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a b s t r a c t

Conversion paralysis (CP) is a frequent and impairing psychiatric disorder, affecting voluntary motor
function. Yet, we have previously shown that the motor system of CP patients with a unilateral conversion
paresis is recruited to a similar degree during imagined movements of the affected and unaffected limb. In
contrast, imagery of movements with the affected limb results in larger prefrontal activation. It remains
unclear how this hand-specific increased prefrontal activity relates to the reduced responsiveness of
motor and somatosensory areas, a consistent and important feature of CP patients.

In the current study, we investigated changes in the inter-regional coupling between prefrontal cortex
ental rotation
otor imagery

onversion disorder
orsolateral prefrontal cortex
onnectivity

(PFC) and sensorimotor regions when CP patients imagined movements involving either the affected
or the unaffected hand. We found that there were distinct connectivity patterns for different parts of
the PFC. While ventromedial PFC was not functionally connected to the motor system, we observed
strong functional coupling between the dorsolateral PFC and various sensorimotor areas. Furthermore,
this coupling was modulated by whether patients imagined movements of their affected or unaffected
hand. Together, these results suggest that the reduced motor responsitivity observed in CP may be linked
to altered dorsolateral prefrontal-motor connectivity.
. Introduction

Conversion paralysis (CP) is a psychiatric disorder that is char-
cterized by a loss of voluntary motor functioning. Although the
ymptoms may suggest a neuropathological condition, they cannot
e adequately explained by known neurological or other organic
isorders (American Psychiatric Association, 1994). Moreover, the
nset or exacerbation of symptoms is related to psychological
tress, suggesting that psychological mechanisms play an impor-
ant role (Roelofs & Spinhoven, 2007). Despite the high prevalence
f CP and the long history of speculations about its cause (Halligan,
ass, & Marshall, 2001; Vuilleumier, 2005), the exact nature of CP
emains poorly understood.

Several neuroimaging studies have tried to explore the objec-
ive neural correlates of functional mechanisms that, in the absence

f a structural brain lesion, may be involved in CP. These studies
ave generally implicated ventromedial (Halligan, Athwal, Oakley,
Frackowiak, 2000; Marshall, Halligan, Fink, Wade, & Frackowiak,

997) and dorsolateral (Spence, Crimlisk, Cope, Ron, & Grasby,

∗ Corresponding author. Tel.: +31 24 36 10658; fax: +31 24 36 10652.
E-mail address: floris.delange@donders.ru.nl (F.P. de Lange).

028-3932/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
oi:10.1016/j.neuropsychologia.2010.02.029
© 2010 Elsevier Ltd. All rights reserved.

2000) regions within the prefrontal cortex during (failed) attempts
of movements. Given the role of these regions in the internal gen-
eration of actions (Fuster, 2000; Passingham, 1993), these findings
were interpreted as reflecting active motor inhibition.

In most of these studies however, patients were explicitly asked
to attempt to move their paralyzed limb, which may also trig-
ger emotional and motivational responses, thus complicating the
interpretation of the results (Price & Friston, 2002). To overcome
the interpretational limitations imposed by overt motor behavior,
some studies have studied cerebral responses evoked by passive
sensory stimulation (Vuilleumier et al., 2001) or action observation
(Burgmer et al., 2006). Vuilleumier et al. assessed brain responsive-
ness to passive sensory stimulation in CP patients suffering from
unilateral sensorimotor loss in a single photon emission comput-
erized tomography (SPECT) study. The results showed decreased
activity in the basal ganglia and thalamus contralateral to the
affected limb during stimulation of the affected limb compared
to the unaffected limb. This decrease resolved after recovery of

the conversion symptoms, suggesting that CP is associated with
altered somatosensory processing. Burgmer et al. (2006) explored
whether CP is associated with abnormal brain activity during obser-
vation of hand movements. The authors showed that compared to
healthy controls, CP patients had reduced primary motor cortical

http://www.sciencedirect.com/science/journal/00283932
http://www.elsevier.com/locate/neuropsychologia
mailto:floris.delange@donders.ru.nl
dx.doi.org/10.1016/j.neuropsychologia.2010.02.029
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ctivity during observation of hand movements, specifically for the
ffected hand. Although these findings do not suffer from the inter-
retational problems related to overt motor execution, it remains
o be determined how these sensory and action observation deficits
elate to the main feature of CP, namely the disturbance of volitional
otor processes.
A well-established approach to directly probe the motor system

n absence of overt motor behavior makes use of motor imagery.
his approach controls for neural processes associated with actual
otor execution like altered sensory feedback or enhanced moni-

oring of failed movements. This approach to study the generation
nd preparation of actions is supported by a wealth of evi-
ence showing that imagined and executed movements overlap in
erms of time course (Parsons, 1987; Sekiyama, 1982), autonomic
esponses (Decety, Jeannerod, Durozard, & Baverel, 1993), and neu-
al architecture (de Lange, Hagoort, & Toni, 2005; Jeannerod, 1994;
arsons, Gabrieli, Phelps, & Gazzaniga, 1998). Indeed, previous
ehavioral studies have succesfully used motor imagery tasks to
eveal impairments in motoric simulations of the affected limb in
atients with CP (Maruff & Velakoulis, 2000; Roelofs et al., 2001).
wo imaging experiments using motor imagery in CP patients with
lateralized paresis extended these behavioral findings. The first

tudy showed that while preparatory motor structures were acti-
ated similarly during motor imagery for the affected and the
naffected limb, there was larger activation in several prefrontal
lusters during motor imagery of the affected limb (de Lange,
oelofs, & Toni, 2007). Given the role of these regions in self-
eflexive processing (Goldberg, Harel, & Malach, 2006) as well as
bservation and awareness of actions (Castelli, Happe, Frith, &
rith, 2000; Frith, Blakemore, & Wolpert, 2000a), we speculated
hat these activation differences were due to heightened self-

onitoring of (imagined) actions with the affected arm. In a second
tudy, we found that these activation differences disappeared when
ubjects were explicitly instructed to focus on the “to be imagined”
ovements (de Lange, Roelofs, & Toni, 2008), lending further sup-

ort to the idea that increased self-monitoring of actions underlies
he increased activation for imagery of actions with the affected
rm.

