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A new method to estimate the parameters of Tucker's three-mode principal component 
model is discussed, and the convergence properties of the alternating least squares algorithm to 
solve the estimation problem are considered. A special case of the general Tucker model, in which 
the principal component analysis is only performed over two of the three modes is briefly outlined 
as well. The Miller & Nicely data on the confusion of English consonants are used to illustrate the 
programs TUCKALS3 and TUCKALS2 which incorporate the algorithms for the two models de- 
scribed. 
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1. Three-Mode Models and Their Solutions 

The three-mode model--here referred to as the Tucker3 model--was first formulated 
by Tucker [1963], and subsequently extended in articles by Tucker [1964, 1966], and 
Levin [1963, Note 5] especially with respect to the mathematical description and program- 
ming aspects of the model. In the context of multidimensional scaling, references to this 
model occur frequently [Harshman, 1970, Note 2; Jennrich, 1972, Note 3; Carroll & 
Chang, 1972, Note 1; Takane, Young & de Leeuw, 1977], since the Tucker3 model is the 
general model comprising various individual differences models. A discussion of the rela- 
tionships between multidimensional scaling and three-mode principal component analysis 
can be found in Tucker [1972], Carroll & Wish [1974], and Takane, Young & de Leeuw 
[1977]. 

The algorithms developed by Tucker [1966] are used to solve the three-mode model 
in all cases. References to computer programs based on these algorithms are Wainer et al. 
[ 1971, 1974], Walsh [I 964], Walsh & Walsh [ 1976], and one such program is embodied in 
the statistical package SOUPAC developed at the University of Illinois. Numerous simi- 
lar programs have been written, and they are mostly referred to in passing in applied arti- 
cles. In his 1966 article Tucker remarks that his procedures "do not produce a least 
squares approximation to the data. Investigations of the mathematics of a least squares fit 
for three-mode factor analysis indicate a need for an involved series of successive approxi- 
mations." The procedures described in the sequel are designed to provide least squares es- 
timates of the parameters in the three-mode model. The alternating least squares ap- 
proach used can also be extended to accommodate other levels of measurement, as has 
been recently demonstrated by Sands & Young [I980] for a more restricted model. 

2. The Description of the Tucker3 Model 

The Tucker3 model deals with data which can be arranged in a three-dimensional 
block or a so-called three-mode matrix. Specifically, a 1 × m x n three-mode matrix Z is 

Requests for reprints should be sent to Pieter M. Kroonenberg, Vakgroep W.E.P., Subfakulteit der Ped- 
agogische en Andragogische Wetenschappen, Schuttersveld 9 (5e verd.), 2316 XG Leiden, THE NETHER- 
LANDS. 

0033-3123/80/0300-2831500.75/0 
1980 The Psychometric Society 

69 



70 PSYCHOMETRIKA 

defined as the collection of  elements 

(zo, li = l , . . . , l ; j  = 1,...,m; k = l,...,n}. 

The elements are placed in the three-dimensional block such that the index i runs along 
the vertical axis, the index j along the horizontal axis, and the index k along the "depth"  
axis. We will use the word "mode"  to indicate a collection of  indices by which the data 
can be classified. For instance, in semantic differential studies [Osgood, Tannenbaum & 
Suci, 1957] one collects scores of  a number  of  persons on a set of  bipolar scales for a col- 
lection of  attributes. These data can be classified by persons, scales, and attributes; each of  
these therefore determine a mode of  the data. 

We will only use real matrices here, and in general the number  of  rows will be larger 
than the number  of  columns. We will use R "×" for the class of  real n x m matrices, and 
K "×" for the class of  columnwise or thonormal  matrices, and R l . . . .  for the class of  all 1 × 
m × n three-mode matrices. 

Using the above definitions we can formulate the Tucker3 model as the factorization 
of  the three-mode data matrix Z = {zuk } , Z E R t . . . .  such that 

(1) z~jk = ~ ~ ~ g.hiqe~,cpqr 
p~l q ~ l  r ~ l  

for i -- 1,...,/; j = l,..-,m; k = 1,...,n, where the coefficients gip, hjq, and ekr are the elements 
of  the component  matrices G E / ( × ' ,  H E K "×', and E E K °×" respectively, and s, t, and u 
are the number  of  components  of  the first, second, and third mode. The cpq, are the ele- 
ments of  the so-called three-mode core matrix C E R . . . . .  . In the matrix Z each element 
represents a specific combination of  categories of  the original variables. In the same way 
each element of  the core matrix C represents a unique combinat ion of  categories of  the 
components.  One could conceive of  the core matrix as describing the basic relations that 
exist between the various collections of  variables. 

A matrix formulation of  the Tucker3 model is 

(2) Z = GC(H'  ® E'), 

where Z E R I×"m and C @ R .... are now ordinary (two-mode) matrices by making use of  
so-called combination modes [Tucker, 1966, p. 281], and ® denotes the Kronecker  prod- 
uct. By symmetry there are two other matrix formulations (see also Section 4). We will 
not introduce special notation to distinguish between the two-mode and three-mode ver- 
sions of  Z and C, as the appropriate version is indicated by the real space of  which it is an 
element. 

It should be noted that our formulation of  the three-mode model corresponds to the 
model Tucker treats in pages 294ff of  his 1966 paper  when he describes ways to estimate 
the parameters  of his model. In the earlier theoretical part  of  his paper  Tucker  gives a 
more general formulation with G, H, and E as full column rank matrices, rather than or- 
thonormal  ones. Both computat ional  expedience, and the desire to formulate conditions 
for a unique solution motivated us to describe the model entirely in terms of  columnwise 
or thonormal  matrices. Once a solution has been obtained we can transform G, H, and E 
by either orthonormal transformations and /o r  by non-singular transformations of  the ap- 
propriate rank without affecting the loss function (3) defined below, provided we counter- 
rotate the core matrix. In fact we have included in the T U C K A L S 2  program (see Section 
9) a procedure for or thonormal  transformation of  the core matrix [for details see Kroo- 
nenberg & de Leeuw, 1977, Note 4, Appendix A], and are in the process of  including a 
non-singular transformation routine as well. Similarly transformation routines will be 
eventually included in the TUC KALS 3  program as well. 
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If we computed all the principal components, i.e. s = l, t = m, and u ---- n, we could de- 
compose any data matrix exactly into its components. However, in practical applications 
one is just interested in the two, three, or four first principal components. In general this 
precludes finding an exact factorization of  Z in G, H, E, and C. One therefore has to be 
satisfied with an approximation, 2 = GC(H' ® E'), i.e. finding G, H, E, and C such that 
the difference between the model and the data is minimal according to some loss function. 
In slightly different terms, we have to look for the best approximate factorization Z of  the 
three-mode matrix Z into G, H, E, and C according to the Tucker3 model. 

