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Chapter 1

Introduction

1.1 Preface

The characteristic feature of topological insulators and superconductors is
the coexistence of a gapped bulk with gapless boundary modes. The gap
has a different origin for topological insulators and topological supercon-
ductors. Topological insulators have a finite mobility gap that makes them
insulators for electrical currents. Their edge or surface states are metallic
with a high conductivity, making it relatively easy to detect them by elec-
trical measurements. Topological superconductors, in contrast, are perfect
electrical conductors but insulators for thermal currents. Their edge or
surface states then allow for heat transport, without any transport of elec-
trical charge. It is difficult to measure the thermal conductance at low
temperatures, while at higher temperatures the boundary contribution is
obscured by the contribution from phonons. This makes it desirable to
search for electrical probes of boundary modes in a superconductor. In
this thesis we propose and study such electrical signatures of topological
superconductivity.

Key to this issue are two ingredients: symmetries and dimensionality.
Of particular interest in this thesis is a type of discrete symmetry, known
as chiral symmetry. In superconductors it appears as the combination of
particle-hole and time-reversal symmetry. Chiral symmetry is a unitary
symmetry, like rotation or translation, but unlike these conventional uni-
tary symmetries the chiral symmetry operator is anti-commuting, instead
of commuting, with the Hamiltonian. This means that the effect of a chiral
symmetry cannot be removed by working in a basis where the Hamiltonian
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is block-diagonal. A chiral symmetry can produce topologically protected
surface modes when the spatial dimensionality of the system is odd, in
particular, this plays a role in a one-dimensional wire geometry.

In some physical systems the symmetries are broken locally, but re-
stored in an average sense on long length scales. One then enters the field
of statistical topological insulators or superconductors, which is a major
extension of the socalled tenfold way classification of topological states of
matter.

This introductory chapter introduces the concepts that will play a
central role in chapters 2–5. Chapters 6 and 7 take a different direction,
motivated by recent experimental advances in two fields, Van der Waals
heterostructures of graphene and complex oxide interfaces.

1.2 Classification of topological states of matter

1.2.1 The “tenfold way”

Depending on symmetries and dimensionality, topological insulators and
topological superconductors can be classified in a scheme known as the
“tenfold way” [7].

Different gapped phases are distinguished by different values of the
topological quantum number Q. This is a momentum-space integral over
the Brillouin zone of the Hamiltonian H(k). It can be an integer Q ∈ Z
(Q = . . . ,−2−1, 0, 1, 2, . . . ) or a parity index Q ∈ Z2 (Q = 0, 1). A phase
is called topologically non-trivial when Q 6= 0, while the Q = 0 state is
called topologically trivial.

The number Q is a bulk invariant, because it cannot be changed with-
out closing the bulk gap — the band gap or mobility gap in the case of
insulators and the superconducting gap in the case of superconductors.
This robustness to smooth deformations is referred to as “topological pro-
tection”.

The insensitivity of the bulk invariant against perturbations that do
not close the gap immediately implies the presence of gapless bound-
ary modes, simply because the bulk gap must close along the path from
the non-trivial bulk to the trivial vacuum state. Moreover, since we are
allowed to decrease |Q| in steps of one unit, each step being accompa-
nied by a gap closing, there must be exactly |Q| topologically protected
edge modes between the bulk with Q 6= 0 and the vacuum with Q = 0.
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This counting rule |bulk invariant| = #edge modes is known as the bulk-
boundary correspondence.

To know which values of Q are allowed, we need to identify the fun-
damental symmetries of the system.

According to Wigner’s theorem, in order to preserve probabilities the
symmetry operations in quantum mechanics are represented by unitary
or anti-unitary transformations of Hilbert space. A unitary U preserves
the inner product of two states |Ψ〉, |Φ〉, while an anti-unitary A adds an
additional complex conjugation:

〈UΨ, UΦ〉 = 〈Ψ, Φ〉, (1.1)
〈AΨ, AΦ〉 = 〈Ψ, Φ〉∗ = 〈Φ, Ψ〉. (1.2)

Each symmetry operation can commute or anti-commute with the Hamil-
tonian H.

An anti-unitary symmetry that commutes withH is called time-reversal
symmetry, T H = HT , while an anti-unitary symmetry that anti-commutes
with H is called particle-hole symmetry, PH = −HP. Wigner’s theorem
also states that the square of a anti-unitary symmetry equals +1 or −1.

Unitary symmetries that commute with the Hamiltonian, HU = UH,
can be removed by block-diagonalization, followed by a restriction to a
subspace in which U acts as a scalar. This is not possible for unitary
symmetries that anti-commute with the Hamiltonian, ΓH = −HΓ. To
construct such a chiral symmetry we take the product PT of particle-
hole and time-reversal symmetry, which is a unitary symmetry (being
the product of two anti-unitary symmetries) and anti-commutes with the
Hamiltonian: PT H = PHT = −HPT .

There is a total of ten ways to combine T ,P,Γ, distinguishing T 2,P2 =
±1, hence the name “tenfold way”. In the following we discuss the fun-
damental symmetries, time-reversal and particle-hole symmetry, in a bit
more detail. Because it has a special role and an interesting origin, we
dedicate a separate section to chiral symmetry at the end of this chapter.

1.2.2 Time-reversal symmetry

The physical operation of time-reversal causes a reversal of both momen-
tum T pT −1 = −p and spin (angular momentum) T σiT −1 = −σi. The
operator that does this is T = iσyK, where the spin reversal is expressed
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by the Pauli-matrix σy and K denotes complex conjugation. 1 This is an
anti-unitary operator that squares to −1. For spinless particles, or if H is
spin-independent, T = K would suffice and T would square to +1.

The eigenvalues of a spin-independent Hamiltonian have a twofold
spin-degeneracy, for a trivial reason. One might think that introducing a
spin dependence would split the degeneracy, however, this is forbidden by
Kramers’ theorem if time-reversal symmetry remains unbroken. This so-
called Kramers degeneracy appears because each eigenstate Ψ comes with
a partner T Ψ at the same energy E, but orthogonal to Ψ when T 2 = −1.

1.2.3 Particle-hole symmetry

Particle-hole symmetry appears in the context of superconducting systems
described by a mean-field Bogoliubov-De Gennes (BdG-) Hamiltonian [19,
44]. It is a consequence of the fermionic exchange statistics and applies
to all quadratic (or mean-field) Hamiltonians of the form

H =
∑
ij

Hijc
†
icj + 1

2
∑
ij

(
∆ijc

†
ic
†
j + ∆∗ijcicj

)
. (1.4)

The operators c†i , ci denote the creation and annihilation of an electron
in second quantization. The index i includes spin and spatial degrees
of freedom. The anti-commutation relations {ci, cj} = {c†i , c

†
j} = 0 and

{ci, c†j} = δij imply that the single-particle Hamiltonian H is Hermitian,
while the pair potential ∆ is anti-symmetric.

It is convenient to write Eq. (1.4) in matrix form,

H = 1
2 Ĉ
†HBdGĈ, (1.5)

where

Ĉ = (c1, . . . , cN , c
†
1, . . . , c

†
N ), (1.6)

HBdG =
(
H0 ∆
−∆∗ −H∗0

)
. (1.7)

1Throughout this thesis we will denote the spin-degree of freedom using the Pauli-
matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(1.3)

and the corresponding matrices τx, τy, and τz for the particle-hole degree of freedom.
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class T 2 P2 Γ d = 1 d = 2 d = 3
C 7 −1 7 7 Z 7

D 7 +1 7 Z2 Z 7

DIII −1 +1 3 Z2 Z2 Z
BDI +1 +1 3 Z 7 7

Table 1.1. Classification of topological superconductors according to the
tenfold-way. Each symmetry class is characterized by the square (±1) or ab-
sence (7) of time-reversal T and particle-hole symmetry P, and the presence (3)
or absence (7) of a chiral symmetry Γ. Depending on the dimension d supercon-
ducting phases in each class are either trivial (7), or characterized by Z2 or Z
topological invariant.

In first quantization, the operator HBdG governs the dynamics of the ex-
citations above the superconducting ground state via the Bogoliubov-De
Gennes equation

HBdGΨ(r, t) = i~
∂

∂t
Ψ(r, t), (1.8)

Ψ = (ψe, ψh). (1.9)

The wave function Ψ describes excitations known as Bogoliubov quasi-
particles, formed out of coherent superpositions of electrons (e) and holes
(h).

By construction the BdG-Hamiltonian HBdG obeys the particle-hole
symmetry

H = −PHP−1 = −τxH∗τx, (1.10)

where the Pauli matrix τx swaps ψe ↔ ψh. Each eigenfunction Ψ of H at
energy E has a copy τxΨ at energy −E.

The anti-unitary operator P = τxK squares to +1. In the case of a
spin-independent H, it is possible to construct an alternative particle-hole
symmetry operator that squares to −1.

1.3 Topological superconductors
Topological superconductors are the non-trivial phases of superconductors
described by a mean-field BdG-Hamiltonian of the form (1.7) that obey a
particle-hole symmetry P. This symmetry allows for exotic quasi-particle
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excitations (Majorana modes) that are unique to topological superconduc-
tors.

Table 1.1 shows a rich set of possible non-trivial phases in one, two,
and three dimensions. So we might expect a large variety of topological
superconductors in Nature or at least in the lab. Unfortunately, most com-
monly occurring superconductors are spin-singlet superconductors, obey
time-reversal symmetry, and have negligible spin-orbit interactions, which
makes them topologically trivial. One candidate material with spin-triplet
pairing is strontium ruthenate [83, 100].

An alternative and promising route is to use the superconducting
proximity effect to induce spin-triplet pairing in a semiconductor with
strong spin-orbit coupling. Such hybrid systems include semiconduc-
tor nanowires [98, 117, 109, 47, 43], Shiba bound states in magnetic
atoms [39, 110, 111], or topological insulators [61, 62] — all with induced
spin-triplet superconductivity by proximity to a conventional spin-singlet
superconductor.

1.3.1 Chiral p-wave superconductor

A spin-triplet superconductor with two-dimensional px ± ipy orbital sym-
metry is called a chiral p-wave superconductor [177, 130]. It’s mean-field
BdG-Hamiltonian reads

Hp−wave =
(
p2

2meff
− µ

)
τz + ∆0(pxτx − pyτy.) (1.11)

The Pauli matrices τ0,x,y,z (0 for the identity) act on the particle-hole
degree of freedom. The normal part is a parabolic dispersion with mo-
mentum p = −i∂r, effective mass meff and chemical potential µ. The pair
potential ∆0 pairs electrons of opposite momenta, but equal spin. In the
simplest case we may ignore the spin (or more precisely only consider the
spin band closest to the Fermi level). For a given Fermi momentum pF
(set by the chemical potential µ for ∆0 = 0) the pair potential has a fixed
amplitude ∆0pF , while its phase φ = arctan(py/px) winds by 2π following
the angle of the in-plane momentum.

The Hamiltonian (1.11) anti-commutes with the particle-hole symme-
try operator P = τxK, which squares to +1 and places the chiral p-wave
superconductor in symmetry class D of the tenfold way. More general
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Hamiltonians in this symmetry class have the form

H(k) = hx(k)τx + hy(k)τy + hz(k)τz, (1.12)

with p = ~k. Particle-hole symmetry excludes a term ∝ τ0 and requires

hx,y(−k) = −hx,y(k), hz(−k) = hz(k). (1.13)

We can define the normalized Bloch vector ĥ(k) = h(k)/|h(k)|, where
h = (hx, hy, hz). The Z-topological invariant n is the Chern number

n = 1
4π

ˆ
d2k (∂kx ĥ× ∂ky ĥ) · ĥ. (1.14)

Returning to the model Hamiltonian (1.11), we find two topologically
distinct phases. For µ < 0 the Bloch vector only visits the south pole
while for µ > 0 it visits both the north and south pole covering a full solid
angle on the Bloch sphere. The first phase is topologically trivial (we can
tune ∆0 to zero without closing the gap). The second is topologically
non-trivial so we expect to see gapless edge modes.

1.3.2 Majorana edge modes

The simplest possible case where we expect to see such topological edge
modes is a domain wall µ = −µ0 for y < 0 and µ = µ0 for y > 0. All
eigenstates of the Bogoliubov-De Gennes equation (1.8) are then plane
waves in the x-direction. To find the edge modes, we need to solve the
corresponding eigenvalue problem in real space (~ = 1):(

−µ(y) −i∆0(∂y − kx)
−i∆0(∂y + kx) µ(y)

)
·
(
φe(y)
φh(y)

)
= E

(
φe(y)
φh(y)

)
, (1.15)

where

Ψ(r, t) =
(
φe(y)
φh(y)

)
ei(kxx−Et). (1.16)

We choose ∆0 > 0 and for simplicity are focusing on small momenta
p2/2meff � |µ| so that we can ignore the p2 term. Sorting terms dependent
and independent of y we find

Eφe − i∆0kxφh = −µ(y)φe − i∆0
∂φh
∂y

,

Eφh + i∆0kxφe = µ(y)− i∆0
∂φe
∂y

.

(1.17)
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This set of first order equations can be decoupled using the ansatz φh =
±iφe

(E ±∆0kx)φe = −µ(y)φe ±∆0
∂φe
∂y

,

(E ±∆0kx)φh = µ(y)φh ∓∆0
∂φh
∂y

.

(1.18)

Both can be solved by

E = ∓∆0kx and Ψ ∝
(
e∓iπ/4

e±iπ/4

)
e
± µ0

∆0
|y|
ei(kxx−Et). (1.19)

Notice that depending on the sign of µ0 only one of the two solutions
is normalizable. At positive energies and for µ0 > 0 (y > 0 non-trivial)
we only get a right-moving mode kx > 0, while for µ0 < 0 (y < 0 non-
trivial) we only find a left-moving mode. In other words the edge mode
is unidirectional or chiral (because it circulates the edge of a topological
phase with a fixed handedness). Right or left moving, in both cases the
edge mode is a coherent superposition of electron and hole with equal
weight. We have chosen the overall phase factor of Ψ such that we have
φh = φ∗e. This means that the corresponding edge-mode field

Ψ̂(r, t) =
ˆ
dkx
2π (φeckx + φhc

†
kx

)ei(kxx−Et) (1.20)

is self-adjoint [Ψ̂(r, t)]† = Ψ̂(r, t) (up to a phase factor). It is a coher-
ent superposition of electron and hole excitations of equal weight, so it
is charge-neutral [130, 158]. In reference to the Italian physicist Ettore
Majorana, who found a charge neutral, real solution to the Dirac equa-
tion [101], such modes are called Majorana modes.

A pair of domain walls, as in the strip of p-wave superconductor shown
in Fig. 1.1, supports counterpropagating modes at opposite edges. The
chirality prevents backscattering, if the edges are sufficiently far apart that
they are uncoupled. As a consequence, if we contact the strip from the left
and the right we would see ballistic, quantized transmission along the edge
even in the presence of disorder. This quantization refers to the thermal
conductance, measured when the strip is contacted with two thermal baths
at temperatures T0 (left) and T0 +δT (right). The ratio of the transmitted
heat current Ith across the strip and the applied temperature difference
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p-wave, n=1

a) b)

chiral Majorana edge-modes

Figure 1.1. a) An infinite strip of a p-wave superconductor in the non-trivial
phase (Chern number n = 1) supports chiral Majorana edge modes propagat-
ing in opposite directions at the top and the bottom edge. b) The corresponding
spectrum as a function of the momentum k along the strip calculated by discretiz-
ing Hamiltonian (1.11) in the topological phase on a strip of width W = 25a and
lattice constant a.

δT yields a thermal conductance Gth = nGth
0 , where Gth

0 = π2k2
BT0/6h

and n is the number of chiral Majorana edge modes [130, 150, 160]. In
analogy to the chiral electronic edge modes of the quantum Hall effect one
speaks of the thermal quantum Hall effect.

Because of their charge neutrality the electrical conductance of the
Majorana edge modes is zero. Electrical detection is still possible if one
measures the time-dependent current fluctuations (shot noise) [2].

1.4 Chiral symmetry

One last symmetry is still missing to complete our discussion of fundamen-
tal symmetries in the tenfold-way, chiral symmetry. It is the symmetry
that determines whether a topological superconductor or insulator can
have N rather than just one protected edge mode.

In even spatial dimensions absence of chiral symmetry is a necessary
condition for a Z topological invariant. Indeed, in table 1.1 we find that
both in class D and class C two dimensional superconductors can have
non-trival Z-invariant. The invariant is the familiar Chern number of
Eq. (1.14). Adding one of the two possible time-reversal symmetries, or in
other words chiral symmetry, constrains the Chern number to n = 0. In
the case of the helical p-wave superconductor in class DIII (see chapter 3)
this reduces the classification to Z2, while in class BDI all two-dimensional
systems are topologically trivial.
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a) b)

Figure 1.2. Both chirality and chiral symmetry derive from the Greek word
χείρ for hand. In physics we use the word as a reference to the two choices of
orientation (a) or of rotation (b).

In odd spatial dimensions the opposite is true. Here, chiral symmetry
introduces a new integer topological invariant, called the winding num-
ber. It allows for phases with more than one topological edge-mode. In
superconductors chiral-symmetry always occurs in combination with both
particle-hole and time-reversal symmetry. Again, the presence of these
additional symmetry can force the winding number to be zero and render
the topological classification according to chiral symmetry ineffective.

Before we return to the obvious question of when does chiral symmetry
produce non-trivial topological superconducting phases, it is worth to have
a look into the history of chiral symmetry. At least I found that it is quiet
interesting. It also helped me to resolve some of the confusion that can
arise when concepts originally from one field of physics are brought to
a new context where they usually keep their name but often have quiet
different meanings. Chiral symmetry is such an example. Readers who
are only interested in its role in topological insulators and superconductors
may skip ahead to section 1.4.3

1.4.1 Chiral symmetry in relativistic quantum field theo-
ries

Chiral symmetry, like chirality, derives from the Greek word χείρ for
hand. Its name originates from particle physics, more specifically rela-
tivistic quantum field theories. The roots of chiral symmetry go back to
Dirac’s formulation of a relativistic quantum mechanical wave-equation.
In its covariant form and in natural units (~, c = 1) the Dirac equation
reads

iγµ∂µψ −mψ = 0. (1.21)
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It describes free spin-1/2 fermions, such as electrons and quarks in 3 + 1
space-time dimensions. The wave function Ψ is a four component Dirac-
spinor that in the case of electrons is interpreted as a superposition of
spin-up and down electrons and positrons, or more generally both mater
and antimatter. The repeated index µ = 0, 1, 2, 3 implies a summation
of all dimensions of space-time, ∂0 denotes the time derivative ∂t and the
remaining the spatial derivatives (∂x, ∂y, ∂y). The four gamma matrices
γ0 ,γ1, γ2, γ3 obey the fundamental anti-commutation relations

{γµ, γν} = 2ηµν , (1.22)

where ηµν = (1,−1,−1,−1) is the metric signature of the four-dimensional
Minkowski space. Only γ0 is hermitian, the three others are anti-hermitian.

In 3 + 1 spacetime dimensions there is another special matrix

γ5 = iγ0γ1γ2γ3. (1.23)

It is both hermitian and unitary, (γ5)† = γ5 and (γ5)2 = 1. Finally,
it is odd under a spatial inversion, also called parity transformation P ,
[(t, x, y, z)→ (t,−x,−y,−z)]

Pγ5P = −γ5. (1.24)

Since γ5 anti-commutes with all four original gamma matrices, it also
anti-commutes with the Dirac operator ∂µγµ. In the case of massless
fermions (m = 0) this implies that eigenfunctions of the Dirac equation
are simultaneous eigenfunctions of γ5

0 = γ5i∂µγ
µψ = −i∂µγµ(γ5ψ). (1.25)

Such eigenfunctions γ5ψL = −ψL and γ5ψR = ψR are called chiral or Weyl
fermions. As left and right handed partners they transform into each other
under spatial inversion (γ5PψR = −Pγ5ψR = −PψR).

In the modern interpretation provided by quantum field theories the
Dirac equation is understood in second quantization. The equations of
motion of the Dirac field Ψ(xµ) follows from the variation of an action
with a Lagrangian density

L = iΨγµ∂µΨ−mΨΨ, (1.26)

where Ψ = Ψ†γ0. The fermions couple to an additional bosonic gauge field
Aµ following the principle of minimal coupling. In the case of electrons
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and positrons the gauge field corresponds to the electromagnetic field, for
quarks to gluons the force carrier of quantum chromodynamics (QCD).
For massless fermions this promotes the anti-commutation of the Dirac
operator with the matrix γ5 to a continuous gauge-symmetry eiθγ5 of the
Lagrangian, called chiral symmetry.

1.4.2 Chiral random matrix theory

While the last section gives an answer to the question “why is chiral sym-
metry called chiral symmetry”, the reader may wonder about its con-
nection to the tenfold way of topological insulators and superconductors.
Chiral symmetry was added to the classification of topologically distinct
Hamiltonian ensembles by Shuryak and Verbaarschot [155].

Verbaarschot studied the QCD vacuum using the tool of random ma-
trix theory and coined the term chiral random matrix theory [175, 176].
By a Wick rotation (it/~ → β = 1/kBT ) one can rotate the QCD action
from Minkowski (t, x, y, z) to Euclidean (β, x, y, z) space. The QCD parti-
tion function can then be expressed as the expectation value (a functional
integral in Euclidean space) of the fermion determinant,

ZQCD =
〈∏

f

det(D +mf )
〉
. (1.27)

D is the Dirac operator in Euclidean space, the product is over all quark
flavors with mass mf , and the average is taken over all configurations of
the gauge field Aµ. If we consider the simplest possible problem the QCD
vacuum in a box βL3, we can write the Dirac operator as an (infinite)
matrix in the basis of chiral fermions ψR/L. Since the Dirac operator still
anti-commutes with (the Euclidean) matrix γ5, we have 〈ψR,m|D|ψL,n〉 =
0 = 〈ψL,m|D|ψR,n〉 for all quark flavors and modes n, m. Thus the chiral
symmetry together with the fact that D is anti-Hermitian allows us to
write the Dirac operator as block off-diagonal matrix,

D =
(

0 iW
iW † 0

)
. (1.28)

Following the core idea of random matrix theory (RMT) we can hope
to extract some essential features of the complex QCD vacuum even if
we completely randomize interactions and abstract from all the space-
time structure of the Dirac operator (including the fact that it lives in
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a box βL3). We may simply choose all matrix elements of W from a
random Gaussian distribution. The fermion determinant, and thus the
partition function can be obtained from the eigenvalues of D. In other
words the random matrix problem reduces to finding the eigenvalue dis-
tribution P ({λn}) of the eigenvalue equation

Dψn = iλnψn, (1.29)

where D is a anti-Hermitian, block off-diagonal matrix with Gaussian
elements. A problem that can in fact be solved exactly.

We only need to divide by i, replace D by H, λ by E and the above
problem is perfectly suitable to describe the random energy level distribu-
tion P ({En}) of a quantum dot with an arbitrary anti-commuting unitary
Γ, ΓHdot = −HdotΓ.

1.4.3 Chiral symmetry in the tenfold way

In the context of topological insulators and superconductors chiral sym-
metry is simply defined by a unitary symmetry Γ that anti-commutes with
the Hamiltonian ΓH = −HΓ. We have already learned that product PT
of the two anti-unitary symmetries time-reversal and particle-hole is such
a chiral symmetry. Unlike in the context of particle physics, this con-
densed matter definition of chiral symmetry has no obvious connection to
geometry or handedness.2

Because it anti-commutes with the Hamiltonian, similar to particle-
hole symmetry, chiral symmetry also implies a symmetry of the energy
spectrum around zero. For every eigenstate H|ψn〉 = En|ψn〉 there is
partner state Γ|ψn〉 with energy −En, HΓ|ψn〉 = −ΓH|ψn〉 = −EnΓ|ψn〉.
There is, however, an important difference. Because it is unitary chiral
symmetry does not invert the momentum. It implies −En(k) = En′(k)
rather than −En(k) = En′(−k).

We are interested, in the case where H is both gapped and has no
additional (commuting) unitary-symmetries. It follows that Γ2 must be
equal to the identity, since it commutes with H. We can thus choose
the basis where Γ = diag(1, . . . , 1,−1, . . . ,−1), with equal occurrences

2 The nomenclature can be particularly confusing since chiral, or chirality are also
frequently used in the context of topological insulators and superconductors. Both
the quantum Hall effect and the two dimensional p-wave superconductor have chiral
edge-modes. Neither of the two phases obeys an anti-commuting chiral symmetry.
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Figure 1.3. SSH model: a) sublattices and dimerization of the SSH tight-
binding chain in the trivial (top) and non-trivial (bottom) phase. b) correspond-
ing winding of the Bloch Hamiltonian vector h(k) in sublattice τ -space as k from
−π to π.

#1 = #(−1). 3 In this basis H is block off-diagonal

H =
(

0 HAB

H†AB 0

)
,Ψ =

(
ψA
ψB

)
. (1.30)

As we can see systems with chiral symmetry experience an implicit grad-
ing. We can group the degrees of freedom into A and B. H only couples
A to B (and B to A) but not A to A or B to B. Such a grouping natu-
rally arises in the tight-binding Hamiltonian of certain bipartite lattices.
Not only in this context chiral symmetry is therefore often synonymously
referred to as sublattice symmetry.

The simplest example of a chiral topological insulator with such a bi-
partite sublattice is the one dimensional Su-Schrieffer-Heeger model (SSH
model) of polyacetalene [74]. As shown in Fig. 1.3a) it is a chain of sites
A and B with alternating hoppings t and t′,

HSSH =
∑
i

tc†i,Aci,B + t′c†i+1,Aci,B + h.c., (1.31)

where h.c. denotes the Hermitian conjugate hoppings. The difference ∆t =
t− t′ characterizes the amount of dimerization of the chain. There are two
gapped phases, ∆t > 0 and ∆t < 0. In order to expose the topological
distinction we switch to momentum space and group the two sublattices
like in Eq. (1.30)

H =
∑
k

(
c†k,A, c

†
i,B

)( 0 t+ t′e−ika

t+ t′eika 0

)(
ck,A
ci,B

)
. (1.32)

3The case ν = #1−#(−1) 6= 0 gives rise to ν zero modes implying that H cannot
be gapped.



1.4 Chiral symmetry 15

If we further introduce Pauli matrices µ0,x,y,z for the A,B-sublattice grad-
ing, we can write the Bloch Hamiltonian in the simple form

h(k) = (t+ t′ cos ka)µx + t sin kaµy. (1.33)

The chiral symmetry Γ = µz forbids the terms proportional two µ0 and
µz and confines h(k) = (hx, hy, 0) two the xy-plane. This produces a
topological classification of one-dimensional Hamiltonians distinct by their
winding number around the origin

ν = 1
2πi

ˆ π

−π
dk

∂

∂k
log det h(k). (1.34)

This ν ∈ Z topological invariant is characteristic for chiral topological in-
sulators and superconductors. A similar winding number can be defined
in the presence of chiral symmetry in all odd spatial dimensions. In class
AIII where no other symmetry obstructs the formation of a ν 6= 0 phase,
this means that for all odd dimensions there are Z topological phases.
Even dimensions in class AIII are simply connected, in other words topo-
logically trivial. In contrast, the chern number (1.14) is defined only in
even spatial dimensions.

Back to the SSH model, t > t′ is topologically trivial, ν = 0, while
t < t′ encloses the origin with ν = 1 (for t, t′ > 0), see Fig. 1.3b). As is
easy to see in the limit t → 0, there is a zero energy state at each end of
finite chain. For nonzero t these states extend over some range ξ into the
bulk of the system but are still exponentially localized at the ends as long
as ξ � L. The case t = t′ corresponds to a topological phase transition
where the bulk gap closes and end states extend over the complete chain,
ξ →∞.

Not only is the SSH model a very simple example of a non-trivial chiral
topological insulator, it also exposes the weak point of many chiral sym-
metry phases. As any symmetry protected topological phase, the phase
distinction disappears once we break the symmetry. The Achilles’ heel
of many chiral models is that degrees of freedom exchanged by the chiral
symmetry are particular to the model and not fundamentally related. For
example if we want to gap out the zero-energy states on one of the ends of
the SSH chain in the non-trivial phase all we need to do is attach another
site.



16 Chapter 1. Introduction

1.4.4 Chiral symmetry in topological superconductors

Amongst the rich table of topological insulators and superconductors, one
dimensional topological superconductors with P2 = 1 are of particular
interest because they host so called Majorana bound states at their end.
Majorana bound states are the zero-dimensional variant of the Majorana
edge modes. These charge neutral self-adjoint localized zero energy quasi-
particle excitations obey the characteristic properties

γ†i = γi, {γi, γj} = δij (1.35)

of the creation and annihilation operators of a Majorana mode. Majo-
rana bound states always come in pairs, at least one at each end of sys-
tem or phase. Two Majoranas form a fermionic quasi-particle excitation
c† = γ1 + iγ2. However, as long as they are well separated particle-hole
symmetry pins them to zero-energy and protects there self-adjointness.
The fact that in such a system one can define a non-local fermion whose
two states, empty or occupied, both belong to the ground state mani-
fold of the system has deep implications. Although sometimes referred to
as Majorana fermions, Majorana bound states are not fermions, but the
simplest example of non-abelian quasi-particles. An adiabatic exchange
of two Majorana bound states corresponds to a unitary transformation
on the (two-fold) degenerate ground state manifold, not just and overall
phase factor ±1 like in the abelian cases of bosons and fermions.

The natural number of protected Majoranas is two, or one per end.
This the situation in class D, with just particle-hole symmetry and P2 = 1.
The famous Kitaev-chain [90], the superconducting analogon of the SSH
model, is an example of a class D system, that can support a single Majo-
rana at each end. The one dimensional p-wave superconductor (Eq. (1.11)
with py = 0) is another. Two Majoranas at one end are not protected by
particle-hole symmetry, combined they form a local fermion that can be
pushed away form zero energy. This property is expressed by the topo-
logical invariant, which counts the number of topologically protected zero
energy end states. In class D it is Z2. It seems clear that we need a chi-
ral symmetry if we want multiple Majoranas. The tenfold way offers two
options. Class DIII with the spinful time-reversal symmetry introduces
Kramers degeneracy. However, this does not really improve our counting.
A single Kramers pair of Majorana bound states is still protected, but the
combination P2 = 1, T 2 = −1 only allows ν = 0 for the chiral invariant.
Pairs of Kramers pairs can still be lifted. The topological classification
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remains Z2. Chiral symmetry in combination with T 2 = 1 on the other
hand promotes a class D system to class BDI. In one dimensional systems
this combination does not obstruct chiral symmetry. It is characterized by
an integer topological invariant ν ∈ Z, and allows for any number N = |ν|
of protected Majorana bound states per end.