However, it remains unclear how the increased prefrontal
esponses relate to another consistent feature of CP patients,
amely reduced responsiveness of motor and somatosensory areas.
or instance, a recent study that directly probed the excitabil-
ty of the motor cortex using transcranial magnetic stimulation
bserved striking excitability changes in the motor system during
otor imagery of the affected hand in CP (Liepert, Hassa, Tüscher,
Schmidt, 2009). While motor imagery of the unaffected hand

esulted in higher motor excitability, as it is normally observed
n the healthy population (Abbruzzese, Trompetto, & Schieppati,
996), motor imagery of the affected hand led to a paradoxical
ecrease of motor excitability. These results are in accord with
ther studies showing reduced responses in motor (Burgmer et al.,
006; Kanaan, Craig, Wessely, & David, 2007; Stone et al., 2007) and
omatosensory areas (Ghaffar, Staines, & Feinstein, 2006; Mailis-
agnon et al., 2003) in CP.

In this study, we used connectivity analyses to assess the
elationship between local responses evoked in prefrontal and sen-
orimotor cortex during a motor imagery task involving either
he affected or non-affected hand in CP (de Lange et al., 2007).

e observed strong functional coupling between the dorsolat-
ral PFC and various sensory and motor areas. Crucially, the
trength of this coupling was modulated by whether patients

magined movements of their affected or unaffected hand. These
esults suggest that the reduced responsiveness of sensorimotor
esponses, previously observed in CP patients, could arise from
ltered connectivity between dorsolateral prefrontal and sensori-
otor regions.
ogia 48 (2010) 1782–1788 1783

2. Materials and methods

2.1. Participants

We studied eight patients (mean age of 34.6 years, range 18–56, SD = 13.2)
diagnosed with conversion disorder according to the DSM-IV criteria (American
Psychiatric Association, 1994) and showing a full or partial paralysis lateralized to
one arm as a major symptom. For a full description of inclusion criteria and diagnosis
procedure, see de Lange et al. (2007). The study was approved by the local medical
ethical committee and all patients gave their informed consent before participation.

2.2. Task

We used a well-known motor imagery task, in which the participants have to
judge the laterality of the visually presented rotated hand stimulus (Parsons, 1987).
We used line drawings of left and right hands, in different orientations varying from
0◦ to 180◦ in 45◦ steps. The hand could be shown in either palmar or dorsal orien-
tation. The stimuli were serially presented to the patients in a random order. For
each trial, the hand stimulus was presented centrally on the screen, and patients
were instructed to judge as fast and as accurately as possible whether the stimu-
lus constituted a left or a right hand. When the patient provided his/her response,
the stimulus was replaced with a fixation cross, which stayed on until the start of
the next trial (inter-trial interval: 1.5–2.5 s). The experiment consisted of 160 tri-
als of motor imagery. After a series of 10 motor imagery trials, a rest period of 10 s
was introduced to sample baseline activity. During this rest period, patients were
instructed to look at the fixation cross.

Patients responded by pressing one of two buttons attached to their left and right
big toe. The patients’ left and right feet were firmly attached to a button box, and
reaction times and error rates were measured for subsequent behavioral analysis.
The stimuli were presented using Presentation software (Neurobehavioral systems,
Albany, USA), and they were projected onto a screen at the back of the scanner and
seen through a mirror above the patients’ heads. The main effects of hand (affected
vs. unaffected) and stimulus rotation on reaction times and cerebral activity have
been described in a previous study on the same data set (de Lange et al., 2007). Here,
we focus on functional and effective connectivity as a function of motor imagery
of the affected vs. the unaffected hand, using the previously described prefrontal
clusters as target seed regions.

2.3. MRI acquisition and preprocessing

Functional images were acquired on a Siemens (Erlangen, Germany) 1.5 T
MRI system equipped with echo planar imaging (EPI) capabilities using the stan-
dard head coil for radio frequency transmission and signal reception. Functional
images were acquired using a gradient EPI-sequence (TE/TR = 40/2540 ms; 32 axial
slices, voxel size = 3.5 mm; FOV = 224 mm). On average, the duration of the experi-
ment was 23 min in which 547 scans were acquired. High-resolution anatomical
images were acquired using a MP-RAGE sequence (TE/TR = 3.93/2250 ms; voxel
size = 1.0 mm, 176 sagittal slices; FOV = 256 mm). Preprocessing of the functional
data and calculation of the contrast images for statistical analysis was done
with SPM5 (www.fil.ion.ucl.ac.uk/spm). First, functional images were realigned,
slice-time corrected, normalized to a common stereotactic space (MNI: Montreal
Neurological Institute, Canada) and smoothed with a 10 mm FWHM Gaussian kernel.
Our spatial filter size was motivated by both the sizable inter-individual differences
in prefrontal anatomy (Rajkowska & Goldman-Rakic, 1995) and in order to optimize
sensitivity in the small sample of patients used (Petersson, Nichols, Poline, & Holmes,
1999). By jittering trial onsets with respect to image acquisition and randomizing
stimulus rotations, our experimental design allowed for an event-related analysis
of the fMRI time series.

