson junction at x = 0 (aligned along the negative y-axis).

3.4.2 Helical pair potential

We construct a model Hamiltonian with helical pairing from two time-
reversed copies of the class-D chiral p-wave pairing, px ± ipy. Spin-orbit
coupling of the Rashba form couples the spin-up px + ipy sector with the
spin-down px− ipy sector, promoting the symmetry class from D to DIII.

The Bogoliubov-De Gennes Hamiltonian (3.28) contains the single-
particle Hamiltonian

HDIII =
[
(p− eA)2/2meff − µ+ U

]
σ0 + αso(pxσy − pyσx), (3.36)

where σx, σy, σz are the Pauli matrices acting on the spin degree of freedom
and σ0 is the corresponding unit matrix. The spin-orbit coupling strength
is denoted by αso. The helical pair potential is given by

∆̂DIII = p−1
F {∆(r), pxσz + ipyσ0}. (3.37)

The electron-hole symmetry requirement in class DIII is the same as
in class D, cf. Eq. (3.30),

∆̂†DIII = −∆̂∗DIII ⇒ HDIII = −τxH∗DIIIτx. (3.38)

ForA = 0 and real ∆ the class-DIII Hamiltonian satisfies the time reversal
symmetry

HDIII = σyH∗DIIIσy. (3.39)

3.4.3 Topological phase transition at the Josephson junc-
tion

The phase transition in classes D and DIII is evidenced by a closing of
the excitation gap at the Josephson junction when φ = π (mod 2π). The
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Figure 3.4. Excitation spectrum of an infinitely long Josephson junction along
the y-axis, for different values of the phase difference φ, calculated numerically
from the discretized Bogoliubov-De Gennes Hamiltonian (3.28). Panel a) is for
the class-D chiral p-wave pair potential (3.31) and panel b) for the class-DIII
helical p-wave pair potential (3.38). The closing of the excitation gap at φ = π
is topologically protected. [Model parameters are the same as in Fig. 3.6]

gap closing and reopening is accompanied [3, 65] by a sign change of the
topological quantum number σ = DetR (in class D) or σ = Pf iτyR (in
class DIII). In Fig. 3.4 we illustrate the gap closing for the chiral and
helical p-wave pairings (3.31) and (3.38).

Away from φ = π the gap immediately opens in class D, while the gap
closing persists for some range of φ in class DIII. This is a consequence of
translational invariance along the weak link, see App. 3.6.1. Only the gap
closing at φ = π is topologically protected.

In class C there is no gap closing that is topologically protected. How-
ever, as explained in App. 3.6.1, the combination of translational invari-
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Figure 3.5. Same as Fig. 3.4, for a class-C chiral d-wave pair potential. The two
curves are for φ = π, with and without ±x symmetry of the Josephson junction
along the y-axis. The gap closing now has no topological protection, but requires
a spatial symmetry.

ance along the y-axis and x 7→ −x reflection symmetry allow for a gap
closing at φ = π (mod 2π). We show this in Fig. 3.5 for the chiral d-wave
pairing (3.32). Disorder will break these symmetries and remove the gap
closing.

3.4.4 Numerical results

We have discretized the Bogoliubov-De Gennes Hamiltonian on a square
lattice (lattice constant a, hopping amplitude t, see App. 3.6.2). The
geometry is shown in Fig. 3.1, with a pair of normal-metal leads (width
30 a) attached to the inner and outer perimeter (radii 50 a and 100 a).

The leads are modeled by setting ∆0,A, αso, and U all equal to zero, at
a chemical potential µN = 0.5 t for which there are M = 6 orbital modes.
Each of these modes is spin-degenerate when coupled to the chiral d-wave
or helical p-wave superconductor, and nondegenerate when coupled to the
chiral p-wave superconductor.

At the weak link the hopping matrix elements are reduced such that
the transmission probability per mode is . 0.1. Disorder in the su-
perconductor is introduced by a random on-site potential U(x, y), uni-
formly distributed in the interval (−Udisorder/2, Udisorder/2). We took
Udisorder = 0.7 t.

We solve the scattering problem numerically [185], to obtain the scat-
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tering matrix S for the electron (e) and hole (h) modes incident on the
superconductor from the inner contact (1) and the outer contact (2). We
then calculate the Andreev conductances G1 and G2 from the outer or
inner contact to ground,

G1 = e2

h
Tr
(
1− S1e,1eS

†
1e,1e + S1h,1eS

†
1h,1e

)
, (3.40)

G2 = e2

h
Tr
(
1− S2e,2eS

†
2e,2e + S2h,2eS

†
2h,2e

)
. (3.41)

This expression holds also at the gap closing, when there is a nonzero
transmission probability between contacts 1 and 2, under the assumption
that contact 2 is grounded for the measurement of G1 and contact 1 is
grounded for the measurement of G2.