Quiet surprisingly, as we will study in more detail in chapter 2, one
of the most prominent experimental candidate systems for hosting Majo-
rana bound states possesses an approximate chiral symmetry. The system
in mind is a semiconducting nanowire with proximity induced supercon-
ductivity (see Fig. 1.4 and Fig. 1.5a). Originally proposed in 2010 by
Lutchyn, Sau, & Das Sarma [98] and by Oreg, Refael & von Oppen [117]
it was the first system to show strong indications for the realization of a
one-dimensional topological superconductor in 2012 [109, 47, 43]. Strong
spin-orbit coupling in the wire, together with an external magnetic field,
break both time-reversal and spin-rotation symmetry. The wire is con-
tacted by an s-wave bulk superconductor which induces superconducting
pairing in the wire via the proximity effect. Together, both effects place
the wire in symmetry class D. However, as argued by Tewari and Sau [166]
in the limit of a nanowire with a width W much narrower than the char-
acteristic length scale lSO = ~2(meffαSO)−1, where αSO is the amplitude
of Rashba spin-orbit coupling and meff the effective mass of the band
dispersion, an additional chiral symmetry emerges.

In this narrow wire limit the quasi one-dimensional Bogoliubov-De
Gennes Hamiltonian is given by

HBDI =
(
p2

2meff
+ U(r)− µ

)
τz + VZσxτz + αSO

~
pxσyτz + ∆σyτy, (1.36)

with particle-hole symmetry P = τxK, chiral symmetry Γ = τx and a
fake time-reversal symmetry T ∗ = K. The nanowire is placed along
the x-direction. The potential U(r) combines confinement in y- and z-
direction as well as electrostatic disorder. The true time-reversal σyK of
the fermions is broken by the magnetic field B. It is applied along the
direction of the wire and induces a Zeeman splitting VZ = geffµBB.4 The
proximity effect gives rise to an effective s-wave pair-potential with am-
plitude ∆. Rashba spin-orbit coupling yields an effective spin-orbit field

4 Possibly important chiral symmetry breaking effects of the orbital part of the
magnetic field are currently investigated by B. Nijholt, Master student at Kavli Institute
of Nanoscience Delft.
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ΩSO B

Δ
lSOnanowire

Figure 1.4. A semiconductor nanowire (red) on top of a s-wave superconductor
(blue) can be tuned into a topological superconducting phase with a Majorana
bound state at each end. If the spin-orbit length lSO is larger than the wire width
an additional chiral symmetry promotes the wire from class D to class BDI and
allows for multiple Majorana’s at each end.

Ωy(px) = αSOpx/~ in plane with the substrate but perpendicular to the
direction of the wire (and the magnetic field). In general the Rashba effect
has a second component Ωx(py), this introduces another spin-orbit term
αSOh

−1pyσxτ0 which commutes with τx, breaks the chiral symmetry and
brings the wire back to class D. However, the finite width of the wire con-
fines the momentum py and limits the transversal spin-orbit interaction.
In chapter 2 we show that for a small number of transversal modes this
chiral symmetry is effectively unbroken for W . lSO/2. All of the three
original Majorana nanowire experiments were indeed in this regime.

If we compare the chiral nanowire of Hamiltonian (1.36) with the SSH
model from the previous section there is a noteworthy and experimentally
relevant difference. In the SSH model the chiral symmetry is a sublattice
symmetry tied to the bipartite structure of the chain. As we have already
mentioned this is the Achilles’ heel of the topological phases in the SSH
chain. Its chiral symmetry would be broken if we attached a lead without
this lattice symmetry to measure the transport signatures of the phase
or equally if the chain is exposed to (uncorrelated) electro static disorder
in the on-site-energies of A and B. It could be detrimental if the same
happened to our chiral nanowire. Fortunately, at least in the two just
mentioned scenarios we are safe.

Due to the intimate relation between the number of Majorana’s |Q| and
the zero bias-voltage resonant Andreev conductance G ≥ 2e2|Q|/h (see
chapter 2) the effectively unbroken chiral symmetry, allowing for |Q| > 1,
has direct observable consequences.
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1.5 This thesis

1.5.1 Chapter 2

Motivated by the effective chiral symmetry in topological, superconduct-
ing nanowires pointed out by Tewari and Sau [166], we study Andreev
refection in symmetry class BDI in chapter 2. We show how the associ-
ated topological quantum number Q ∈ Z can be expressed as the trace
of the Andreev reflection block Q = Tr rhe of the scattering matrix at the
end of the nanowire when it is contacted by a metallic lead. This simple
link allows us to constrain the electrical conductance G of the wire. We
derive G = (2e2/h)|Q| for |Q| = N,N − 1, and more generally provide
a Q-dependent upper and lower bound on G. We calculate the probabil-
ity distribution P (G) for chaotic scattering, in the circular ensemble of
random-matrix theory, to obtain the Q-dependence of weak localization
and mesoscopic conductance fluctuations. Finally we investigate the ef-
fects of chiral symmetry breaking by spin-orbit coupling of the transverse
momentum (causing a class BDI-to-D crossover), in a model of a disor-
dered semiconductor nanowire with induced superconductivity. For wire
widths less than the spin-orbit coupling length, we find that it is effec-
tively unbroken. The conductance as a function of chemical potential as
a result can show a sequence of 2e2/h steps — insensitive to disorder.

1.5.2 Chapter 3

In this chapter we step from one to two dimensional topological super-
conductors. The protected edge states are in this case one dimensional
propagating modes rather than zero dimensional bound states. Their edge
modes fall in three distinct classes, chiral Dirac modes in the case of spin-
triplet d-wave superconductivity or chiral and helical Majorana modes
for spin-singlet p-wave symmetry. All are charge-neutral modes. Here
we propose a geometry similar to the one shown in Fig. 1.5c) where it
is possible to detect and distinguish these edge modes electrically. For
this purpose we calculate the Andreev conductance of a superconducting
ring interrupted by a flux-biased Josephson junction. The presence of
the topological edge modes produces h/e-periodic magnetoconductance
oscillations of amplitude ' (e2/h)N−1/2, measured via an N -mode point
contact at the inner or outer perimeter of the grounded ring. For Dirac
modes the oscillations in the two contacts are independent, while for an
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a)

b)

c)

Figure 1.5. Experimental platforms of topological superconductivity: a) scan-
ning electron microscope (SEM) image of InSb nanowire akin to Fig. 1.4 probed
by Au contacts. Superconductivity is induced by proximity to a NbTiN super-
conductor. First signatures of Majorana bound states have been measured in a
similar device by Mourik et al. [109]; b) a chain of magnetic atoms (red) on top
of a superconductor which can be probed by a scanning tunneling microscope
(STM); Evidence of Majorana end states has been by reported Nadj-Perge et
al. [111]; c) a superconducting ring of Pd on the surface of the three-dimensional
topological insulator Bi2Te3 probed by several leads in a corbino geometry. Mea-
surements in support of topological superconductivity in this device have been
reported by Pang et al. [120]. [a) image provided by V. Mourik, b) from Ref. [111],
c) from Ref. [120]]
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unpaired Majorana mode they are phase locked by a topological phase
transition at the Josephson junction.

1.5.3 Chapter 4

In this first out of two chapters on statistical topological superconduc-
tors we again study two-dimensional superconductors spin-triplet p-wave
pairing. An anisotropic version of the p-wave superconductor could be
realized by weakly coupled arrays nanowires or chains of magnetic atoms
on the surface of a superconductor, see Fig. 1.5. The previously stud-
ied isotropic phases support chiral or helical Majorana edge modes with
a quantized (length L-independent) thermal conductance. Sufficiently
strong anisotropy removes both chirality and helicity. In the clean limit
this makes the system a weak topological superconductor and doubles the
edge conductance. Disorder turns it into a statistical topological insu-
lator and imposes a super-Ohmic 1/

√
L decay of the conductance. We

explain the absence of localization in the framework of the Kitaev Hamil-
tonian, contrasting the edge modes of the two-dimensional system with
the one-dimensional Kitaev chain. While the disordered Kitaev chain has
a log-normal conductance distribution peaked at an exponentially small
value, the Kitaev edge has a bimodal distribution with a second peak near
the conductance quantum. Shot noise provides an alternative, purely elec-
trical method of detection of these charge-neutral edge modes.

1.5.4 Chapter 5

Fulga, van Heck, Edge and Akhmerov [68] demonstrated how – as in
the previous chapter – an in the strong sense trivial phase could be pro-
moted to a statistical topological insulator in the presence of disorder
owing to an average symmetry of the disorder ensemble. In this chapter
we show how such statistical topological phases also persist in the pres-
ence of already non-trivial strong phases. More generally, we extend the
single-particle topological classification of insulators and superconductors
to include systems in which disorder preserves average reflection symme-
try. We show that the topological group structure of bulk Hamiltonians
and topological defects is exponentially extended when this additional
condition is met, and examine some of its physical consequences. Those
include localization-delocalization transitions between topological phases
with the same boundary conductance, as well as gapless topological de-
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b)

 λ

5 nma)

Figure 1.6. Hofstadter’s butterfly in graphene: a) Cartoon of graphene on
hexagonal boron nitride (BN) [from Dean et al. [45]]. The emergent moiré su-
perlattice can be tuned by varying the alignment angle θ between the native
lattices of the two materials; b) cloning of Dirac points in the Hall conductivity
of graphene’s moiré superlattice [from Ponomarenko et al. [124]]. Yellow circles
highlight a series of gapped cloned Dirac points. In chapter 6 we propose a way
to close them by varying θ.

fects stabilized by average reflection symmetry. We examine this extended
classification of statistical topological phases in two concrete examples.
The first one is an extension of the anisotropic p-wave superconductor
from the previous chapter belonging to symmetry class D. The extended
classification gives rise to a new defect, the Kitaev domain wall, at the
interface between two phases with the same strong, but different weak
indices. Like its edge-mode partner the Kitaev domain wall is detectable
via characteristic 1/

√
L decay of the electrical shot noise along the 1d

defect. The second example, a three dimensional superconductor with
weak weak-phases in class DIII, demonstrates the dimensional hierarchy
of extended classification.

1.5.5 Chapter 6

In this chapter we leave the topic of topological superconductors. In-
stead we study the conductance signatures of a special topological phase
transition of a different type, namely in the quantum Hall effect. More
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specifically we examine the fractal quantum Hall effect of a periodic lattice
known has Hofstadter butterfly [75], see Fig. 1.6. Long admired for its
beauty, but almost regarded as a problem of mathematical physics the but-
terfly has recently been spotted in transport experiments on the Van der
Waals superlattice of graphene on hexagonal boron nitride [124, 45, 78].
While requiring 1000 T for the native graphene unit cell, the large size of
the moiré superlattice, sketched in Fig. 1.6b), makes magnetic fluxes on
the order of e2/h per unit cell experimentally accessible. A central theme
of the experiments is the emergence of finite magnetic field Dirac fermions.
The fractal spectrum of magnetic minibands, induced by the moiré super-
lattice of graphene on an hexagonal crystal substrate, is known to exhibit
gapped Dirac cones. We show that the gap can be closed by slightly
misaligning the substrate, producing a hierarchy of conical singularities
(Dirac points) in the band structure at rational values Φ = (p/q)(h/e) of
the magnetic flux per supercell. Each Dirac point signals a switch of the
topological quantum number in the connected component of the quantum
Hall phase diagram. Here, when the Dirac cones become gapless, we en-
counter yet another chiral symmetry, that of the two-dimensional Dirac
Hamiltonian

H = pxσx + pyσy. (1.37)

It anti-commutes with the third Pauli-matrix σz, signifying the absence
of a mass mσz. Model calculations reveal the scale invariant conductivity
σ = 2qe2/πh and Klein tunneling associated with the massless, chiral
Dirac fermions of Hamiltonian (1.37) at these connectivity switches.

1.5.6 Chapter 7

The work presented in this final chapter is a direct result of collaboration
with Andrea Caviglia’s group in Delft that works on transport experiments
in complex oxides, in this particular case the mobile electron system at
the LaAlO3/SrTiO3 interface. Fig. 1.7 shows the system. Although there
are indications of unconventional [132], possibly even topological super-
conductivity [55, 113], we focus on one of its (in comparison) high temper-
ature signatures. As we can see in Fig. 1.7c) the two-dimensional electron
system is unusually sensitive to the application of an in-plane magnetic
field. Following extensive low-temperature experiments this giant nega-
tive magnetoresistance (dropping by more than 70%) has been attributed
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B = 0T

B = 14T

Figure 1.7. LaAlO3/SrTiO3 interface: a) scanning transmission electron micro-
graph of the atomically sharp interface between the two complex oxides. A two-
dimensional system of mobile electrons (2DES) lives at the interface of the two
insulators; c) temperature dependent sheet resistance R of the 2DES measured in
a Hall bar under an in-plane magnetic field B (b). At low temperatures the sheet
resistance is almost an order of magnitude smaller for a 14 T in-plane field when
compared to its zero field value [a) adapted from Ref. [132], c) from Ref. [15]].
This giant drop of resistance has been attributed to Kondo physics [81, 137]. In
chapter 7 we propose a semiclassical alternative.
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to a magnetic-field induced transition between interacting phases of con-
duction electrons with Kondo-screened magnetic impurities [81, 137]. In
this chapter we present experiments performed in Delft over a broad tem-
perature range. These show the persistence of the magnetoresistance up
to the 20 K range — indicative of a single-particle mechanism. Motivated
by a striking correspondence between the temperature and carrier density
dependence of our magnetoresistance measurements we propose an alter-
native explanation. Working in the framework of semiclassical Boltzmann
transport theory we demonstrate that the combination of spin-orbit cou-
pling and scattering from finite-range impurities can explain the observed
magnitude of the negative magnetoresistance, as well as the temperature
and electron density dependence.
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Chapter 2

Andreev reflection from a
topological superconductor
with chiral symmetry

2.1 Introduction

The classification of topological states of matter, the socalled “ten-fold
way” [7], has five topologically nontrivial symmetry classes in each dimen-
sionality [138]. For a one-dimensional wire geometry, two of these five
describe a topological superconductor and the other three a topological
insulator. Each symmetry class has a topological quantum number Q that
counts the number of protected bound states at the end of the wire. These
end states are of particular interest in the topological superconductors, be-
cause they are pinned at zero excitation energy by electron-hole symmetry
and are a condensed matter realization of Majorana fermions [6, 13]. Sig-
natures of Majorana zero-modes have been reported in conductance mea-
surements on InSb and InAs nanowires, deposited on a superconducting
substrate [109, 47, 43].

A key distinction between superconducting and insulating wires is that
Q ∈ Z2 is a parity index in a topological superconductor, while all integer
values Q ∈ Z can appear in a topological insulator. In other words, while
there can be any number of protected end states in an insulating wire, pairs
of Majorana zero-modes have no topological protection. The symmetry
that prevents the pairwise annihilation of end states in an insulating wire is
a socalled chiral symmetry of the Hamiltonian: H 7→ −H upon exchange
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Figure 2.1. Superconducting wire (S) connected at both ends to a normal metal
reservoir (N). The current I flowing from the normal metal (at voltage V ) into
the grounded superconductor gives the conductance G = I/V of the NS junction.
The wire is assumed to be sufficiently long that there is negligible transmission
from one end to the other. Chiral symmetry then produces a topologically pro-
tected quantum number Q ∈ Z. Both G = (2e2/h)Tr rher

†
he and Q = Tr rhe are

determined by the Andreev reflection matrix rhe of the junction. While the NS
junctions at the two ends of the wire can have independently varying conduc-
tances G and G′, the topological quantum numbers are related by Q′ = −Q.

α↔ β of an internal degree of freedom, typically a sublattice index.
In an interesting recent development, Tewari and Sau [166] have ar-

gued (motivated by Ref. [115]) that an approximate chiral symmetry may
stabilize pairs of Majorana zero-modes in a sufficiently narrow nanowire.
The symmetry H 7→ −H when e ↔ h involves the exchange of electron
and hole indices e,h.1. It is distinct from electron-hole symmetry, which
involves a complex conjugation H 7→ −H∗ and is a fundamental symme-
try of the problem. The combination of chiral symmetry and electron-hole
symmetry promotes the superconductor from symmetry class D to sym-
metry class BDI, extending the range of allowed values of Q from Z2 to
Z.

In this paper we investigate the consequences of chiral symmetry for
the electrical conductance of the superconducting nanowire, attached at
the end to a normal metal contact. (See Fig. 2.1.) The conductance G is
determined by the matrix rhe of Andreev reflection amplitudes (from e to
h, at the Fermi level),

G = 2e2

h
Tr rher

†
he, (2.1)

at low bias voltages and low temperatures and assuming that there is no
transmission from one end of the wire to the other end. We will show
that the topological quantum number Q ∈ Z in the presence of chiral

1 A different type of chiral symmetry, which does not exchange electron and hole de-
grees of freedom, appears for two-dimensional superconductors, see for example Cheng
et. al. [36]
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symmetry is directly related to the Andreev reflection matrix,

Q = Tr rhe. (2.2)

The intimate relation between transport and topology expressed by these
two equations allows us to make specific predictions for the Q-dependence
of G.

The outline of the paper is as follows. In the next section we derive
Eq. (2.2) from the general scattering formulation of one-dimensional topo-
logical invariants [65], and obtain model-independent results for the rela-
tion between G and Q. More specific results are obtained in Sec. 2.3 using
random-matrix theory [12],2 under the assumption of chaotic scattering
at the NS interface. Then in Sec. 2.4 we numerically study a microscopic
model of a superconducting nanowire [98, 117], to test our analytical pre-
dictions in the presence of a realistic amount of chiral symmetry breaking.
We conclude in Sec. 4.6.

2.2 Relation between conductance and topologi-
cal quantum number

In a translationally invariant superconducting wire with chiral symmetry,
the topological quantum number Q can be extracted from the Bogoliubov-
de Gennes Hamiltonian as a winding number in the one-dimensional Bril-
louin zone [166]. In order to make contact with transport measurements,
we describe here an alternative scattering formulation for a finite disor-
dered wire (adapted from Ref. [65]), that expresses Q as the trace of the
Andreev reflection matrix from one of the ends of the wire. The electrical
conductance G can then be related to Q by an inequality.

2.2.1 Trace formula for the topological quantum number

The scattering problem is defined by connecting the N -mode supercon-
ducting wire (S) to a normal metal reservoir (N). The 2N × 2N reflection
matrix r(E) relates the incident and reflected amplitudes of electron (e)
and hole (h) excitations at energy E. It has a block structure of N ×N

2 When comparing results, note that the definition of G0 used in this reference differs
by a factor of two from the one used here.
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submatrices,

r =
(
ree reh
rhe rhh

)
, τx =

(
0 1
1 0

)
, (2.3)

where we have also introduced a Pauli matrix τx acting on the electron-
hole degree of freedom.

We assume that both time-reversal symmetry and spin-rotation sym-
metry are broken, respectively, by a magnetic field and spin-orbit coupling.
Electron-hole symmetry and chiral symmetry are expressed by

τxr(−E)τx =
{
r∗(E) (e-h symmetry),
r†(E) (chiral symmetry). (2.4)

Taken together, the two symmetries imply that r(E) = rT (E) is a symmet-
ric matrix. For spinless particles, this would be a time-reversal symmetry,
but the true time-reversal symmetry also involves a spin-flip.

In what follows we consider the reflection matrix at the Fermi level
(E = 0). The symmetry relations (2.4) then take the form

ree = r∗hh = rTee, rhe = r∗eh = r†he. (2.5)

These symmetries place the wire in universality class BDI, with topological
quantum number determined [65] by the sign of the eigenvalues of the
Hermitian matrix τxr. This can be written as a trace if we assume that the
wire is sufficiently long that we can neglect transmission of quasiparticles
from one end to the other. The reflection matrix is then unitary, rr† = 1.
The matrix product τxr is both unitary and Hermitian, with eigenvalues
±1. The topological quantum number Q ∈ {−N, . . . ,−1, 0, 1, . . . N} is
given by the trace

Q = 1
2 Tr τxr = Tr rhe. (2.6)

All of this is for one end of the wire. The other end has its own
reflection matrix r′, with topological quantum number Q′ = 1

2Tr τxr′.
Unitarity with chiral symmetry relates r and r′ via the transmission matrix
t,

S =
(
r t
tT r′

)
, (τxS)2 = 1,

⇒ (τxr)(τxt) = −(τxt)(τxr′). (2.7)
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If we allow for an infinitesimally small transmission for all modes through
the wire, so that t is invertible, this implies that Tr τxr = −Tr τxr′, hence
Q′ = −Q.

The sign of the topological quantum number at the two ends of the
wire can be interchanged by a change of basis of the scattering matrix,
S 7→ τzSτz, so the sign of Q by itself has no physical significance — only
relative signs matter.

2.2.2 Conductance inequality

In the most general case, the Andreev reflection eigenvalues Rn ∈ [0, 1] are
defined as the eigenvalues of the Hermitian matrix product rher

†
he. Because

of chiral symmetry, the matrix rhe is itself Hermitian, with eigenvalues
ρn ∈ [−1, 1] and Rn = ρ2

n. These numbers determine the linear response
conductance G of the NS junction,

G = G0

N∑
n=1

Rn, G0 = 2e2/h. (2.8)

The factor of 2 in the definition of the conductance quantum G0 is not due
to spin (which is included in the sum over n), but accounts for the fact
that charge is added to the superconductor as charge-2e Cooper pairs.

The Andreev reflection eigenvalues Rn different from 0, 1 are twofold
degenerate (Béri degeneracy) [16, 186]. The eigenvalues ρn are not de-
generate, but another pairwise relation applies. Consider an eigenvalue ρ
of rhe with eigenvector ψ. It follows from the symmetry relations (2.5),
together with unitarity of r, that rherhhψ

∗ = (rehreeψ)∗ = −(reerheψ)∗ =
−ρ rhhψ

∗. So −ρ is also an eigenvalue of rhe, unless rhhψ
∗ = 0. This is

not possible, again because of unitarity, if |ρ| < 1. If also ρ 6= 0, the pair
ρ,−ρ is distinct.

So we see that the ρn’s different from 0,±1 come in pairs±ρ of opposite
sign. They cannot contribute to the topological quantum number Q =∑
n ρn, only the ρn’s equal to ±1 can contribute (because |Q| of them can

come unpaired). Since each |ρn| = 1 contributes an amount G0 to the
conductance, we arrive at the lower bound

G/G0 ≥ |Q|. (2.9)

The upper bound for G/G0 is trivially N , the number of modes, but
this can be sharpened if N − |Q| is an odd integer. There must then be
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an unpaired ρn = 0, leading to the upper bound

G/G0 ≤ min
(
N,N + (−1)N−|Q|

)
. (2.10)

For N = 1 these inequalities imply G/G0 = |Q|, but for N > 1 there is no
one-to-one relationship between G and |Q|.

Because the sign of Q does not enter, the same inequalities constrain
the conductances G and G′ of the NS junctions at both ends of the wire
(since Q′ = −Q). Otherwise, the two conductances can vary indepen-
dently.

Both inequalities (2.9) and (2.10), derived here for symmetry class BDI
with |Q| = 0, 1, 2, . . . N , apply as well to symmetry class D with Q = 0, 1
— essentially because the Béri degeneracy is operative there as well [186].

2.3 Conductance distribution for chaotic scatter-
ing

A statistical relation between conductance and topological quantum num-
ber can be obtained if we consider an ensemble of disordered wires and ask
for the Q-dependence of the probability distribution P (G). For chaotic
scattering at the NS junction we can calculate the distribution from a
circular ensemble of random-matrix theory. Such a calculation was per-
formed in Ref. [12] for a superconductor without chiral symmetry (sym-
metry class D). Here we follow that approach in the chiral orthogonal
ensemble of symmetry class BDI.

The assumption of chaotic scattering requires a separation of time
scales τdwell � τmixing, meaning that a quasiparticle dwells long enough
at the NS interface for all available scattering channels to be fully mixed.
Conceptually, this can be realized by confining the particles near the NS
interface in a ballistic quantum dot [12]. In the next section we consider
a microscopic model of a disordered NS interface with comparable dwell
time and mixing time, but as we will see, the conductance distributions
from the circular ensemble are still quite representative.
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2.3.1 Distribution of Andreev reflection eigenvalues

We start from the polar decomposition of the reflection matrix in class
BDI,

r =
(
U 0
0 U∗

)(
Γ Λ

ΛT Γ

)(
UT 0
0 U †

)
. (2.11)

The matrix U is an N ×N unitary matrix and the N ×N matrices Γ,Λ
are defined by

Γ =
M⊕
m=1

(
cosαm 0

0 cosαm

)
⊕ ∅|Q| ⊕ 11ζ , (2.12a)

Λ = ±
M⊕
m=1

(
0 −i sinαm

i sinαm 0

)
⊕ 11|Q| ⊕ ∅ζ . (2.12b)

The ± sign refers to the sign of Q. (For Q = 0 the sign can be chosen
arbitrarily.) The symbols 11n, ∅n denote, respectively, an n×n unit matrix
or null matrix. We have defined ζ = 0 if the difference N − |Q| is even
and ζ = 1 if N − |Q| is odd. The M = (N − |Q| − ζ)/2 angles αm are in
the interval −π/2 < αr ≤ π/2.

The Andreev reflection matrix rhe = (UΛU †)T has eigenvalues ρn =
sinαn (n = 1, 2, . . .M), ρn = − sinαn (n = M + 1,M + 2, . . . 2M), ρn = 1
(n = 2M + 1, 2M + 2, . . . 2M + |Q|), and additionally ρN = 0 if N − |Q|
is odd — all of which is consistent with the general considerations of Sec.
2.2.2.

From the polar decomposition we obtain the invariant (Haar) mea-
sure µ(r) = r†dr that defines the uniform probability distribution in the
circular ensemble, P (r)dµ(r) = dµ(r). Upon integration over the indepen-
dent degrees of freedom in the unitary matrix U we obtain the distribution
P (α1, α2, . . . αM ) of the angular variables. A change of variables then gives
the distribution P (R1, R2, . . . RM ) of the twofold degenerate Andreev re-
flection eigenvalues Rn = sin2 αn. Details of this calculation are given in
App. 2.6.1. The result is

P ({Rn}) ∝
M∏
m=1

Rm
ζ−1/2(1−Rm)|Q|

M∏
i<j=1

(Ri −Rj)2. (2.13)

The M twofold degenerate eigenvalues repel each other quadratically;
furthermore, they are repelled with exponent |Q| from the |Q| eigenvalues
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pinned at unity. While the probability of finding a small reflection eigen-
value is enhanced for N −|Q| even (ζ = 0), the eigenvalue RN = 0 pinned
at zero for N − |Q| odd (ζ = 1) produces a square root repulsion.

2.3.2 Dependence of conductance distribution on the topo-
logical quantum number

Integration over the probability distribution (2.13) of the Andreev reflec-
tion eigenvalues gives the distribution P (g) of the dimensionless electrical
conductance

g ≡ G/G0 = |Q|+ 2
M∑
m=1

Rm. (2.14)

The first term |Q| is the quantized contribution from the topologically
protected eigenvalues, and the factor of two in front of the sum accounts for
the Béri degeneracy of the M eigenvalues without topological protection.

The conductance distribution is only nonzero in the interval

|Q| ≤ g ≤ min
(
N,N + (−1)N−|Q|

)
, (2.15)

see Sec. 2.2.2. It is a trivial delta function, P (g) = δ(g − |Q|), when
|Q| = N,N − 1. Explicit results for small values of N are

N = 1 : P (g) = δ(g − |Q|), (2.16a)

N = 2 : P (g) =
{
δ(g − |Q|) if |Q| = 1, 2,
(8g)−1/2 if |Q| = 0,

(2.16b)

N = 3 : P (g) =


δ(g − |Q|) if |Q| = 2, 3,
3
16
√

2(3− g)(g − 1)−1/2θ(g − 1) if |Q| = 1,
3
8(2g)1/2θ(2− g) if |Q| = 0,

(2.16c)

N = 4 : P (g) =



δ(g − |Q|) if |Q| = 3, 4,
15
128
√

2(4− g)2(g − 2)−1/2θ(g − 2) if |Q| = 2,
15
32
√

2(3− g)(g − 1)1/2θ(g − 1)θ(3− g) if |Q| = 1,
45
512πg

2 − 45
128

[√
2(4− g)

√
g − 2

+g2 arctan
√

1
2(g − 2)

]
θ(g − 2) if |Q| = 0.

(2.16d)
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|Q|=2 |Q|=3 |Q|=4

Q=0

|Q|=1

|Q|=2 |Q|=3

Q=0

|Q|=1

Figure 2.2. Probability distribution of the conductance for chaotic scattering in
symmetry class BDI. The distributions are plotted from Eq. (2.16) for N = 3, 4
modes and different values of the topological quantum number Q. Thick vertical
lines indicate a δ-function distribution.

The step function θ(x) (equal to 0 for x < 0 and 1 for x > 0) is used to
indicate the nontrivial upper and lower bounds of the conductance. (The
trivial bounds 0 ≤ g ≤ N are not indicated explicitly.) The distributions
for N = 3, 4 are plotted in Fig. 2.2.

The first two moments of the conductance can be calculated in closed
form for any value ofN,Q, using known formulas for Selberg integrals [146].
(Alternatively, one can directly integrate over the BDI circular ensemble,
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see App. 2.6.2.) We find

〈G/G0〉 = N(N − 1) +Q2

2N − 1 , (2.17)

Var (G/G0) = 4(N2 −Q2)(N2 −Q2 − 2N + 1)
(2N − 1)2(2N + 1)(2N − 3) , (2.18)

For N →∞ at fixed |Q|, this reduces to

〈G/G0〉 = N

2 −
1
4 + Q2 − 1/4

2N +O(N−2), (2.19)

Var (G/G0) = 1
4 −

Q2 − 1/4
2N2 +O(N−3). (2.20)

The reduction of the average conductance below the classical value
NG0/2 = Ne2/h is a weak localization effect, produced by the chiral
symmetry in class BDI. (It is absent for the class-D circular ensemble [7,
12].) The variance of the conductance in the large-N limit, VarG →
(e2/h)2, is twice as large as without chiral symmetry.

A fundamental effect of chiral symmetry is that the Q-dependence
of moments of the conductance is perturbative in 1/N . In the class-D
circular ensemble, in contrast, the p-th moment of the conductance is
strictly independent of the topological quantum number for N > p, so
topological signatures cannot be studied in perturbation theory [12].

2.4 Results for a microscopic model

We study a model Hamiltonian of a disordered two-dimensional semicon-
ductor nanowire with induced superconductivity [98, 117],

H =
(
|p|2

2meff
+ U(r)− µ

)
τz + VZσxτz

+ αso
~

(pxσyτz − pyσx) + ∆0σyτy. (2.21)

This Bogoliubov-de Gennes Hamiltonian contains the single-particle ki-
netic energy (p2

x+p2
y)/2meff , electrostatic disorder potential U(x, y), chem-

ical potential µ, Zeeman energy VZ, Rashba spin-orbit coupling constant
αso, and s-wave pairing potential ∆0. The Pauli matrices σi, τi act on
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the spin and electron-hole degree of freedom, respectively. The two-
dimensional wire has width W in the y-direction and extends along the x-
direction (parallel to the Zeeman field). We define the spin-orbit coupling
length lso = ~2(meffαso)−1 and confinement energy EW = ~2(2meffW

2)−1.