2.4. Functional and effective connectivity analysis

We carried out an analysis of functional and effective connectivity, using the
psychophysiological interaction (PPI) method to test for (changes in) connectivity
between our seed regions and other brain areas (Friston et al., 1997). Functional con-
nectivity ensues from significantly correlated activity patterns over time between
separate regions. Effective connectivity, on the other hand, ensues from signifi-
cant changes in correlation strength between separate regions as a function of task
context. We placed seed regions in previously described clusters in the prefrontal
cortex (PFC), namely the ventromedial PFC (vmPFC: [8,44,−24]; putative BA 11),
dorsomedial PFC (dmPFC: [−12,62,32]; putative BA 10) and dorsolateral PFC (dlPFC:
[−36,48,34]; putative BA 46/9). Each of these regions was defined by the first eigen-
variate of the time series of all voxels within a 6 mm sphere surrounding the peak
activations. These regions were chosen as they constituted the local maxima of dif-
ferential activation between motor imagery of the affected vs. the unaffected hand

(see de Lange et al., 2007). The PPI method makes inferences about regionally specific
responses caused by the interaction between an experimentally manipulated psy-
chological factor and the physiological activity measured in a given index area. The
analysis was constructed to test for differences in the regression slope of PFC activity
on other brain areas, depending on whether subjects performed motor imagery of
the affected vs. the unaffected hand. To construct our PPI regressor we used a hemo-

http://www.fil.ion.ucl.ac.uk/spm
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ynamic deconvolution method (Gitelman, Penny, Ashburner, & Friston, 2003). This
PI regressor, alongside the task regressors and the time course of the PFC seed
egion, were included in the statistical model. To remove any artifactual signal
hanges due to head motion, we also included 6 parameters describing the head-
ovements (three translations, three rotations) as confounds in the model. Linear

ontrasts pertaining to the main effects of the factorial design constituted the data
or the second-stage analysis, which treated participants as a random factor. In this
econd-stage analysis, we carried out two analyses: (1) analysis of functional con-
ectivity with the PFC (as parameterized by the regressor describing the time course
f the PFC seed region) and (2) analysis of effective connectivity with the PFC as a
unction of affected vs. unaffected hand (as parameterized by the PPI regressor).

We report the results of random effects analyses, using the family-wise error
FWE) correction method to control the false alarm rate (Friston et al., 1995). For
ur analysis of functional connectivity, we used a relatively stringent voxel-based
tatistical threshold (voxel threshold: pFWE = 0.05) and cluster threshold (k > 10), in
rder to limit spurious correlations that may be the result of general co-fluctuations
uring the scanning session. For analyses of effective connectivity, we used the more
ensitive cluster-based correction for multiple comparisons (Friston, Holmes, Poline,
rice, & Frith, 1996). For these analyses, we corrected for multiple comparisons at the
luster level (p < 0.05), based on a voxel level threshold of p < 0.01. We also tested for
ffective connectivity changes within a predefined set of regions that has previously
een identified to be related to motor imagery, comprising the bilateral intraparietal
ulcus (IPS) and dorsal premotor cortex (PMd). Within this limited search space, we
orrected for multiple comparisons within 6 mm spheres surrounding previously
dentified peak maxima (see de Lange et al., 2005; de Lange, Helmich, & Toni, 2006;
e Lange et al., 2007).

.5. Anatomical inference

Anatomical details of significant signal changes were obtained by superimposing
he relevant SPMs on the structural images of the subjects. The atlas of Duvernoy,
abanis, and Vannson (1991) was used to identify relevant anatomical landmarks.
hen applicable, Brodmann areas (BAs) were assigned on the basis of the SPM

natomy Toolbox (Eickhoff et al., 2005).

. Results

We carried out analyses of functional and effective connec-
ivity in three regions within the prefrontal cortex that were

ore active during motor imagery of affected than unaffected
ands: ventromedial (vmPFC), dorsomedial (dmPFC) and dorsolat-
ral (dlPFC) prefrontal cortex (Amodio & Frith, 2006). vmPFC was
trongly functionally connected to the left ([−60,−10,−32]; T = 23.1,
FWE = 0.007) and right ([58,−14,−30]; T = 19.9, pFWE = 0.021)
nferior temporal cortex. dmPFC showed significant functional con-

ectivity with its contralateral counterpart ([18,60,34]; T = 38.2,
FWE < 0.001). These vmPFC and dmPFC clusters did not show
ignificant coupling with any of the nodes of the sensorimotor net-
ork. Importantly, these clusters also did not show any significant

hanges in effective connectivity as a function of hand laterality.

ig. 1. Anatomical localization of regions showing significant positive functional couplin
xhibit significant functional coupling with the seed region, placed in the dlPFC (in light ye
top view), showing supplementary motor and pre- and postcentral clusters. (b) Coronal
he references to color in this figure legend, the reader is referred to the web version of th
logia 48 (2010) 1782–1788

In contrast, dlPFC showed strong functional coupling with
several nodes of the sensorimotor system (Fig. 1). This analysis
identified a network of regions that comprised the supramarginal
gyrus [assigned to parietal area PF with 70% probability (Caspers et
al., 2006; Eickhoff et al., 2005)], supplementary motor area and the
central sulcus, encompassing both the precentral gyrus (assigned
to area 3b with 60% probability) and postcentral gyrus [assigned
to area 1 with 70% probability (Geyer, Schleicher, & Zilles, 1999)].
The precise anatomical localization of these clusters is provided in
Table 1. The dense functional coupling between the dlPFC region
and these sensorimotor regions, which are all involved in aspects
of generation and planning of motor commands, is in good corre-
spondence with the hypothesized role of the dlPFC seed region in
the selection of action plans (Frith, Moody, & Driver, 2000b). We
next investigated which regions showed stronger positive or neg-
ative coupling with the dlPFC as a function of whether subjects
imagined movements of the affected vs. the unaffected hand.