To probe the gap closing we also calculate the thermal conductance

Gth = π2k2
BT0

6h Tr
(
S2e,1eS

†
2e,1e + S2h,1eS

†
2h,1e

+ S2h,1hS
†
2h,1h + S2e,1hS

†
2e,1h

)
, (3.42)

which measures the thermal current between the inner and outer perimeter
at temperatures T0 and T0 + δT .

Results are shown in Fig. 3.6 for several disorder realizations. The
results for the electrical conductance (top row) will be discussed in the next
section, in connection with experimental probes for Dirac or Majorana
edge modes.

The thermal conductance (bottom row) is not easily measured, but is
included here because it illustrates in a striking way the significance of
topological protection for a gap closing. The change in sign of the topo-
logical quantum number at the class-D phase transition results in a peak
of the thermal conductance that is quantized [3] in units of the thermal
quantum π2k2

BT0/6h, see Fig. 3.6d. The gap closing in class C has no
topological protection, there is no sign change of a topological quantum
number and no quantized peak, see Fig. 3.6f. The class-DIII gap closing
has topological protection (no backscattering) if it happens when the flux
is a multiple of h/4e, so time-reversal symmetry is preserved. Disorder
leads to small displacements of the transition away from h/4e, allowing
for backscattering and resulting in a small deviation of the thermal con-
ductance peak from the quantized value (see Fig. 3.6e).
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3.5 Discussion

The numerical results of Fig. 3.6a,b,c illustrate how circulating edge states
manifest themselves in the magnetoconductance of the ring. All three
types of edge states introduce a flux dependence with a period of twice
the superconducting flux quantum Φ0 = h/2e. The magnetoconductance
oscillations are sample specific, depending on the disorder realization. The
inner and outer perimeter experience a different impurity potential and
thus show a different magnetoconductance, but with the same h/e pe-
riodicity. A measurement of the fundamental frequency of the Fourier
transformed magnetoconductance would be an unambiguous way to es-
tablish the presence of circulating edge states.

The magnetoconductance contains additional information, it can iden-
tify unpaired (chiral or helical) Majorana modes. These produce jumps
δG in the conductance when the flux is close to an odd multiple of Φ0/2,
associated with a topological phase transition at the Josephson junction.
Both the sign and magnitude of δG is disorder dependent and different
at the inner and outer perimeter, but the flux Φc at which the conduc-
tance jumps lines up. Notice that even when different disorder realizations
cause a small shift in Φc (compare red and blue curves in Fig. 3.6a), the
conductance at the inner and outer perimeter jumps at precisely the same
Φc (compare solid and dashed curves). This phase locking is a striking
signature of a topological phase transition at the Josephson junction.

A measurement of the fundamental frequency component cos(Φ/2Φ0+
α) of the magnetoconductance at the inner and outer perimeter of the ring
would therefore show a random and uncorrelated phase α for Dirac modes,
and a correlated phase peaked at 0 (modulo π) for an unpaired Majorana
mode.

These magnetoconductance signatures of Dirac and Majorana edge
states can be helpful in the ongoing search for topological superconduc-
tors. Recent attention has focused on hybrid structures combining strong
spin-orbit coupling with induced s-wave superconductivity, to produce an
effective chiral p-wave pairing [139, 184, 174]. A superconducting ring
deposited on a three-dimensional topological insulator would need a mag-
netic barrier along the perimeter to confine the edge states [61, 94]. Al-
ternatively, one might induce superconductivity in the two-dimensional
electron gas of a semiconductor heterostructure with strong spin-orbit
coupling [145, 5], such as an InAs quantum well, and confine the edge
states electrostatically by gate electrodes.
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3.6 Appendix

3.6.1 Gap closings due to spatial symmetries

In symmetry classes D and DIII the closing of the excitation gap at the
topological phase transition of the Josephson junction is topologically pro-
tected, meaning that disorder cannot open up the gap. However, in Fig.
3.5 we see a gap closing in symmetry class C, where the Josephson junc-
tion remains topologically trivial. Morover, in Fig. 3.4b we see that the
gap closing in the helical p-wave junction persists over a range of φ, rather
than being limited to a single φ as it is in class D. Both these features are
due to spatial symmetries, as we now explain.