2.4.1 Mechanisms for chiral symmetry breaking

Electron-hole symmetry and chiral symmetry,

τxHτx =
{
−H∗ (e-h symmetry),
−H (chiral symmetry), (2.22)

together require that H is real. While the electron-hole symmetry is an
exact symmetry of the Hamiltonian (2.21), the chiral symmetry is broken
by the spin-orbit term pyσx associated with transverse motion [166].

To quantify the stability of multiple zero-energy states, we follow
Ref. [147] and make a unitary transformation H 7→ U†HU ≡ H ′ with
U = exp(iσxτz y/lso). The transformed Hamiltonian,

H ′ =
(
|p|2

2meff
+ U − αso

2lso
− µ

)
τz + VZσxτz + ∆0σyτy

+ αso
~
px[cos(2y/lso)σyτz + sin(2y/lso)σz],

(2.23)

no longer contains py and breaks chiral symmetry through the final term ∝
pxσz. ForW � lso this term produces a splitting δE of pairs of zero-energy
states of order (W/lso)Egap, with Egap ∝ αso the induced superconducting
gap. This simple estimate is an upper bound on the splitting, even smaller
splittings have been found in Refs. [88, 125, 134]. We typically find in our
numerical simulations that δE . 0.05Egap for W . lso.

There are other methods to break chiral symmetry. An externally con-
trollable method is to tilt the magnetic field so that it acquires a nonzero
component in the y-direction, in the plane of the substrate but perpen-
dicular to the axis of the nanowire [165], The orbital effect of a magnetic
field (Lorentz force) also breaks chiral symmetry, but this is expected to
be small compared to the Zeeman effect on the spin. Subband-mixing by
a disorder potential or a position-dependent pairing term preserve chiral
symmetry. This leaves spin-orbit coupling of transverse momentum as the
most significant intrinsic mechanism for chiral symmetry breaking and we
will focus on it in the simulations. We find a transition from symmetry
class D (Q ∈ Z2) to class BDI (Q ∈ Z) if W drops below lso.
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Figure 2.3. Topological phase diagram of the Hamiltonian (2.21) without dis-
order (U ≡ 0) and without any chiral symmetry breaking (αpyσx ≡ 0, symme-
try class BDI). The colored regions give the value of the topological quantum
number Q in the superconducting state (∆0 = 8EW ), while the black lines sepa-
rate regions with different number of propagating modes N in the normal state
(∆0 = 0). The topological phase boundaries are independent of Eso. The blue
line is referred to in Fig. 2.4.

All these considerations apply to noninteracting quasiparticles. In-
teractions have the effect of restricting Q to Z8, so chiral symmetry can
stabilize at most 8 zero-modes at each end of the wire [54, 99]. For N ≤ 8
we expect the universal class BDI results (in particular the conductance
quantization) to be unaffected by interactions.

2.4.2 Class BDI phase diagram

For an infinite clean wire with exact chiral symmetry, Fig. 2.3 shows the
phases with different topological quantum number Q ∈ Z as a function of
Zeeman energy and chemical potential. (A similar phase diagram is given
in Ref. [165].) The phase boundaries are determined from the Hamiltonian
(2.21) by setting αpyσx ≡ 0, U ≡ 0, and demanding that the excitation
gap vanishes. This happens at

px = 0, py = pn = nπ~/W, n = 1, 2, . . . N,
V 2

Z = ∆2
0 + (µ− p2

n/2meff)2, (2.24)

with N the number of propagating modes in the normal state (∆0 = 0).
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Figure 2.4. Conductance of a disordered NS junction, calculated numerically
from the model Hamiltonian (2.21). The chemical potential µ is increased at
constant VZ = 90EW , ∆0 = 8EW (dashed line in the BDI phase diagram of
Fig. 2.3), for three different values of the spin-orbit coupling length lso. Each
curve is for a single disorder realization (of strength U0 = 180EW ). The conduc-
tance quantization at 2, 3, 4 × 2e2/h is lost by chiral symmetry breaking as W
becomes larger than lso.

If one follows the sequence of Q,N values with increasing µ at con-
stant VZ, one sees that |Q| remains equal to N ≥ 1 for a range of chem-
ical potentials (µ − π2EW )2 . V 2

Z . For example, the sequence along the
dashed line is (|Q|, N) = (1, 1), (2, 2), (3, 3), (4, 4), . . .. In view of the in-
equality (2.9), this implies a sequence of 2e2/h conductance steps. The
first quantized conductance plateau emerges when the Zeeman energy ex-
ceeds the superconducting gap (VZ > ∆0). Additional plateaus form at
fields, for which the Zeeman energy becomes larger than the subband
splitting. More specifically, the n-th conductance plateau appears for
V 2
Z = ∆2

0 + E2
Wπ

4(n2 − 1)2/4 (n = 1, 2, 3, . . . ).

2.4.3 Conductance quantization

To demonstrate the conductance quantization we attach a clean normal-
metal lead at x = 0 to the disordered superconducting wire. For x < 0
we thus set ∆0 = 0 and U = 0. The Andreev reflection matrix is cal-
culated numerically by discretizing the Hamiltonian on a square lattice
(lattice constant a = W/20). Disorder is realized by an electrostatic po-
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tential U(x, y) that varies randomly from site to site for x > 0, distributed
uniformly in the interval (−U0, U0).

The results in Fig. 2.4 clearly show the expected behavior: For W =
lso/2 the conductance increases in a sequence of quantized steps, insensi-
tive to disorder, as long as |Q| ∈ {N,N − 1}. The quantization at |Q| ≥ 2
is lost for W = 2lso because of chiral symmetry breaking. The very first
step G = 2e2/h is common to both symmetry classes D and BDI, so it
persists.

2.4.4 Conductance distribution

For |Q| ≤ N − 2 there is no conductance quantization, but we can still
search for the Q-dependence in the statistical distribution of the con-
ductance. In Fig. 2.5 we show the distribution function for N = 4,
|Q| = 0, 1, 2, calculated by averaging the results of the numerical sim-
ulation over disorder realizations. The parameters used are listed in the
caption. The values of the Fermi energy (µN in the normal region and
µS in the superconducting region) were chosen in order to be far from
boundaries where Q or N changes.

We found that the conductance distributions depend sensitively on the
disorder strength, demonstrating that the scattering at the NS interface is
diffusive rather than chaotic. This is as expected, since chaotic scattering
requires a confined geometry (for example, a quantum dot), to fully mix
the scattering channels. Still, by adjusting the disorder strength U0 a
quite good agreement could be obtained with the distribution from the
class BDI circular ensemble calculated in Sec. 2.3.2. Since this is a single
fit parameter for an entire distribution function, we find the agreement
with the circular ensemble quite satisfactory.

2.5 Conclusion
In conclusion, we have developed a scattering theory for superconduct-
ing nanowires with chiral symmetry (symmetry class BDI), relating the
electrical conductance G to the topological quantum number Q ∈ Z. In
a closed system |Q| counts the number of Majorana zero-modes at the
end of the wire, but in our open system these end states have broadened
into a continuum with other nontopological states. Still, the value of |Q|
manifests itself in the conductance as a quantization G = |Q|×2e2/h over
a range of chemical potentials (see Fig. 2.4).
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Figure 2.5. Red histograms: probability distribution of the conductance of the
NS junction, calculated from the model Hamiltonian (2.21) in an ensemble of
disorder realizations. Each panel has the same number of modes N = 4 in the
normal region and a different topological quantum number |Q| = 0, 1, 2 in the
superconductor. The blue curves are the corresponding distributions in the class
BDI circular ensemble, given by Eq. (2.16d). Each panel has the same value
of lso = 2W and ∆0 = 8EW . The other energy scales (in units of EW ) are as
follows: Q = 0: µN = µS = 64, VZ = 14, U0 = 180; |Q| = 1: µN = 64, µS = 88,
VZ = 14, U0 = 180; |Q| = 2: µN = µS = 64, VZ = 34, U0 = 140.
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More generally, even when G is not quantized, the conductance distri-
bution is sensitive to the value of |Q|, as we calculated in the circular en-
semble of random-matrix theory (see Fig. 2.5). Comparison with Ref. [12],
where the conductance distribution was calculated in the absence of chiral
symmetry (symmetry class D with Q ∈ Z2), shows that chiral symmetry
manifests itself even when |Q| ≤ 1 — so even if there is not more than a
single Majorana zero-mode.

The chiral symmetry is an approximate symmetry (unlike the fun-
damental electron-hole symmetry), requiring in particular a wire width
W below the spin-orbit coupling length lso. Our model calculations in
Fig. 2.4 show that chiral symmetry is lost for W & 2lso and well pre-
served for W . lso/2. Existing experiments [109, 47, 43] on InAs and
InSb nanowires typically have lso ' 200 nm and W ' 100 nm. These are
therefore in the chiral regime and can support more than a single zero-
mode at each end, once the Zeeman energy becomes comparable to the
subband spacing.
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2.6 Appendix

2.6.1 Calculation of the Andreev reflection eigenvalue dis-
tribution in the BDI circular ensemble

In this Appendix we derive the probability distribution P ({Rm}) of the
Béri degenerate Andreev reflection eigenvalues R1, . . . , RM in the circu-
lar ensemble of symmetry class BDI (circular chiral orthogonal ensemble).
The calculation follows the standard procedure of random-matrix the-
ory [58], and is technically similar to the calculation for symmetry class
D (circular real ensemble) presented in Ref. [12].

The probability distribution P ({Rm}) is determined by the invariant
(Haar) measure dµ(r) = r†dr = δr, which for a given topological quantum
number Q characterizes the uniform distribution of scattering matrices in
the circular ensemble subject to the symmetry constraints of Eq. (2.5).
Since any scattering matrix in the ensemble can be decomposed accord-
ing to Eq. (2.11), i.e. parameterized in terms of the angles αm, we can
transform the invariant measure into dµ(r) = J

∏
i dpi

∏
m dαm. The pi’s

denote the degrees of freedom of the matrix of eigenvectors U and J is the
Jacobian of the transformation. From this expression the distribution of
the angles αm follows via integration over the pi’s. Up to a normalization
constant we have

P ({αm}) ∝
ˆ
J
∏
i

dpi . (2.25)

The polar decomposition in Eq. (2.11) is not unique. As in Ref. [12]
the redundant degrees of freedom can be removed by restricting the inde-
pendent parameters pi in the matrix of eigenvectors U . The total number
of degrees of freedom furthermore depends on N as well as on Q. This is
best seen if one considers the reflection matrix r̃ in a basis where it is a
real orthogonal and symmetric matrix, of the form

r̃ = O

(
11N+Q 0

0 −11N−Q

)
OT , (2.26)

with O a 2N × 2N real orthogonal matrix. In this basis the topologi-
cal quantum number is given by Q = 1

2 Tr r̃. The upper-left and lower-
right blocks do not change under an additional orthogonal transformation
O′N+Q ⊕O′′N−Q. Group division readily gives the total number of degrees
of freedom: dimO(2N) − dimO(N + Q) − dimO(N − Q) = N2 − Q2.
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Since there are M angular parameters αm, there must be N2 − Q2 −M
independent degrees of freedom pi in the matrix of eigenvectors U .

In order to obtain the probability distribution from Eq. (2.25) we need
the Jacobian J . It can be determined from the metric tensor gµν , which
can be extracted from the trace Tr δrδr†, when it is expressed in terms of
the infinitesimals dαm and dpi (collectively denoted as dxµ):

Tr δrδr† =
∑
µ, ν

gµνdxµdxν . (2.27)

In view of the polar decomposition (2.11) one has

W †drW ∗ = δWL+ dL+ LδW T , (2.28)

where we abbreviated

W =
(
U 0
0 U∗

)
, L =

(
Γ Λ

ΛT Γ

)
. (2.29)

Unitarity ensures 0 = d(U †U) = dU †U + U †dU ⇒ δU † = −δU . Substitu-
tion of Eqs. (2.28) and (2.29) into Tr δrδr† = Tr drdr† = Tr (W †drW ∗W Tdr†W )
gives

Tr δrδr† = Tr (dLdL† − 2LδW TL†δW − 2δW 2) . (2.30)

From the block structure of W and L we find Tr δW 2 = 2 Tr δU2 and

Tr (LδW TL†δW ) = 2 Tr (ΓδUΓδUT − ΛδUΛδU), (2.31)

where we have used ΓT = Γ∗ = Γ and Λ† = Λ.
It is convenient to express Tr δrδr† in terms of the form TrAA† =∑

ij |Aij |2. Using ΓΓ + ΛΛ = 11N we find

Tr δrδr† = Tr dLdL† + 2Tr (ΓδUT + δUΓ)(ΓδUT + δUΓ)†

+ 2Tr (ΛδU − δUΛ)(ΛδU − δUΛ)†

≡ T1 + T2 + T3. (2.32)

The first trace simply evaluates to

T1 = 2
N∑
ij=1

(
|dΓij |2 + |dΓij |2

)
= 4

M∑
m=1

(dαm)2 . (2.33)
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The remaining two traces T2 and T3 need to be calculated using the
block structure of Γ and Λ in Eq. (2.12). We work out the calculation for
Q = 0, N even (⇒ ζ = 0). The two matrices Λ and Γ are in this case fully
described by M = N/2 blocks of 2× 2 matrices. The two traces evaluate
to

1
4T2 =

M∑
k=1

2 cos2 αk
{
|δU2k,2k|2 + |δU2k−1,2k−1|2 + 2 [Im (δU2k−1,2k)]2

}

+
M∑

k<l=1

{
(cos2 αk + cos2 αl)(|δU2k,2l|2 + |δU2k,2l−1|2 + |δU2k−1,2l|2

+|δU2k−1,2l−1|2)− 2 cosαl cosαk Re
(
δU2

2l,2k + δU2
2l,2k−1

+δU2
2l−1,2k + δU2

2l−1,2k−1

)}
, (2.34)

1
4T3 =

M∑
k=1

sin2 αk
{
|δU2k,2k − δU2k−1,2k−1|2 + 4 [Im (δU2k−1,2k)]2

}

+
M∑

k<l=1

{
(sin2 αk + sin2 αl)

(
|δU2k,2l|2 + |δU2k,2l−1|2 + |δU2k−1,2l|2

+|δU2k−1,2l−1|2
)

+ 4 sinαk sinαl Re
(
δU2k,2l−1δU

∗
2k−1,2l

−δU2k,2lδU
∗
2k−1,2l−1

)}
. (2.35)

Like Γ and Λ the elements of the matrix δU can be grouped into sep-
arate 2× 2 blocks, denoted by the block indices k, l = 1, . . . ,M . We first
consider the block-off-diagonal part for which we can choose as indepen-
dent parameters

δU2k,2l, δU2k,2l−1, δU2k−1,2l, δU2k−1,2l−1,

with 1 ≤ k < l ≤M . The real and imaginary parts, denoted by δUR, δU I,
produce a total of 4M(M − 1) independent parameters. Note that δU † =
−δU immediately implies δUR

2k,2l = −δUR
2l,2k, δU I

2k,2l = δU I
2l,2k, and so on.
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For given values of k and l the contribution to Tr δrδr† has the form

a
[
(δUR

2k,2l)2+(δUR
2k,2l−1)2+(δUR

2k−1,2l)2+(δUR
2k−1,2l−1)2

]
+ b
[
(δU I

2k,2l)2+(δU I
2k,2l−1)2+(δU I

2k−1,2l)2+(δU I
2k−1,2l−1)2

]
+ 2c

[
δUR

2k,2l−1δU
R
2k−1,2l + δU I

2k,2l−1δU
I
2k−1,2l − δUR

2k,2lδU
R
2k−1,2l−1

− δU I
2k,2lδU

I
2k−1,2l−1

]
,

where we abbreviated a = 2(1 − cosαk cosαl), b = 2(1 + cosαk cosαl),
and c = 2 sinαk sinαl.

The contribution to the metric tensor is a block matrix
a −c 0 0
−c a 0 0
0 0 a c
0 0 c a

⊕

b −c 0 0
−c b 0 0
0 0 b c
0 0 c b

 ,

where the first and the second block correspond to the real and imaginary
parts, respectively. The determinant of this block matrix is 256 (sin2 αk−
sin2 αl)4. This gives us the contribution to the Jacobian from the off-
diagonal matrix elements

Joff-diagonal =
M∏

k<l=1
(sin2 αk − sin2 αl)2. (2.36)

Next we consider the diagonal 2 × 2 blocks. Anti-Hermiticity of δU
implies δUR

ii = 0 (i = 1, . . . , N). We choose the 3M independent parame-
ters

δU I
2k,2k, δU I

2k−1,2k−1, δU I
2k−1,2k .

The contribution to Tr δrδr† for a given value k has the form

v
[
(δU I

2k,2k)2 + (δU I
2k−1,2k−1)2

]
− 2wδU I

2k,2kδU
I
2k−1,2k−1 + 4(δU I

2k−1,2k)2 ,

where v = 1 + cos2 αk and w = sin2 αk. Note that δU I
2k−1,2k is fully

decoupled. The contribution to the metric tensor is(
v −w
−w v

)
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with a determinant of 4 cos2 αk. This leads to a contribution to the Jaco-
bian from the diagonal matrix elements

Jdiagonal =
M∏
k=1

(1− sin2 αk)1/2 . (2.37)

The total number of independent parameters that we have accounted
for is 4M2 = N2 (including theM angular parameters αm). This is exactly
the number we expect for N even and Q = 0. Collecting all the terms
that contribute to the Jacobian in Eq. (2.25), we obtain the probability
distribution

P (αk) ∝
M∏
k=1

(1− sin2 αk)1/2
M∏

k<l=1
(sin2 αk − sin2 αl)2. (2.38)

Integration over the N2 − |Q|2 −M ancillary degrees of freedom of the
matrix of eigenvectors U only gives rise to an overall constant. A transfor-
mation of variables from αm to Rm = sin2 αm gives the distribution (2.13)
of the twofold degenerate Andreev reflection values in the case Q = 0, N
even (ζ = 0). The cases Q 6= 0 and/or N odd are worked out similarly.

2.6.2 Average conductance in the BDI circular ensemble

In the circular ensemble of Sec. 2.3.2 the 2N × 2N reflection matrix r is
uniformly distributed in the unitary group, subject to the restrictions of
electron-hole symmetry and chiral symmetry. The average conductance
can be calculated directly by integration over the unitary group. We give
this calculation here, as a check on the result (2.17) derived by going
through the distribution of Andreev reflection eigenvalues.

Unitarity (rr† = 1) implies that the expression (2.1) for the conduc-
tance can be written equivalently as

G = 1
4G0 Tr

(
1 + rher

†
he + rehr

†
eh − reer

†
ee − rhhr

†
hh
)

= 1
4G0 Tr

(
1− τzrτzr†

)
. (2.39)

Electron-hole symmetry (r = τxr
∗τx) and chiral symmetry (r = rT ) con-

strain r to the form

r = −ieiτxπ/4ODQOT eiτxπ/4. (2.40)
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The matrix O is real orthogonal (OOT = 1). The diagonal matrix DQ has
entries ±1 on the diagonal with TrDQ = 2Q, consistent with Eq. (2.6).
Substitution into Eq. (2.39) gives

G = 1
4G0 Tr

(
1 + τyODQOT τyODQOT

)
. (2.41)

In the circular ensemble the matrix O is uniformly distributed with
respect to the Haar measure for 2N×2N orthogonal matrices. The average
of a product of four orthogonal matrices equals [41]

〈OαaOβbOγcOδd〉 =
2N + 1

2N(2N − 1)(2N + 2)
(
δαβδabδγδδcd + δαγδacδβδδbd + δαδδadδβγδbc

)
− 1

2N(2N − 1)(2N + 2)
(
δαβδacδγδδbd + δαβδadδγδδbc + δαγδabδβδδcd

+ δαγδadδβδδbc + δαδδabδβγδcd + δαδδacδβγδbd
)
. (2.42)

The average of Eq. (2.39) becomes

〈G〉 = 1
4G0

(
2N + 4Q2 − 2N

2N − 1

)
, (2.43)

which is just Eq. (2.17).



Chapter 3

Phase-locked
magnetoconductance
oscillations as a probe of
Majorana edge states

3.1 Introduction
Two-dimensional superconductors can support propagating edge states
that are not localized by disorder for topological reasons [177, 149, 130],
as a superconducting analogue of the metallic edge states in the quantum
Hall effect or quantum spin-Hall effect [73, 127]. Unlike the dispersionless
“flat band” edge states of nodal superconductors [84], which leave a strong
signature in the density of states, the propagating edge states have not
yet been observed. They have been predicted in a variety of materials —
including strontium ruthenate [100], heavily doped graphene [114], and
topological insulators on a superconducting substrate [61].

The symmetry-based classification of topological superconductors lists
three types of propagating edge states [138]: chiral Dirac modes, and chiral
or helical Majorana modes (see Table 3.1). A spin-singlet superconductor
with dx2−y2 + idxy orbital pairing supports edge states that propagate in
one direction only (chiral) and are not selfconjugate (Dirac fermions). For
spin-triplet px + ipy pairing the edge states are chiral and selfconjugate
(Majorana fermions). Counterpropagating (helical) Majorana modes are
also stable against localization [126, 161, 143], unlike counterpropagating



50 Chapter 3. Phase-locked magnetoconductance oscillations. . .

pair potential edge state symmetry class
singlet, dx2−y2 + idxy chiral Dirac C

triplet, px + ipy chiral Majorana D
triplet, px ± ipy helical Majorana DIII

Table 3.1. The three types of propagating edge states in a two-dimensional
topological superconductor.

Dirac modes.
The topological protection allows for correlations in the electrical cur-

rent measured at distant points on the boundary connected by an edge
state [94, 151, 40, 97, 159, 96, 17]. For example, in an early study of
this type, Law, Lee, and Ng considered a superconducting disc deposited
on the surface of a three-dimensional topological insulator [94]. A chiral
Majorana mode is confined to the perimeter of the disc, when the surface
outside the superconductor is gapped by a ferromagnet [61]. Two point
contacts attached to the perimeter measure a correlated current, mediated
by the circulating edge state, and dependent on the number of magnetic
vortices inside the disc. It is essential that the contacts share a boundary.
If the disc would be replaced by a ring, with one contact at the inner and
one at the outer perimeter, then there would be no correlations.

Here we revisit this problem of edge-state mediated correlations in a
superconducting ring, to show that the physics changes qualitatively if the
ring contains a weak link forming a Josephson junction (see Fig. 3.1). The
weak link is a one-dimensional subsystem of the two-dimensional topolog-
ical superconductor, with its own topological phase transition [163]. Since
magnetic flux Φ can enter into the ring along the junction, there is no
flux quantization and we can ask for the Φ-dependence of the conduc-
tances G1 and G2 measured between the grounded superconductor and
either the inner or the outer perimeter. Dirac and Majorana modes both
produce h/e-periodic oscillations in the conductances, but only Majorana
modes can correlate the oscillations in G1 and G2. The mechanism by
which the inner and outer perimeter communicate is a closing of the ex-
citation gap when the Josephson junction undergoes a one-dimensional
topological phase transition. The same conclusion was reached recently
by Wieder, Zhang, and Kane [183].

The outline of the paper is as follows. In the next section we formulate
the scattering problem of Andreev reflection from the perimeter of a super-
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Figure 3.1. Left panel: Superconducting ring (S) containing a weak link (J),
forming a flux-biased Josephson junction. A current can be injected into the
grounded superconductor from a voltage-biased normal-metal (N) contact at the
inner or outer perimeter. The Andreev conductance Gn = I/Vn is the ratio of
the current-to-ground I and the applied voltage Vn to contact n = 1, 2 (with
V = 0 for the other contact). Right panel: Scattering processes at the outer
perimeter, involving the coupling of a chiral edge state to 2N incoming and 2N
outgoing electron-hole modes at the normal metal. This coupling introduces a
dependence of the conductance on the phase difference φ = (2e/~)Φ across the
Josephson junction and on its topological quantum number σ.

conducting ring, to obtain a general formula for the electrical conductance.
The conductance G(Φ, σ) depends in general both on the enclosed flux Φ
and on the Z2 topological quantum number σ of the Josephson junction.
A topological phase transition switches σ between +1 and −1, resulting
in a jump δG of the conductance. In Sec. 3.3 we calculate the probability
distribution P (δG) in an ensemble of disordered rings, using the method of
random-matrix theory. These are model-independent results, which take
as input only the symmetry class of the topological superconductor. We
then turn, in Sec. 4.2, to specific model Hamiltonians in each symmetry
class. The numerical results for these models are discussed in Sec. 3.5
to arrive at a set of experimentally observable signatures of (1) the pres-
ence of circulating edge states and (2) their Majorana or Dirac fermionic
nature.

3.2 Scattering formula for the conductance

We formulate the scattering problem for a superconducting ring inter-
rupted by a Josephson junction, enclosing a magnetic flux Φ. The ring
is contacted at the inner or outer perimeter by a normal-metal electrode.
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Far away from any gap closings there is no transmission between the in-
ner and outer perimeter, so we can treat these two scattering problems
independently. We calculate the Andreev conductance G between the nor-
mal metal (N) and the (grounded) superconductor (S). An h/e-periodic
flux dependence of the conductance serves as a signature of edge states
circulating along the ring.

As illustrated in Fig. 3.1, the NS interface is described by a scattering
matrix S, with submatrices rN (reflection back into the normal metal),
tedge,N, tN,edge (transmission from the normal metal into an edge state, and
vice versa), and tedge (transmission along an edge state without entering
the normal metal):

S =
(

rN tN,edge
tedge,N tedge

)
. (3.1)

Incoming and outgoing wave amplitudes at the NS interface are related
by

aout
N = rNa

in
N + tN,edgea

in
edge (3.2)

aout
edge = tedge,Na

in
N + tedgea

in
edge. (3.3)

The scattering matrix SJ of the Josephson junction describes how the
edge states return back to the NS interface after encircling the ring,

ain
edge = SJa

out
edge. (3.4)

Elimination of the edge state amplitudes gives the relation aout
N = Rain

N ,
with the effective reflection matrix of the NS interface,

R = rN + tN,edge(1− SJtedge)−1SJtedge,N. (3.5)

The matrix R is unitary, RR† = 1, with electron and hole submatrices,

R =
(
Ree Reh
Rhe Rhh

)
, (3.6)

describing normal reflection (from electron to electron or from hole to
hole) and Andreev reflection (from electron to hole or vice versa). The
linear response conductance (in the zero-temperature limit) is given by

G = G0 Tr
(
1−ReeR

†
ee +RheR

†
he
)

= 2G0 TrRheR
†
he, (3.7)
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with G0 = e2/h the conductance quantum. It it convenient to rewrite this
without reference to the submatrices,

G/G0 = 1
2 Tr

(
1−RτzR†τz

)
, τz =

(
1 0
0 −1

)
. (3.8)

The Pauli matrix τz acts on the electron and hole degrees of freedom.
The edge channels of a spin-triplet p-wave superconductor are self-

conjugate Majorana modes. It is then useful, following Refs. [151, 96], to
transform from the electron-hole basis to the Majorana basis,

R 7→ URU†, U =
√

1
2

(
1 1
−i i

)
. (3.9)

Electron-hole symmetry at the Fermi level requires that the scattering
matrix elements are real in the Majorana basis, so R† = RT = R−1. Be-
cause the Pauli matrix τz transforms into UτzU† = −τy, the conductance
is given by

G/G0 = 1
2 Tr

(
1−RτyRTτy

)
, τy =

(
0 −i
i 0

)
. (3.10)

In what follows we will work in the electron-hole basis (3.8) for spin-
singlet d-wave pairing (when the modes are not self-conjugate) and in the
Majorana basis (3.10) for spin-triplet p-wave pairing.

3.3 Random-matrix theory
The effect on the Andreev conductance of a topological phase transition
at the Josephson junction can be analyzed in a model-independent way
by means of random-matrix theory. We will first do this for an unpaired
chiral Majorana mode and then for a pair of helical Majorana modes.
The Josephson junction cannot undergo a topological phase transition for
chiral Dirac modes, and will generically not for an even number of chiral
Majorana modes, so these two cases are not considered in this section.

3.3.1 Chiral Majorana mode

The conductance depends on the magnetic flux in a way which is restricted
by electron-hole symmetry at the Fermi level. The restrictions are most
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severe for an unpaired chiral Majorana mode: The only phase shift allowed
by electron-hole symmetry is π (mod 2π), so the conductance remains flux
independent except when the enclosed flux is h/4e (mod h/2e). Let us
investigate this case in some detail.

A single Majorana mode corresponds to scalars SJ and tedge, to a row
vector tedge,N, and to a column vector tN,edge. The contraction tedge,Nτyt

T
edge,N

produces a scalar, which vanishes because τy is an antisymmetric matrix.
This eliminates one term when we substitute Eq. (3.5) into Eq. (3.10).
What remains is

G/G0 = 1
2 Tr

(
1− rNτyr

T
Nτy

)
− SJ

1− SJtedge
tedge,Nτyr

T
NτytN,edge. (3.11)

Because SJ is an orthogonal matrix consisting of a single matrix ele-
ment, it can only equal ±1. Including a π phase shift from the winding
around the ring, we define

σ = −SJ ∈ {+1,−1} (3.12)

as the topological quantum number of the Josephson junction. The effec-
tive reflection matrix R of the NS interface, constructed from Eq. (3.5),
inherits this topological quantum number,

DetR = σ. (3.13)

This follows from general considerations for a topological quantum number
in symmetry class D [3], but one can check it explicitly from Eq. (3.5).

The conductance for a ring with an unpaired Majorana mode is flux
independent — except at topological phase transitions, when σ changes
sign and the conductance jumps by an amount ±δG with

δG = G(σ = 1)−G(σ = −1). (3.14)

Using Eq. (3.11) this can be written as

δG/G0 = 2
1− t2edge

tedge,Nτyr
T
NτytN,edge. (3.15)

For a disordered NS interface we may consider an ensemble of scatter-
ing matrices S, generated by varying the disorder realization. A simple



3.3 Random-matrix theory 55

choice is the circular real ensemble (CRE) of class-D random-matrix the-
ory [151, 7, 12], for which S is uniformly distributed in SO(2N + 1): The
group of orthogonal (2N + 1)× (2N + 1) matrices O with DetO = 1. The
integer N counts the number of modes in the contact with the normal
metal, including the spin degree of freedom. The factor of 2 in 2N + 1
accounts for the electron-hole degree of freedom and the +1 refers to the
unpaired Majorana mode.

The effective reflection matrix R, constructed from S via Eq. (3.5),
inherits the uniform CRE distribution in Oσ(2N) — the set of 2N × 2N
orthogonal matrices with determinant σ. The uniformity of R ∈ Oσ(2N)
is a consequence of the uniformity of S ∈ SO(2N + 1) because the trans-
formation S 7→ S · (U0⊕1) with U0 ∈ SO(2N) maps R onto R ·U0 without
changing the determinant.