3.1. Increased positive coupling between dlPFC and dorsal
premotor cortex

We observed larger positive coupling for motor imagery of
the affected hand compared to the unaffected hand between the
dlPFC and the right dorsal premotor cortex (PMd). Although larger
coupling could also be seen between dlPFC and the left PMd
([−18,8,64]; T = 4.33, puncorrected = 0.002), this result failed to reach
significance when correcting for multiple comparisons within the
predefined search space. Both left and right PMd showed overall
significant increases in cerebral activity with increasing biome-
chanical complexity (left PMd: T = 8.94, pFWE = 0.0078; right PMd:
T = 7.07, pFWE = 0.0034).

There were no other brain regions that showed significantly
larger positive coupling for motor imagery of the affected hand
compared to the unaffected hand.

3.2. Increased negative coupling between dlPFC and primary
somatosensory cortex and hippocampus

There were several regions that showed a significantly more
negative regression slope as a function of dlPFC activity during

motor imagery of the affected hand, compared to the unaffected
hand. There was increased negative coupling in the left and right
postcentral gyrus [spanning both BA 2 with 40% probability and
BA 3a with 60% probability (Grefkes, Geyer, Schormann, Roland, &
Zilles, 2001), and the anterior part of the superior parietal lobule].

g with the dorsolateral prefrontal cortex (dlPFC). Green lines connect regions that
llow). Renderings are thresholded at T = 13, for display purposes. (a) Axial rendering
rendering (front view). (a) Sagittal rendering (lateral view). (For interpretation of
e article.)
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Table 1
Functional and effective connectivity with dlPFC – anatomical localization. All reported coordinates are in MNI (Montreal Neurological Institute) space. Stereotactic coordinates
denote the peak of the clusters surviving correction for multiple comparisons.

Contrast Region T-value Cluster size Corrected p-value Stereotactic coordinates

x y z

Functional coupling Supplementary motor area 78.1 46 <0.001 −10 8 48
Supramarginal gyrus 40.3 32 <0.001 −62 −18 28

24.0 12 0.006 −58 −30 34
Central sulcus 31.5 16 0.001 52 −16 42

Increased positive coupling Dorsal premotor cortex 5.2 23 0.038a 24 2 70

Increased negative coupling Postcentral gyrus 16.5 343 0.002 18 −42 52
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6.9
Hippocampus 8.4

a Corrected for multiple comparisons in an a priori defined search space.

here was also increased negative coupling between dlPFC and the
ight hippocampus.

Activity in the postcentral clusters was overall suppressed dur-
ng motor imagery (left postcentral gyrus: T = 6.27, pFWE = 0.035;
ight postcentral gyrus: T = 9.72, pFWE < 0.001), in line with previous
tudies (Cheron & Borenstein, 1992; Jahn et al., 2004). Therefore, the
urrent set of results suggest that activity in dlPFC and suppression
f postcentral regions are coupled more strongly during imagery of
he affected hand.

. Discussion

Previously, we investigated cerebral activity in 8 patients with a
nilateral conversion paralysis during motor simulation of actions
ith their affected and unaffected hand. While motor imagery

ecruited comparable cerebral resources in the motor system, CP
atients recruited additional cerebral resources in several clusters
f the prefrontal cortex during motor imagery of the affected hand
de Lange et al., 2007). In the current study, we build on these find-
ngs and examined the functional and effective connectivity profile
f the prefrontal cortex during motor imagery. We observed that
ifferent clusters within the prefrontal cortex had distinct func-
ional connectivity patterns. While medial prefrontal clusters were
unctionally connected to inferior temporal regions, only the dor-
olateral prefrontal cortex (dlPFC) was functionally connected to
he motor system. Moreover, the coupling between this region
nd various parts of the sensorimotor system was modulated by
hether subjects imagined movements of the affected or the unaf-

ected limb: dlPFC showed a stronger positive coupling with the
orsal premotor cortex (PMd), and a stronger negative coupling
ith the primary somatosensory cortex (S1). Below we will detail

nd interpret these findings.

.1. dlPFC is functionally coupled with the sensorimotor system

In our previous study, we found differential responses dur-
ng imagery of the affected and non-affected hand in a large
refrontal cluster, spanning both ventromedial and dorsolateral
spects of the superior frontal gyrus. In other words, this clus-
er incorporated responses from anatomically distinct regions
Cavada, Company, Tejedor, Cruz-Rizzolo, & Reinoso-Suarez, 2000;
hiavaras & Petrides, 2000; Petrides, 2005). Here we separately
ssessed the functional connectivity of each of the three local
axima of this large cluster. The maxima were localized in ven-

romedial (vmPFC), dorsomedial (dmPFC) and dorsolateral (dlPFC)

refrontal cortex, close to the location of functional differences
eported in previous neuroimaging studies on CP patients (Cojan,

aber, Carruzzo, & Vuilleumier, 2009; Halligan et al., 2000;
arshall et al., 1997; Spence et al., 2000). The dlPFC showed distinct

unctional connectivity patterns from the medial clusters. Notably,
239 0.022 −18 −38 50
52 0.014 16 −16 −16

the dlPFC exhibited significant co-fluctuations with parietal, pri-
mary somatosensory, motor and supplementary motor areas
(Fig. 1). In contrast, vmPFC and dmPFC clusters were not connected
to the motor system, but instead to inferior temporal and con-
tralateral dmPFC clusters. Taken together, this pattern of functional
connectivity suggests that although these PFC clusters exibit simi-
lar local responses during motor imagery of the affected hand, they
differ in terms of the long-range couplings to these local responses.
More precisely, the dlPFC is coupled with parts of the motor sys-
tem, in line with its presumed role in the selection of action plans
(Frith et al., 2000b; Passingham, 1993; Rowe et al., 2007) (Fig. 2).