In our case, as in many similar situations, we define a mean-squared loss function. 
We then search for an approximate factorization Z such that 

(3) f(G,H,E,C) - - I l Z -  ZII ~ --I lZ - GC(H'® E')II ~ 

is minimal, where t l ' f l  denotes the euclidean norm. The minimization has to be carried 
out under the restrictions of  the model, i.e. G, H, and E must be columnwise orthonormal 
matrices. The Z for which f attains its minimum will be designated as 2~ = G~(/~' ®/~'), 
and the variables with the carets are the least squares estimators of  the model parameters. 

3. The Existence of a Best Approximate Solution 

In this section we will show that there always exist some G, H, E, and C such that f 
attains its (global) minimum. Essentially the proof  comes down to first showing that C can 
be uniquely expressed in terms of  G, H, E, and Z, and secondly, using the resulting ~, 
showing that f must have a minimum because it is a continuous bounded function on a 
finite-dimensional real space. 

In fact there exists a unique best C, called C, such that for fixed G, H, and E, f attains 
its minimum for this (~ which has as its elements 

a ~ l  b ~ l  d ~ l  

o r  

(4) (: = O'Z(n'  ® E'). 

To prove the above assertion we use a simplified version of a lemma by Penrose 
[1955], which is presented as Lemma 3.2 in Kroonenberg & de Leeuw [1977, Note 4]. This 
lemma states that there exists a unique ~, such that the function h, 

(5) h(C) = l lZ-  2112= l lZ-  GCF'II 2, 

is as small as possible. This ~ is equal to G'ZF, and the absolute minimum, i.e. 0, is 
reached if  and only if  Z = GG'ZFF'. If  we write H ® E for F in (5), we may conclude that 

as in (4) minimizes f for fixed G, H, and E, and that 

(6) h(C ~) = 0 iff Z -- GG'Z(H ® E) (H' ® E'). 

The minimization of  the loss function, therefore, is really only dependent upon G, H, and 
E. Once we have found the appropriate ~ , /9 ,  and/~, we can reconstruct C via (4). 

To proceed with the minimization of  f we substitute (4) into (3), call the rewritten 
function g, and thus 

(7) g(G,H,E) = ]]Z - 2]] 2 = liE - GG'Z(H® E) (H'® E')]t ~ 

= t l z  - GG'Z(HH' ® EE')II 2. 

As the domain S of  the function g is 

(8) S = (s I s = (G,H,E), O E K '×~, H E r mxt, E E K ~×") , 



72 PSYCHOMETR1KA 

we can see that S is a compact subset in a finite-dimensional real space. Using the fact 
that g is a bounded continuous function on S (0 <_ g _< IIZIf2), we can conclude that there 
exists a point ~ = (d,H,L') in S, such that g attains its minimum. In other words the mini- 
mization problem always has a solution. 

4. A Solution o f  the Minimization Problem 

In this section we will give some details o f  a solution to the minimization problem 
(3). In order to do this we will convert the minimization problem into a maximization 
problem. This done, we will show that the component  matrices d , / t ,  and/~  of a solution 
are each nothing but the eigenvectors corresponding to the largest eigenvalues of  suitably 
constructed cross-products of  the data matrix Z and the other two component  matrices. 

To convert the minimization problem into a maximization problem we rewrite (7) us- 
ing traces instead of  norms, and manipulate the various terms somewhat, i.e. 

g(G,H,E) = tr(Z - Z) (Z  - Z')' = t r (ZZ '  - Z Z '  - Z ~ '  + 2]Z') 

(9) -- t rZZ '  - 2t rZZ '  + tr2~2'. 

Expanding each term in turn, and adding them as in (9), we get 

g(G,H,E) = t r Z Z '  - 2 t rGG'Z(HH'  ® EE ' )Z '  + t rG 'Z(HH'  ® EE ' )Z 'G  

(10) = t rZZ '  - t rG 'Z(HH'  ® EE')Z 'G.  

We define p to be equal to the last term on the right-hand side of  (10), 

(11) p(G,H,E)  = t rG 'Z(HH'  ® EE')Z 'G.  

Clearly the minimization of  g comes down to the same as the maximization of  p, as both 
are bounded. For the sequel it will be convenient to rewrite p a bit further, 

p(G,H,E)  = trG' {Z(HH'  ® EE')Z '}  G 

= trG'PG, 

with 

(12) P = P(H,E) = Z ( H H ' ® E E ' ) Z ' ,  and Z ~ R '×"" . 

So far we have always placed H and E in the Kronecker-product  term, but we could 
equally well have done so with G and E, or G and H. Such substitutions entail only a 
change in form, but not in the model  itself. The model  is indifferent to such notational 
changes as can be clearly seen from (1). In the following we will also need the other forms: 

p(G,H,E)  = t r H ' Q H  

w~h 

(13) Q = Q(E,G) = Z (EE '  ® GG')Z', and Z E R"×"t ; 

p(G,H,E) = t r E ' R E  

with 

(14) R = R(G,H) = Z(GG' ® H H ' ) Z '  , and Z ~ R "×"' . 