If N = 1 or N = 2 the distribution of δG follows directly from the
known [12] distribution Pσ(G) of the conductance in the CRE: In both
these cases P−(G) = δ(G − 2G0) is a delta-function distribution, so we
may equate P (δG) = P+(G = δG+ 2G0). Since P+(G) = δ(G) for N = 1
and uniform in [0, 4G0] for N = 2, we arrive at

P (δG) = δ(δG+ 2G0), for N = 1,
P (δG) = 1/4G0, −2G0 ≤ G ≤ 2G0, for N = 2.

(3.16)

ForN > 2 the knowledge of Pσ(G) is not sufficient to determine P (δG),
but it can be determined directly from the uniform distribution of S in
SO(2N + 1). We have carried out this calculation numerically for small
N , see Fig. 3.2.

For large N we can approximate the matrix elements of S by inde-
pendent Gaussians, of zero mean and variance 1/2N . We define the unit
vectors

û = itedge,Nτy
(1− t2edge)1/2 , v̂ = iτytN,edge

(1− t2edge)1/2 , (3.17)

so that the conductance change (3.15) is given by

δG/G0 = −2
2N∑

n,m=1
ûnv̂m(rN)mn. (3.18)

In the large-N Gaussian approximation, δG/G0 is the sum of Gaus-
sians with zero mean and variance (2/N)(ûnv̂m)2, so its distribution is
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Figure 3.2. Probability distribution of the change δG in the conductance of the
superconducting ring when the Josephson junction switches from topologically
trivial to nontrivial. These are results from random-matrix theory in the circular
real ensemble (CRE, symmetry class D), for an unpaired chiral Majorana mode
circulating along the ring and N modes in the contact to the normal metal.
The solid lines for N = 1, 2 are from Eq. (3.16), the histograms are obtained
numerically by averaging the scattering matrix S uniformly over SO(2N + 1),
and the dashed curves are the large-N Gaussian limit (3.19).

again a Gaussian with zero mean and variance

Var (δG/G0) = 2
N

2N∑
n,m=1

(ûnv̂m)2 = 2
N
, N � 1. (3.19)

3.3.2 Helical Majorana modes

Spin-triplet pairing with time-reversal symmetry can produce a pair of
counterpropagating (helical) Majorana modes. This is symmetry class
DIII. In the Majorana basis the scattering matrix is orthogonal, as in
class D, with the additional time-reversal symmetry condition [7]

S = τyS
Tτy. (3.20)

This is equivalent to the requirement that the matrix product S̃ ≡ iτyS
is both orthogonal (S̃† = S̃T = S̃−1) and antisymmetric (S̃T = −S̃). The
class-DIII random-matrix ensemble (T-CRE) is generated by drawing a
matrix O from the CRE and constructing

S̃ ≡ iτyS = O · iτy ·OT, O ∈ SO(4M + 2). (3.21)
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The channel number M = N/2 again only refers to the orbital degree of
freedom, each mode having a twofold Kramers degeneracy.

The Josephson junction breaks time-reversal symmetry, for φ 6= 0
(mod π), so it may couple the two edge states and cause backscattering
at the junction. In the simplest description (not made in the numerical
calculations of the next section) we neglect this coupling and set

SJ = −σ
(

1 0
0 1

)
⇒ S̃J ≡ iτySJ = −iστy. (3.22)

The Pfaffian of S̃J is the class-DIII topological invariant [65],

σ = −Pf S̃J ∈ {+1,−1}. (3.23)

The effective reflection matrix R, constructed from S and SJ via Eq.
(3.5), inherits this topological invariant,

Pf (iτyR) = σ, (3.24)

and also inherits the uniform distribution of the T-CRE:

R̃ ≡ iτyR = O · iτy ·OT, O ∈ Oσ(4M). (3.25)

We seek the probability distribution P (δG) of the conductance change
upon a topological phase transition in the T-CRE. For N = 2M = 2
the known [12] probability distribution Pσ(G) of the conductance gives
sufficient information, since P−(G) = δ(G − 4G0) ⇒ P (δG) = P+(G =
δG+ 4G0), resulting in

P (δG/G0) = 1
8
√

1 + δG/4G0
, −4 ≤ δG/G0 ≤ 0,

for N = 2. (3.26)

The distribution P (δG) for M > 1 has been obtained by generating
random matrices O uniformly in SO(4M + 2) and then constructing S in
the T-CRE via Eq. (3.21). Results are shown in Fig. 3.3. For N � 1 we
have again a Gaussian distribution with zero mean and variance

Var (δG/G0) = 8
N
, N � 1, (3.27)

four times larger than Eq. (3.19) because of the twofold Kramers degen-
eracy.
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Figure 3.3. Probability distribution of the conductance change upon a topolog-
ical phase transition in symmetry class DIII, involving a pair of helical Majorana
modes circulating along the ring. The contact to the normal metal has M or-
bital modes, each with a twofold Kramers degeneracy. The results are from the
time-reversally invariant circular real ensemble (T-CRE) of random-matrix the-
ory. The solid line for M = 1 is from Eq. (3.26), the histograms are obtained
numerically, and the dashed curves are the large-N Gaussian limit (3.27).

3.4 Results for model Hamiltonians
The analytical considerations of the previous section rely only on the fun-
damental symmetries of the Hamiltonian, without reference to a particular
model. Here we present numerical results for model Hamiltonians in the
various symmetry classes.

3.4.1 Chiral pair potentials

We consider a two-dimensional superconductor in the x-y plane, with
pair potential ∆̂ dependent on the momentum p = −i~(∂x, ∂y). The
Bogoliubov-De Gennes Hamiltonian, in the electron-hole basis, has the
form

H =
(
H ∆̂
∆̂† −H∗

)
. (3.28)

It contains the single-particle Hamiltonian

H = (p− eA)2/2meff − µ+ U, (3.29)

with A(r) the vector potential, meff the effective mass, µ the chemical
potential, and U(r) an electrostatic disorder potential. (We conveniently
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set the electronic charge to +e.)
The electron-hole symmetry relations are different for the different

symmetry classes,

∆̂†D = −∆̂∗D ⇒ HD = −τxH∗Dτx, (3.30a)

∆̂†C = ∆̂∗C ⇒ HC = −τyH∗Cτy. (3.30b)

As specific models we take in class D the spin-triplet chiral p-wave pairing

∆̂D = p−1
F {∆(r), px + ipy}, (3.31)

with operators symmetrized by {a, b} = 1
2(ab + ba). In class C we take

the spin-singlet chiral d-wave pairing

∆̂C =
∑
α,β

(p− eA)αMαβ(p+ eA)β, (3.32a)

M(r) = p−2
F ∆(r)

(
1 i
i −1

)
. (3.32b)

Both pair potentials properly produce a gauge invariant Bogoliubov-De
Gennes Hamiltonian, 1

e−iχτzH(A,∆)eiχτz = H
(
A− ~

e
∇χ, e−2iχ∆

)
. (3.33)

Since ∆̂D = ∆0e
iθ and ∆̂C = ∆0e

2iθ when ∆(r) = ∆0, A = 0, and
p = pF(cos θ, sin θ), the magnitude of the gap is independent of the ori-
entation. We expect that more general anisotropic models will give the
same qualitative results — provided that the gap does not vanish in any
direction.

The ring has a weak link of length Router − Rinner, with Rinner and
Router the inner and outer radius of the ring. We assume that the ring is
wide compared to the London penetration depth λL but narrow compared
to the Josephson penetration depth λJ,

λL � Router −Rinner � λJ. (3.34)
1The symmetry requirement (3.30) and the requirement of gauge invariance (3.33)

constrain the functional form of the pair potential in the Bogoliubov-De Gennes Hamil-
tonian, but some freedom is left. An alternative gauge invariant d-wave pair potential
was introduced by Vafek et al. [172]
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The first inequality ensures that the magnetic field is screened from the
ring except at the weak link, along which a flux Φ can enter. The second
inequality prevents vortices to appear inside the weak link. The gauge
invariant phase difference across the weak link then has a uniform value
φ = (2e/~)Φ. We will use a gauge with a real uniform order parameter
∆(r) = ∆0 and a delta-function vector potential

A = Φ θ(−y)δ(x)x̂, (3.35)

for a Josephson junction at x = 0 (aligned along the negative y-axis).

3.4.2 Helical pair potential

We construct a model Hamiltonian with helical pairing from two time-
reversed copies of the class-D chiral p-wave pairing, px ± ipy. Spin-orbit
coupling of the Rashba form couples the spin-up px + ipy sector with the
spin-down px− ipy sector, promoting the symmetry class from D to DIII.

The Bogoliubov-De Gennes Hamiltonian (3.28) contains the single-
particle Hamiltonian

HDIII =
[
(p− eA)2/2meff − µ+ U

]
σ0 + αso(pxσy − pyσx), (3.36)

where σx, σy, σz are the Pauli matrices acting on the spin degree of freedom
and σ0 is the corresponding unit matrix. The spin-orbit coupling strength
is denoted by αso. The helical pair potential is given by

∆̂DIII = p−1
F {∆(r), pxσz + ipyσ0}. (3.37)

The electron-hole symmetry requirement in class DIII is the same as
in class D, cf. Eq. (3.30),

∆̂†DIII = −∆̂∗DIII ⇒ HDIII = −τxH∗DIIIτx. (3.38)

ForA = 0 and real ∆ the class-DIII Hamiltonian satisfies the time reversal
symmetry

HDIII = σyH∗DIIIσy. (3.39)

3.4.3 Topological phase transition at the Josephson junc-
tion

The phase transition in classes D and DIII is evidenced by a closing of
the excitation gap at the Josephson junction when φ = π (mod 2π). The
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Figure 3.4. Excitation spectrum of an infinitely long Josephson junction along
the y-axis, for different values of the phase difference φ, calculated numerically
from the discretized Bogoliubov-De Gennes Hamiltonian (3.28). Panel a) is for
the class-D chiral p-wave pair potential (3.31) and panel b) for the class-DIII
helical p-wave pair potential (3.38). The closing of the excitation gap at φ = π
is topologically protected. [Model parameters are the same as in Fig. 3.6]

gap closing and reopening is accompanied [3, 65] by a sign change of the
topological quantum number σ = DetR (in class D) or σ = Pf iτyR (in
class DIII). In Fig. 3.4 we illustrate the gap closing for the chiral and
helical p-wave pairings (3.31) and (3.38).

Away from φ = π the gap immediately opens in class D, while the gap
closing persists for some range of φ in class DIII. This is a consequence of
translational invariance along the weak link, see App. 3.6.1. Only the gap
closing at φ = π is topologically protected.

In class C there is no gap closing that is topologically protected. How-
ever, as explained in App. 3.6.1, the combination of translational invari-
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Figure 3.5. Same as Fig. 3.4, for a class-C chiral d-wave pair potential. The two
curves are for φ = π, with and without ±x symmetry of the Josephson junction
along the y-axis. The gap closing now has no topological protection, but requires
a spatial symmetry.

ance along the y-axis and x 7→ −x reflection symmetry allow for a gap
closing at φ = π (mod 2π). We show this in Fig. 3.5 for the chiral d-wave
pairing (3.32). Disorder will break these symmetries and remove the gap
closing.

3.4.4 Numerical results

We have discretized the Bogoliubov-De Gennes Hamiltonian on a square
lattice (lattice constant a, hopping amplitude t, see App. 3.6.2). The
geometry is shown in Fig. 3.1, with a pair of normal-metal leads (width
30 a) attached to the inner and outer perimeter (radii 50 a and 100 a).

The leads are modeled by setting ∆0,A, αso, and U all equal to zero, at
a chemical potential µN = 0.5 t for which there are M = 6 orbital modes.
Each of these modes is spin-degenerate when coupled to the chiral d-wave
or helical p-wave superconductor, and nondegenerate when coupled to the
chiral p-wave superconductor.

At the weak link the hopping matrix elements are reduced such that
the transmission probability per mode is . 0.1. Disorder in the su-
perconductor is introduced by a random on-site potential U(x, y), uni-
formly distributed in the interval (−Udisorder/2, Udisorder/2). We took
Udisorder = 0.7 t.

We solve the scattering problem numerically [185], to obtain the scat-
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tering matrix S for the electron (e) and hole (h) modes incident on the
superconductor from the inner contact (1) and the outer contact (2). We
then calculate the Andreev conductances G1 and G2 from the outer or
inner contact to ground,

G1 = e2

h
Tr
(
1− S1e,1eS

†
1e,1e + S1h,1eS

†
1h,1e

)
, (3.40)

G2 = e2

h
Tr
(
1− S2e,2eS

†
2e,2e + S2h,2eS

†
2h,2e

)
. (3.41)

This expression holds also at the gap closing, when there is a nonzero
transmission probability between contacts 1 and 2, under the assumption
that contact 2 is grounded for the measurement of G1 and contact 1 is
grounded for the measurement of G2.

To probe the gap closing we also calculate the thermal conductance

Gth = π2k2
BT0

6h Tr
(
S2e,1eS

†
2e,1e + S2h,1eS

†
2h,1e

+ S2h,1hS
†
2h,1h + S2e,1hS

†
2e,1h

)
, (3.42)

which measures the thermal current between the inner and outer perimeter
at temperatures T0 and T0 + δT .

Results are shown in Fig. 3.6 for several disorder realizations. The
results for the electrical conductance (top row) will be discussed in the next
section, in connection with experimental probes for Dirac or Majorana
edge modes.

The thermal conductance (bottom row) is not easily measured, but is
included here because it illustrates in a striking way the significance of
topological protection for a gap closing. The change in sign of the topo-
logical quantum number at the class-D phase transition results in a peak
of the thermal conductance that is quantized [3] in units of the thermal
quantum π2k2

BT0/6h, see Fig. 3.6d. The gap closing in class C has no
topological protection, there is no sign change of a topological quantum
number and no quantized peak, see Fig. 3.6f. The class-DIII gap closing
has topological protection (no backscattering) if it happens when the flux
is a multiple of h/4e, so time-reversal symmetry is preserved. Disorder
leads to small displacements of the transition away from h/4e, allowing
for backscattering and resulting in a small deviation of the thermal con-
ductance peak from the quantized value (see Fig. 3.6e).
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3.5 Discussion

The numerical results of Fig. 3.6a,b,c illustrate how circulating edge states
manifest themselves in the magnetoconductance of the ring. All three
types of edge states introduce a flux dependence with a period of twice
the superconducting flux quantum Φ0 = h/2e. The magnetoconductance
oscillations are sample specific, depending on the disorder realization. The
inner and outer perimeter experience a different impurity potential and
thus show a different magnetoconductance, but with the same h/e pe-
riodicity. A measurement of the fundamental frequency of the Fourier
transformed magnetoconductance would be an unambiguous way to es-
tablish the presence of circulating edge states.

The magnetoconductance contains additional information, it can iden-
tify unpaired (chiral or helical) Majorana modes. These produce jumps
δG in the conductance when the flux is close to an odd multiple of Φ0/2,
associated with a topological phase transition at the Josephson junction.
Both the sign and magnitude of δG is disorder dependent and different
at the inner and outer perimeter, but the flux Φc at which the conduc-
tance jumps lines up. Notice that even when different disorder realizations
cause a small shift in Φc (compare red and blue curves in Fig. 3.6a), the
conductance at the inner and outer perimeter jumps at precisely the same
Φc (compare solid and dashed curves). This phase locking is a striking
signature of a topological phase transition at the Josephson junction.

A measurement of the fundamental frequency component cos(Φ/2Φ0+
α) of the magnetoconductance at the inner and outer perimeter of the ring
would therefore show a random and uncorrelated phase α for Dirac modes,
and a correlated phase peaked at 0 (modulo π) for an unpaired Majorana
mode.

These magnetoconductance signatures of Dirac and Majorana edge
states can be helpful in the ongoing search for topological superconduc-
tors. Recent attention has focused on hybrid structures combining strong
spin-orbit coupling with induced s-wave superconductivity, to produce an
effective chiral p-wave pairing [139, 184, 174]. A superconducting ring
deposited on a three-dimensional topological insulator would need a mag-
netic barrier along the perimeter to confine the edge states [61, 94]. Al-
ternatively, one might induce superconductivity in the two-dimensional
electron gas of a semiconductor heterostructure with strong spin-orbit
coupling [145, 5], such as an InAs quantum well, and confine the edge
states electrostatically by gate electrodes.
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3.6 Appendix

3.6.1 Gap closings due to spatial symmetries

In symmetry classes D and DIII the closing of the excitation gap at the
topological phase transition of the Josephson junction is topologically pro-
tected, meaning that disorder cannot open up the gap. However, in Fig.
3.5 we see a gap closing in symmetry class C, where the Josephson junc-
tion remains topologically trivial. Morover, in Fig. 3.4b we see that the
gap closing in the helical p-wave junction persists over a range of φ, rather
than being limited to a single φ as it is in class D. Both these features are
due to spatial symmetries, as we now explain.

Translational symmetry along the weak link (the y-axis) permits us to
consider the parallel momentum ky ≡ q as an external parameter. The
Hamiltonian H(q) describes a zero-dimensional system which can undergo
a topological phase transition as a function of the parameter q in symmetry
classes D and BDI [138]. At this transition a Z2 topological quantum
number changes sign, so to open up the gap requires, either, the breaking
of a symmetry, or the merging of a pair of gap closings at a single value
of q.

So how do we arrive in class D or BDI when we start out from class
DIII or class C? As pointed out in Ref. [42] in a different context, spatial
symmetries can do this.

Let us first show that H(q) is in class D for helical p-wave pairing. On
the one hand, the electron-hole symmetry relation (3.38) gives

H(q) = −τxH∗(−q)τx, (3.43)

on the other hand, the helical p-wave pairing has the additional symmetry

(τz ⊗ σy)H(q)(τz ⊗ σy) = H(−q). (3.44)

Taking these two equations together we arrive at a symmetry relation for
H(q) at one single value of q,

ΩH(q) = −H(q)Ω, Ω = (τy ⊗ σy)K, (3.45)

with K the operator of complex conjugation. Because Ω is an anti-unitary
operator that squares to +1, this places H(q) in symmetry class D, with
a topologically protected gap closing. Indeed, as we see in Fig. 3.4b, the
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pair of gap closings at φ = π persist as φ is increased, until the gaps merge
at q = 0.

Turning now to class C, we will show that H(q) is in class BDI for
chiral d-wave pairing at φ = π and if the electrostatic potential U(x) is
±x symmetric. Firstly, the class-C electron-hole symmetry relation reads

H(q) = −τyH∗(−q)τy. (3.46)

Secondly, for φ = π and A = 0 the Hamiltonian is real,

H∗(q) = H(q). (3.47)

Thirdly, the combination of U(x) = U(−x) and ∆(x) = −∆(−x) at φ = π
gives

τzPH(q) = H(−q)τzP, (3.48)

where P is the reflection operator (x 7→ −x). Eqs. (3.46) and (3.48)
together give

Ω′H(q) = −H(q)Ω′, Ω′ = τxPK. (3.49)

The anti-unitary operator Ω′ also squares to +1. The symmetries (3.47)
and (3.49) place H(q) in class BDI, provided that φ = π and the reflection
symmetry is unbroken. This is consistent with what is seen in Fig. 3.5: The
gap closing for chiral d-wave pairing can be removed either by increasing
φ away from π or by breaking the ±x symmetry of the weak link.

3.6.2 Gauge invariant discretization of the Bogoliubov-De
Gennes Hamiltonian

The discretization of the Bogoliubov-De Gennes Hamiltonian (3.28) with
a momentum dependent pair potential requires special care to ensure that
the resulting tight-binding model is gauge invariant. We go through the
steps in this Appendix. Following the established procedure of minimal
coupling, we first discretize without a vector potential, then perform a
gauge transformation on the lattice, and finally replace the gradient of
the gauge field by the vector potential.

The discretization for A = 0 is carried out by replacing the differential
operators by symmetric finite differences,

∂xf(x) 7→ 1
2a [f(x+ a)− f(x− a)], (3.50)
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to arrive at the tight-binding Hamiltonian

t(n,m) =
(
tee(n,m) teh(n,m)
the(n,m) thh(n,m)

)
. (3.51)

The indices n,m label sites rn, rm of a square lattice (lattice constant a).
The diagonal elements n = m are the on-site energies and the off-diagonal
elements n 6= m are the hopping amplitudes between sites n and m.

The single-particle kinetic energy gives the electron-electron matrix
elements,

tee(n, n) = 4t− µ+ U(rn), t = ~2/2meffa
2, (3.52)

tee(n,m 6= n) =
{
−t for n,m nearest neighbours,
0 otherwise,

and the hole-hole matrix elements thh(n,m) = −tee(n,m).
For the chiral d-wave pair potential (3.32), still at A = 0, we obtain

the nearest-neighbor hopping amplitudes

teh(n± ax̂, n) = − 1
2q2 [∆(rn) + ∆(rn ± ax̂)] ,

teh(n± aŷ, n) = 1
2q2 [∆(rn) + ∆(rn ± aŷ)] ,

(3.53)

the next-nearest-neighbor hopping amplitudes

teh(n+ ax̂± aŷ, n) = ∓i4q2 [∆(rn + ax̂) + ∆(rn ± aŷ)] ,

teh(n− ax̂± aŷ, n) = ±i4q2 [∆(rn − ax̂) + ∆(rn ± aŷ)] ,
(3.54)

and the on-site matrix elements

teh(n, n) = 1
2q2 [∆(rn + ax̂) + ∆(rn − ax̂)

−∆(rn + aŷ)−∆(rn − aŷ)].
(3.55)

(We have defined q = kFa.) These are all hopping amplitudes from hole
to electron. The hopping amplitudes from electron to hole are related by
Hermiticity,

the(n,m) = t∗eh(m,n). (3.56)
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We now introduce the vector potentialA(r) = −(~/e)∇χ(r) by means
of the gauge transformation

t̃(n,m) = e−iτzχ(rn)t(n,m)eiτzχ(rm),

∆̃(rn) = e−2iχ(rn)∆(rn).
(3.57)

This is the lattice analogue of Eq. (3.33).
The effect on the electron-electron and hole-hole hopping amplitudes

is the Peierls substitution [121],

t̃ee(n,m) = tee(n,m) exp
(
i
e

~

ˆ n

m
A · dl

)
,

t̃hh(n,m) = thh(n,m) exp
(
−i e

~

ˆ n

m
A · dl

)
.

(3.58)

The line integral of the vector potential is taken along the lattice bond
from site m to site n, and with this prescription the Peierls substitution
can also be applied to vector potentials that do not derive from a gauge
field.

The transformed electron-hole matrix hopping amplitudes for chiral
d-wave pairing are given by

t̃eh(n± ax̂, n) = −1
2q2

[
ei
e
~
´ n±ax̂
n A·dl∆̃(rn) + ∆̃(rn ± ax̂)e−i

e
~
´ n±ax̂
n A·dl

]
,

t̃eh(n± aŷ, n) = 1
2q2

[
ei
e
~
´ n±aŷ
n A·dl∆̃(rn) + ∆̃(rn ± aŷ)e−i

e
~
´ n±aŷ
n A·dl

]
,

(3.59)

t̃eh(n+ ax̂± aŷ, n) = ∓i4q2

[
ei
e
~
´ n+ax̂±aŷ
n+ax̂ A·dl∆̃(rn + ax̂)e−i

e
~
´ n+ax̂
n A·dl

+ ei
e
~
´ n+ax̂±aŷ
n±aŷ A·dl∆̃(rn ± aŷ)e−i

e
~
´ n±aŷ
n A·dl

]
,

t̃eh(n− ax̂± aŷ, n) = ±i4q2

[
ei
e
~
´ n−ax̂±aŷ
n−ax̂ A·dl∆̃(rn − ax̂)e−i

e
~
´ n−ax̂
n A·dl

+ ei
e
~
´ n−ax̂±aŷ
n±aŷ A·dl∆̃(rn ± aŷ)e−i

e
~
´ n±aŷ
n A·dl

]
,

t̃eh(n, n) = 1
2q2

[
∆̃(rn + ax̂)e−i

2e
~
´ n+ax̂
n A·dl + ∆̃(rn − ax̂)e−i

2e
~
´ n−ax̂
n A·dl

−∆̃(rn + aŷ)e−i
2e
~
´ n+aŷ
n A·dl − ∆̃(rn − aŷ)e−i

2e
~
´ n−aŷ
n A·dl

]
.

(3.60)



70 Chapter 3. Phase-locked magnetoconductance oscillations. . .

A similar calculation for the chiral p-wave pairing (3.31) gives the
electron-hole hopping amplitudes

t̃eh(n± ax̂, n) = ∓i4q
[
ei
e
~
´ n±ax̂
n A·dl∆̃(rn) + ∆̃(rn ± ax̂)e−i

e
~
´ n±ax̂
n A·dl

]
,

t̃eh(n± aŷ, n) = ±1
4q
[
ei
e
~
´ n±aŷ
n A·dl∆̃(rn) + ∆̃(rn ± aŷ)e−i

e
~
´ n±aŷ
n A·dl

]
.

(3.61)

There are neither next-nearest-neighbor hoppings, nor on-site electron-
hole matrix elements in this case.

Notice that the discretized p-wave pair potential (3.61) depends explic-
itly on the vector potential, while in the continuum representation (3.31)
the vector potential enters only implicitly through ∆(r). All of this is
required by gauge invariance.

Finally, we give the corresponding expressions for the helical p-wave
pairing (3.37). There is now a spin degree of freedom σ =↑, ↓, and the pair
potential is diagonal in that index. The electron-hole hopping amplitudes
are given by

t̃e↑,h↑(n± ax̂, n) = −t̃e↓,h↓(n± ax̂, n) ≡ t̃eh(n± ax̂, n),
t̃e↑,h↑(n± aŷ, n) = t̃e↓,h↓(n± aŷ, n) ≡ t̃eh(n± aŷ, n),

(3.62)

where matrix elements without spin indices should be taken from Eq.
(3.61).



Chapter 4

Bimodal conductance
distribution of Kitaev edge
modes in topological
superconductors

4.1 Introduction
Gapless edge states are a striking manifestation of topological protection
in two-dimensional systems. First studied in connection with the quantum
Hall effect in a strong magnetic field [72, 28], they are now known to exist
also in the presence of time-reversal symmetry (for topological insulators)
or particle-hole symmetry (for topological superconductors) [73, 127]. The
edge current can carry charge or heat, it can be uni-directional (chiral)
or bi-directional (helical), but in each manifestation there is no backscat-
tering — so that the corresponding electrical or thermal conductance is
quantized, independent of system size.

Isotropic two-dimensional superconductors with spin-triplet p-wave
pairing belong to the class of topological superconductors, with charge-
neutral gapless edge states. Depending on the absence or presence of
time-reversal symmetry, the edge modes can be chiral (class D) or helical
(class DIII). It is known that the quantization of the thermal conductance
breaks down if the two-dimensional superconductor is strongly anisotropic;
the edge states remain, but backscattering by disorder is no longer for-
bidden by a topological invariant [9, 68, 152, 27]. One might surmise
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Figure 4.1. Two realizations of the Kitaev Hamiltonian, at the edge of an array
of nanowires (Kitaev edge, panel a) and in a chain of magnetic nanoparticles
(Kitaev chain, panel b, adapted from Refs. [39, 110]). Statistical translational
invariance at the Kitaev edge means that all couplings κn between Majorana
fermion operators γn and γn+1 have the same statistical distribution. In the
Kitaev chain it means that the couplings κ2n between nanoparticles have the same
distribution, as well as the couplings κ2n−1 of pairs of Majorana fermions within
a nanoparticle — while the sets κ2n and κ2n−1 are unrelated. This difference
is the reason that statistical translational invariance protects the Kitaev edge
from localization, but not the Kitaev chain. As a consequence, the thermal
conductance has a lognormal distribution in the Kitaev chain (dashed curve in
panel c), but a bimodal distribution in the Kitaev edge (solid curve, with a second
peak of weight ∝ 1/

√
L at the conductance quantum G0).

that the edge states will localize on length scales L larger than the mean
free path `, with an exponentially decaying conductance ∝ exp(−L/`),
but that is not what happens. Instead, in Ref. [68] an anomalously slow
(super-Ohmic) scaling ∝

√
`/L was found, unlike that of any known one-

dimensional system. A statistical symmetry (translational invariance of
the disorder distribution) was identified as the origin of the topological
protection [68].

Here we study this remarkable delocalization of edge states in the
framework of the Kitaev Hamiltonian [90] of randomly coupled Majorana
fermions. We contrast the two realizations of the model illustrated in Fig.
4.1: at the edge of a two-dimensional superconductor (Kitaev edge, Fig.
4.1a) and as a one-dimensional chain of nanoparticles (Kitaev chain, Fig.
4.1b). While the Kitaev chain allows for delocalization, this requires a
fine-tuning to the critical point of the topological phase diagram [23, 3].
Generically, the conductance of the Kitaev chain has a log-normal distri-
bution peaked at an exponentially small value [108, 24, 25, 71], because
disorder drives the system away from the gapless critical point into the
gapped phase. In contrast, for the Kitaev edge we find a bimodal conduc-
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tance distribution, with a second peak near the quantized conductance of
the clean system. (Compare dashed and solid curves in Fig. 4.1c.) The√
`/L weight of this second peak produces the super-Ohmic conductance

scaling of Ref. [68].

We explain the difference in conductance distributions in terms of the
different way in which translational invariance of the disorder distribution
is realized in the two systems: in the Kitaev edge all nearest-neigbor
coupling strengths of Majorana fermions are statistically equivalent, while
in the Kitaev chain even and odd-numbered couplings are inequivalent.
Finally, we show how the charge-neutral edge modes of the topological
superconductor can be detected in an electrical — rather than thermal
— measurement, by considering the shot noise of time-dependent current
fluctuations.

The outline of this paper is as follows. In Section 4.2 we introduce
model Hamiltonians for p-wave superconductors with chiral or helical edge
states and calculate the topological phase diagram in the presence of both
anisotropy and disorder. The topological phase transitions are identified
by considering the bulk conductance and the associated topological invari-
ants. Edge conductance in the topologically nontrivial phases is studied
in Section 4.3. In Section 4.4 we contrast the conductance distributions
of the Kitaev edge and the Kitaev chain. Electrical, rather than thermal,
detection of the edge modes is discussed in Section 4.5. We conclude in
Section 4.6.