4.2. Increased positive coupling between dlPFC and PMd during
imagery of the affected hand

Analysis of effective connectivity showed a larger positive cou-
pling between dlPFC and PMd during motor imagery of the affected
hand. This means that a unitary increase in dlPFC activity when CP
patients were imagining movements of the affected hand resulted
in significantly greater activity in the PMd, as compared to trials
where the patients imagined movements of the non-affected hand.
PMd is one of the two core regions that are specifically involved
in mental simulation of hand movements (de Lange et al., 2005).
The activity of this region is likely to be related to the generation
of motor plans. For example, prolonged electrical stimulation of
the macaque’s precentral gyrus evokes complex upper-limb move-
ments (Graziano, Taylor, & Moore, 2002), and premotor neurons
are known to select and encode various movement parameters. The
increased coupling between dlPFC and PMd during motor imagery
of the affected hand may be a cerebral counterpart of the increased
attention to action that CP patients deploy during the generation
of action plans of the paralyzed limb (Rowe, Friston, Frackowiak,
& Passingham, 2002). Given the matched motor imagery perfor-
mance of these CP patients during trials involving either hand
(de Lange et al., 2007), it is conceivable that the increase in
dlPFC-premotor connectivity reflects a compensatory mechanism,
namely an increased prefrontal drive towards premotor regions
supporting the imagery process. Future studies might be able to
test the directionality of the change in prefrontal-premotor con-
nectivity, as predicted by this hypothesis.

4.3. Increased negative coupling between dlPFC and S1 during
imagery of the affected hand

The dlPFC had larger negative couplings with the left and right

postcentral gyrus, as well as with the hippocampus. The postcen-
tral clusters fell within cyto-architectonic boundaries of primary
somatosensory cortices (S1). We interpret our findings as stronger
negative coupling during imagery of the affected hand, rather than
stronger positive coupling during imagery of the unaffected hand,
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Fig. 2. Anatomical localization of regions showing significant positive (in red) and negative (in blue) effective coupling with the dorsolateral prefrontal cortex (dlPFC). Green
lines connect regions that exhibit significant effective coupling with the seed region, placed in the dlPFC (in yellow). Red color indicates positive coupling, blue color indicates
n xial re
r bottom
fi

i
i
h
1
p
t
s
&
p
c
(
c
t
m
s
I
d
t
S
i
e
c
2
o
(
g
d
h

4

t
T
c
t
1
c
a
t
i
a
t
m

egative coupling. Renderings are thresholded at T = 3, for display purposes. (a) A
endering (back view), showing postcentral clusters. (a) Axial rendering, view from
gure legend, the reader is referred to the web version of the article.)

n view of S1 showing strong task-related suppression of activ-
ty. Suppression of somatosensory cortex during motor imagery
as been previously observed (Jahn et al., 2004; Rossini et al.,
996). Current models of motor control assert that during self-
roduced actions, a prediction of the sensory consequences of
he action is created, which is subtracted from the observed sen-
ory afferent information (Shadmehr & Krakauer, 2008; Wolpert

Ghahramani, 2000). This results in attenuated somatosensory
erception, even when motor plans are generated but not exe-
uted (Voss, Ingram, Wolpert, & Haggard, 2008) or merely imagined
Cheron & Borenstein, 1992; Grush, 2004). The stronger negative
oupling between dlPFC and S1 may therefore be directly related
o the stronger positive coupling between dlPFC and PMd. When

otor plans are generated (in PMd), sensory consequences are
imultaneously computed, leading to sensory attenuation (in S1).
n line with this, we observed a stronger modulatory influence of
lPFC during the generation of action plans of the affected limb
hat was positive in sign for the PMd and negative in sign for
1. The stronger inhibitory coupling between dlPFC and S1 dur-
ng motor imagery of the affected hand could also provide an
xplanation for the decreased excitability of the primary motor
ortex that has previously been observed in CP (Liepert et al.,
009). Activity in S1 can strongly contribute to the excitability
f the motor system as measured by motor evoked potentials
Avenanti, Bolognini, Maravita, & Aglioti, 2007). Our results sug-
est that this reduced excitability may be the result of larger
lPFC activity during generation of action plans of the affected
and.

.4. Coupling between dlPFC and the hippocampus

We also observed larger negative coupling between dlPFC and
he right hippocampus during motor imagery of the affected hand.
he hippocampus is known to directly interact with the prefrontal
ortex during the formation and retrieval of associative memory
races (Dolan & Fletcher, 1997; Gaffan, 2005; Schacter & Wagner,
999). More specifically, the control of unwanted memories is asso-
iated with increased dlPFC activation and reduced hippocampal
ctivation (Anderson et al., 2004). We speculate that the nega-

ive coupling between dlPFC and hippocampus observed during
magery of movements involving the affected hand could medi-
te a control mechanism to decouple (imagined) movements of
he affected hand from aversive memories associated with those

ovements. It remains to be seen whether remission of CP symp-
ndering, view from top, showing precentral and postcentral clusters. (b) Coronal
, showing right hippocampus. (For interpretation of the references to color in this

toms is supported by increased efficiency of this putative control
mechanism.

4.5. vmPFC and dlPFC: self-monitoring and action selection?