The maximization o f p  is of  course not unconstrained, but restricted to the set S. We can 
incorporate the constraints in the maximization problem by using Lagrange multiplier 
matrices L, M, and N, and obtain fi, 

f f (G,H,E,L ,M,N)  = p(G,H,E)  - trL(G'G - L) - t r M ( H ' H -  L) - t rN(E 'E  -- I~) , 
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where I ,  is the a×a identity matrix. The maximum ofp  follows from the requirement that 
the first order partial derivatives of/~ are simultaneously zero at the maximum o f p  and 
that the Hessian is negative. We will state here the exact nature of the solution as Theo- 
rem 1, and refer the reader for a proof to the Appendix. 

Theorem 1 

Let Z be a three-mode matrix, and letp,  P, Q, R, and S be defined as in (11), (12), 
(13), (14), and (8) respectively, and finally let U, V, and Wbe defined as follows: U is an 
eigenvector matrix of P, V an eigenvector matrix of Q, W is an eigenvector matrix of R, 
and ( U , V , W )  E S. Then (a.) (G,//,£:) ~ S is a stationary point o fp  if and only if d = U, 
/- /= V, and/~ -- W, or some orthonormal rotation thereof. (b.) (d,/-),L ~) E S maximizes p 
if and only if their columns are eigenvectors corresponding to the largest s, t, and u eigen- 
values of  P(H,L~), Q(/~,6"), and R(G,/:/) respectively, or orthonormal rotations thereof. 

The following theorem provides the necessary and sufficient conditions for the exis- 
tence of an exact solution to the minimization problem (3), and indicates the form of  such 
a solution. The proof of part (a.), and of  part (b.)l follow directly from the definitions, 
and the proof of part (b.)2 can be found in the Appendix. 

Theorem 2 

(a.) Let Z be a three-mode data matrix, and let f, g, and p be defined as above. Fur- 
thermore let ((~,~,/~,d) satisfy the constraints of (3), and let ~ be defined as C = G 'Z(H 
®/7). Then the following statements are equivalent: 

1. f(d,&L  -- o, 

2. = o,  

3. p(0 ,1:1 ,~  = t r Z Z '  with Z E R '×~" , 

(15) 4. Z = d d ' Z ( I : I t : l ' ® ~ , ~ ' ) w i t h Z E R ' × m " , a n d  

5. (d,/~,/~,C ~) is an exact solution of(3) .  

(b.) 1 Let (d,//,/~,d3 be an exact solution of(3) .  Then 

is the eigenvector matrix (or an orthonormal rotation thereof) corresponding 
to the p non-zero eigenvalues of ZZ" with Z E R 'xm" , 

/ t  is the eigenvector matrix (or an orthonormal rotation thereof) corresponding 
to the q non-zero eigenvalues of  Z Z '  with Z E R m×'l , 

/~ is the eigenvector matrix (or an orthonormal rotation thereof) corresponding 
to the r non-zero eigenvalues of  Z Z '  with Z E R "×'" , and C = d ' Z ( / l ®  L~'). 

(b.) 2 On the other hand, if G,/~, E, and ~ are defined as in (b.)l, the eigenvalues 
associated with d, H,/~, are different for each matrix separately, and (15) is satisfied, then 
((~,~,/~,L "~) is the exact unique solution. 

It should be noted that statement (b.)2 is not as strong as one would like to have it, as 
any (d,H,~,~)  which satisfies (15) determines an exact solution. A more satisfactory state- 
ment, however, has not been found yet. 

5. Towards an Algori thm f o r  the Solution o f  the Tucker3 Model  

Obviously we would like to construct an algorithm for the maximization of  p that 
converges to a global maximum ofp. Unfortunately p is the cross-product term of  a multi- 
variate polynomial of the sixth degree, and in general it is not possible to prove that meth- 
ods to solve such nonlinear problems attain a global maximum. In the present case this 
also seems to be true. We will have to be satisfied with proving that the algorithm outlined 
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below will converge to some stationary point which is not a minimum, rather than a 
global maximum. 

The method to be described utilizes the so-called alternating least squares (ALS) 
technique. The essential feature of  the ALS approach is that in solving optimization prob- 
lems with more than one set of parameters, each set is estimated in turn by applying least 
squares procedures holding the other sets fixed. After all sets have been estimated once, 
the procedure is repeated again and again until convergence. Further details and refer- 
ences to applications of  the ALS approach can, for instance, be found in Young, de 
Leeuw & Takane [1980]. 

In order to see how the ALS approach can be applied in the present context, let us 
return briefly to (7): 

g(G,H,E) = I IZ  - GG'Z(HH' ® E E ' ) I I  2 . 

Clearly the sets of parameters are here G,H, and E. Minimizing g over G holding H and E 
fixed is identical to solving one least squares problem, minimizing over H with E and G 
fixed, and minimizing over E with G and H fixed are the two others. That we are in prac- 
tice maximizing p does not prevent the problem from being an ALS one. 

From the above discussion a rough outline for an algorithm is readily deduced. First 
choose an arbitrary Ho and E0 yielding a new G,, maximize subsequently over H with the 
just computed G~ and Eo fixed yielding a new Ht, and finally maximize p over E with G~ 
and H, fixed yielding a new E,, and iterate this procedure unt i l - -one hopes-----con- 
vergence. According to Theorem 1 the maximizations are essentially identical to searches 
for eigenvectors and eigenvalues of  matrices of  the order / ,  m, and n respectively. As/ ,  m, 
and n can be quite large, while s, t, and u are typically very small, say 2, 3, or 4, we want 
to use a technique for solving the eigenvector-eigenvalue problem (or eigenproblem for 
short) which is particularly efficient in finding just a few eigenvectors. 

A very appropriate technique in this situation is the so-called simultaneous iteration 
method [or Treppen (= staircase) iteration] of Bauer-Rutishauser [Rutishauser, 1969]. For  
further details on this method see Section 6. 