Translational symmetry along the weak link (the y-axis) permits us to
consider the parallel momentum ky ≡ q as an external parameter. The
Hamiltonian H(q) describes a zero-dimensional system which can undergo
a topological phase transition as a function of the parameter q in symmetry
classes D and BDI [138]. At this transition a Z2 topological quantum
number changes sign, so to open up the gap requires, either, the breaking
of a symmetry, or the merging of a pair of gap closings at a single value
of q.

So how do we arrive in class D or BDI when we start out from class
DIII or class C? As pointed out in Ref. [42] in a different context, spatial
symmetries can do this.

Let us first show that H(q) is in class D for helical p-wave pairing. On
the one hand, the electron-hole symmetry relation (3.38) gives

H(q) = −τxH∗(−q)τx, (3.43)

on the other hand, the helical p-wave pairing has the additional symmetry

(τz ⊗ σy)H(q)(τz ⊗ σy) = H(−q). (3.44)

Taking these two equations together we arrive at a symmetry relation for
H(q) at one single value of q,

ΩH(q) = −H(q)Ω, Ω = (τy ⊗ σy)K, (3.45)

with K the operator of complex conjugation. Because Ω is an anti-unitary
operator that squares to +1, this places H(q) in symmetry class D, with
a topologically protected gap closing. Indeed, as we see in Fig. 3.4b, the
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pair of gap closings at φ = π persist as φ is increased, until the gaps merge
at q = 0.

Turning now to class C, we will show that H(q) is in class BDI for
chiral d-wave pairing at φ = π and if the electrostatic potential U(x) is
±x symmetric. Firstly, the class-C electron-hole symmetry relation reads

H(q) = −τyH∗(−q)τy. (3.46)

Secondly, for φ = π and A = 0 the Hamiltonian is real,

H∗(q) = H(q). (3.47)

Thirdly, the combination of U(x) = U(−x) and ∆(x) = −∆(−x) at φ = π
gives

τzPH(q) = H(−q)τzP, (3.48)

where P is the reflection operator (x 7→ −x). Eqs. (3.46) and (3.48)
together give

Ω′H(q) = −H(q)Ω′, Ω′ = τxPK. (3.49)

The anti-unitary operator Ω′ also squares to +1. The symmetries (3.47)
and (3.49) place H(q) in class BDI, provided that φ = π and the reflection
symmetry is unbroken. This is consistent with what is seen in Fig. 3.5: The
gap closing for chiral d-wave pairing can be removed either by increasing
φ away from π or by breaking the ±x symmetry of the weak link.

3.6.2 Gauge invariant discretization of the Bogoliubov-De
Gennes Hamiltonian

The discretization of the Bogoliubov-De Gennes Hamiltonian (3.28) with
a momentum dependent pair potential requires special care to ensure that
the resulting tight-binding model is gauge invariant. We go through the
steps in this Appendix. Following the established procedure of minimal
coupling, we first discretize without a vector potential, then perform a
gauge transformation on the lattice, and finally replace the gradient of
the gauge field by the vector potential.

The discretization for A = 0 is carried out by replacing the differential
operators by symmetric finite differences,

∂xf(x) 7→ 1
2a [f(x+ a)− f(x− a)], (3.50)
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to arrive at the tight-binding Hamiltonian

t(n,m) =
(
tee(n,m) teh(n,m)
the(n,m) thh(n,m)

)
. (3.51)

The indices n,m label sites rn, rm of a square lattice (lattice constant a).
The diagonal elements n = m are the on-site energies and the off-diagonal
elements n 6= m are the hopping amplitudes between sites n and m.

The single-particle kinetic energy gives the electron-electron matrix
elements,

tee(n, n) = 4t− µ+ U(rn), t = ~2/2meffa
2, (3.52)

tee(n,m 6= n) =
{
−t for n,m nearest neighbours,
0 otherwise,

and the hole-hole matrix elements thh(n,m) = −tee(n,m).
For the chiral d-wave pair potential (3.32), still at A = 0, we obtain

the nearest-neighbor hopping amplitudes

teh(n± ax̂, n) = − 1
2q2 [∆(rn) + ∆(rn ± ax̂)] ,

teh(n± aŷ, n) = 1
2q2 [∆(rn) + ∆(rn ± aŷ)] ,

(3.53)

the next-nearest-neighbor hopping amplitudes

teh(n+ ax̂± aŷ, n) = ∓i4q2 [∆(rn + ax̂) + ∆(rn ± aŷ)] ,

teh(n− ax̂± aŷ, n) = ±i4q2 [∆(rn − ax̂) + ∆(rn ± aŷ)] ,
(3.54)

and the on-site matrix elements

teh(n, n) = 1
2q2 [∆(rn + ax̂) + ∆(rn − ax̂)