While previous studies have often interpreted changes in the
prefrontal activation profile of CP in a unitary fashion, our current
set of results, alongside anatomical and functional considerations,
suggest that alterations in different nodes of the prefrontal cortex
may be linked to distinct aspects of this psychopathological con-
dition. While vmPFC showed functional connectivity with inferior
temporal cortices, there was no functional or effective connectivity
with the sensorimotor system. The vmPFC has close connections
with limbic areas and it is involved in emotion regulation (Ochsner
& Gross, 2005) as well as interoceptive attention and self-referential
and autobiographical processing (Amodio & Frith, 2006; Gilbert et
al., 2006; Summerfield, Hassabis, & Maguire, 2009). Accordingly,
we have previously attributed the vmPFC activity differences to
heightened self-monitoring during motor imagery of the affected
limb. The current set of results extend these observations by show-
ing that vmPFC does not directly impinge on the sensorimotor
system.

Conversely, the dlPFC showed extensive functional connectiv-
ity with the sensorimotor system, and altered its connectivity as a
function of whether CP patients engaged in motor imagery of the
affected or unaffected hand. Therefore, dlPFC may be more directly
involved in mediating the altered sensory and motor symptoms
observed in CP. It might be relevant to test whether experimen-
tal manipulation of dlPFC activity (as achievable with transcranial
magnetic stimulation, for instance) could lead to a modulation
of the sensorimotor symptoms of CP patients. Therefore, we pro-
pose that both mechanisms (heightened self-monitoring and action
selection) have a role in conversion paralysis, but subserved by
anatomically distinct parts of the prefrontal cortex.

5. Conclusion

Our results indicate that there are altered connectivity patterns
between the dlPFC and various sensorimotor nodes during the

formation of action plans of the affected arm. There is increased
positive coupling between dlPFC and PMd, while there is increased
negative coupling between dlPFC and S1 and the hippocampus.
These results provide a link between previous reports of both
heightened prefrontal and reduced sensorimotor activity in CP.
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inked to altered dorsolateral prefrontal-motor connectivity.

ompeting interests

The authors have no competing interests.

cknowledgments

This study was supported by the Netherlands Science Founda-
ion (NWO: grant number 446-07-003 awarded to FdL; 452-03-339
warded to IT and 451-02-115 awarded to KR) and the Dutch Brain
oundation (Hersenstichting Nederland, grant number 12F04(2).19
warded to KR and FdL).

eferences

bbruzzese, G., Trompetto, C., & Schieppati, M. (1996). The excitability of the human
motor cortex increases during execution and mental imagination of sequen-
tial but not repetitive finger movements. Experimental Brain Research, 111(3),
465–472.

merican Psychiatric Association. (1994). Diagnostic and statistical manual of mental
disorders DSM-IV. American Psychiatric Association.

modio, D. M., & Frith, C. D. (2006). Meeting of minds: The medial frontal cortex and
social cognition. Nature Reviews Neuroscience, 7(4), 268–277.

nderson, M. C., Ochsner, K. N., Kuhl, B., Cooper, J., Robertson, E., Gabrieli, S. W., et
al. (2004). Neural systems underlying the suppression of unwanted memories.
Science, 303(5655), 232–235.

venanti, A., Bolognini, N., Maravita, A., & Aglioti, S. M. (2007). Somatic and motor
components of action simulation. Current Biology, 17(24), 2129–2135.

urgmer, M., Konrad, C., Jansen, A., Kugel, H., Sommer, J., Heindel, W., et al. (2006).
Abnormal brain activation during movement observation in patients with con-
version paralysis. Neuroimage, 29(4), 1336–1343.

aspers, S., Geyer, S., Schleicher, A., Mohlberg, H., Amunts, K., & Zilles, K. (2006). The
human inferior parietal cortex: Cytoarchitectonic parcellation and interindivid-
ual variability. Neuroimage, 33(2), 430–448.

astelli, F., Happe, F., Frith, U., & Frith, C. (2000). Movement and mind: A func-
tional imaging study of perception and interpretation of complex intentional
movement patterns. Neuroimage, 12(3), 314–325.

avada, C., Company, T., Tejedor, J., Cruz-Rizzolo, R. J., & Reinoso-Suarez, F. (2000).
The anatomical connections of the macaque monkey orbitofrontal cortex. A
review. Cerebral Cortex, 10(3), 220–242.

heron, G., & Borenstein, S. (1992). Mental movement simulation affects the N30
frontal component of the somatosensory evoked potential. Electroencephalogra-
phy Clinical Neurophysiology, 84(3), 288–292.

hiavaras, M. M., & Petrides, M. (2000). Orbitofrontal sulci of the human and
macaque monkey brain. Journal of Comparative Neurology, 422(1), 35–54.

ojan, Y., Waber, L., Carruzzo, A., & Vuilleumier, P. (2009). Motor inhibition in hys-
terical conversion paralysis. NeuroImage,

e Lange, F. P., Hagoort, P., & Toni, I. (2005). Neural topography and content of
movement representations. The Journal of Cognitive Neuroscience, 17(1), 97–112.

e Lange, F. P., Helmich, R. C., & Toni, I. (2006). Posture influences motor imagery:
An fMRI study. Neuroimage, 33(2), 609–617.

e Lange, F. P., Roelofs, K., & Toni, I. (2007). Increased self-monitoring during imag-
ined movements in conversion paralysis. Neuropsychologia, 45(9), 2051–2058.

e Lange, F. P., Roelofs, K., & Toni, I. (2008). Motor imagery: A window into the
mechanisms and alterations of the motor system. Cortex; A Journal Devoted to
the Study of the Nervous System and Behavior, 44(5), 494–506.

ecety, J., Jeannerod, M., Durozard, D., & Baverel, G. (1993). Central activation of
autonomic effectors during mental simulation of motor actions in man. Journal
of Physiology, 461, 549–563.