The maximization of p consists thus of  an, in principle, infinite iteration process, in 
which at each step three eigenproblems have to be solved. Clearly, solving these eigen- 
problems by an infinite iteration process has its drawbacks. The whole procedure is likely 
to become computationally burdensome. In order to avoid this we perform only one 
single step towards the solution of  the eigenproblems, instead of the complete iterations. 
A similar approach has been applied by de Leeuw and others in a number of  cases when 
using an ALS technique. The experience has been that carrying out the complete iteration 
for solving the eigenproblem only serves to decrease the overall efficiency of  the proce- 
dure, while it has no effect on the eventual convergence point if one uses only one step 
[Takane, Young & de Leeuw, 1977 p. 59]. They suggest that the reason for this behavior 
might be found in the same reasons that often cause relaxation procedures to be more ef- 
ficient than non-relaxation procedures. 

6. The Bauer-Rutishauser Method 

As the algorithm is based on the method of  Bauer-Rutishauser for computing eigen- 
vectors and eigenvalues it seems in order to describe this method in some detail. In addi- 
tion, some of  the formulations developed here will be used in the rest of  this paper. 

Let A E R "×" be a symmetric positive definite matrix, a n d p  the desired number of  ei- 
genvectors. Furthermore let X E R "×p be defined as the matrix which has as its columns 
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the iteration vectors. I f  we write X after i iterations as 2(, then the method of  Bauer-Ru- 
tishauser is defined as follows. 

(i) Choose an arbitrary orthonormal Xo, 
(ii) Y , = A X , ,  and 

(iii) B, = Y, 'Y , .  
(iv) Solve the eigenproblem for B , ,  i.e. determine an orthonormal  T,, and a diagonal L, 

with/'i > _ lX > _ .-- >_ l~, such that T,'B,T, = L,, and T~ is the eigenvector matrix of  B,, and 
then define 

(v) X,., = Y,T,L;-'/2T, ' . 

Schwartz et al. [1968] show that for i---~oo, Li -t/2 converges to the matrix with the larg- 
est p eigenvalues of  A on the diagnonal, and the columns of Xi converge to the associated 
eigenvectors, provided A is positive definite, and the columns of  X are not orthogonal to 
one or more of  the eigenvectors, and in addition the p,h and (p + 1) ~' eigenvalues are dif- 
ferent. We may write (ii) through (v) somewhat more concisely as 

X,+, = Y,T, LZ'/2T~" = A X ,  B, -'+2 = A X , ( X , : A 2 X 3  -'/2 . 

With a view to what follows it will be convenient to define the function 

(16) ¢p(X,) = AX, (X , 'A2X, )  -'/2 . 

When we use in the sequel a recursive formula like (16) we mean to say that X,+, = ~(X,) 
can be computed by carrying out one step of  the Bauer-Rutishauser method. It should be 
noted that the inverse square root o f  X ' A 2 X  exists, and is uniquely defined, if  the ex- 
pression is positive definite. This implies that in such a case ~ is well-defined, and it can 
be proved that 0 is continuous as well (see Appendix). As will be shown in Section 8 
rather strong convergence theorems can be used for the algorithm to be described if ~ is 
continuous. It seems therefore worthwhile to take measures in constructing the algorithm 
to ensure the positive definiteness of  X'A2X.  An inspection of  the method to arrive at (16) 
shows that in fact only the inverse square root is taken of  the eigenvalues o f  B,. One, 
therefore, only has to check in each iteration step if all eigenvalues are larger than zero, or 
in practice larger than some very small number.  I f  one of  the eigenvalues is too small, one 
can restart the iteration procedure with a smaller number  of  components. There is, how- 
ever, no guarantee that this will solve the singularity problem. On the other hand if no 
singularities have occurred one knows that at each step ~ must have been uniquely de- 
fined and continuous on R "×p . As we have taken the above precaution in the program we 
will from now on assume that expressions like X ' A 2 X  are positive definite. 

7. The  T U C K A L S 3  A l g o r i t h m  

In this section we will describe the algorithm to solve the maximization of  p, as well 
as give some consideration to the initialization of the algorithm. Here Z is again defined 
as the I × m × n three-mode data matrix, and s, t, and u will be the desired number  of  
components for the three-component matrices. Furthermore the orthonormal matrices G, 
H, and E will be the matrices with as their columns the iteration vectors. We will write G, 
H, and E as they are after i iteration steps as G,, 1 t ,  and E,. One main iteration step of  the 
T U C Y ~ L S 3  algorithm is then defined by (t7) through (22). 

G substep 

(17) P, = Z ( H , H ;  ® E ,E; )Z '  with Z E R m×n~ 
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0 8 )  

H substep 

(19) 

(20) 

E substep 

(21) 

(22) 

G,., = ~,(O,) -- e,G,(GIP~,) -''2 

Q, = Z(EiE; ® GI.tG~+,G~+,)Z' with Z E R '×"" 

H,+, = ¢~2(Hj) = Q,H,(H~Q~H,) -~/2 

R, = Z(G,+~G~+I ® H~+,H~+~)Z' with Z E R "×t'- 

E,+) = # , 3 ( K )  = RiE,(E'R~,E,) -~2 

As mentioned before, each G, H, and E substep is one step of  an inner iteration to find the 
eigenvectors of  P, Q, and R respectively, and together they define one step of  the main 
iteration. 

Because we want to discuss the properties of  the TUCKALS3 algorithm in the sequel, it 
is useful to introduce some notation first. 

F: S ~ S is a function on S, and F defines a complete step of  the main iteration, and S is 
defined as in (8). 
F = F3 • F2" F, with Fi: S ~ S for i = 1,2,3 such that 

FL(Gi, H,, E,) = (~,(G,), H,, E,) = (G,+~, H,, E,), 
FdGi+,, Hi, E,) = (G,+,, ~:(Hi), E,) = (Gi+,, Hi+,, El), and 
F3(Gi+,, n,+,, Ei) = (G,+,, n,+l, ~b3(E,)) = (Gi+t, n,÷,, E,+ O. 

Thus F(si) = F(Gi, Hi, Ej) = (Gi.,, Hi+t, Et+,) = si+t. 

In Section 6 we remarked that #, as defined in (16) was a continuous function, and 
thus ~t, ~2, and ~3 are continuous functions. Because F is a composite of  continuous func- 
tions, F is continuous as well. 