4.2 Topological phase diagrams of chiral and he-
lical p-wave superconductors

The topological phase diagram of clean chiral p-wave superconductors (or
superfluids) was studied in Refs. [9, 152, 27]. Here we show how the topo-
logically distinct phases evolve when we include disorder, for both chiral
and helical pair potentials, which as we will see have a qualitatively differ-
ent phase diagram. Numerical calculations on a disordered tight-binding
model are compared with analytical calculations of the phase boundaries
in self-consistent Born approximation.
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4.2.1 Model Hamiltonians

Superconductors with broken spin-rotation symmetry are in symmetry
class D or DIII in the Altland-Zirnbauer classification [7], depending on
whether time-reversal symmetry is broken or not. In both symmetry
classes the Bogoliubov-De Gennes Hamiltonian H(k) has electron-hole
symmetry,

τxH(k)τx = −H∗(−k), (4.1)

where the Pauli matrix τi acts on the electron-hole degree of freedom. In
class DIII there is additionally the time-reversal symmetry

σyH(k)σy = H∗(−k), (4.2)

with σi acting on the spin degree of freedom and ~k the momentum.
The minimal class-D Hamiltonian, constrained by Eq. (4.1), has the

form

HD(k) = ε(k)τz + ∆xτx sin kx + ∆yτy sin ky, (4.3a)
ε(k) = −2tx cos kx − 2ty cos ky − µ, (4.3b)

where (∆x,∆y) = (∆, α∆) is the anisotropic amplitude of the chiral p-
wave pair potential (in a gauge where it’s real), (tx, ty) = (t, αt) is the
anisotropic hopping amplitude, and µ is the chemical potential. The pa-
rameter α ∈ [0, 1] measures the degree of anisotropy, with α → 1 the
isotropic limit. We consider equal-spin pairing, so the spin degree of free-
dom does not appear in HD.

In class DIII the additional constraint (4.2) is satisfied by taking two
time-reversed copies of the Hamiltonian (4.3),

HDIII(k) = ε(k)(σ0 ⊗ τz) + ∆x(σz ⊗ τx) sin kx
+ ∆y(σ0 ⊗ τy) sin ky +K(σy ⊗ τy), (4.4)

coupled with strength K.
The Hamiltonians (4.3) and (4.4) are discretized on a two-dimensional

square lattice of size Lx × Ly (lattice constant a ≡ 1). Electrostatic
disorder (strength δ) is added by randomly varying µ, independently for
each lattice site and uniformly in the interval [µ − δ, µ + δ]. We study
thermal conduction by attaching disorder-free leads at two ends of the
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Figure 4.2. Two-terminal geometries for thermal conduction in an anisotropic
p-wave superconductor. Panels a and b show the perpendicular orientations of
the heat current I in response to a temperature difference δT . The thermal
conductance in linear response is G = limδT→0 I/δT .

lattice, connected to reservoirs at temperature T0 and T0 + δT (see Fig.
4.2). The scattering matrix,

S =
(
r t
t′ r′

)
, (4.5)

evaluated at the Fermi level (E = 0) determines the thermal conductance

G = G0 Tr t†t, G0 = π2k2
BT0/6h, (4.6)

in the low-temperature, linear response regime. The numerical calcula-
tions are performed using the kwant tight-binding code [70].

4.2.2 Class D phase diagram

Clean limit

We first discuss the phase diagram of the class-D Hamiltonian (4.3) in the
clean limit of Refs. [9, 152, 27], before including the effects of disorder.
Without disorder the momentum is a good quantum number and one can
search for gap closings in the Brillouin zone. These occur at the four high-
symmetry points kx, ky ∈ {0, π}, for chemical potentials µ = ±2t(1 ± α).
In the µ-α plane the four gapless lines are boundaries separating five
topologically distinct insulating phases, see Fig. 4.3.

The number of chiral edge modes is given by the Chern number ν [73,
127, 169], being the winding number of eigenstates in the Brillouin zone.
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Figure 4.3. Phase diagram of the class-D Hamiltonian (4.3) in the absence
of disorder (δ = 0), as a function of chemical potential µ and anisotropy α.
The strong topological insulator phases (TI) have chiral Majorana modes along
all edges, while the weak topological insulator phase (WTI) has Majorana modes
only along edges oriented in the y-direction. The trivial phase has no edge modes.

We compute this two-dimensional topological invariant from the scattering
matrix rather than from an integral over the Brillouin zone, in a formula-
tion that can be applied directly to disordered systems [21, 66],

ν = 1
2πi

ˆ 2π

0
dφ

d

dφ
ln det r(φ). (4.7)

Here r(φ) is the reflection block of the scattering matrix (5.4) in the ge-
ometry of Fig. 4.2a, with leads attached to x = 0 and x = Lx and twisted
periodic boundary conditions1 on the scattering state ψ(x, y) in the y-
direction: ψ(x, 0) = eiφψ(x, Ly).

For 2t(1−α) < |µ| < 2t(1 +α) the system is topologically non-trivial,
with ν = signµ and a chiral Majorana edge mode. (The sign of ν gives
the direction of propagation.) The absence of backscattering leads to
a quantized thermal edge conductance G = G0. This characterizes the
strong topological insulator (TI).

When |µ| > 2t(1 + α) or |µ| < 2t(1− α) the Chern number ν = 0, so
there are no chiral edge modes. These regions in the phase diagram are

1 When we implement the twisted periodic boundary condition on the lattice it
should extend over an odd number of sites, in order to avoid a minigap in the edge
state spectrum that would spoil the calculation of the weak topological invariant (Figs.
4.5 and 4.8). For the conductance it makes no difference whether there is an even or
an odd number of lattice sites across.
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distinguished by an alternative “weak” topological invariant νy [59, 60].
Again, to prepare ourselves for disorder effects, we use a scattering matrix
formulation rather than a Brillouin zone formulation [9, 152]. The two-
dimensional weak topological invariant is the strong topological invariant
in one dimension lower, which in class D is given by the determinant of
the reflection matrix [3],

νy = det r(φ = 0). (4.8)

The dimensional reduction is implemented by evaluating r(φ) at φ = 0,
so for periodic boundary conditions in the y-direction. When the Chern
number ν = 0 the weak invariant νy may be equal to +1 (trivial insulator)
or −1 (weak topological insulator, WTI).

For |µ| > 2t(1+α) we are in the topologically trivial phase, with νy = 1
and no edge modes at all. In contrast, when |µ| < 2t(1 − α) the system
is a WTI, with νy = −1 and non-chiral Majorana modes on the edges in
the y-direction.

Disorder effects

Having described the phase diagram of the system in the clean limit, we
now turn to the effects of disorder. Sufficiently strong disorder can convert
a class-D superconductor that is insulating in the bulk into a thermal
metal [150, 51, 103]. To search for this topological phase transition we take
the two-terminal geometry of Fig. 4.2a with periodic boundary conditions
in the y-direction, in order to focus on the metallic or insulating nature
of the bulk. (We will consider edge conduction in Sec. 4.3.)

Numerical results for the disorder-averaged thermal conductance 〈G〉
are shown in Fig. 4.4, as a function of chemical potential µ and disorder
strength δ. One can see that both the TI and WTI phases are robust to
disorder, up to about δ ≈ t. For stronger disorder there is a TI-to-thermal
metal phase transition, followed by a transition to a topologically trivial
Anderson insulator. The phase boundaries between TI, WTI, and thermal
metal are in quite good agreement with those calculated in self-consistent
Born approximation (dashed lines in Fig. 4.4, see App. 4.7.1 for details
of the calculation). The transition to an Anderson insulator at strong
disorder is out of reach of that approximation.

The distinct topological nature of the TI, WTI, and trivial phase is
confirmed by a calculation of the topological invariants ν, νy, see Fig. 4.5.
In the bulk insulating phases these are quantized numbers: ν ∈ {−1, 0, 1}
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Figure 4.4. Bulk thermal conductance for the class-D Hamiltonian (4.3), as a
function of chemical potential µ and disorder strength δ, for two values of the
anisotropy at fixed ∆ = t/2. The data is averaged over 50 disorder realizations
on a lattice of dimensions Lx = Ly = 50 (current in the x-direction, periodic
boundary conditions in the y-direction). The isotropic case (top panel, α = 1)
shows gapped TI phases that are robust to disorder up to values δ . 2t. In the
presence of anisotropy (bottom panel, α = 1/2), the weak topological insulator
which forms at |µ| < 2t(1−α) survives up to disorder strengths of the same order
as the TI phases. Dashed lines represent the phase boundaries in self-consistent
Born approximation, without any fit parameter.
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Figure 4.5. Topological phase transitions signaled by a change in the Chern
number ν (red solid line) or the weak invariant νy (blue dashed line). The curves
are calculated from the class-D Hamiltonian (4.3), using the scattering matrix
formulas (5.5) and (5.6), for ∆ = t/2, α = 1/2, δ = t, averaged over 4000 disorder
realizations in a system of size Lx × Ly = 50× 50.

(a so-called Z invariant), while νy ∈ {−1, 1} (a Z2 invariant). At the
topological phase transitions, when the bulk gap closes, both ν and νy
are free to vary between these integer values, resulting in the smooth
transitions shown in Fig. 4.5.

4.2.3 Class DIII phase diagram

Clean limit

We now turn to the phase diagram of the class DIII Hamiltonian (4.4),
first without disorder. It is convenient to rotate the Hamiltonian to a
block off-diagonal form,

UHDIIIU
† =

(
0 A
A† 0

)
, U = exp(−1

4 iπ σx ⊗ τx), (4.9a)

A = i∆σ0 sin kx + α∆σz sin ky
+ (µ+ 2t cos kx + 2αt cos ky − iK)σy. (4.9b)
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Figure 4.6. Phase diagram of the class-DIII Hamiltonian (4.4) without disorder,
forK/∆ = 0.35. Topologically distinct insulating phases are separated by gapless
metallic regions (blue). The topologically trivial insulator, without edge states,
exists for any amount of anisotropy, while the TI and WTI phases with edge
states require, respectively, α > K/∆ and α <

√
1−K2/∆2.

At the gap closings of HDIII the determinant of A vanishes, which happens
when

µ/t = −2 cos kx − 2α cos ky, (4.10a)
K2/∆2 = sin2 kx + α2 sin2 ky. (4.10b)

The gap closings identify the boundaries of insulating phases, as shown
in Fig. 4.6. While in class D the gap closes along a line in the phase
diagram, in class DIII there are extended gapless regions of a metallic
phase separating the insulating phases. (This is a generic feature of helical
p-wave superconductors [67].)

We can distinguish five distinct insulating regions of phase space. For
weak anisotropy, α > K/∆, we find two ±µ symmetric insulating phases
bounded by

2− 2
√
α2 −K2/∆2 < |µ/t| < 2 + 2

√
α2 −K2/∆2. (4.11)

When the anisotropy reaches the critical value

αc = (1−K2/∆2)1/2, (4.12)

a third insulating phase appears centered around µ = 0, in the interval

|µ/t| < 2(αc − α), for α < αc. (4.13)
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Additionally, for any amount of anisotropy there are insulating phases at
large chemical potentials, with boundaries given by

|µ/t| <
{

2α+ 2
√

1−K2/∆2, for α < αc

2
√

2
√

1 + α2 −K2/∆2, for α > αc.
(4.14)

To test the topological properties of these phases, we compute the
associated DIII topological invariants in a scattering formulation (so that
we can directly apply it to disordered systems in the next subsection).
The strong topological invariant [66],

Q = Pf [iσyr(φ = 0)]× Pf [iσyr(φ = π)], (4.15)

is determined by the Pfaffians of the reflection matrix with periodic (φ =
0) and anti-periodic (φ = π) boundary conditions in the y-direction. In
view of the time-reversal symmetry condition (4.2), the matrix iσyr(φ) is
antisymmetric for φ = 0, π, so the Pfaffian exists.

The insulating regions delimited by Eq. (4.11) are topologically non-
trivial (Q = −1), with helical Majorana edge states and quantized thermal
conductance G = 2G0. All other phases have Q = 1. The ones appearing
at large chemical potentials, bounded by Eq. (4.14), are topologically triv-
ial, without edge states. However, the phase which develops at the critical
anisotropy αc, bounded by Eq. (4.13), has Q = 1 but still supports gapless
modes on edges oriented in the y-direction. The weak topological invari-
ant Qy = −1 of this phase is obtained by dimensional reduction to the
one-dimensional class-DIII topological invariant [65],

Qy = Pf [iσyr(φ = 0)]. (4.16)

Disorder effects

Fig. 4.7 shows the effect of disorder on the topological phases, probed by
calculating the thermal conductance in the geometry of Fig. 4.2a with
periodic boundary conditions in the y-direction. Comparison with the
class-D phase diagram of Fig. 4.4 shows as a qualitative difference that
the thermal metal phase extends down to zero disorder. This behavior is
also captured by the self-consistent Born approximation (dashed curves),
see App. 4.7.1 for details of the calculation.

The scattering matrix formulas (4.15) and (4.16) for the class-DIII
strong and weak topological invariants are applied to a disordered system
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Figure 4.7. Same as Fig. 4.4 for the class-DIII Hamiltonian (4.4) (with ∆ = t,
K = 0.35 t, other parameters unchanged). Notice that the thermal metal phase
starts already at zero disorder.
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Figure 4.8. Same as Fig. 4.5 for the class-DIII topological invariants Q, Eq.
(4.15), and Qy, Eq. (4.16) (with δ = 1.5 t, other parameters as in Fig. 4.7).

in Fig. 4.8. These are both Z2 invariants, meaning that they take on the
values ±1 when the bulk is insulating: Q = Qy = 1 in the trivial insulator,
Q = −1, Qy = ±1 in the TI, and Q = 1, Qy = −1 in the WTI.

4.3 Edge conduction
So far we studied thermal conduction in the geometry of Fig. 4.2a with
periodic boundary conditions in the transverse direction, in order to elim-
inate edge contributions and focus on bulk properties. To study edge
conduction in the TI and WTI phases we now take the geometry of Fig.
4.2b, with leads attached to y = 0, Ly and hard-wall boundary conditions
at x = 0, Lx. We again first consider the clean case and then add the
effects of disorder, for both symmetry classes D and DIII.

4.3.1 Clean case

The TI and WTI phases both have gapless edge states, the difference
being that the TI edge states appear on all edges while the WTI edge
states exist only at two of the four edges (see Fig. 4.9). In the geometry
of Fig. 4.2b we can probe the edge conductance in both phases. Without
disorder the conductance is system-size independent, because there is no
backscattering, and the difference between the TI and WTI phases is
simply a factor of two.
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Figure 4.9. Intensity of the lowest eigenstate of the class-D Hamiltonian (4.3)
(with δ = 0, α = 1/2, ∆ = t/2). The edge states in the TI (µ = 2.2 t) and WTI
(µ = 0.2 t) phases are contrasted in the two panels.

This conductance doubling at the TI-to-WTI transition is shown in
Fig. 4.10. In class D it happens because the chiral edge state of the TI
phase can propagate in both directions in the WTI phase. In class DIII
we start out with helical edge states in the TI phase, with direction of
propagation tied to the spin degree of freedom. In the WTI phase this
helicity is lost, so now both spin-up and spin-down can propagate in both
directions and the conductance is doubled.

4.3.2 Disorder effects

The addition of disorder has no effect on the conductance in the TI phase,
since backscattering of chiral or helical edge states is forbidden. The edge
states in the WTI are neither chiral nor helical, so disorder does cause
backscattering and reduces the edge conductance. However, as discovered
in Ref. [68], the recovery of translational invariance upon ensemble averag-
ing prevents localization of the WTI edge states. Instead of an exponential
decay of the conductance with the length L ≡ Ly of the edge, there is only
an algebraic 1/

√
L decay. In Fig. 4.11 we show this super-Ohmic conduc-

tance scaling for the WTI phase of the class-D and class-DIII Hamiltonians
(4.3) and (4.4).

4.4 Kitaev chain versus Kitaev edge

The absence of localization at the edge of the anisotropic p-wave super-
conductor is puzzling if one tries to understand it starting from the limit
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Figure 4.10. Thermal conductance without disorder in class D and DIII. The
geometry is that of Fig. 4.2b with dimensions Lx = Ly = 50 and hard-wall
boundaries in the x-direction. Parameters are ∆ = t, α = 1/2, and K = 0.35 t.
The transition from the TI to the WTI phase is marked by a doubling of the edge
conductance in the absence of backscattering. In class DIII the transition occurs
via an intermediate region of thermal conduction through the gapless bulk.

α→ 0 of strong anisotropy. Then the system can be thought of as an ar-
ray of weakly coupled nanowires with overlapping Majorana zero-modes
at the end points, a so-called Kitaev ladder [181, 178, 49]. The effective
edge Hamiltonian is the Kitaev Hamiltonian [90] in class D, or two time-
reversed copies of it in class DIII. The disordered one-dimensional Kitaev
model, called the Kitaev chain, is known to be an insulator [108, 24, 25, 71]
— so how do the Kitaev edge modes avoid localization?

To clarify the situation we contrast the two class-D systems. (Class
DIII is similar.) The Kitaev Hamiltonian

HK =
2N∑
n=1

iκnγnγn+1 (4.17)

describes the nearest-neigbor coupling (coupling strength κn) of 2N Ma-
jorana fermion operators γn. These are Hermitian operators, γn = γ†n,
with anti-commutation relation γnγm + γmγn = 2δnm. To obtain a closed
system the Majorana’s are assumed to lie on a ring, so that κ2N couples
γ2N to γ2N+1 ≡ γ1.

This one-dimensional system in symmetry class D has a Z2 topological
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Figure 4.11. Disorder-averaged thermal conductance in the WTI phase of class
D and DIII, at fixed Lx = 50 and varying Ly. Data points are averaged over
4000 disorder realizations, for µ = 0, δ = 1.5 t, other parameters as in Fig. 4.10.
Solid lines show the expected L−1/2

y scaling in the log-log plot.

invariant [90],
QK = sign (Pf A+)(Pf A−), (4.18)

determined by the Pfaffians of a pair of real antisymmetric matrices A±,
having nonzero matrix elements

A±n,n+1 = −A±n+1,n = κn, 1 ≤ n ≤ 2N − 1, (4.19a)
A±2N,1 = −A±1,2N = ±κ2N . (4.19b)

Evaluation of the Pfaffians gives

QK = sign
(

N∏
n=1

κ2
2n−1 −

N∏
n=1

κ2
2n

)
. (4.20)

Translational invariance of the disorder ensemble means two com-
pletely different things for the Kitaev edge and for the Kitaev chain. For
the Kitaev edge it means that the coupling strengths κn between adjacent
Majorana’s all have the same distribution. The disorder average 〈QK〉 of
the topological invariant then vanishes, which is why the Kitaev edge is
called a critical WTI [68]. In contrast, as illustrated in Fig. 4.1, for the
Kitaev chain translational invariance means that the κn’s with n even or
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those with n odd have the same distribution, but the distributions of κ2n
and κ2n−1 are unrelated. The topological invariant is then nonzero on
average, so the Kitaev chain is not critical [108, 71].

The implication for the transmission probability T follows if we remove
the coupling between γ2N and γ1, so that we can introduce transmission
and reflection amplitudes t = 1/ coshα, r = tanhα. The Lyapunov expo-
nent α determines both T and QK,

QK = signα, T = 1/ cosh2 α, (4.21)

and has a Gaussian distribution P (α) [23, 71]. The variance Varα = L/`
is determined by the mean free path ` for backscattering along the edge,
of length L � `. The mean 〈α〉 = L/ξ defines the localization length ξ.
A vanishing 〈QK〉 implies that the median of P (α) is zero, and since it’s
Gaussian also 〈α〉 = 0⇒ ξ =∞.

For the Kitaev chain 〈QK〉 6= 0 and hence ξ is finite, so the transmission
probability has a log-normal distribution peaked at T = e−2L/ξ, with an
exponentially decaying average transmission [108, 71]. In contrast, for the
Kitaev edge 〈QK〉 = 0 ⇒ 〈α〉 = 0 ⇒ ξ = ∞. The Gaussian distribution
of the Lyapunov exponent then produces a bimodal distribution of the
transmission probability for L� `,

P (T ) =
ˆ ∞
−∞

dα δ(T − 1/ cosh2 α)(2πL/`)−1/2e−α
2`/2L

= (`/2πL)1/2 T−1(1− T )−1/2

× exp
[
−(`/2L) arcosh2(T−1/2)

]
, (4.22)

peaked near T = 0 and T = 1, with average decaying algebraically as
〈T 〉 =

√
2`/πL.

We have tested the result (4.22) in a computer simulation of the
anisotropic p-wave superconductor, with class-D Hamiltonian (4.3). In
the geometry of Fig. 4.2b both edges at x = 0 and x = Lx contribute to
the thermal conductance in the WTI phase, but one edge can be removed
by reducing the width of the contacts to the interval 0 ≤ x ≤ Lx/2.
Results are shown in Fig. 4.12. With the mean free path ` as a single
fit parameter, the transition from a uni-modal distribution to a bimodal
distribution upon increasing L/` is well-described by Eq. (4.22).
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Figure 4.12. Disorder-induced thermal conductance distribution of a single edge
in the WTI phase of the anisotropic p-wave superconductor in symmetry class
D, for fixed Lx = 50 and varying Ly. The histograms are calculated numerically
(δ = t, other parameters as in Fig. 4.11). Dashed lines show the analytical result
(4.22) for T ≡ G/G0, L ≡ Ly, with the mean free path ` = 65 as single fit
parameter.

4.5 Electrical detection of Kitaev edge modes

So far we considered thermal conduction as the probe of edge state trans-
port. Electrical detection would be more convenient experimentally, and
this is possible by adapting the nanowire setup of Ref. [3]. All contacts are
now at the same temperature T0, the superconductor is grounded as well
as one of the metal contacts (number 2), and the other contact (number 1)
is biased at voltage V1. The electrical current into the grounded contact 2
fluctuates in time with noise power P12. This is dominated by shot noise,
at low temperatures when thermal noise can be neglected (kBT0 � eV1).

The noise power is given in terms of the transmission matrix by [8]

P12/P0 = Tr
(
t†eetee + t†hethe

)
− Tr

(
t†eetee − t

†
hethe

)2
= 1

2 Tr t†t− 1
2 Tr (τzt†τzt)2, (4.23)
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Figure 4.13. Disorder-averaged electrical shot noise power (4.23) in the WTI
phase of class D and DIII, for parameters as in Fig. 4.11. Data points are averaged
over 104 disorder realizations. The solid lines show that this electrical transport
property obeys the same L−1/2 scaling as the thermal transport property of Fig.
4.11. The inset shows the geometry, with one metal contact biased at voltage
V1 and both the superconductor and the second metal contact grounded. The
electrical current I2 into this second contact fluctuates in time with noise power
P12 =

´∞
−∞ dt 〈δI2(0)δI2(t)〉.

with P0 = e3V1/h. The subscripts e, h indicate transmission from electron
to electron (tee) or from electron to hole (the), and we used electron-hole
symmetry in the second equation to rewrite the whole expression in terms
of the full transmission matrix t.

As derived in Ref. [3], when the transmission is via an unpaired Majo-
rana mode, the second trace in Eq. (4.23) vanishes identically so the elec-
trical shot noise is directly related to the thermal conductance: P12/P0 =
1
2G/G0. This applies to symmetry class D. More generally, in both sym-
metry classes D and DIII the two quantities P12 and G have the same
1/
√
L scaling in the WTI phase2, compare Figs. 4.11 and 4.13.

2 The first trace in Eq. (4.23) is proportional to the transmission probability T ,
while the second trace is proportional to T 2. Because of the bimodal distribution
(4.22), the averages of T and T 2 scale with the same power of L: 〈T 2〉 = 2

3 〈T 〉 ∝√
1/L. Incidentally, we note that this also implies that the “thermal Fano factor”

F = 〈T (1 − T )〉〈T 〉−1 has the same L-independent value 1/3 as the electrical Fano
factor of a metallic diffusive conductor — even though the conductance in that system
has a Gaussian rather than bimodal distribution.
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4.6 Conclusion

The Kitaev model [90] is paradigmatic for topological superconductivity
and Majorana zero-modes, and for that reason has been studied exten-
sively [91, 6]. Here we have shown that the realization of this model at
the edge of a two-dimensional system (what we have called the “Kitaev
edge”) is fundamentally different from its strictly one-dimensional counter-
part, the Kitaev chain. The difference, summarized in Fig. 4.1, manifests
itself in the different distribution of the thermal conductance, peaked at
exponentially small value in the Kitaev chain [108, 24, 25, 71] while the
Kitaev edge has a second peak at the conductance quantum.

As a possible physical realization of Kitaev edge modes we have stud-
ied in some detail a model of an anisotropic two-dimensional chiral p-wave
superconductor [9, 68, 152, 27], as well as its time-reversally symmet-
ric (helical) counterpart. Both can produce weak topological insulators
(WTI) with Kitaev edge modes, but while they appear at any amount of
anisotropy for chiral p-wave pairing, the helical p-wave pairing requires a
threshold anisotropy (compare Figs. 4.3 and 4.6). We have demonstrated
the robustness of the WTI phase to disorder by numerical simulations, in
good agreement with analytical calculations of the phase boundaries in
self-consistent Born approximation (Figs. 4.4 and 4.7).

Experimentally the transition into the WTI phase can be detected, on
length scales below the mean free path, via the doubling of the thermal
conductance (Fig. 4.10), and on larger length scales via the super-Ohmic
scaling (Fig. 4.11). Because of the complexity of thermal transport mea-
surements at low temperatures, we have proposed an alternative fully
electrical method of detection, using the electrical shot noise power (Fig.
4.13).

4.7 Appendix

4.7.1 Calculation of the phase boundaries in self-consistent
Born approximation

We calculate the phase diagram in the presence of electrostatic disorder
(strength δ as defined in the main text) using the self-consistent Born
approximation (SCBA). Below we provide details of the calculation for
the class-DIII Hamiltonian (4.4). The corresponding results for the class-
D Hamiltonian (4.3) are simply obtained by taking the vanishing coupling
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K → 0 limit and are summarized at the end of this Appendix.
We calculate the disorder-averaged density of states from the self-

energy Σ, defined by

1
E + i0+ −HDIII − Σ =〈 1

E + i0+ −HDIII −Hdisorder

〉
. (4.24)

The SCBA self-energy at the Fermi level (E = 0) is given by

Σ = 1
3δ

2∑
k

τz
1

i0+ −HDIII(k)− Στz. (4.25)

The sum over k ranges over the first Brillouin zone and in the continuum
limit ∑

k

7→ 1
4π2

ˆ π

−π
dkx

ˆ π

−π
dky. (4.26)

The SCBA self-energy is a k-independent 4× 4 matrix with spin and
electron-hole degrees of freedom

Σ = (σ0 ⊗ τz)δµ− (σy ⊗ τy)δK − (σ0 ⊗ τ0)iγ. (4.27)

The terms δµ and δK renormalize the chemical potential and coupling
respectively. Both terms account for a disorder induced shift of the phase
boundaries between the trivial insulator, TI, WTI, and thermal metal.
The term γ produces a finite density of states, induced by the disorder.
Such a finite density of states may indicate a thermal metal or a trivial
Anderson insulator, but it cannot distinguish between the two.

We substitute the self-energy (4.27) into Eq. (4.25) and observe that
the right-hand-side depends only on the renormalized chemical potential
µ̃ = µ − δµ and coupling K̃ = K − δK. Denoting the renormalized
Hamiltonian by H̃DIII(k) ≡ HDIII(k) + (σ0 ⊗ τz)δµ− (σy ⊗ τy)δK we can
write the following identity:(

iγ − H̃DIII(k)
)−1

=
(
iγ + H̃DIII(k)

)
·
(
γ2 + fµ̃,K̃(k)− 2K̃(∆x sin kx σzτz + ∆y sin ky σy)

)
·
(

4K̃2g(k)−
(
γ2 + fµ̃,K̃(k)

)2
)−1

, (4.28)
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where

g(k) = ∆2
x sin2 kx + ∆2

y sin2 ky, (4.29a)
fµ̃,K̃(k) = εµ̃(k)2 + K̃2 + g(k). (4.29b)

Because of symmetry only terms even in k contribute to
∑
k. We find

from Eq. (4.25) three coupled equations for the parameters δµ, δK, and
γ, which completely determine the SCBA self-energy:

δµ = 1
3δ

2∑
k

εµ̃(k)(γ2 + fµ̃,K̃(k))
4K̃2g(k)− (γ2 + fµ̃,K̃(k))2 , (4.30a)

δK = 1
3δ

2∑
k

K̃
γ2 + fµ̃,K̃(k)− 2g(k)

4K̃2g(k)− (γ2 + fµ̃,K̃(k))2 , (4.30b)

γ = 1
3δ

2∑
k

−γ(γ2 + fµ̃,K̃(k))
4K̃2g(k)− (γ2 + fµ̃,K̃(k))2 . (4.30c)

We address first the shift of phase boundaries in the weak disorder
case. To this end we set γ = 0 assuming that the disorder is too weak
to induce a finite density of states. We are looking for solutions of the
clean system gap closing conditions Eqs. (4.11), (4.13), (4.14) expressed
in terms of the renormalized parameters µ→ µ̃, K → K̃. The gap closing
condition defines the phase boundary and can be expressed as K̃ = K̃(µ̃)
(with a different function K̃(µ̃) for each boundary). We rewrite the SCBA
equations (4.30) with γ = 0 in the form

µ = 1
3δ

2F (µ̃, K̃) + µ̃, (4.31a)

δ2 = 3(K − K̃)
(
G(µ̃, K̃)

)−1
, (4.31b)

where

F (µ̃, K̃) =
∑
k

εµ̃(k)fµ̃,K̃(k)
4K̃2g(k)− f2

µ̃,K̃
(k)

, (4.32)

G(µ̃, K̃) =
∑
k

K̃
fµ̃,K̃(k)− 2g(k)

4K̃2g(k)− f2
µ̃,K̃

(k)
. (4.33)

In this way we obtain the parametric solution for the disorder strength
δ2[µ̃, K̃(µ̃)] and the gap parameter µ[µ̃, δ2(µ̃)] along the phase boundary.
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We vary the parameter µ̃ away from the clean system solution µ at δ =
0. The sums over the Brillouin zone are computed numerically in the
continuum limit. The resulting parametric phase boundaries [µ(µ̃), δ(µ̃)]
separate insulating and gapless phases at low to moderate disorder.

For sufficiently large disorder δ > δc the SCBA equations (4.30) may
support solutions with non-zero γ indicating the onset of a finite density
of states at zero energy. This marks the transitions from the strong and
weak topological insulators to the thermal metal at strong disorder. The
δc dependence on µ and K follows from solutions of the SCBA equations
at infinitesimal γ 6= 0

1 = δ2
c

3
∑
k

fµ̃,K̃(k)
f2
µ̃,K̃

(k)− 4K̃2g(k)
≡ δ2

c

3 H(µ̃, K̃), (4.34a)

µ̃ = −1
3δ

2
cF (µ̃, K̃) + µ, (4.34b)

K̃ = −1
3δ

2
cG(µ̃, K̃) +K. (4.34c)

To determine δc we first search numerically (using Steffensen iteration) for
fixed point solutions of Eqs. (4.34b), (4.34c),(

µ̃

K̃

)
= −1
H(µ̃, K̃)

(
F (µ̃, K̃)
G(µ̃, K̃)

)
+
(
µ
K

)
, (4.35)

for a given value of the chemical potential µ and coupling K. Finally we
compute δc from (4.34a) for the obtained solutions (µ̃, K̃).