olan, R. J., & Fletcher, P. C. (1997). Dissociating prefrontal and hippocampal function
in episodic memory encoding. Nature, 388(6642), 582–585.

uvernoy, Henri M., Cabanis, E. A., & Vannson, J. L. (1991). The human brain: Surface,
three-dimensional sectional anatomy and MRI. Wien: Springer-Verlag.

ickhoff, S. B., Stephan, K. E., Mohlberg, H., Grefkes, C., Fink, G. R., Amunts, K., et al.
(2005). A new SPM toolbox for combining probabilistic cytoarchitectonic maps
and functional imaging data. Neuroimage, 25(4), 1325–1335.

riston, K. J., Holmes, A. P., Worsley, K. J., Poline, J. B., Frith, C., & Frackowiak, R.
S. (1995). Statistical parametric maps in functional imaging: A general linear
approach. Human Brain Mapping, 2, 189–210.

riston, K. J., Holmes, A., Poline, J. B., Price, C. J., & Frith, C. D. (1996). Detecting
Activations in PET and fMRI: Levels of Inference and Power. Neuroimage, 4(3),
223–235.
riston, K. J., Buechel, C., Fink, G. R., Morris, J., Rolls, E., & Dolan, R. J. (1997). Psy-
chophysiological and modulatory interactions in neuroimaging. Neuroimage,
6(3), 218–229.

rith, C. D., Blakemore, S. J., & Wolpert, D. M. (2000). Abnormalities in the awareness
and control of action. Philosophical Transactions of the Royal Society of London B
Biological Sciences, 355(1404), 1771–1788.
ogia 48 (2010) 1782–1788 1787

Frith, C. D., Moody, S. L., & Driver, J. (2000). The role of dorsolateral prefrontal cortex
in the selection of action control of cognitive processes: Attention and performance
XVIII. Cambridge: MIT Press.

Fuster, J. M. (2000). Executive frontal functions. Experimental Brain Research, 133(1),
66–70.

Gaffan, D. (2005). Neuroscience. Widespread cortical networks underlie memory
and attention. Science, 309(5744), 2172–2173.

Geyer, S., Schleicher, A., & Zilles, K. (1999). Areas 3a, 3b, and 1 of human primary
somatosensory cortex. Neuroimage, 10(1), 63–83.

Ghaffar, O., Staines D W. R., & Feinstein, A. (2006). Unexplained neurologic
symptoms: An fMRI study of sensory conversion disorder. Neurology, 67(11),
2036–2038.

Gilbert, S. J., Spengler, S., Simons, J. S., Steele, J. D., Lawrie, S. M., Frith, C. D., et al.
(2006). Functional specialization within rostral prefrontal cortex (area 10): A
meta-analysis. Journal of Cognitive Neuroscience, 18(6), 932–948.

Gitelman, Darren R., Penny, William D., Ashburner, J., & Friston, Karl J. (2003). Mod-
eling regional and psychophysiologic interactions in fMRI: The importance of
hemodynamic deconvolution. Neuroimage, 19(1), 200–207.

Goldberg, I. I., Harel, M., & Malach, R. (2006). When the brain loses its self: Prefrontal
inactivation during sensorimotor processing. Neuron, 50(2), 329–339.

Graziano, M. S., Taylor, C. S., & Moore, T. (2002). Complex movements evoked by
microstimulation of precentral cortex. Neuron, 34(5), 841–851.

Grefkes, C., Geyer, S., Schormann, T., Roland, P., & Zilles, K. (2001). Human somatosen-
sory area 2: Observer-independent cytoarchitectonic mapping, interindividual
variability, and population map. Neuroimage, 14(3), 617–631.

Grush, R. (2004). The emulation theory of representation: Motor control, imagery,
and perception. The Behavioral and Brain Sciences, 27(3), 377–396.

Halligan, P. W., Athwal, B. S., Oakley, D. A., & Frackowiak, R. S. J. (2000). Imaging
hypnotic paralysis: Implications for conversion hysteria. The lancet, 355(9208),
986–987.

Halligan, Peter W., Bass, C., & Marshall, John C. (2001). Contemporary approaches to
the study of hysteria: Clinical and theoretical perspectives. USA: Oxford University
Press.

Jahn, K., Deutschlander, A., Stephan, T., Strupp, M., Wiesmann, M., & Brandt, T. (2004).
Brain activation patterns during imagined stance and locomotion in functional
magnetic resonance imaging. Neuroimage, 22(4), 1722–1731.

Jeannerod, M. (1994). The representing brain: Neural correlates of motor intention
and imagery. Behavioral and Brain Science, 17, 187–245.

Kanaan, R. A. A., Craig, T. K. J., Wessely, S. C., & David, A. S. (2007). Imaging
repressed memories in motor conversion disorder. Psychosomatic Medicine,
69(2), 202–1202.

Liepert, J., Hassa, T., Tüscher, O., & Schmidt, R. (2009). Abnormal motor
excitability in patients with psychogenic paresis. Journal of Neurology, 256(1),
121–126.

Mailis-Gagnon, A., Giannoylis, I., Downar, J., Kwan, C. L., Mikulis, D. J., Crawley, A. P.,
et al. (2003). Altered central somatosensory processing in chronic pain patients
with “hysterical” anesthesia. Neurology, 60(9), 1501–1507.

Marshall, J. C., Halligan, P. W., Fink, G. R., Wade, D. T., & Frackowiak, R. S. (1997). The
functional anatomy of a hysterical paralysis. Cognition, 64(1), B1–B8.

Maruff, P., & Velakoulis, D. (2000). The voluntary control of motor imagery. Imag-
ined movements in individuals with feigned motor impairment and conversion
disorder. Neuropsychologia, 38(9), 1251–1260.