It can be shown that both at each step of  the main iteration and at each substep the 
value of  p is increased (see Appendix). Thus 

p(F(s,)) = p(st+O >- p(s,). 

I f p  is not increased strictly, i.e. p(F(si)) = p(s3, the algorithm stops. In that case ( d , / t ,  ~?) 
satisfies the necessary conditions of  Lemma 3 (see Section 8). Consequently we can as- 
sume without loss of  generality that the algorithm generates an infinite sequences with 
p(F(s,)) > p(s,). 

Obviously we need some Go, H0, and Eo to initialize the procedure. It seems sensible 
to choose them in such a way that they are optimal in some sense. We chose such an ini- 
tialization that it would solve the maximization problem exactly if  the problem had such a 
solution. In other words the eigenvector matrices mentioned in Theorem 2 (b.) 1 were 
used as initializations. Comparing this with Method 1 of  Tucker [1966, p. 297], we note 
that the initialization is nothing but Tucker's final solution. In practice we do not need to 
know the eigenvectors exactly as they are only used to initialize, and therefore we made 
only five iteration steps towards their solution, using the Bauer-Rutishauser method. 

8. The Convergence o f  the T U C K A L S 3  Algorithm 

It is, o f  course, of  prime importance to show that the algorithm outlined in (17)-(22) 
converges, and moreover that it converges to a maximum of  p, or at least not to a mini- 
mum. 

The algorithm considered here is a type of  algorithm that has been described in the 
nonlinear programming literature, and in that field various theorems about the con- 
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vergence of  algorithms such as ours exist. The most appropriate one in our case is the fol- 
lowing "fixed point" lemma described and proven by d 'Esopo [1959]. 
Lemma 3. 

Let F, p, S satisfy the following conditions. 
1. a. S is a subset of  a finite dimensional space, 

b. F is a continuous transformation of  S to S, 
c. p is a real function defined and continuous for all s E S, 

2. p(F(s)) > p(s), 
3. i f  p(F(s)) = p(s), then F(s) = s, 
4. if  the sequence So, s,, ... satisfies p(s,+,) >-p(s3 with s~ E S, then for every limit point g of  
So, S , ,  . . .  F(s - )  = e .  

In Section 3 we noted and discussed properties la, lc, and in Section 7 we did the 
same for lb, 2, 3, and 4. We may, therefore, conclude that Lemma  3 applies to the 
TUCKALS3  algorithm. As S is a bounded real subspace, any infinite sequence So, s,, --- is 
bounded, and thus the sequences generated by the algorithm are bounded as well. A theo- 
rem due to Weierstrass shows that such sequences have at least one limit point. It is shown 
in the Appendix that every point L such that F(s-) -- g is a stationary point of  p, and be- 
cause we know that at every step p increases, we know that stationary points will not be 
minima. 

As has been shown by Ostrowski [1966] the set of  limit points of  {s,} consists either of  
a single point or a continuum. The latter case, however, is a very unlikely one in practical 
applications, as is the occurrence of  equal eigenvalues in real data. The above results im- 
ply, that from any arbitrary starting point So the algorithm converges to a stationary point 
o f  p, but the algorithm "like all numerical methods based on local searches for solutions, 
can be best expected to yield local (maxima) ( ... ). Global  (maximality) could be assured 
only by exhaustive searches over successively finer grids." [Meyer, 1970, p. 45]. 

9. Special Cases: The Tucker2 and the Tucker1 Model 

The Tucker2 Model 

An important  special case of  the Tucker3 model is obtained if  the matrix E in (2) is 
taken to be the identity matrix. The resulting model, the Tucker2 model, can con- 
sequently be written as 

(23)  z,jk = g, hjqC qk 

with i = 1, ..- ,/, j = 1, . . - ,  m, and k = 1, .-. ,n, and with the same meaning of  the restric- 
tions on G and H as before. In Sands & Young [1980] this model is referred to as the 
"generalized subjective metrics model".  The model can be written in matrix notation as 

(24) Z - -  GCH', 

where Z and C are three-mode matrices written with combination modes, or as 

(25) Zk = GCkH', 

where Zk and Ck are two-mode matrices or so-called frontal planes for the k 'h individual 
o f  the data matrix and the core matrix respectively. Instead o f  specifying principal com- 
ponents of  all three modes, the Tucker2 model only specifies them for two (say the first 
two) of  the three modes. In other words, the third mode is not condensed and remains in- 
tact. This will enable one to study the interrelationships between the components of  the 
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first two modes for each element (variable, individual, moment in time) of  the third mode. 
The Tucker2 model has been independently formulated by Israelsson [1969], Carroll & 
Chang [1972, Note 1], and Jennrich [1972, Note 3]. 

The Tucker2 model has three important fields of  application. In the first place it can 
be used in those analyses of  data for which no natural condensation of the third mode can 
be defined. An obvious example would be the multivariate analysis of  time series. In gen- 
eral no useful meaning can be attached to the components of  a time mode. In certain 
other applications one is interested in persons as replications, and one does not want to 
investigate person components, but rather the interrelationships between the other two 
modes for each person. Secondly the model can be applied in individual differences scal- 
ing with asymmetric similarity matrices. A typical example, i.e. the Miller & Nicely con- 
fusion matrices [Miller & Nicely, 1955], will be treated in Section 10 as an example of  
both the Tucker3 and Tucker2 model. Finally, the Tucker2 model can be used to test the 
appropriateness of  various individual differences models in multidimensional scaling, 
such as INDSCAL, IDIOSCAL, PARAFAC (also called the "weighted model" by Sands 
& Young, 1980). All these models can be seen as special cases of  the Tucker2 model. For  
instance in the weighted model treated by Sands and Young [1980] it is assumed that the 
number of  components in the first and second mode is equal (i.e. s = t), and that the core 
matrix is diagonal in each of  its frontal planes G ,  i.e. 

C~q k ) = 0 , i f p ~ q f o r p , q =  l , - . - , s a n d k =  1 , . . . , n .  