Both the parametric solutions to the renormalized gap closing condi-
tions and the computed µ-dependence (for fixed K) of the critical disorder
δc are shown as white dashed lines in Fig. 4.7.

This was all for class DIII. The formulas for class D correspond to the
K → 0 limit. Denoting by Eµ(k) the excitation spectrum of the class-D
Hamiltonian (4.3) we find

E2
µ(k) = fµ,K→0(k) = ε2µ(k) + ∆2

x sin2 kx + ∆2
y sin2 ky. (4.36)

The shift of the phase boundaries at low disorder is obtained by imposing
the gap closing conditions for the renormalized chemical potential µ̃ =
±2t(1 ± α). From Eq. (4.31a) we directly obtain the boundary position
as a function of the disorder strength

µ =
[
−1

3δ
2∑
k

εµ̃(k)
E2
µ̃(k)

+ µ̃

]∣∣∣∣∣
µ̃=±2t(1±α)

. (4.37)
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For the isotropic case α = 1 the central µ = 0 transition separating the
two TI phases is not renormalized by disorder. The transitions separating
the TI phases from the trivial insulator phase are shifted according to
µ = ±(4t + 0.130 δ2). For α = 1/2 the transition line between the WTI
and TI phases is given by µ = ±(3t+0.039 δ2) and the transition between
TI and the trivial phase by µ = ±(t+ 0.180 δ2). These phase boundaries
are shown as dashed lines in Fig. 4.4.

The critical disorder lines separating the TI and WTI phases from the
thermal metal at large disorder can be found from the SCBA solutions
Eqs. (4.34a), (4.34b) at infinitesimal γ 6= 0. In class-D we can directly
parametrize such solutions by the renormalized chemical potential µ̃. We
obtain

δ2
c (µ̃) = 3

(∑
k

1
E2
µ̃(k)

)−1

, (4.38)

µ [µ̃, δc(µ̃)] = µ̃− 1
3δ

2
c (µ̃)

∑
k

εµ̃(k)
E2
µ̃(k)

. (4.39)

The parametric dependence for µ̃ ∈ [−4, 4] calculated from the above
equations is also included in Fig. 4.4.



Chapter 5

Extended topological group
structure due to average
reflection symmetry

5.1 Introduction

Topological insulators (TI) are states of matter in which the bulk is
gapped, but which host protected gapless edge states [73, 127]. This be-
havior was first studied in connection to the quantum Hall effect [72, 28], a
two-dimensional system, and later generalized to include arbitrary dimen-
sions, as well as boundary states protected by the fundamental symme-
tries of the system: time-reversal T , particle-hole P, and chiral symmetry
C [92, 148]. In each case, the gapless nature of boundary states is a conse-
quence of the system’s bulk properties. This enables obtaining topological
invariants, quantities determined from the bulk which count the number
of protected states at a termination of the system. For single-particle sys-
tems, the group structure of topological invariants (Z or Z2) is listed in the
so-called periodic table of topological insulators, which shows that in any
dimension 5 out of the 10 Altland-Zirnbauer [7] (AZ) symmetry classes
can be topologically non-trivial. As long as the protecting symmetries
are not broken, the invariant cannot change without closing the bulk gap,
explaining the robustness of the boundary states to perturbations such as
disorder.

Topologically non-trivial behavior can occur also due to symmetries
of the underlying lattice. This enables weak and crystalline topologi-
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Table 5.1. Group structure of single-particle topological invariants in the ten
AZ symmetry classes, with average reflection symmetry preserved along all di-
rections. The strong invariants of the original TI table are shown in blue and
those protected by ARS in black.

Symmetry class Dimension
1 2 3

A Z Z2
3

AIII Z Z2
2 Z×Z2

3

AI
BDI Z Z2

2 Z2
3

D Z2 Z×Z2
2 Z2

6

DIII Z2 Z2×Z2
2 Z×Z2

6

AII Z2 Z2×Z2
3

CII Z Z2
2 Z2×Z2

3

C Z Z2
3

CI Z

cal insulators in the presence of translational symmetry, or point group
symmetries (rotation, reflection, etc.) [106, 136, 59, 63, 77]. Many gen-
eralizations of the periodic table have been considered by examining the
interplay between T , P, C, and different lattice symmetries [157, 79, 37,
4, 164, 191, 14, 107, 38].

Disorder breaks all symmetries of the lattice, leading to a distinction
between strong and weak topological insulators (WTI) and their asso-
ciated invariants. Despite owing their protection to lattice symmetries,
the boundary states of some WTIs may still survive disorder. This was
first shown for a stack of quantum spin-Hall layers [135, 105, 64], a three-
dimensional WTI belonging to symmetry class AII in the AZ classification,
and later generalized to systems of different dimensionality and symmetry
class, dubbed statistical topological insulators [68]. Here, protection is
not given by an exact symmetry, but by one which only holds on aver-
age. Whereas the original invariants belong to Z or Z2, those stabilized
by average symmetries only have a Z2 group structure.

Motivated by the robustness of boundary states in statistical topolog-
ical insulators, we study how the classification of TIs and topological de-
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fects are extended by average symmetries. For concreteness, we will focus
on disordered systems which preserve average reflection symmetry (ARS),
a situation which occurs in many condensed matter systems [162, 50, 188].
Each element of the disordered ensemble of Hamiltonians, H, appears with
equal probability as its reflected counter part, R−1

j HRj , withRj a unitary
reflection operator about the j-direction. Oblique reflection gives the same
physics as the ordinary one, thus in the examples we will consider only
the ordinary one. For us the relevant cases are when the reflection plane
passes through a lattice site of the system, such that the symmetry can
be broken by staggering the strength of consecutive hopping amplitudes.

We find that the group structure of topological invariants is exponen-
tially enlarged by ARS, since weak invariants of all dimensions d > 0 con-
tribute simultaneously and independently to the classification presented in
Table 5.1. Some of the physical consequences of this extension include the
possibility of disordered topological phase transitions governed only by a
change in the weak invariant. We find a particularly interesting situation
when the system possesses a nonzero strong index on both sides of such a
transition. Then the conductance of the boundary is non-trivial and iden-
tical in both phases, while at the transition the bulk gap must close in the
presence of ARS. Additionally, we show that the extended classification
applies also to topological defects [163]. It allows us to define a new class
of gapless statistical topological defects, which are robust to disorder but
can only exist in the presence of average symmetries.

In the following, we begin our discussion by motivating the need for
an extended topological classification with some concrete examples. In
Section 5.2 we introduce a model for a two-dimensional (2d) topological
superconductor in symmetry class D, exhibiting disordered phase transi-
tions across which the strong invariant remains constant, and only a weak
index changes. To show how this behavior escalates in higher dimensions,
we consider a three-dimensional topological superconductor (class DIII)
in Section 5.3. Its disordered phases are distinguished by a second gener-
ation weak index, i.e. one which is two dimensions lower than the system
dimension, even if the strong and 2d weak invariants don’t change. We
generalize these results to arbitrary dimension and symmetry class in Sec-
tion 5.4 showing that ARS enlarges the topological classification of both
bulk Hamiltonians and topological defects alike. We conclude in Section
5.5.
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5.2 Topological superconductor in class D

Figure 5.1. Bulk thermal conductance of a disordered system with Hamiltonian
(5.2) as a function of µ and td. Parameters are tx = 1, ty = 1/2, ∆x = 2, ∆y = 1,
and disorder strength U = 1. Each phase is labeled according to its strong and
weak topological invariants: ν, νx, νy. With average reflection symmetry (left
panel) the crossings are protected by the weak invariants. Breaking ARS in
either the x- or the y-directions destroys the corresponding invariant (marked
with ×) and leads to an anticrossing, as shown in the middle and right panels.
In the middle panel the staggering strength in the x-direction is sx = 0.2, while
in the right panel the y-direction hoppings are staggered with sy = 0.4.

5.2.1 Model Hamiltonian

Two-dimensional superconductors with broken time-reversal as well as
spin-rotation symmetry belong to symmetry class D in the AZ classifi-
cation. The minimal topological model is a 2 × 2 Bogoliubov-De Gennes
Hamiltonian describing spinless fermions in the presence of a p-wave order
parameter, ∆(k) ∼ k. The only constraint is provided by the particle-hole
symmetry, and reads:

τxH(k)τx = −H∗(−k), (5.1)

in terms of the Pauli matrices τi acting on the particle-hole degree of
freedom.

We use a tight binding Hamiltonian of the form

H(k) = ε(k)τz + ∆xτx sin(kx) + ∆yτy sin(ky), (5.2)

with

ε(k) = −2tx cos(kx)− 2ty cos(ky)− µ
−2td cos(kx + ky)− 2td cos(kx − ky). (5.3)
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Here, ∆x,y is the strength of the p-wave pair potential, tx,y are the
anisotropic hopping amplitudes in the x- and y-directions, and µ is the
chemical potential. The Hamiltonian (5.2) is discretized on a square lattice
of Lx×Ly = 50×50 sites (lattice constant a = 1), with the last two terms of
Eq. (5.3) leading to next nearest neighbor hoppings, parametrized by the
diagonal hopping amplitude td. Disorder is modeled by random variations
of the chemical potential, drawn independently for each site from the
uniform distribution [µ− U, µ+ U ]. In the following we set tx = 1 and
express all other Hamiltonian parameters relative to this energy scale. All
tight binding simulations are performed using the Kwant code [70].

5.2.2 Group structure of phases distinguished by strong
and weak invariants

We attach disorder free leads at x = 0, Lx connecting the system to reser-
voirs at temperatures T0 and T0 + δT . The Fermi level (E = 0) scattering
matrix,

S =
(
r t
t′ r′

)
, (5.4)

enables us to compute the thermal conductance G = G0 Tr t†t, G0 =
π2k2

BT0/6h, in the low-temperature, linear response regime, as well as
the topological invariants of the system. The Chern number, the strong
topological invariant of the system, reads [66, 65]

ν = 1
2πi

ˆ 2π

0
dφ

d

dφ
ln det r(φ), (5.5)

while the weak Z2 invariants are given by

(−1)νy = sign det r(φ = 0). (5.6)

In Eqs. (5.5) and (5.6) r(φ) is the reflection block of the scattering
matrix in the presence of twisted boundary conditions applied to the states
in the y direction: ψ(x, 0) = eiφψ(x, Ly). The weak invariant in the x-
direction is evaluated in a similar fashion, by attaching leads in the y-
direction and using periodic boundary conditions (φ = 0) along x. Both
the strong and the weak invariant is defined such that ν, νy = 0 is trivial,
while phases with non-zero invariants are non-trivial, either in the strong
or weak sense.
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As a function of µ and td, the system shows a variety of topological
phases separated by phase transitions at which the bulk gap closes (see
Fig. 5.1, left panel). The phases are strong topological insulators whenever
the Chern number is nonzero, with chiral Majorana zero modes on all
edges. When ν = 0, we also find weak topological insulators, where two
out of four edges avoid localization in the presence of disorder, hosting
counter-propagating Majorana edge modes – so-called Kitaev edges [48].

While typically the Chern number changes across a phase transition,
in the model (5.2) there are also transitions across which the strong in-
variant remains constant, and only the weak invariants change. They are
the crossings in Fig. 5.1, occurring at (µ, td) = (1, 1/2) and (2, 1/4). At
td = 1/4, varying the chemical potential causes a change of the weak in-
variant νy, while the other weak invariant, νx, is responsible for the phase
transition at td = 1/2. The bulk gap is closed at (µ, td) = (2, 1/4) even
though there are the same number of chiral Majorana edge modes with
the same chirality both for µ < 2 and µ > 2.

In the clean case (U = 0) these anomalous topological phase transitions
are protected by the exact reflection symmetry of the system. We find in
our simulations that they persist when disorder is added, up to values of
U comparable to the bulk gap, when a thermal metal phase develops [150,
51, 103]. Note that in Fig. 5.1 we plot the bulk thermal conductance of a
single system at strong disorder, showing that at large enough system sizes
ARS can protect not only the properties of the disordered ensemble as a
whole, but its individual elements as well. The presence of crossings in
the disordered phase diagram of Hamiltonian (5.2) shows that the Chern
number, a Z index, is insufficient to describe class D two-dimensional
disordered superconductors with ARS. The full topological classification
is in fact Z× Z2

2.

We verify this group structure by selectively removing average symme-
tries from the system. This is done by staggering the x- and/or y-direction
hoppings as tx,y → tx,y(1 + (−1)x,ysx,y). For s 6= 0, consecutive hoppings
in the same direction have alternating strength, such that ARS no longer
holds. Breaking either of the average symmetries removes the protection
of the associated weak invariant, and therefore splits the corresponding
crossing, as shown in the middle and right panels of Fig. 5.1. This sig-
nals that the two average symmetries act independently, justifying the
extended Z× Z2

2 group structure.
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Figure 5.2. Bulk thermal conductance of a single disordered system with Hamil-
tonian (5.7) as a function of µ and td. Parameters are tx = 1, ty = 1/2, tz = 0.05,
∆x = 3, ∆y = 1.5, ∆z = 0.15, K = 0.2, and disorder strength U = 1. Phases
are labeled by their topological invariants Qz2, Qx1 , and Q

y
1, with × marking an

invariant destroyed by breaking ARS. In the absence of staggering, phases are
distinguished by both first and second generation weak invariants (left panel).
Staggering in the x- and y-directions are set to sx = 0.25 in the middle panel
and sy = 0.5 in the right panel, respectively.

5.3 Topological superconductor in class DIII

5.3.1 Model Hamiltonian

To demonstrate the protection of an insulating phase by a second genera-
tion weak invariant, i.e. an invariant two dimensions lower than the system
dimension, we choose a model in symmetry class DIII, with Hamiltonian

H(k) = ε(k)σ0 ⊗ τz +Kσy ⊗ τy + ∆x sin(kx)σz ⊗ τx
+ ∆y sin(ky)σo ⊗ τy + ∆z sin(kz)σx ⊗ τx, (5.7)

where

ε(k) = −2tx cos(kx)− 2ty cos(ky)− 2tz cos(kz)
− 2td cos(kx + ky)− 2td cos(kx − ky). (5.8)

The Pauli matrices τi and σi act on the particle-hole and time-reversal
degree of freedom, respectively. Here, tx,y,z and ∆x,y,z are the anisotropic
hopping amplitudes and the p-wave pairing amplitudes in the x-, y-, and
z-directions (as before, we set tx = 1). The chemical potential is µ, while
K models an s-wave order parameter coupling the two spin blocks. The
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model is constrained by particle-hole and time-reversal symmetry:

τxH(k)τx = −H∗(−k), (5.9)
σyH(k)σy = H∗(−k). (5.10)

5.3.2 Group structure of phases distinguished by first and
second generation weak invariants

Like in the previous model, we introduce disorder by random spatial vari-
ations of the chemical potential, with disorder strength U . We discretize
the Hamiltonian (5.7) on a cubic lattice of linear size Lx,y,z = 16. Ideal
leads are attached along one direction, and twisted boundary conditions
are imposed in the other two, as ψ(0, y, z) = eiφxψ(Lx, y, z), ψ(x, 0, z) =
eiφyψ(x, Ly, z), or ψ(x, y, 0) = eiφzψ(x, y, Lz). In each case the reflection
matrix is a function of two out of the three twist angles φx,y,z. Owing to
time-reversal symmetry, the reflection block can be brought to an anti-
symmetric form whenever the twist angles are 0 or π (periodic or anti-
periodic boundary conditions), making its Pfaffian, Pf r, well defined. As
in the class D model, the system shows different disordered topological
phases as a function of µ and td, protected by 1d or 2d weak invariants
(see Fig. 5.2). The relevant two-dimensional weak index reads [66, 65]

(−1)Qz2 = sign [Pf r(φy = 0, φz = 0) ×
Pf r(φy = π, φz = 0)] ,

(5.11)

and is responsible for gapless modes on all side surfaces, i.e. surfaces
parallel to the z-direction. Non-trivial 1d weak invariants appearing in
Fig. 5.2 are

(−1)Qx1 = sign [Pf ir(φx = 0, φz = 0)] , (5.12)

and
(−1)Q

y
1 = sign [Pf ir(φy = 0, φz = 0)] , (5.13)

leading to protected gapless modes on side surfaces parallel to the x- and y-
directions, respectively. Three-dimensional class DIII systems also allow
for a strong invariant, but this one remains zero throughout the phase
diagram of Fig. 5.2, since the top and bottom surfaces are insulating
whenever the bulk is gapped.

Unlike the two-dimensional model of Section 5.2, in which topologi-
cally different phases were separated by insulator-to-insulator phase tran-
sitions, the three dimensional Hamiltonian (5.7) has finite-extent metallic
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regions [67]. Nevertheless, insulating phases are not connected in the
presence of ARS. We find that the weak 1d and 2d invariants are robust,
leading to surfaces which do not localize once disorder is added. Breaking
average reflection symmetry by staggering consecutive hoppings in the
x- or y-directions destroys the corresponding invariants, connecting the
phases as shown in the middle and right panels of Fig. 5.2. Note that
staggering in the z-direction destroys all of the invariants of Eqs. (5.11),
(5.12), and (5.13), turning the entire phase diagram into a topologically
trivial insulator.

5.4 Extended topological classification

In the previous Sections we have presented models showing topological
phase transitions protected by average reflection symmetry, which we
dub statistical topological phase transitions, following nomenclature of
Ref. [68]. Since the strong index remains constant across these transi-
tions, we need to extend the topological group structure of the periodic
TI table in order to properly label the protected phases. In this Section,
we discuss this extension in the context of the models presented above,
and show how it applies to systems of any dimensionality and symmetry
class.

5.4.1 Topological protection in 2d, class D

The phase diagram of the 2d system, Fig. 5.1, has two statistical topolog-
ical phase transitions. The lower one, µ = 2 and td = 1/4, happens at a
vanishing Chern number, ν = 0. The corresponding phases are a trivial
system (ν = νy = 0), µ > 2, and a WTI (νy = 1) for µ < 2. As such,
its robustness to disorder can be understood in the language of Ref. [68],
namely in terms of the different edge localization properties of the two
phases. In the trivial phase the edge is localized: its thermal conduc-
tance G ∼ exp(−L/ξ) decays exponentially as a function of system size
L, with the localization length ξ. The WTI on the other hand has edge
states which avoid localization even in the presence of disorder. They form
so-called Kitaev edges [48], characterized by a super-Ohmic conductance
G ∼

√
l/L (with l the mean free path), which scales in a way typical for

disordered one-dimensional systems at a critical point [23, 24, 108, 71].
Due to bulk-boundary correspondence, the difference in edge localization
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Figure 5.3. Conductance through a Kitaev domain wall as a function of its
length, with and without average reflection symmetry (blue solid and red dashed,
respectively). The inset shows the measurement setup, in which conductance
flows both through the domain wall and the chiral Majorana edge modes. The
quantized edge mode contribution has been subtracted from the plot (vertical
axis label). Both the top and bottom halves are described by Eq. (5.2), using
µtop = 1.5 and µbottom = 0.5, and keeping all other parameters the same as in
Fig. 5.1.

properties implies that the two phases are topologically distinct, explain-
ing the phase transition’s robustness to disorder.

The situation is different for the upper crossing in Fig. 5.1, at µ = 1 and
td = 1/2. On both sides the strong topological invariant is ν = −1, and as
such all edge states avoid localization in both phases. In fact, the thermal
conductance of the edge is identical in both systems, G = |ν|G0 = G0, so
the above argument cannot be applied.

Instead, we look at the localization properties of an interface formed
between them. Consider a one-dimensional domain wall formed between
systems in the two phases (td = 1/2, µ < 1 and µ > 1). The key observa-
tion is that if one of the weak indices differs, the corresponding interface
between two strong TIs will behave like the edge of a WTI – in this case a
Kitaev edge, or rather, a Kitaev domain wall. Since the index νx changes,
the interface parallel to the x-direction avoids localization as long as aver-
age reflection symmetry is preserved (see Fig. 5.3). The mobility gap must
close along this interface, showing that the two phases are topologically
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distinct. Therefore, ARS protects weak invariants also when the strong
index is nonzero, leading to a Z×Z2

2 classification for disordered class D
systems in two dimensions.

5.4.2 Topological protection in 3d, class DIII

The situation is similar for the 3d model in class DIII, whose phase di-
agram is shown in Fig. 5.2. At td = 1/4, the systems goes from a WTI
with Qy1 = 1 to a trivial insulator as a function of µ, so the different sur-
face localization properties of the two disordered phases imply they are
topologically distinct. At td = 1/2 on the other hand, the effect of 1d
invariants is obscured by the 2d non-trivial invariant Qz2, which makes all
side surfaces delocalized. As before, robustness of the topological phases
on either side of the crossing can be determined by considering an inter-
face between them. Our simulations indicate that in this case the interface
avoids localization, such that the two phases cannot be continuously con-
nected without closing the mobility gap.

5.4.3 Generalized topological protection by average sym-
metry

In general, strong and multiple generations of weak invariants may af-
fect the localization properties of states at the same boundary. However,
contributions of different indices can always be isolated by forming an in-
terface between two phases with only one index changed. This is, in fact,
analogous to studying the boundaries of a system which is only non-trivial
with respect to that particular invariant (see Fig. 5.4).

For a d-dimensional Hamiltonian H, the robustness of one of its topo-
logical indices can be determined by studying an auxiliary Hamiltonian in
the same symmetry class [163, 182]:

H̃ = H ⊕H ′R ≡
(
H Λ
Λ† H ′R

)
, (5.14)

with Λ a symmetry preserving coupling matrix. Choosing H ′R such that
only one nonzero index of H is also nonzero in H̃, with all others triv-
ial, allows us to use the results of Ref. [68] to show its boundaries avoid
localization in the presence of average symmetries.

For example, ifH is given by Eq. (5.2) with ν = −1, νx = 1, as happens
for µ = 0 and td = 1/2, one can choose H ′R to have ν = 1, νx = 0,
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Figure 5.4. We consider two systems with the same strong indices ν, but
different weak indices νx and ν′x corresponding to the Hamiltonians H and H ′.
We combine them in one of two ways: on the left we invert the invariants of
the second system to H ′R with indices −ν and −ν′x and combine it with the
first system using Eq. (5.14). We make the coupling matrix Λ local and having
support throughout the bulk of both systems. The combined system has indices 0
and νx−ν′x making it non-trivial only in the weak sense. On the right we put the
two systems together with a coupling only over their common edge. Then a weak
domain wall is formed with gapless states protected by the non-zero difference
νx−ν′x. This is the generalization of the Kitaev domain wall introduced earlier.

making the combined system [163, 182, 129] a WTI only with respect
to νx. The connection between the Kitaev domain wall formed at the
interface between two strong TIs and the auxiliary Hamiltonian introduced
in Eq. (5.14) is summarized in Fig. 5.4. The combined Hamiltonian can
be visualized as the system in the inset of Fig. 5.3, where the two halves
touching at the domain wall have been folded on top of each other. The
Majorana edge modes become counter-propagating after folding, such that
ν = 0, and the domain wall in the original setup becomes the boundary of
the folded system. As such, in the following we will restrict ourselves to
boundary localization properties, with the understanding that the same
results will be reached when multiple non-trivial invariants coexist, either
by considering interface properties, or auxiliary Hamiltonians of the form
(5.14).

Before proceeding to extend the table of topological insulators to the
case where average reflection symmetry is preserved, we shortly review
the results of Ref. [68]. We give here only a brief summary, expressed in
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Figure 5.5. Surface of a stack of quantum spin Hall layers. Horizontal ar-
rows denote the helical edge modes of each layer, and solid/dotted lines indicate
strong/weak inter-layer coupling. Reflection symmetry about one layer can be
broken in two different ways (left/right panels), leading to different surface in-
variants ν. On the left the surface is gapped and trivial, whereas on the right the
reflected configuration of inter-layer coupling leaves helical edge modes on the
surface boundaries (dark color), signaling a non-trivial surface invariant ν = 1.

the language of a concrete physical example, and refer the reader to that
paper for the full, detailed derrivation. This discussion is necessary in
order to distinguish between Z and Z2 weak invariants.

In the absence of disorder, WTIs have gapless boundary states. They
can be thought of as systems formed of weakly coupled layers, where each
one caries a strong lower dimensional invariant. Depending on whether
the layer index is Z or Z2, we consider two constructions: adjacent layers
can either have the same value of a Z2 index, or opposite Z invariants, Q
and −Q. A 3d example of the former is a stack of weakly coupled quantum
spin Hall systems [135], while the latter is an anti-ferromagnetic stack of
quantum Hall systems [104, 10]. In each case, dimerization of the layers
can gap out the boundary states, but this is forbidden by exact reflection
symmetry.

Note that one can also consider stacked systems in which each layer
has the same value of a Z invariant. In this construction however, the
boundary cannot be gapped irrespective of lattice symmetries, so we will
not discuss it in the following.

When disorder is added, reflection symmetry is explicitly broken, be-
coming instead an average symmetry of the disordered ensemble. Let us
use the stack of coupled quantum spin Hall systems as an example, and
assume that the gapless surfaces protected by exact reflection symmetry
do indeed become gapped once disorder is introduced. In the presence of
a surface gap, we can define surface topological invariants for all elements
of the disordered ensemble. Since in 2d (and in general in all dimensions
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d ≥ 1) the topological invariant is a self-averaging quantity, it should have
the same value for any surface as it does for its reflected counterpart.
However, there are two distinct ways of breaking reflection symmetry on
the surfaces of a stack of quantum spin Hall layers, with surface invariants
that differ by an odd amount, as shown in Fig. 5.5. Disorder which re-
spects ARS is equally likely to break reflection symmetry in either of the
two ways, seemingly contradicting the self-averaging nature of the topo-
logical index. The only resolution to this apparent paradox is to invalidate
the original assumption, that of a gapped surface.

Ref. [68] showed that boundary states avoid localization whenever the
average symmetry changes surface invariants by an odd amount, resulting
in a new class of topological phases: statistical topological insulators.
With average reflection symmetry, this happens for layered systems in
which each layer has a strong Z2 index, since a change of a Z2 number
can only be odd. Additionally, it was shown this happens for layers with
an alternating Z index ±Q, whenever Q itself is odd. As such, both cases
lead to a weak invariant of the disordered bulk system which is Z2.

The weak invariants found to survive disorder thanks to the above
arguments can then be used iteratively to extend the classification to
higher dimensional systems. This is done by studying a system in the same
symmetry class but one higher dimension, and considering odd changes
in the weak surface invariants. Then, the same procedure leads to second
generation statistical topological insulators, such as the phase appearing
at µ = td = 0 in the DIII model (Fig. 5.2). The simultaneous presence
of two independent average reflection symmetries is required in this case:
one guarantees the existence of a weak surface invariant, while the second
one changes the value of this weak invariant by an odd amount. Therefore,
each strong index, Z or Z2, gives rise to infinitely many higher dimensional
Z2 statistical topological insulators in the same symmetry class, which
require a larger number of average symmetries for larger dimensionality
of the system.

5.4.4 Extended topological group structure

So much for the summary of Ref. [68]. We extend its conclusions to the
case when multiple invariants coexist. For a d-dimensional system in any
symmetry class, the classification due to the strong invariant, if any, is
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extended by each non-trivial invariant of lower dimension, d′ = d− k, as

Z2
α, α =

(
N
k

)
, (5.15)

where α is a binomial coefficient and N ≤ d is the total number of average
reflection symmetries. The binomial coefficient in Eq. (5.15) is reminiscent
of that found for systems in the absence of disorder [92, 182], with some
important differences. First, it does not go up to the full dimension of the
system, but rather to the number of average reflection symmetries which
protect the invariants. Second, only Z2 groups appear, irrespective of
whether the lower dimensional index is Z or Z2. Lastly, the extension only
involves invariants in dimensions d > d′ > 0, since in zero dimensions the
topological invariant is not a self-averaging quantity, making the results
of Ref. [68] inapplicable.

We assemble the resulting classification into a new table of topological
insulators, which is now no longer periodic, but shows an exponential en-
largement of groups with the number of spatial dimensions (see Table 5.1).
In two dimensions we recover the result of Section 5.2 for class D, with a
group structure Z×Z2

2. In 3d class DIII (Section 5.3), the group is Z×Z2
6

with ARS along all directions: there is one integer valued strong index,
three 2d weak indices, and three second generation, 1d invariants. If ARS
is broken along one direction, by staggering the system for instance, the
group becomes Z× Z2

3 instead. In that case, only two 2d invariants and
one 1d weak index survive.

The extended classification of Table 5.1 applies not only to bulk Hamil-
tonians, but also to Teo and Kane’s classification of topological defects [163],
enabling us to distinguish between strong and statistical topological de-
fects. An example of the latter is in fact shown in Fig. 5.3. It’s the
Kitaev domain wall, a one-dimensional topological defect protected from
localization by ARS.

Since topological defects are classified in terms of the topological prop-
erties of Hamiltonians surrounding the defect, they share the same ex-
tended group structure as bulk Hamiltonians. Therefore, statistical topo-
logical phase transitions in which the strong defect invariant does not
change are possible. By using the same interface construction as before,
Fig. 5.3, one can understand these transitions in terms of the properties
of the Hamiltonians surrounding them. We show an example in Fig. 5.6,
where the Hamiltonians surrounding two defects with the same strong in-
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Figure 5.6. One-dimensional topological defect embedded in a three-
dimensional bulk, such as the Hamiltonian (5.7) or stacked copies of (5.2). At
some point along the defect one of its weak invariants changes, leading to the for-
mation of a Kitaev domain wall. The defect Hamiltonians HD and H̃D have the
same strong invariant, but cannot be deformed into each other without closing a
gap, due to the presence of ARS.

variant cannot be adiabatically deformed into each other, since they differ
in one of their weak invariants.

5.5 Conclusion

We have shown how the topological structure of single-particle systems
is enhanced by the presence of average symmetries. For concreteness,
we have focused on protection due to average reflection symmetry in the
presence of disorder, a situation which occurs naturally in many condensed
matter systems. We have found that all weak invariants of lower dimen-
sions d ≥ 1 contribute to the classification at the same time, leading to a
group structure which grows exponentially with the number of dimensions.

In general, when multiple invariants affect the localization properties of
the same boundaries, the effect of average symmetries can be treated with
the construction of Eq. (5.14), or by forming interfaces between systems.
This enables the robustness of each invariant to be studied independently
of the others.

Since we focus on the effects of disorder, our classification scheme is
different from, and applies also to existing works which generalize the pe-
riodic TI table. The same arguments can be applied to any symmetry
compatible with the criterion of Ref. [68]. In particular, one may con-
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sider instead rotational symmetry, which has also been shown to lead to
topologically non-trivial phases and defects [79, 164, 14]. Here too the
inclusion of disorder would result in an average rotational symmetry, ex-
tending the topological group structure in a similar fashion. This opens
possibilities for numerous theoretical studies and widens the possibilities
for the experimental observation of the suggested effects.