−∆(rn + aŷ)−∆(rn − aŷ)].
(3.55)

(We have defined q = kFa.) These are all hopping amplitudes from hole
to electron. The hopping amplitudes from electron to hole are related by
Hermiticity,

the(n,m) = t∗eh(m,n). (3.56)
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We now introduce the vector potentialA(r) = −(~/e)∇χ(r) by means
of the gauge transformation

t̃(n,m) = e−iτzχ(rn)t(n,m)eiτzχ(rm),

∆̃(rn) = e−2iχ(rn)∆(rn).
(3.57)

This is the lattice analogue of Eq. (3.33).
The effect on the electron-electron and hole-hole hopping amplitudes

is the Peierls substitution [121],

t̃ee(n,m) = tee(n,m) exp
(
i
e

~

ˆ n

m
A · dl

)
,

t̃hh(n,m) = thh(n,m) exp
(
−i e

~

ˆ n

m
A · dl

)
.

(3.58)

The line integral of the vector potential is taken along the lattice bond
from site m to site n, and with this prescription the Peierls substitution
can also be applied to vector potentials that do not derive from a gauge
field.

The transformed electron-hole matrix hopping amplitudes for chiral
d-wave pairing are given by

t̃eh(n± ax̂, n) = −1
2q2

[
ei
e
~
´ n±ax̂
n A·dl∆̃(rn) + ∆̃(rn ± ax̂)e−i

e
~
´ n±ax̂
n A·dl

]
,

t̃eh(n± aŷ, n) = 1
2q2

[
ei
e
~
´ n±aŷ
n A·dl∆̃(rn) + ∆̃(rn ± aŷ)e−i

e
~
´ n±aŷ
n A·dl

]
,

(3.59)

t̃eh(n+ ax̂± aŷ, n) = ∓i4q2

[
ei
e
~
´ n+ax̂±aŷ
n+ax̂ A·dl∆̃(rn + ax̂)e−i

e
~
´ n+ax̂
n A·dl

+ ei
e
~
´ n+ax̂±aŷ
n±aŷ A·dl∆̃(rn ± aŷ)e−i

e
~
´ n±aŷ
n A·dl

]
,

t̃eh(n− ax̂± aŷ, n) = ±i4q2

[
ei
e
~
´ n−ax̂±aŷ
n−ax̂ A·dl∆̃(rn − ax̂)e−i

e
~
´ n−ax̂
n A·dl

+ ei
e
~
´ n−ax̂±aŷ
n±aŷ A·dl∆̃(rn ± aŷ)e−i

e
~
´ n±aŷ
n A·dl

]
,

t̃eh(n, n) = 1
2q2

[
∆̃(rn + ax̂)e−i

2e
~
´ n+ax̂
n A·dl + ∆̃(rn − ax̂)e−i

2e
~
´ n−ax̂
n A·dl

−∆̃(rn + aŷ)e−i
2e
~
´ n+aŷ
n A·dl − ∆̃(rn − aŷ)e−i

2e
~
´ n−aŷ
n A·dl

]
.

(3.60)
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A similar calculation for the chiral p-wave pairing (3.31) gives the
electron-hole hopping amplitudes

t̃eh(n± ax̂, n) = ∓i4q
[
ei
e
~
´ n±ax̂
n A·dl∆̃(rn) + ∆̃(rn ± ax̂)e−i

e
~
´ n±ax̂
n A·dl

]
,

t̃eh(n± aŷ, n) = ±1
4q
[
ei
e
~
´ n±aŷ
n A·dl∆̃(rn) + ∆̃(rn ± aŷ)e−i

e
~
´ n±aŷ
n A·dl

]
.

(3.61)

There are neither next-nearest-neighbor hoppings, nor on-site electron-
hole matrix elements in this case.

Notice that the discretized p-wave pair potential (3.61) depends explic-
itly on the vector potential, while in the continuum representation (3.31)
the vector potential enters only implicitly through ∆(r). All of this is
required by gauge invariance.

Finally, we give the corresponding expressions for the helical p-wave
pairing (3.37). There is now a spin degree of freedom σ =↑, ↓, and the pair
potential is diagonal in that index. The electron-hole hopping amplitudes
are given by

t̃e↑,h↑(n± ax̂, n) = −t̃e↓,h↓(n± ax̂, n) ≡ t̃eh(n± ax̂, n),
t̃e↑,h↑(n± aŷ, n) = t̃e↓,h↓(n± aŷ, n) ≡ t̃eh(n± aŷ, n),

(3.62)

where matrix elements without spin indices should be taken from Eq.
(3.61).