The appropriateness of the weighted model could be investigated by searching for a K E 
K ~×~, and a L E K ~×'~, such that 

l l O k  - -  g f k Z ' l l  2 

is zero or appropriately small, where Dk is the diagonal matrix containing the diagonal 
elements of  Ck for k = 1, . . . ,  n. If  such a K and L can be found, then the weighted model 
is appropriate for the data under investigation. 

Technically the estimation of  the parameters of  the Tucker2 model poses no prob- 
lems. In the algorithm outlined in Section 7 one simply leaves out the E substep, and in- 
serts the identity matrix for E in the other substeps. Computationally it is, however, more 
efficient to solve the model directly by the analog of  the TUCKALS3 algorithm, than 
solving the model through the TUCKALS3 algorithm itself. Because of  the analogy the 
proofs of  the properties of  the TUCKALS2 algorithm are exactly the same as of  the 
TUCKALS3 one. Details are given Kroonenberg & de Leeuw [1977, Note 4]. 

The Tucker1 Mode l  

Instead of  performing a principal component analysis over two or three modes, it is 
feasible to perform such an analysis over just one mode of  the data. This would give the 
Tuckerl  model 

(25) zuk = ~ g,pCpjk 
p=l 

with i = 1, ... , / ,  j = 1, ..- , m, and k = 1, --- , n, and with the standard meaning of  and 
restrictions on G. The matrix formulation of this model becomes 

(26) Z = GC, 

where Z and C are three-mode matrices written with combination modes. 
For  the case that the horizontal planes of  the data matrix Z are similarity matrices, 

the principal component analysis of  the Tuckerl  model is identical to the procedure de- 
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veloped by Tucker & Messick [1963, pp. 33611]. The Tuckerl  model has, of course, wider 
application as it does not restrict the horizontal planes to be similarity matrices. 

There is no need to write a separate program to solve the Tuckerl  model since the 
analysis can be carried out with any principal component program by properly organizing 
the data input. 

10. An Example: The Miller & Nicely Data 

The Data 

The data from a classical study of  confusions of English consonants will be used as 
an example to show a number of the features of  the TUCKALS programs. The data con- 
sist of confusions among the 16 most used English consonants under 17 degrading condi- 
tions [Miller & Nicely, 1955]. Five North American female subjects served as talkers and 
as listening crew; when one talked, the other four listened. One syllable stimuli consisting 
o f / a / ( a s  in father) preceded by one of  16 consonants were spoken- - /p / ,  / t / ,  / k / ,  / f / ,  
/ 0 / ( a s  in t h o u g h t ) , / s / , / f / ( a s  in s h o u l d ) , / b / , / d / , / g / , / v / , / i 5 / ( a s  in t h a t ) , / z / , / j  (as 
in v i s ion) , /m/ ,  a n d / n / .  The consonants spoken were fed through a transmission circuit 
which was degraded each of  the 17 times in a different way. Notably there were differ- 
ences in signal-to-noise ratio (or masking), low-pass filtering, and high-pass filtering, some 
details of which are listed in Table 1. In each condition tested some 4000 observations 
were collected, but each consonant was not spoken equally often. In our analysis we first 
corrected for this by dividing each entry by its row total, as each row corresponds to the 
spoken consonant, while each column corresponds to the heard consonant. The entries in 
the matrix, therefore, indicate for that particular condition, the proportion of  times each 
of  the consonants was heard, when the consonant associated with that row was spoken. 

In our analysis we added two more matrices to provide "zero-point" references, i.e. a 
matrix with perfect discrimination (only entries on the diagonal), and a matrix with total 
uniform confusion (equal entries in all cells). Strictly speaking the former matrix does not 
belong to any of the series degrading conditions, as perfect discrimination would probably 
require increasing both the signal-to-noise ratio above 12 db, and extending the frequency 
range on the high and the low side. With regard to the latter matrix, we could interpret it 
as referring to noise coming from just one frequency wave band for any signal-to-noise 
ratio, or as coming from any frequency band with very low signal-to-noise ratio. It, there- 
fore, would fit any degrading series. 

The Miller & Nicely data have been extensively used both in the field of  phonetics as 
support or disproof of  the distinctive feature theory, and as demonstration material for 
various scaling procedures. In the latter class fall most notably Shepard [1972, 1974[, 
Wish [1970, Note 6], Carroll & Wish [1974], Smith [1973], and Smith & Jones [1975]. 
With respect to the structure of  the consonant space we have not much to add to the very 
detailed analyses of Shepard [1972], and Soli & Arable [1979]. We give, however, a new 
interpretation of the dimensions in the noise-condition space. We want to emphasize that 
our primary aim in presenting our analysis of these data is to demonstrate the developed 
computer programs, rather than provide a substantive contribution to (acoustic) phonet- 
ics. At the same time it should be realized that it is impossible in the present context to do 
full justice to all the various aspects of  the two programs. 

Stimulus Spaces 

Inspection of  the Tucker3 and Tucker2 models shows that the principal component 
matrices of the first and second mode, respectively spoken consonants and heard con- 
sonants, are treated separately. Therefore, it is possible to compare their configurations. It 
turns out that only small differences were present, indicating that the confusion matrices 
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TABLE 1 

D e g r a d a t i o n  C o n d i t i o n s  

S i g n a l - t o - n o i s e  Bandwidth 

r a t i o  

(dB) (nz) 

Amount of information 

per matrix 

Noise masking conditions 

REFI - - 4.00 
NI 12 200-6500 3.55 
N2 6 200-6500 3.23 
N3 0 200-6500 2.81 
N4 - 6 200-6500 1.84 
N5 -12 200-6500 0.96 
N6 -18 200-6500 0.06 

REF0 - - 0.00 

Low-pass filtering conditions 

P~FI - - 4.00 
LI (=NI) 12 200-6500 3.55 
L2 (=HI) 12 200-5000 3.20 
L3 12 200-2500 2.83 
L4 12 200-1200 2.38 
L5 12 200- 600 2.18 
L6 12 200- 400 1.67 
L7 12 200- 300 1.15 

REF0 - 0.00 

High-pass filtering conditions 

HI (=L2) 12 200-5000 3 .20  
H2 12 1000-5000 2 .67  
H3 12 2000-5000 1.59 
H4 12 2500-5000 1.07 
H5 12 3000-5000 0 .62  
H6 12 4500-5000 0 .44  

REFO - - 0.00 

Based on Miller & Nicely [ 1955], and adapted from Carroll & Wish [1974] 
REFI = perfect intelligibility; REFO = total uniform confusion 

are rather symmetric. Therefore, we will discuss for the moment  the stimulus spaces as if  
they were identical, and only come back to their differences later on. 