We have also discussed some of the physical consequences of the ex-
tended classification. It can lead to statistical topological phase transi-
tions, governed only by a change in one of the weak invariants. In the
presence of average symmetries the bulk gap must close at the transition,
even if the topological insulators on either side have the same boundary
conductance. Additionally, the extended classification can lead to sta-
tistical topological defects, which host gapless modes that are robust to
disorder, but which could not exist in the absence of average symmetries.
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Chapter 6

Emergence of massless Dirac
fermions in graphene’s
Hofstadter butterfly at
switches of the quantum
Hall phase connectivity

6.1 Introduction

The quantum Hall effect in a two-dimensional periodic potential has a
phase diagram with a fractal structure called the “Hofstadter butter-
fly” [75, 119]. In a 2013 breakthrough, three groups reported [124, 45, 78]
the observation of this elusive structure in a graphene superlattice, pro-
duced by the moiré effect when graphene is deposited on a boron nitride
substrate with an almost commensurate hexagonal lattice structure. It
was found that the magnetic minibands repeat in a self-similar way at
rational values Φ/Φ0 = p/q of the flux Φ through the superlattice unit
cell, with p, q integers and Φ0 = h/e the flux quantum.

A central theme of studies of the Hofstadter butterfly is the search for
flux-induced massless Dirac fermions [128, 76, 69, 46, 133]. It turns out
that in the graphene superlattice only the zero-field Dirac cones are ap-
proximately gapless [140, 118, 189, 89], while the flux-induced Dirac cones
are gapped [35]. Generically, Dirac fermions in the Hofstadter butterfly
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Figure 6.1. Schematic illustration of a connectivity switch in the quantum Hall
phase diagram. Upon variation of a control parameter θ the connected component
switches from topological quantum number νA to νB . At the transition a singular
point appears in the phase boundary (encircled), associated with gapless Dirac
cones in the Brillouin zone (right-most panel).

are massive.
Here we show that massless Dirac fermions do appear at singular points

in the quantum Hall phase diagram, associated with a switch of the phase
connectivity upon variation of some control parameter. (See Fig. 6.1.)
Any experimentally accessible quantity that couples to the superlattice
potential can play the role of control parameter, in what follows we will
consider the angle θ of crystallographic alignment between graphene and
substrate. We find that the phase boundaries separating regions of distinct
Hall conductance σxy = νe2/h rearrange their connectivity upon variation
of θ, switching the connected component of the phase diagram from ν to
ν ± 2q. In the magnetic Brillouin zone this transition produces a pair of
q-fold degenerate conical singularities (Dirac points), with massless Dirac
fermions as low-energy excitations.

6.2 Low energy model of the moiré superlattice
We base our analysis on the moiré superlattice Hamiltonian of Wallbank
et al. [179]. Starting point is the Dirac Hamiltonian of graphene [31, 87],

H0 = v[p− eA(r)] · σ + V (r), (6.1)

for conduction electrons near each of two opposite corners (valleys) of the
hexagonal Brillouin zone1. The Fermi velocity is v = 106 m/s and the lat-

1 The valley-isotropic Dirac Hamiltonian (6.1) acts on the spinor (ΨA,ΨB) in valley
K and (ΨB,−ΨA) in valley K′, where ΨA,ΨB are the wave amplitudes on the two
triangular sublattices that form the hexagonal lattice of graphene.
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tice constant of the hexagonal lattice of carbon atoms is a = 2.46Å. The
momentum p = −i~∇ in the r = (x, y) plane is coupled to pseudospin
Pauli matrices σx and σy acting on the sublattice degree of freedom. The
real spin plays no role and is ignored2, only the orbital effect of a per-
pendicular magnetic field B = Bẑ is included (via the vector potential
A). The electrostatic potential V is adjustable via a gate voltage. For
simplicity we assume that the mean free path for impurity scattering is
sufficiently large that disorder effects can be neglected.

The moiré effect from a substrate of hexagonal boron nitride (hBN,
lattice constant (1 + δ)a, δ = 0.018, misaligned by θ � 1) adds super-
lattice terms to the Dirac Hamiltonian. The terms that break inversion
symmetry are small and we neglect them, following Ref. [1]. Three terms
remain [179],

H = H0 + ~vbU1f+(r) + iξ~vbU2σzf−(r)
+ iξ~vU3 (σy∂f−/∂x− σx∂f−/∂y) , (6.2)

where ξ = ±1 in the two valleys and

f±(r) =
5∑

m=0
(±1)meibmr = ±f±(−r), (6.3)

bm = 4π√
3a
R̂πm/3

[
1− (1 + δ)−1R̂θ

](0
1

)
. (6.4)

The reciprocal lattice vectors bm have length b ≡ |b0| ≈ (4π/
√

3a)
√
δ2 + θ2

and are rotated by the matrix

R̂θ =
(

cos θ − sin θ
sin θ cos θ

)
. (6.5)

The periodicity of the superlattice is λ = 4π/
√

3b ≈ a/
√
δ2 + θ2.

The terms U1 and U2 in the Hamiltonian (6.2) represent a potential
modulation, while the term U3 is a modulation of the hopping amplitudes.
The coefficients are related by [89, 179]

{U1, U2, U3} = E0
~vb

{
1
2 ,−

1
2
√

3,−(1 + θ2/δ2)−1/2
}
, (6.6)

2 Because the spin degree of freedom is not counted, the conductance quantum is
e2/h rather than 2e2/h.
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Figure 6.2. Five-terminal geometry used to calculate the Hall conductivity
(6.7). The two-dimensional hexagonal lattice of the tight-binding model is shown,
with the superlattice potential indicated by colored sites and bonds (not to scale,
the actual lattice is much finer).

where E0 is an energy scale that sets the coupling strength of graphene
to the hBN substrate. We use the estimate E0 = 17 meV from Ref. [1],
corresponding to a ratio E0/~vb = 0.05 (1 + θ2/δ2)−1/2.

6.3 Numerical results for the Hall conductivity

We study electrical conduction in the five-terminal Hall bar geometry of
Fig. 6.2, where a current I flows from source 1 to drain 3 while contacts
2, 4, and 5 draw no current. The voltages Vn at these contacts determine
the Hall conductivity,

σxy = (V5 − V2)I
(V5 − V2)2 + (W/L)2(V5 − V4)2 . (6.7)

In linear response and at zero temperature the voltage differences are
obtained from the scattering matrix S(E) at the Fermi level EF = 0,
which we calculate by discretizing the Hamiltonian (6.2) on a tight-binding
lattice (hexagonal symmetry, lattice constant aTB = λ/20). The metallic
contacts are modeled by heavily doped graphene leads (infinite length,
widthWlead = 5λ, potential Vlead = 2 ~vb), without the superlattice (E0 =
0 in the leads) and without magnetic field. In the superlattice region
(length L = 20λ, width W = 5

√
3λ) we set V = −µ. (The sign of µ is

chosen such that the Fermi level lies in the conduction band of graphene
for µ > 0 and in the valence band for µ < 0.) We calculate σxy as a
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function of Φ and µ using the kwant tight-binding code [70]3. Results
are shown in Fig. 6.3.

Panel 6.3a shows the known spectral features of the graphene super-
lattice [124, 45, 78, 35]: A parabolic fan of Landau levels emerging from
the primary zero-field Dirac cone of graphene; secondary zero-field Dirac
cones centered at µ = ±~vb/2; and gapped tertiary Dirac cones at flux
Φ/Φ0 = p/q in a region near µ = −~vb/2 (in the valence band only,
electron-hole symmetry is strongly broken by the superlattice potential).
The phases that meet at these rational flux values have Hall conductance
differing by 2qe2/h — reflecting a two-fold valley degeneracy and a q-fold
degeneracy of the magnetic minibands. (We are not counting spin.)

Panels 6.3b–d show how the connectivity switches from Fig. 6.1 appear
in the numerical simulation when we slightly misalign the hBN lattice
relative to the graphene lattice. Each switch in the connected component
of the phase diagram is associated with the closing and reopening of the
Dirac cones in the magnetic Brillouin zone. (The gap closing at Φ = Φ0
is the one shown in Fig. 6.1.)

6.4 Transport signatures of massless Dirac fermions
We will now demonstrate that transport properties near these connectivity
switches have the characteristics of massless Dirac fermions [11]. The
effects we consider are the scale-invariant (pseudodiffusive) two-terminal
conductivity and sub-Poissonian shot noise at the Dirac point [85, 171],
and Klein tunneling through a potential step [86, 34].

6.4.1 Scale-invariant conductivity and sub-Poissonian shot
noise

To search for scale invariance we take an infinitely long graphene strip of
width W , with the potential profile shown in Fig. 6.4a. The superlattice
potential is imposed over a length L (where V = −µ), while the leads
have no superlattice (Vlead = ~vb). The two-terminal conductivity σ and
Fano factor F (ratio of noise power and current) are obtained from the
transmission eigenvalues Tn,

σ = L

W

e2

h

∑
n

Tn, F =
∑
n Tn(1− Tn)∑

n Tn
. (6.8)

3 Details of the calculation are given in the Appendix.
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Figure 6.4. Electrostatic potential profile in a graphene strip, used to study the
scale invariant conductivity (panel a, V0/~vb = 1, varying µ) and Klein tunneling
(panel b, V1/~vb = 0.645, V2/~vb = 0.613). The Fermi level EF = 0 lines up with
the flux-induced Dirac point when V ≈ 0.63 ~vb.

For 2q gapless Dirac cones we expect at the Dirac point the scale invariant
values [85, 171]

σD = 2qe2/πh, FD = 1/3. (6.9)

We varyW at fixed aspect ratioW/L to search for this scale invariance.
We have examined several flux values, here we show representative results
for Φ = Φ0 (so q = 1). From Fig. 6.3 we infer that the connectivity switch
at this flux value happens near θ = 0.01 and µ = −0.6 ~vb. Indeed, in Fig.
6.5 both σ and F become approximately independent of sample size near
these parameter values. The limiting Fano factor is close to the expected
1/3; the limiting conductivity is a bit larger than the expected value, which
we attribute to an additional contribution of order (L/W )e2/h from edge
states. These are zero-temperature calculations, but the characteristic
temperature scale can be quite large for a sample of the size shown in Fig.
6.5, where the required energy resolution is of order 0.01 ~vb ' 40 K.

6.4.2 Klein tunneling

Klein tunneling is the transmission with unit probability at normal in-
cidence on a potential step that crosses the Dirac point. It is a direct
manifestation of the chirality of massless Dirac fermions [86]. We search
for this effect using the potential profile of Fig. 6.4b, which for Φ = Φ0 and
θ = 0.01 is symmetrically arranged around the flux-induced Dirac point.
In order to avoid spurious reflections from the leads we now apply the
superlattice potential and the magnetic field to an unbounded graphene
plane. We calculate the transmission probability T (ky) as a function of
transverse wave vector ky in the magnetic Brillouin zone.
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Figure 6.5. Conductivity (solid curves, left axis) and Fano factor (dashed
curves, right axis) calculated in the two-terminal graphene strip of Fig. 6.4a,
for different system sizes at fixed aspect ratio W/L. The scale invariance at
µ ≈ −0.63 ~vb signals the appearance of massless Dirac fermions at flux Φ = h/e
through the superlattice unit cell. The horizontal solid and dashed lines indicate
the limits (6.9) expected from the Dirac equation.

The dependence on the angle of incidence φ of the transmission proba-
bility of massless Dirac fermions depends exponentially on the step length
L [34],

T (φ) = exp(−π~−1pFL sin2 φ), (6.10)

for a symmetric junction with the same Fermi momentum pF at both
sides of the potential step. (The step should be smooth on the scale of
the lattice constant, so L � λ is assumed.) The transverse momentum
appearing in the Dirac equation is measured from the Dirac point, py =
~(ky − Ky). (The flux Φ = Φ0 creates two Dirac cones, both with the
same value of Ky.) Inspection of the band structure gives Ky = 1.723/λ
and Fermi velocity vF = 2.04 v, nearly twice the native Fermi velocity v
of graphene. The angle of incidence then follows from sinφ = py/pF, with
pF = 0.23 ~/λ, so we expect a transmission peak described by

T (ky) = exp(−π~L(ky −Ky)2/pF). (6.11)

The resulting curves are shown in Fig. 6.6 (dashed curves), for different
values of L. There is a good agreement with the numerical simulations
(solid curves).
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Figure 6.6. Transmission probability T through the potential step of Fig. 6.4b,
as a function of transverse wave vector ky for different step lengths L. The
flux-induced Dirac point is at ky = 1.723/λ. The solid curves result from the
numerical simulation of the graphene superlattice at Φ = Φ0, θ = 0.01, the
dashed curves are the analytical prediction (6.11) for Klein tunneling of massless
Dirac fermions. (There is no fit parameter in this comparison.)

The angle-resolved detection in these simulations is convenient to di-
rectly access the strongly peaked transmission profile (6.11). Experimen-
tally this signature of Klein tunneling can be observed without requiring
angular resolution in a double potential step geometry [190].

6.5 Conclusion

In summary, we have identified a mechanism for the production of massless
Dirac fermions in the Hofstadter butterfly spectrum of a moiré superlat-
tice. Generically, the flux-induced clones of the zero-field Dirac cones are
gapped, but the gap closes at a switch in the connected component of the
quantum Hall phase diagram. We have presented a model calculation for
graphene on an hexagonal boron nitride surface that exhibits these connec-
tivity switches upon variation of the crystallographic misalignment. Only
a slight misalignment is needed, on the order of 1◦, comparable to what
has been realized in experiments [124, 45, 78, 187]. Numerical simula-
tions of transport properties at unit flux through the superlattice unit cell
reveal the scale invariant conductivity and Klein tunneling that are the
characteristic signatures of ballistic transport of massless Dirac fermions.
These should be observable in small samples, in larger samples the effects
of disorder remain as an interesting problem for further research.
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6.6 Appendix

6.6.1 Derivation of the tight-binding Hamiltonian for the
moiré superlattice

Our numerical simulations are based on a tight-binding discretization of
the moiré superlattice Hamiltonian (6.2) for graphene on an hexagonal
substrate. Here we provide a derivation of the tight-binding Hamiltonian,
arriving at Eq. (6.28). This is not quite straightforward, because of the
need to accomodate two lattices, of graphene and of the substrate, in a
single discretization. We start with zero magnetic field (A = 0).

In order to achieve a commensurate discretization of the bare graphene
Hamiltonian (6.1) and the moiré superlattice defined by reciprocal lattice
vectors bm(θ), for arbitrary alignment angle θ, we make use of the in-
variance of H0 under a simultaneous rotation of space and pseudospin
(sublattice degree of freedom). A rotation by

−φ = − arctan
( sin θ

cos θ − (1 + δ)

)
(6.12)

leaves H0 invariant,

vp · σ + V (r) 7→ vp̃ · σ̃ + Ṽ (r̃), (6.13)

while bringing the reciprocal lattice vectors in alignment with bm(θ = 0).
The first two terms of the moiré modulation transform into

~vbU1f+[r(x̃, ỹ)] + iξ~vbU2f−[r(x̃, ỹ)]σz
= ~vbU1f̃+(r̃) + iξ~vbU2f̃−(r̃)σ̃z, (6.14)

1
2 f̃+(r̃) = cos(g1r̃) + cos(g3r̃) + cos(g5r̃), (6.15)
1
2 if̃−(r̃) = sin(g1r̃) + sin(g3r̃) + sin(g5r̃). (6.16)

The rotated reciprocal superlattice vectors

g1 = b

2

(
−
√

3
1

)
, g3 = b

(
0
−1

)
, g5 = b

2

(√
3

1

)
, (6.17)

depend on θ only in their length b = (4π/
√

3a)
√
δ2 + θ2, but unlike bm

not in their direction.
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The third term of the moiré modulation transforms into

iξ~vU3

[
−f−[r(x̃, ỹ)]

∂ỹ

∂y

∂ỹ
(σ̃x cosφ− σ̃y sinφ)

+ f−[r(x̃, ỹ)]
∂x̃

∂x

∂x̃
(σ̃y cosφ+ σ̃x sinφ)

]
= ξAx(r̃)σ̃x + ξAy(r̃)σ̃y.

(6.18)

We have introduced the fictitious vector potential

A(r̃) =
(
Ax(r̃)
Ay(r̃)

)
= −~vbU3

(
cos(g1r̃) + cos(g5r̃)− 2 cos(g3r̃)√

3[cos(g1r̃)− cos(g5r̃)]

)
.

(6.19)

The full Hamiltonian in the rotated basis reads

H̃ = vp̃ · σ̃ + Ṽ (r̃) + ξ~vbU1f̃+(r̃) + iξ~vbU2f̃−(r̃)σ̃z
+ ξA(r̃) · σ̃ . (6.20)

In the following we will work in this rotated basis, but in favor of a simple
notation we will drop the tilde .̃

Figure 6.7. Hexagonal lattice of the tight-binding model, with lattice vectors
a1, a2 and nearest-neighbor displacement vectors δ1, δ2, δ3. The two sublattices
have sites labeled A (filled dots) and B (open dots). The vector rij = ia1 + ja2
denotes the center of unit cell (i, j).
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We discretize the Hamiltonian (6.20) in the rotated basis on the hexag-
onal lattice, defined by the lattice vectors

a1 = aTB

(
1
0

)
, a2 = 1

2aTB

(
1√
3

)
, (6.21)

and the three nearest neighbor displacement vectors

δ1 = aTB

(
0

1/
√

3

)
, δ2 = 1

2aTB

(
−1
−1/
√

3

)
,

δ3 = 1
2aTB

(
1

−1/
√

3

)
. (6.22)

The vector rij = ia1 + ja2, with i, j integer, denotes the center of unit
cell (i, j). As shown in Fig. 6.7 we put the sites belonging to the A(B)-
sublattice at rij − (+)δ1/2 to have inversion symmetry about the origin.

To ensure that the discretization (lattice constant aTB) is commensu-
rate with the moiré superlattice (lattice constant λ), we take an integer
ratio λ/aTB = Λ, so

aTB = λ

Λ = a

Λ
√
δ2 + θ2

. (6.23)

The accuracy of the discretization is improved by increasing Λ. (In the
simulations we take Λ = 20.)

The bare graphene Hamiltonian (6.13) is produced by nearest-neighbor
hopping on the hexagonal lattice,

H̃0 = −
∑
i,j

3∑
α=1

t
[
a†(rA

ij)b(rA
ij + δα) + H.c.

]
+
∑
i,j

Ṽ (rij). (6.24)

Here rA
ij denotes the positions of sites on sublattice A, a† and b† are

creation operators on the A and B sites, and t is the hopping amplitude,

t = 2v√
3aTB

= 2v√
3a

Λ
√
δ2 + θ2 . (6.25)

The superlattice term U1 in Eq. (6.14) corresponds to a periodic spa-
tial modulation of the on-site energy, the same for A and B sites, while
the term U2 has an additional staggering — acting on A and B sites with
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opposite sign. To maintain the spatial inversion symmetry of the contin-
uum model we evaluate both terms at the center of each unit cell. The
resulting terms are given in Eqs. (6.29) and (6.30).

The superlattice term U3 with the fictitious vector potential in Eq.
(6.18) represents a periodic spatial modulation of the nearest-neighbor
hopping amplitudes in the tight-binding Hamiltonian (6.24). The replace-
ment t 7→ t + δtα(rij) produces in the continuum limit the vector poten-
tial [31]

A(r) =
3∑

α=1
δtα(r)e−iKδα = Ax(r) + iAy(r) . (6.26)

The vectorsK = (4π/3aTB)x̂ and−K locate the two Dirac cones (valleys)
in the hexagonal Brillouin zone. We seek to discretize a given fictitious
vector potential on the lattice, in other words we need to invert (6.26).
The complex field A is constructed from three real hoppings, so we have
some freedom in choosing the δtα. We take

δt1 = 2Ax/3 , δt2 = Ay/
√

3−Ax/3,
δt3 = −Ay/

√
3−Ax/3 . (6.27)

To avoid a spurious breaking of inversion symmetry we evaluate A in the
middle of each bond, rather than on the lattice site.

Collecting results, we arrive at the tight-binding Hamiltonian

H =
∑
i,j

[
(εi,j+ + εi,j− + Ṽ (ri,j))a†i,jai,j + (εi,j+ − ε

i,j
− + Ṽ (ri,j))b†i,jbi,j

]
−
∑
i,j

[
ti,j1 a†i,jbi,j + ti,j2 a†i,jbi,j−1 + ti,j3 a†i,jbi+1,j−1 + H.c.

]
. (6.28)

The energies

εi,j+ = E0
~vb

δ√
δ2 + θ2

2π
Λ [cos(g1ri,j) + cos(g3ri,j) + cos(g5ri,j)] , (6.29)

εi,j− = E0
~vb

−
√

3δ√
δ2 + θ2

2π
Λ [sin(g1ri,j) + sin(g3ri,j) + sin(g5ri,j)] , (6.30)

correspond to the periodic on-site contributions of the moiré super-lattice
potential which are symmetric (εi,j+ ) and antisymmetrc (εi,j− ) with respect
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to a swap of the A and B sublattice. The hoppings

ti,j1 = t− 2Ax(ri,j)/3, (6.31a)
ti,j2 = t−Ay(ri,j − δ1/2 + δ2/2)/

√
3

+Ax(ri,j − δ1/2 + δ2/2)/3, (6.31b)
ti,j3 = t+Ay(ri,j − δ1/2 + δ3/2)/

√
3

+Ax(ri,j − δ1/2 + δ3/2)/3, (6.31c)

include both the isotropic contribution t of native graphene and the pe-
riodic modulation from the moiré superlattice, produced by the fictitious
vector potential

A(r) =
(
Ax(r)
Ay(r)

)
= E0

~vb
−δ2

δ2 + θ2
2π
Λ

×
(

cos(g1r) + cos(g5r)− 2 cos(g3r)√
3[cos(g1r)− cos(g5r)]

)
. (6.32)

Finally, the orbital effect of the magnetic field B = Bẑ is included by
adding a Peierls phase 2π(Φ/Φ0)Λ−2ri,j · x̂ to the hopping amplitude ti,j1 ,
where Φ is the flux through the superlattice unit cell.



Chapter 7

Giant negative
magnetoresistance driven by
spin-orbit coupling at the
LaAlO3/SrTiO3 interface

7.1 Introduction
The mobile electrons at the LaAlO3/SrTiO3 (LAO/STO) interface [116]
display an exotic combination of superconductivity [132, 32] and magnetic
order [22, 18, 95, 82]. The onset of superconductivity at sub-Kelvin tem-
peratures appears in an interval of electron densities where the effect of
Rashba spin-orbit coupling on the band structure at the Fermi level is
strongest [153, 33], but whether this correlation implies causation remains
unclear.

Transport experiments above the superconducting transition temper-
ature have revealed a very large (“giant”) drop in the sheet resistance of
the LAO/STO interface upon application of a parallel magnetic field [15,
180, 80, 81]. An explanation has been proposed [81, 137] in terms of the
Kondo effect: Variation of the electron density or magnetic field drives a
quantum phase transition between a high-resistance correlated electronic
phase with screened magnetic impurities and a low-resistance phase of po-
larized impurity moments. The relevance of spin-orbit coupling for mag-
netotransport is widely appreciated [15, 170, 57, 52, 137, 30, 26], but it
was generally believed to be too weak an effect to provide a single-particle
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explanation of the giant magnetoresistance.
In this work we provide experimental data (combining magnetic field,

gate voltage, and temperature profiles for the resistance of the LAO/STO
interface) and theoretical calculations that support an explanation fully
within the single-particle context of Boltzmann transport. The key ingre-
dients are the combination of spin-orbit coupling, band anisotropy, and
finite-range electrostatic impurity scattering. The thermal insensitivity
of the giant magnetoresistance [15, 180], in combination with a striking
correspondence that we have observed between the gate voltage and tem-
perature dependence of the effect, are features that are difficult to reconcile
with the thermally fragile Kondo interpretation — but fit naturally in the
semiclassical Boltzmann description.

7.2 Experimental results
We first present the experimental data and then turn to the theoretical
description. Devices were fabricated by using amorphous LAO (a-LAO)
as a hard mask and epitaxially depositing a thin (12 u. c.) film of LAO
on top of a TiO2-terminated (0 0 1)STO single crystal substrate. The film
was grown by pulsed laser deposition at 770 ◦C in O2 at a pressure of
6 × 10−5 mbar. The laser fluence was 1 J cm−2 and the repetition rate
was 1 Hz. The growth of the film was monitored in-situ using reflection
high energy electron diffraction (rheed), and layer-by-layer growth was
confirmed. After deposition, the sample was annealed for 1 h at 600 ◦C
in 300 mbar of O2. Finally, the sample was cooled down to room tem-
perature in the same atmosphere. Magnetotransport measurements were
performed in a four-probe Hall bar geometry and in a field-effect config-
uration (Fig. 7.1a, inset) established with a homogeneous metallic back
gate. The magnetic field B is applied in-plane and perpendicular to the
current. The longitudinal sheet resistance ρxx(B) determines the dimen-
sionless magnetoresistance

MR(B) = ρxx(B)/ρxx(0)− 1. (7.1)

The left panel of Fig. 7.1a shows the measured magnetoresistance as a
function of magnetic field, recorded at 1.4 K, for gate voltages VG rang-
ing from 0 V to 50 V. In general, we observe the magnetoresistance to
remain mainly flat up to some characteristic value of the magnetic field.
For larger values, the magnetoresistance drops sharply. At even higher
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magnetic fields, the magnetoresistance begins to saturate, producing an
overall bell-like curve. At the highest voltage VG = 50 V, a very large
negative magnetoresistance is observed (a drop of 70%) over a magnetic
field range from 0 T to 12 T. As VG is decreased, the overall magnitude
of the magnetoresistance drop is suppressed, as the curves flatten out and
the characteristic field progressively moves to higher B. At VG = 10 V,
the maximum magnetoresistance variation is less than 5%.

The right panel of Fig. 7.1a shows the measured magnetoresistance at
a fixed gate voltage of VG = 50 V, for different temperatures ranging from
1.4 K to 20 K. The correspondence between the bell-shaped magnetoresis-
tance profiles as a function of temperature and gate voltage is striking. As
T increases or VG decreases, both the magnitude of the magnetoresistance
and steepness of ∂MR/∂B decrease. Although the negative magnetoresis-
tance is progressively suppressed as the temperature is raised, it is still
clearly visible at 20 K, in agreement with previous experiments [15, 180].
Notice that the characteristic field scale of the resistance drop increases
with temperature.

7.3 Boltzmann equation of the three-band model

For the theoretical description we use a three-band model of the t2g con-
duction electrons at the LAO/STO interface [80], with Hamiltonian

H =
∑

k,l,l′,σ,σ′

c†k,l,σ (HL +HSO +HZ +HB) ck,l′,σ′ . (7.2)

The operators c†k,l,σ create electrons of spin σ and momentum k (measured
in units of the lattice constant a = 0.4 nm), in orbitals l = dxy, dxz, dyz of
the Ti atoms close to the interface. We describe the various terms in this
three-band Hamiltonian, with parameter values from the literature [80,
102, 142, 192, 173, 29, 144, 123, 53, 141] that we will use in our calculations.
(Further details are given in the Appendix.)

The lobes of the dxy orbital are in plane, producing two equivalent
hopping integrals tl = 340 meV. For the two other orbitals, the x-lobe
or y-lobe is in plane and the z-lobe is out of plane, giving rise to one
large and one small hopping element tl and th = 12.5 meV, respectively.
The dxz and dyz orbitals are hybridized by a diagonal hopping td = th.
Confinement lowers the dxy orbital in energy by ∆E = 60 meV. All this
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Figure 7.1. (a) Measured magnetoresistance at T = 1.4 K for different gate
voltages (left panel) and at VG = 50 V for various temperatures (right panel).
Inset: Schematic drawing of the device in a Hall bar geometry (in-plane field
perpendicular to current direction), showing the source S, drain D, longitudinal
voltage V xx, transverse voltage V xy and gate voltage VG.
(b) Magnetoresistance calculated from the Boltzmann equation, at fixed T =
1.4 K (left panel) and at fixed n = 2.2× 1013 cm−2 (right panel).
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information is encoded in

HL =

εxy(k)−∆E 0 0
0 εxz(k) δ(k)
0 δ(k) εyz(k)

⊗ σ̂0, (7.3)

εxy(k) = 2tl(2− cos kx − cos ky),
εxz(k) = 2tl(1− cos kx) + 2th(1− cos ky), (7.4)
εyz(k) = 2th(1− cos kx) + 2tl(1− cos ky),
δ(k) = 2td sin kx sin ky.

We use σ̂x,y,z and σ̂0 to denote the Pauli-matrices and the identity acting
on the electron spin.

The intrinsic electric field at the interface breaks inversion symmetry
and produces the term

HZ = ∆Z

 0 i sin ky i sin kx
−i sin ky 0 0
−i sin kx 0 0

⊗ σ̂0, (7.5)

with ∆Z = 15 meV. Atomic spin-orbit coupling gives

HSO = ∆SO
2

 0 iσ̂x −iσ̂y
−iσ̂x 0 iσ̂z
iσ̂y −iσ̂z 0

 , (7.6)

with an amplitude ∆SO = 5 meV. Together, HZ and HSO cause a Rashba-
type splitting of the bands, coupling the dxy orbital with the dxz/yz orbitals
above the Lifshitz point at the bottom of the dxz/yz bands.

The term HB = µB(L + gS) · B/~, with g = 5 [53], describes the
coupling of the applied magnetic field to the spin and orbital angular
momentum of the electrons, where S = ~σ̂/2 and

Lx = ~
( 0 i 0
−i 0 0
0 0 0

)
, Ly = ~

( 0 0 −i
0 0 0
i 0 0

)
, Lz = ~

( 0 0 0
0 0 i
0 −i 0

)
. (7.7)

The resulting highly anisotropic band structure is shown in Fig. 7.2.
Notice the unusually close relevant energy scales: When measured from
the bottom of the upper, anisotropic bands, the Fermi energy, spin-orbit
coupling induced spin-splitting, Zeeman energy (10 T) and temperature
(10 K) all are on the order of 1 meV.
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Figure 7.2. (a) Dispersion relation for the mobile electrons at the
LaAlO3/SrTiO3 interface, calculated from the model Hamiltonian (7.2) for
n = 2.2× 1013 cm−2 at B = 0 T (solid line) and B = 12 T (dashed line). Colors
indicate the orbital character of the bands. (b) Corresponding Fermi surfaces
when the chemical potential is located at the “sweet spot” above the Lifshitz
point where the system becomes very sensitve to changes in carrier density and
magnetic field.