Ochsner, K. N., & Gross, J. J. (2005). The cognitive control of emotion. Trends in
cognitive sciences, 9(5), 242–249.

Parsons, L. M. (1987). Imagined spatial transformation of one’s body. Journal of
Experimemenal Psychology General, 116(2), 172–191.

Parsons, L. M., Gabrieli, J. D., Phelps, E. A., & Gazzaniga, M. S. (1998). Cerebrally
lateralized mental representations of hand shape and movement. Journal of
Neuroscience, 18(16), 6539–6548.

Passingham, R. E. (1993). The frontal lobes and voluntary action. Oxford: Oxford Uni-
versity Press.

Petersson, K. M., Nichols, T. E., Poline, J. B., & Holmes, A. P. (1999). Statistical limi-
tations in functional neuroimaging. II. Signal detection and statistical inference.
Philosophical Transactions of the Royal Society of London B: Biological Sciences, 354,
1261–1281.

Petrides, M. (2005). Lateral prefrontal cortex: Architectonic and functional organiza-
tion. Philosophical Transactions of the Royal Society of London B Biological Sciences,
360(1456), 781–795.

Price, C. J., & Friston, K. J. (2002). Functional imaging studies of neuropsychological
patients: Applications and limitations. Neurocase, 8(5), 345–354.

Rajkowska, G., & Goldman-Rakic, P. S. (1995). Cytoarchitectonic definition of pre-
frontal areas in the normal human cortex: II. Variability in locations of areas 9
and 46 and relationship to the Talairach Coordinate System. Cerebral Cortex, 5,
323–337.

Roelofs, K., & Spinhoven, P. (2007). Trauma and medically unexplained symptoms
towards an integration of cognitive and neuro-biological accounts. Clinical Psy-
chology Review, 27, 798–820.

Roelofs, K., Näring, G. W. B., Keijsers, G. P. J., Hoogduin, C. A. L., Van Galen, G. P., &
Maris, E. (2001). Motor imagery in conversion paralysis. Cognitive Neuropsychi-
atry, 6(1), 21–40.
Rossini, P. M., Caramia, D., Bassetti, M. A., Pasqualetti, P., Tecchio, F., & Bernardi, G.
(1996). Somatosensory evoked potentials during the ideation and execution of
individual finger movements. Muscle Nerve, 19, 191–202.

Rowe, J., Friston, K., Frackowiak, R., & Passingham, R. (2002). Attention to action: Spe-
cific modulation of corticocortical interactions in humans. Neuroimage, 17(2),
988–998.



1 sycho

R

S

S

S

S

788 F.P. de Lange et al. / Neurop

owe, J. B., Sakai, K., Lund, T. E., Ramsoy, T., Christensen, M. S., Baare, W. F., et al.
(2007). Is the prefrontal cortex necessary for establishing cognitive sets? Journal
of Neuroscience, 27(48), 13303–13310.

chacter, D. L., & Wagner, A. D. (1999). Medial temporal lobe activations in
fMRI and PET studies of episodic encoding and retrieval. Hippocampus, 9(1),
7–24.

ekiyama, K. (1982). Kinesthetic aspects of mental representations in the
identification of left and right hands. Perception and Psychophysics, 32(2),

89–95.

hadmehr, R., & Krakauer, J. W. (2008). A computational neuroanatomy for motor
control. Experimental Brain Research, 185(3), 359–381.

pence, S. A., Crimlisk, H. L., Cope, H., Ron, M. A., & Grasby, P. M. (2000). Discrete
neurophysiological correlates in prefrontal cortex during hysterical and feigned
disorder of movement. The Lancet, 355(9211), 1243–1244.
logia 48 (2010) 1782–1788

Stone, J., Zeman, A., Simonotto, E., Meyer, M., Azuma, R., Flett, S., et al. (2007). FMRI in
patients with motor conversion symptoms and controls with simulated weak-
ness. Psychosomatic Medicine, 69(9), 961–1961.

Summerfield, J. J., Hassabis, D., & Maguire, E. A. (2009). Cortical midline involvement
in autobiographical memory. NeuroImage, 44, 1188–1200.

Voss, M., Ingram, J. N., Wolpert, D. M., & Haggard, P. (2008). Mere expectation to
move causes attenuation of sensory signals. PLoS ONE, 3(8), e2866.

Vuilleumier, Patrik. (2005). Hysterical conversion and brain function. Progress in

Brain Research, 150, 309–329.

Vuilleumier, P., Chicherio, C., Assal, F., Schwartz, S., Slosman, D., & Landis, T. (2001).
Functional neuroanatomical correlates of hysterical sensorimotor loss. Brain: A
Journal of Neurology, 124(Pt. 6), 1077–1090.

Wolpert, D. M., & Ghahramani, Z. (2000). Computational principles of movement
neuroscience. Nature Neuroscience, 3, 1212–1217.


	Altered connectivity between prefrontal and sensorimotor cortex in conversion paralysis
	Introduction
	Materials and methods
	Participants
	Task
	MRI acquisition and preprocessing
	Functional and effective connectivity analysis
	Anatomical inference

	Results
	Increased positive coupling between dlPFC and dorsal premotor cortex
	Increased negative coupling between dlPFC and primary somatosensory cortex and hippocampus

	Discussion
	dlPFC is functionally coupled with the sensorimotor system
	Increased positive coupling between dlPFC and PMd during imagery of the affected hand
	Increased negative coupling between dlPFC and S1 during imagery of the affected hand
	Coupling between dlPFC and the hippocampus
	vmPFC and dlPFC: self-monitoring and action selection?

	Conclusion
	Competing interests
	Acknowledgments
	References