In principal component  analysis the number  of  components  to retain is a pr imary 
problem, although not as much as in factor analysis. Essentially it amounts  to deciding 
how much of  the variation in the data is due to real structure, and how much  is merely 
due to sampling. In three-mode principal component  analysis the situation is, however, 
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TABLE 2 

Rotated Stimulus Space for 'Spoken Consonants' 

1 2 3 

t 22 
k 18 
p 17 
f 4 

5 0 1 
6 s - 2 0  
7 ~ -85 
8 ~ -26  
9 z - 1 

10 ~ 9 
11 v 12 
12 b 13 
13 g 10 
14 d 13 
15 n 6 
16 m 6 

weightsi 13 12 10 

42 6 
42 6 
38 5 
18 - 2  
15 - 1 
14 - 1 
14 5 

- 1 8  - 1 9  
-16  -19  
-16  -15  
-15  -15  
-14  -14  
-22  -25  
-27  - 3 0  
- 2 8  55 
-29  63 

The decimal points are omitted and the order of the consonants 
is different from the one in Miller & Nicely [ 1955]. The sti- 
mulus space was rotated to improve the diagonality of the core 
matrix (see also section 2). The sum of all unrotated weights 
is equal to one. 

more problematic, because of the interwovenness of  the three modes in the estimation 
procedure. Changing the number  of  components in one mode implies immediately a dif- 
ferent (whether substantially or not) solution of  the other modes, as can be clearly seen 
from (17) to (22). In the present example, however, it was surprising how stable the solu- 
tion was to such changes. Possibly this could indicate a rather clear structure in the data. 
The much used criterion based on the amount  of  variance explained by the components is 
also problematic, as the components are eigenvectors not o f  the original inner-products of  
the data, like the eigenvectors in Theorem 2, but they are eigenvectors of  P, Q, and R (see 
Section 4) which all are functions of  the other modes as well. Because of  this, care must be 
taken when assigning importance of axes on the basis of  their weights. The more so be- 
cause also the core matrix contains information on the relative importance of  the various 
components. At present we have not worked out a satisfactory solution to this problem, 
and in the case of  the Miller & Nicely data we relied mainly on interpretability, fallible as 
this may be. 

In interpreting the output of  analyses such as ours one can look for homogeneous 
groups of  variables (here: groups of consonants which are very often confused), or search 
for meaningful directions (axes) in the stimulus space. We have used both approaches, 
and it can be seen from Table 2 and Figure 3 that the consonant stimulus space has both 
clearly interpretable axes and subgroups. Figure 3 shows the rotated solution of  the 
TUCKALS2  analysis in three dimensions (the TUCKALS3  solution was virtually identi- 
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cal). The first component roughly corresponds to the amount of  spectrally dispersed 
acoustic energy located below 5kHz in the speech spectrum (see the discussion in Soli & 
Arabie, 1979, p. 53). We will refer to this component as "energy" for short. The second 
axis separates the voiceless stops, voiceless fricatives, voiced fricatives, and the voiced 
stops (except f o r / b / ,  the somewhat aberrant behavior of  which was already noted by 
Shepard, 1972). This axis corresponds to, or is a slightly rotated version of, the "periodic- 
i ty/burst order" axis from the analysis of Soli & Arabie [1979, p. 51, 52]. The third axis, 
finally, serves to set off the nasals from the rest, and in addition separates the voiceless 
and voiced consonants. This axis has no equivalent in the Soli & Arabie study, and we 
will refer to it as "nasality", realizing that this is an oversimplification. One of  the reasons 
we did not find the same axis as Soli & Arable in their paper referred to above, is that they 
used a different more restricted model (INDSCAL), and a log-transformation of  the con- 
fusion matrices after symmetrization. In addition, they settled for a four-dimensional so- 
lution (which they found very interpretable), while our impression was that the fourth 
axis from a four-dimensional TUCKALS2 solution only served to set off the voiceless 
fricatives from the voiceless stops, a distinction already contained in the three-dimen- 
sional solution. Unfortunately, a detailed comparison could not be made as Soli & Arabie 
only give a figure of their stimulus space, and not the actual coordinates of  the con- 
sonants. 

Another problem--looking now at the more or less homogeneous subgroups--is to 
formally separate the groups of consonants. If  some type of  average similarity matrix 
would have been available an appropriate cluster analysis could be called to assistance 
(see, for instance, Shepard, 1972, for the use of such a procedure on the same data after 
symmetrization of  the matrices). In our case we have used another feature of  the TUCK-  
ALS2 program as a rough guide to the grouping. The program generates an "average" 
matrix on the basis of  the components of the first two modes. In Table 4 this "average" 
confusion mat r ix- -GCH'- - i s  given. A visual inspection indicates four major, partially 
overlapping dusters (voiced consonants, voiceless consonants, nasals, and sibilants), and 
some further distinction within the major clusters ( /p / ,  / t / ,  / k / ;  / f / ,  /0 / ;  / g / ,  / d / ;  / f / ;  
and somewhat v a g u e l y / v / , / b / , / 6 / ) .  

The above analysis has been carried out on per noise condition double-centered ma- 
trices, i.e. 

- k -- k -- Z~ ~- Z k 
Zkij : Zq Z j . . 