We calculate the magnetoresistance from the model Hamiltonian (7.2)
using the semiclassical Boltzmann transport equation for the momentum
k and band index ν-dependent distribution function fk,ν = f0(εk,ν) +
gk,ν . We linearize around the equilibrium Fermi-Dirac distribution f0, at
temperature T and chemical potential µ (determined self-consistently to
obtain a prescribed carrier density n). In this way we find the conductivity
tensor

σij = e
∑
k,ν

(vk,ν)i∂gk,ν/∂Ej (7.8)

in linear response to the electric field E. The longitudinal resistivity ρxx
then follows upon inversion of the σ-tensor. The band structure deter-
mines the velocity vk,ν = ~−1∇kεk,ν , which is not parallel to the momen-
tum ~k because of the anisotropic Fermi surface.

Calculations of this type are routinely simplified using Ziman’s relaxation-
time approximation [193, 194], but the combination of finite-range scat-
tering and anisotropic band structure renders this approximation unreli-
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able [122]. We have therefore resorted to a numerical solution of the full
partial differential equation:

− e(vk,ν ·E)∂f0/∂εk,ν = (e/~)(vk,ν ×B) · ∇kgk,ν
+
∑
k′,ν′

(gk,ν − gk′,ν′)qkν,k′ν′δ(εk,ν − εk′,ν′). (7.9)

Elastic impurity scattering enters with a rate

qkν,k′ν′ = 2
3π~

−1δ2ξ4nimp e
−ξ2|k−k′|2/2|〈ukν |uk′ν′〉|2. (7.10)

The impurity density nimp and scattering amplitude δ drop out of the
magnetoresistance (7.1), so they need not be specified. The scattering
potential has correlation length ξ, for which we take 2 nm ' 5 lattice
constants, consistent with experiments on scattering by dislocations [168].
(We will discuss the role of this finite correlation length later on.) Both
intraband and interband scattering are included via the structure factor
|〈ukν |uk′ν′〉|2, which takes into account the finite overlap 〈ψν(k)|V (r)|ψν′(k′)〉
of the Bloch states ψν(k) = ukν(r)eik·r and ψν′(k′) = uk′ν′(r)eik′·r. 1

7.4 Discussion of the numerical results and com-
parison with the experimental data

The in-plane magnetoresistance resulting from the Boltzmann equation is
shown in Fig. 7.1b. The similarity in the bell-shaped magnetoresistance
curves, with a corresponding dependence on carrier density and temper-
ature, is clear and remarkable in view of the simplicity of the theoretical
model. We conclude that a semiclassical single-particle description can
produce a “giant” magnetoresistance, up to 50% for a quite conservative
choice of parameter values.

Two main ingredients explain how such a large negative magnetoresis-
tance could follow from a model without electron-electron interactions.
The first ingredient is the orbital-mixing character of the atomic and
inversion-symmetry-breaking spin-orbit coupling terms HSO and HZ. As
a result, the spin-orbit splitting is very nonlinear and produces a “sweet
spot”, that is, a narrow range of Fermi energies (carrier densities n∗ '

1In the presence of strong spin-orbit interactions there can be additional corrections
to Eqs. (7.8) and (7.9) [156, 112]. We do not consider these here since we have found
that they vanish for in-plane fields, see the Appendix.
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chemical potential (b), calculated from the three band Hamiltonian (7.2). Both
quantities are shown for the “sweet-spot” carrier density n = 2.2× 1013 cm−2, at
B = 0 T (solid line) and B = 12 T (dashed line).

2.2×1013/cm2) in which the system becomes sensitive to small changes in
the density. If the density (or the corresponding gate voltage) is near the
sweet spot, the spin-orbit induced band mixing gives rise to a substan-
tial contribution to the (zero-field) resistance stemming from inter-band
scattering. The Zeeman energy in turn favors an alignment of the spin
with the magnetic field and drives a highly anisotropic deformation of the
Fermi surface into spin-polarized bands (see Fig. 7.2). Inter-band scat-
tering is suppressed which explains the decrease in sheet-resistance. At
densities n < n∗ only a single band is occupied and spin-orbit coupling is
well described by a conventional Rashba term αSO(σ̂×p) [33, 192, 56] and
our calculation gives a vanishingly small magnetoresistance. At densities
n > n∗ the calculated magnetoresistance starts to saturate and eventually
becomes small again.

The second ingredient is the finite correlation length ξ of the disorder
potential. The resulting anisotropic scattering rate (7.10) is largest at
small momenta |k−k′|. Moderate values of ξ on the order of a few lattice
constants suppress back-scattering processes within the outer Fermi sur-
face with large average momentum kF, while still allowing for inter-band
scattering. This is accompanied by a quasi-particle lifetime which can be
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significantly smaller for the inner band (smaller average kF). The imbal-
ance of band mobilities promotes the importance of inter-band scattering
when transport is dominated by quasi-particles in the outer bands which
have a larger Fermi velocity and a small intra-band back-scattering rate.
In comparison, we have found2 that the isotropic scattering by a delta-
function impurity potential cannot produce a magnetoresistance exceeding
15%.

Our theoretical curves show a smooth dependence on temperature,
with the negative magnetoresistance persisting beyond 20 K, and they
show a striking correspondence between the temperature dependence of
the magnetoresistance for a fixed density and the density dependence for
a fixed temperature. This correspondence, a hallmark of our experimental
data, can be understood as a consequence of the renormalization of the
chemical potential as a function of temperature, see Fig. 7.3. The weak
temperature dependence of the Hall resistance point towards a constant
carrier density in the range 1–20 K [167]. As shown in Fig 7.3a the density
of states increases steeply with band energy in the vicinity of the sweet
spot, much more than in conventional semiconductors. To keep the total
carrier density fixed with increasing temperature, the chemical potential
is lowered by more than 1 meV at 20 K compared to its low temperature
limit. This is why increasing the temperature is equivalent to probing
the band structure at a lower energy, explaining the similarity in the
magnetoresistance curves in the left and right panels of Fig. 7.1.

These are the two key arguments in favor of a single-particle spin-
orbit-coupling based mechanism for the giant negative magnetoresistance:
Firstly, the persistence of the effect to elevated temperatures, and secondly
the corresponding effect of temperature-increase and density-decrease. It
seems difficult to incorporate these features of the data in the correlated-
electron mechanism [81, 137], based on Kondo-screening of magnetic mo-
ments. There is a third noteworthy feature of the data that is not well
reproduced by our calculation, and has been interpreted as evidence for
a transition into a low-field Kondo phase [81, 137]: A rescaling of the
magnetic field B → B/B? by a density-dependent value B? collapses the
measured magnetoresistance at different densities onto a single curve, see
Fig. 7.4a. If we apply this B/B? scaling to our numerical results a signif-
icant n-dependence remains, see Fig. 7.4b. The experimental scaling law
points to some relevant physics that is not yet included in our minimal

2 For further details see the Appendix.
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model.

7.5 Conclusion

In conclusion, we have presented experimental data and theoretical cal-
culations that support a semiclassical single-particle mechanism for the
giant magnetoresistance of the LAO/STO interface. The Boltzman trans-
port equation with spin-orbit coupling, in combination with anisotropy of
Fermi surface and scattering rates, suffices to produce a large resistance
drop upon application of a magnetic field. The characteristic temperature
and carrier-density dependence agree quite well with what is observed ex-
perimentally, but the B/B? scaling will likely require an extension of the
simplest three-band model.

Our explanation of the sudden onset of the magnetoresistance when
the carrier density approaches a “sweet spot” of amplified spin-orbit cou-
pling has addressed the normal-state transport above the superconducting
transition temperature. Since superconductivity happens in the vicinity
of the same “sweet spot”, it would be interesting to investigate whether
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spin-orbit coupling plays a dominant role in that transition as well.

7.6 Appendix

7.6.1 Complete set of experimental data

For completeness, Fig. 7.5 shows the systematic study of magnetoresis-
tance in the B − T space of parameters for gate voltages ranging from
50 V to 0 V. At high gate voltage and low temperature, a very large nega-
tive magnetoresistance is observed (up to 70% over a magnetic field range
of 12 T). As gate voltage (temperature) is decreased (increased), the over-
all magnitude of the magnetoresistance drop is suppressed, as the curves
flatten out.

7.6.2 Details on the choice of the model parameters

Values for the three-band model parameters found in the theoretical liter-
ature vary over a wide range, see for example Refs. [80, 192, 173]. arpes
measurements on the surface of STO [142, 123] and LAO/STO [29] have
extracted values for the light and heavy effective masses as well as the con-
finement splitting ∆E. The values are similar in all of the experiments. We
take tl, th according to the effective masses for the dxy and dxz/dyz band
in Ref. [123] and ∆E according to the value found in Ref. [142]. An exact
determination of the spin-orbit energies ∆SO and ∆Z is not yet available
experimentally. There are, however, clear indications that the spin-orbit
energy scale may be above 10 meV [153, 33]. We take moderate values
consistent with the theoretical literature [102, 192]. We note that our
simulations suggest that experiments are in the regime ∆Z > ∆SO. The
calculated magnetoresistance is negative in this regime, while we have
found both negative and positive magnetoresistance, depending on the
density, for ∆SO > ∆Z.

7.6.3 Estimate of the “sweet-spot” carrier density and the
magnetic field sensitive density window.

A central quantity of our proposed model is the “sweet-spot” carrier
density n∗. This density corresponds to a position of the Fermi level
EF = µ(T = 0) ≈ 0 where band structure is most sensitive to the com-
petition between spin-orbit coupling and magnetic field. Even for the
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Figure 7.6. Approximate density of states and filling for the “sweet-spot”
carrier density at T = 0. ml = ~2/(2tla2) and mh = ~2/(2tha2) refer to the
effective light and heavy electron masses corresponding to a 2d density of states
mi/π~2 = 1/2πtia2 for i = l, h.

mimimal three-band model of Hamiltonian (7.2) the exact value of n∗ has
a complicated dependence on the model paramters tl, th, td, ∆E, ∆SO and
∆Z that can be obtained from integrating the density of states shown in
Fig. 7.3. In order to give simple estimate we can approximate the density
of states as shown Fig. 7.6. The corresponding estimate for the sweet-spot
density is given by

n∗a2 ≈ ∆E
2πtl

+ ∆SO
16π

( 1
tl

+ 1
th

)
. (7.11)

For our choice of parameters tl = 340 meV, th = 12.5 meV, ∆E = 60 meV
and ∆SO = 5 meV we obtain n∗a2 ≈ 0.036. Numerical integeration of the
density of states yields n∗a2 = 0.035.

Due to the fixed in-plane configuration of the applied magnetic field,
the carrier densities corresponding to each measured gate voltage in Fig. 7.2a)
could not be determined for this sample. (Switching from an in-plane to
an out-of-plane Hall configuration required a thermal cycling of the de-
vice rendering to obtained Hall densities unreliable.) However, in previ-
ous samples with similar geometry and grown under the same conditions,
the carrier density modulation resulting from field effect between 0 V and
50 V is about 0.5 × 1013 cm−2 [32], in good agreement with the carrier
density values in our model calculation. The density window for which
our minimal model shows a large magnetoresistance is essentially limited
to a chemical potential window ∆µ ∼ ∆SO around the “sweet-spot” den-
sity. Both inelastic scattering processes and the presence of additional
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Figure 7.7. Theoretical magnetoresistance for the same model parameters as in
Fig. 7.1b, but using point-like uncorrelated disorder qkν,k′ν′ = const.|〈ukν |uk′ν′〉|2
(or ξ = 0) (left panel) and same parameters as in Fig. 7.1b but using qkν,k′ν′ ∝
|〈ukν |uk′ν′〉|2(|k − k′|2 + 1/l2)−1 for l = 5 lattice constants (right panel).

subbands may extend this energy window, if we go beyond our minimal
model.

7.6.4 Theoretical magnetoresistance for point-like and non-
Gaussian scatterers

In the main text we discussed how the amplitude of the calculated mag-
netoresistance drop is larger for disorder with a finite correlation length
ξ > 0. For comparison, we show in the left panel of Fig. 7.7 the mag-
netoresistance for the same parameters as in the main text, but point-
like, uncorrelated scatterers. Notice that the maximum drop in this
case is only about 15%, more than a factor of 3 smaller. Moreover the
magnetoresistance is actually positive for a range of densities above the
Lifshitz-point (nL = 1.83 × 1013/cm2), but below the sweet-spot density
n∗ = 2.2× 1013/cm2.

While it is important that the scattering amplitude has a finite cor-
relation length, it need not necessarily be a Gaussian correlation. For
comparison in the right panel of Fig. 7.7 we show results for a scattering
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Figure 7.8. Calculated magnetoresistance as a function of the angle α (see
inset) between the magnetic field B and the plane of the 2DES. Shown is the
dependence for a fixed amplitude |B| = 12 T at 1.4 K for the “sweet-spot” carrier
density n = 2.2× 1013 cm−2 using the same band parameters as in Fig. 7.2b. In
the case of an out-of-plane field the magnetoresistance explicitly depends on the
overall scattering amplitude δ2nimp. Here we show three examples for the same
impurity density nimp = 1/(5ξ) = 1/(25a2). The disorder amplitude δ is chosen
such that the calculated zero-field resistance is comparable with our experimental
values at high gate voltages, ρ0 = 70 Ω, 160 Ω, 275 Ω for δ = 20 meV, 30 meV,
40 meV, respectively.

amplitude proportional to (|k − k′|2 + 1/l2)−1, like it might be produced
by screened Coulomb potentials of charged impurities close to the inter-
face. Contrary to the Gaussian case there is now a significant amount of
scattering at large momenta including backscattering. Still we find that
for a screening length l of 5 lattice constants the magnetoresistance is al-
ready enhanced by a factor of 2 compared to point-like scatterers and the
positive magnetoresistance at lower densities is suppressed.

7.6.5 Theoretical magnetoresistance as a function of the
alignment between the magnetic field and the plane
of the 2DES

Previous experiments (see for example Ref. [15]) have shown that the
giant magnetoresistance has a strong out of plane anisotropy. Upon ap-
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plication of an out of plane component to the magnetic-field the negative
magnetoresistance quickly decays and turns positive. For a comparison
of our model with this characteristic experimental feature we show the
calculated magnetoresistance as a function of the angle α between the
magnetic field |B| and the plane of the 2DES for the “sweet-spot” carrier
density n∗ and the same parameters as Fig. 7.2b), left panel, see Fig. 7.8.
Our minimal reproduces the general shape of the observed out of plane
anisotropy. There is a sharp dip for perfect in-plane alignment. Upon
application of an out-of-plane component the negative magnetoresistance
signal becomes positive. This anisotropy is a consequence of the planar
anisotropy of the spin-orbit coupling in the 3-band Hamiltonian, as well
as the absence of orbital effects (B ×∇k) for the in-plane fields. The re-
sulting magnetoresistance dip explicitly depends on the overall scattering
amplitude δ2nimp. Fig. 7.8 shows three examples. The dip is sharpest for
small values of the disorder amplitude δ. We note that the longitudinal
resistance obtained from the Boltzmann equation at a 12 T perpendicu-
lar field is likely to be an overestimate, because at large perpendicular
fields additional “skipping”-orbit channels appear from that are missing
in the Boltzmann approach. These would cause an increase of the Hall
conductivity σxy and a decrease in the longitudinal resistance.

7.6.6 Spin-orbit corrections to the Boltzmann transport

When the wave functions of the conducting electrons have a non-trivial
orbital and spin character, like in multiband spin-orbit coupled materials,
new intrinsic and extrinsic mechanisms that are absent in simpler systems
show up in determining the transport properties of complex materials.
Three different mechanisms that are well known studied in the framework
of the anomalous Hall effect can be discussed and systematically included
in the Boltzmann transport description [112].

The first correction to Eqs. (7.8) and (7.9) is not dependent on the
scattering process, because it follows from an intrinsic property of the
band structure. The non-trivial Berry curvature Fk,ν of the bands in
presence of spin-orbit coupling acts as a magnetic field in the momen-
tum space and couples to the electric field to give an additional velocity
−Fk,ν × eE to the quasi-particle in the state (k, ν). As said before the
topological correction does not depend on the details of the scattering. So
it can be dominant or subdominant (with respect to the mechanisms we
discuss below) depending on the strength of the disorder and the density
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of impurities. However, its contribution to the (transversal) conductivity
always remains of the order of the conductance quantum. We find that
both measured and calculated longitudinal conductivities are much larger
than e2/h. In comparison with the longitudinal magnetoresistance which
is of the order of the total resistance it can thus only give rise to small
corrections. We do not consider these here.

The two mechanisms that we discuss below instead explicitly depend
on the scattering processes. The first correction originates from asymmet-
ric (skew) scattering of polarized electrons accelerated by an electric field.
As we do in the main text impurity scattering is commonly treated in the
lowest Born approximation, where the transition rate is given by the Fermi
golden rule qk′ν′,kν = 2π|〈k′ν ′|V |kν〉|2/~. One of the limitations of this
approximation is that it does not take into account the skew scattering,
because |Vk′ν′,kν |2 is clearly symmetric upon exchange of the initial and
final states. In order to include antisymmetric corrections, the rate must
be computed including higher orders in the perturbative expansion of the
full scattering T -matrix. The first skew term is proportional to V 3. At
this order, the semiclassical equation is still fully consistent compared to
a rigorous quantum mechanical calculation. In the weak disorder limit (to
linear order in the impurity density nimp) the antisymmetric component
of the transition probability is

qskk′ν′,kν = −(2π)2

~
∑
q,ν′′

[
=
(
〈Vk′ν′,kνVkν,qν′′Vqν′′,k′ν′〉dis

)

·δ(εk,ν − εq,ν′′)
]
, (7.12)

where

Vk′ν′,kνVkν,qν′′Vqν′′,k′ν′ ∝
〈uk′ν′ |ukν〉〈ukν |uqν′′〉〈uqν′′ |uk′ν′〉 (7.13)

where the disorder average has been introduced. Notice that naturally qsk
violates the detailed-balance condition, but still an important sum-rule is
satisfied.

qskk′ν′,kν = −qskkν,k′ν′ , (7.14)∑
k′,ν′ q

sk
k′ν′,kν =

∑
k′,ν q

sk
kν,k′ν′ = 0. (7.15)
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We do not consider further contributions on the order n2
imp, here.

In addition to skew-scattering, the electronic wave packet accelerated
by an electric field is subjected to the shift δrk′,k (side-jump) of its center
of mass during a scattering event. The gauge-invariant expression for the
coordinate shift can be expressed in terms of the Pancharatnam-Berry
phase Φqν′′,kν,k′ν′ [156],

δrk′ν′,kν =−
( ∂

∂k′′
Φqν′′,kν,k′ν′

)
k′′→k

−
( ∂

∂k′′
Φqν′′,kν,k′ν′

)
k′′→k′

, (7.16)

Φqν′′,kν,k′ν′ =arg
(
〈uqν′′ |ukν〉〈ukν |uk′ν′〉〈uk′ν′ |uqν′′〉

)
. (7.17)

The presence of the side-jump has two effects on the transport. First,
the accumulation of coordinate shifts after many scattering events gives
(in the lowest Born approximation) a correction to the velocity vsjkν =∑
k′,ν′ qk′ν′,kνδrk′ν′,kν . Second, a particle scattered by an impurity under

side-jump acquires a kinetic energy ∆εk′ν′,kν = eE · δrk′ν′,kν in order to
compensate the change in the potential energy induced by the electric
field. As a consequence, the equilibrium distribution f0 experiences an
additional shift:

f0(εk,ν)− f0(εk′,ν′) = −(∂f0/∂εk,ν)∆εk′ν′,kν . (7.18)

Including all the terms, the conductivity tensor is given by

σij = e
∑
k,ν

(1
~
∂εk,ν
∂k

+ vsjk,ν)i∂gk,ν/∂Ej − εijeF zk,νf0(εk,ν), (7.19)

where εij is the two-dimensional antisymmetric tensor and gk,ν solves the
modified Boltzmann equation [112]

− e
(1
~
∂εk,ν
∂k

·E
) ∂f0
∂εk,ν

=

∑
k′,ν′

(
qk′ν′,kν + qskk′ν′,kν

)(
gk,ν − gk′,ν′ −

∂f0
∂εk,ν

∆εk′ν′,kν
)
δ(εk,ν − εk′,ν′).

(7.20)

Discarding the intrinsic Berry-curvature correction, we numerically
solve equation (7.20) for scattering from correlated impurities where the
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amplitude of the disorder potential is uniformly distributed in the asym-
metric range δ[−1 + ∆, 1 + ∆] (notice that for a symmetric distribution
the Gaussian correlator 〈V 3〉dis appearing in the skew-scattering term au-
tomatically vanishes). However, we find that the product of the three
overlaps 〈uqν′′ |ukν〉〈ukν |uk′ν′〉〈uk′ν′ |uqν′′〉 is strictly real for arbitrary mo-
menta and band indices when the magnetic field is applied in the plane of
the 2DES. Hence both the skew-scattering (7.13) and the side-jump (7.16)
terms turn out to be zero for in-plane field.

Although here we computed the Pancharatnam-Berry phase numeri-
cally, it is easy to analytically show the same result but for the simpler
case of the Rashba Hamiltonian. In momentum space, the Rashba Hamil-
tonian has a 2x2 matrix structure. Hence the relevant product of wave-
function overlaps, or more precisely, the argument of this quantity (the
Pancharatnam-Berry phase) is equivalent to half the solid angle the Bloch
states uk, uk′ , and uq span on the Bloch sphere. Since for an in-plane
Zeeman term the Rashba Hamiltonian may be expanded solely in terms
of the Pauli matrices σ̂0, σ̂x, and σ̂y, this solid angle vanishes identically.
The same phenomenon leads to the vanishing of the side-jump.

If an out-of-plane magnetic field is switched on, all the contributions
become finite, but we find them to remain small throughout our simula-
tions. More explicitly, for the same choice of parameters of the calcula-
tions in the main text we observe numerically that both skew-scattering
and side-jump contributions yield corrections less than 1% of the calcu-
lated total magnetoresistance resistance for out-of-plane fields up to 12 T
and distributions as asymmetric as ∆ = 0.5. We do not show these results
here as they are almost invisible on the scale of Fig. 7.8.
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Samenvatting

Topologische supergeleiders vormen een nieuw soort supergeleiders met
Majorana deeltjes aan het oppervlak. Deze deeltjes zijn in een superposi-
tie van elektron en gat, en dus hun eigen anti-deeltje. Er is grote be-
langstelling voor deze bijzondere deeltjes, zowel van theoretische als van
experimentele zijde. De eerste experimentele waarnemingen ondersteunen
de theoretische voorspellingen, maar er is nog geen onomstotelijk bewijs
voor de Majorana deeltjes gevonden.

Een deel van de experimentele moeilijkheid is dat de Majorana deeltjes,
omdat ze elektrisch neutraal zijn, niet eenvoudig via elektrische metingen
kunnen worden opgespoord. Theoretisch volgt het bestaan van de Majo-
rana deeltjes uit topologische overwegingen, die volledig gebaseerd zijn op
de ruimtelijke dimensionaliteit en op de aanwezigheid van bepaalde sym-
metrieën. Hierdoor zijn de oppervlaktetoestanden immuun voor wanorde
en allerlei onzuiverheden, hetgeen de experimenten zou moeten vereen-
voudigen. Majoranadeeltjes kunnen warmte geleiden, maar bij lage tem-
peraturen is het heel lastig om warmtegeleiding nauwkeurig te meten.
Een elektrische detectiemethode heeft dan ook sterk de voorkeur. In dit
proefschrift onderzoeken we of elektrische detectie mogelijk is, ondanks
het feit dat de Majoranadeeltjes zelf elektrisch neutraal zijn. We maken
gebruik van verstrooiingstheorie en van toevalsmatrixtheorie om algemene
principes uit te werken, die we vervolgens testen met computersimulaties
van realistische systemen.

Als de topologische supergeleider de vorm heeft van een draad, dan
bevinden de Majoranadeeltjes zich aan de beide uiteinden. Zij veroorza-
ken een piek van de elektrische geleiding rond spanning nul. De hoogte
van die piek is 2e2/h bij lage temperaturen. Men zou kunnen vermoeden
dat twee of meer Majoranadeeltjes aan het uiteinde van de draad voor
een grotere piekgeleiding zou zorgen, maar in het meest algemene geval
stoten Majoranadeeltjes elkaar af en is alleen één enkele Majorana stabiel.
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Een grotere piek is mogelijk als er een zogenaamde chirale symmetrie op-
treedt, die de afstoting van de Majoranadeeltjes onderdrukt. In hoofdstuk
twee onderzoeken wij het effect van de chirale symmetrie op het geleid-
ingsvermogen. We leiden een ondergrens af voor de geleidingspiek, die het
mogelijk maakt om het aantal Majoranadeeltjes te bepalen. De chirale
symmetrie is slechts bij benadering geldig, daarom doen wij computersim-
ulaties aan een realistisch systeem. We concluderen dat deze symmetrie
van kracht zou moeten zijn in de bestaande experimenten.

Een draad is een één-dimensionale supergeleider. We vervolgen het
proefschrift met het bestuderen van twee-dimensionale topologische su-
pergeleiders. De Majoranadeeltjes bewegen dan langs de rand, hetzij in
één enkele richting, hetzij in beide richtingen. In hoofdstuk drie stellen we
een experiment voor, gebruikmakend van een schijfgeometrie (Corbino-
schijf), waarin het mogelijk is zowel de randtoestanden te detecteren als
de bewegingsrichting te meten. We maken hiervoor gebruik van oscillaties
van het geleidingsvermogen, gemeten aan de binnen- en buitenrand van
de schijf.

De volgende twee hoofdstukken zijn een uitbreiding van onze ana-
lyse naar een nieuwe klasse van topologische supergeleiders, zogenaamde
“statistische” topologische supergeleiders. Dit betreft materialen waar de
symmetrie lokaal gebroken is, maar gemiddeld genomen (statistisch) over
grote afstanden nog steeds geldt. Een voorbeeld is een sterk anisotrope
topologische supergeleider, gevormd door een groot aantal parallelle draden.
De Majoranadeeltjes aan de uiteinden vormen dan een randtoestand die
beide richtingen op kan bewegen. Wanorde heeft wel een effect op de
beweging, maar kan die niet volledig onderdrukken. (Er treedt geen
lokalisatie op.) Zo’n randtoestand noemen we een Kitaev randtoestand,
omdat het een variatie is op een ouder idee van Alexey Kitaev. We laten
zien dat deze randtoestand weliswaar gemiddeld genomen geen elektrische
stroom geleidt, maar dat er toch tijdsafhankelijke fluctuaties zijn in de
stroom, die als hagelruis gedetecteerd kunnen worden. De Kitaev rand-
toestand kan ook midden in het materiaal optreden, bij een domeinwand,
zoals we in hoofdstuk vijf laten zien.

In de laatste twee hoofdstukken verlaten we het centrale thema van de
topologische supergeleiders. We laten ons motiveren door enkele recente
experimentele doorbraken. In hoofdstuk zes onderzoeken we het effect
van een sterk magneetveld op grafeen (een koolstof monolaag), als dit
magneetveld gecombineerd wordt met een periodiek elektrisch veld. Er
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treedt dan in de bandstructuur een patroon op dat iets weg heeft van
een vlinder, en naar de ontdekker de Hofstadtervlinder genoemd wordt.
In hoofdstuk zeven brengen we verslag uit van een samenwerking met de
experimentele groep in Delft, waar de twee-dimensionale beweging van
elektronen is onderzocht in een grenslaag tussen twee oxides (LaAlO3 en
SrTiO3). Het elektrische geleidingsvermogen is sterk afhankelijk van een
parallel aangebracht magnetisch veld, hetgeen wij met een semiklassieke
transporttheorie kunnen verklaren.
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Summary

Topological superconductors are a novel type of superconductors that
carry Majorana particles at their boundary. These surface states are
equal superpositions of electrons and holes, and hence are their own anti-
particles. There has been a recent surge of theoretical and experimental
effort to realize these special particles in the lab. While first observa-
tions support the theoretical predictions, fail-safe experimental evidence
for Majoranas is still needed.

Part of the challenge is that due to their vanishing charge they are not
easily detected electrically. According to theory their existence (which can
be proved on topological grounds) only relies on the systems dimensional-
ity and the presence of a few fundamental symmetries. This makes these
particular surface states immune to microscopic imperfections like disor-
der. As a result of this protection one expects equally robust transport
signatures. Majorana states can carry heat, but this is very difficult to
measure accurately at low temperatures. For this reason electrical probes
are much favored. In this thesis we propose and study electrical signa-
tures of Majoranas that are present in spite of their charge neutrality.
By applying scattering and random matrix theory we first examine their
generic properties. With the tool of numerical simulations we then put
our predictions to test on realistic systems.

If the topological superconductor has the form of a wire, a Majorana
particle can be found at each end. Its presence causes a peak of the
electrical conductance around zero voltage. At low temperatures this peak
has a universal height of 2e2/h. One may expect a higher conductance
peak if there are multiple Majoranas at the wire end. Generically, however,
this cannot happen because multiple Majoranas repel each other and only
single Majorana end states are stable. The symmetry that suppresses this
repulsion is called chiral symmetry. In chapter two we investigate the effect
of chiral symmetry on the wire’s conductance. We derive a lower bound
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for the electrical conductance that allows one to determine the number of
Majorana end states. In reality the chiral symmetry is only approximate,
which is why we perform a numerical test on a realistic model. We find
that the symmetry still holds in current experiments.

Wires are one dimensional. The thesis continues with a study of two
dimensional topological superconductors. Here, the Majorana particles
move along the edge of the system, either only in one or (protected by
time-reversal symmetry) in both directions. In chapter three we propose
an experiment with the geometry of a Corbino-disk, for which it is possible
to detect and distinguish the two modes of movement. For this purpose
we use oscillations of the electrical conductance that can be observed at
the inner and outer edge of the disk.

In the following two chapters we extend our analysis to, so called,
statistical topological superconductors. This extension is concerned with
cases where some symmetries are broken locally but still exist in an aver-
age sense over long length scales. An example is a stack of superconduct-
ing wires that naturally experiences a strong anisotropy along vs across
the direction of the wires. Majorana particles can move in both direc-
tions along the coupled wire ends. Disorder hinders their movement but
it cannot completely suppress it. (The edge states avoid what is called
localization.) In analogy to an earlier idea by Alexey Kitaev we refer to
such edge states as Kitaev edge states. Although the edge states are again
charge neutral we show that a measurement of time-dependent charge
fluctuations can detect them in the electrical shot noise. As we show in
the fifth chapter, Kitaev edge states also appear along domain walls in the
middle of a topological superconductor.

The last two chapters of this thesis step out of the context of topo-
logical superconductivity. Instead these chapters are motivated by recent
experimental advances in two fields. In chapter six we study the effect
of large magnetic fields on electrons in graphene (a single atomic layer of
graphite) when the material is also subject to a periodic electrical field.
One finds an electronic band structure reminiscent of a butterfly that
after its discoverer is named Hofstadter’s butterfly. In the seventh chap-
ter we present results of a collaboration with an experimental group in
Delft, where we investigate electrons at the interface between two oxides
(LaAlO3 and SrTiO3). The electrical resistance of this system strongly
decreases when a magnetic field is applied parallel to the interface. Using
semiclassical transport theory we are able to explain this behavior.
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