Another way of  looking at the same data using the same program, is to center the data for 
each heard consonant-spoken consonant combination over all noise conditions (a proce- 
dure, for instance, used by Tucker & Messick [1963] in their point-of-view analysis). This 
will show whether or not the various noise conditions treat the consonants differently. For 
instance, a consonant which is treated more or less the same in all conditions will now be 
located close to the center of  the configuration. On the other hand, a consonant l i k e / t / ,  
which is treated differently by high-pass and low-pass filters, will have a high loading on 
one of  the components. Figure 5 illustrates this for the Miller & Nicely data. 

Figure 6 is a joint plot of  the component matrices for the first and second mode of the 
main analysis showing how well the correspondence is between the understood and spo- 
ken consonants. The rather close similarity of the two stimulus spaces shows that symme- 
trization does not really violate the structure of  the data. This is in accordance with the 
results of  Hubert & Baker [1979], who investigated the symmetry of  two of  the Miller & 
Nicely confusion matrices, and found that they were not asymmetric. For details on the 
method to produce plots like Figure 6, see Kroonenberg & de Leeuw [1977, Note 4]. 
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TABLE 4 

"Average" Confusion Matrix 

Heard consonants 

0 

S r~ 

0 

0 
0 

~ 5 

0 

~ 6 

V 

b 

g 

d 

t k 

I1 11 

11 11 

10 10 9 

4 4 4 

3 3 3 

1 1 I 

5 - 4 - 4  

7-7-6 

4-4-4 

3-3-3 

2-3-2 

2-2-2 

4-5-4 

5-5-5 

4-4-3 

4-4-3 

p f 0 s 

10 4 3 1 

10 4 3 1 

4 3 I 

2 1 1 

1 1 1 

1 1 3 

- 0 2 9 

- 2 - 1  2 

- 1 - 1 - 1 

- 1 - 1 - 2  

- 1 - 1 - 2  

- 1 - 1 - 2  

- 2 - 1 - 2  

- 2 - 2 - 3  

- 3 - 2 - 3  

- 3 - 2 - 3  

J" 5 z 6 v 

-5 -7-4-3-3 

-4 -6-4-2-3 

-4 -6-4-2-2 

-0 -2-3-I-I 

1 - 1 - 3 - 1 - 1  

9 1 - 1 - 2 - 2  

33 8 - 1 - 4 - 6  

8 6 3 1 1 

- 1 3 3 2 3 

- 5 2 2 2 3 

- 6 t 2 2 3 

- 6  1 2 2 3 

- 5  3 4 3 4 

- 7 3 4 4 5 

-4 -3-3-I-2 

-4 -4-3-2-2 

b g d n m 

-2-4-6 -4-4 

-2-4-5 -4-4 

-2-4-5 -3-4 

-1- 1-2 -3-3 

-I-I-2 -2-3 

-2-2-3 -3-3 

-6-5-8 -4-4 

I 3 4 - 3 - 4  

2 4 5 -3-3 

3 3 5 -I-2 

3 4 5 -I-2 

3 3 5 - 1 - 1 

4 5 7 -3-4 

5 6 9 -4-5 

-I-3-4 18 21 

- 2 - 3 - 5 20 24 

The "average" confusion matrix is constructed on the basis of the two com- 
ponent_matrices G and H, and the average frontal plane of the core matrix, 
i.e. GCH'. Each entry indicates the weighted product of the row stimulus 
and the column stimulus. High positive values indicate that the row and 
column stimulus are often confused. High values on the main diagonal indi- 
cate that the consonant is very distinct, and is seldom confused with other 
consonants. The decimal points have been omitted from the body of the 
table. 

Noise Conditions 

As is shown in T a b l e  1 we can  def ine three  large groups  o f  noise c o n d i t i o n s - - m a s k -  
ing, fi l tering high frequencies ,  and  fi l tering low frequencies .  As m e n t i o n e d  by  Mi l l e r  & 
Nice ly  [1955], and  conf i rmed by  S h e p a r d  [1972] low-pass  filters and  low s ignal - to-noise  
condi t ions  look somewha t  alike, and  are  bo th  different  f rom high-pass  filters. A two-di -  
mens iona l  ro ta ted  so lu t ion  f rom the T U C K A L S 3  analys is  is g iven in T a b l e  7 and  F igure  
8. The  space o f  the noise condi t ions  has  been  ro ta ted  in such a way  that  one  o f  the  axes 
passes t h rough  the two reference points ,  i.e. un i fo rm tota l  confus ion  and  perfect  in- 

tel l igibi l i ty .  
In  the i r  or ig ina l  pub l i ca t ion  Mi l le r  & Nice ly  used a measure  o f  covar iance  be tween  
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input and output to classify the various noise conditions. In particular, this measure is 

T(x,  y) = - ~ p,ilog PiPi , 

where T is often referred to as the amount of  information transmitted from input variable 
x to output variable y in bits per stimulus, and where it is assumed that x takes on discrete 
values (here: consonants) i = 1, --- , k with probability Pi,  and similarly y takes on the 
values j = 1, --- , k with probability p~, and p,j is the probability of  the joint occurrence of  
input i and output j. We have recalculated the values of  T for the confusion matrices 
based on proportions, and these values are listed in Table 1. By trial-and-error a direction 
in the noise space can be found which corresponds to (a nonlinear transformation of) the 
amount of  information contained in each matrix (see Figure 9B). This direction is in- 
dicated in Figure 8. One would have preferred this direction to be one of  the axes of  Fig- 
ure 8, but this is unfortunately not the case as is confirmed by Figure 9A. As far as the 
other component of  the rotated noise condition space is concerned, it seems to reflect 
something like the average frequency of  the filtering or masking, but a proper measure to 
account for the numerical values is not known to us. 
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REFI 
NI : LI 
N2 
N3 
N4 
N5 
N6 
REF0 

masking 

I 

30 0 REFI 
30 0 LI = NI 
30 1 L2 = HI 
29 3 L3 
24 9 L4 
13 25 L5 

1 7 L6 
0 0 L7 

REF0 

TABLE 7 

Noise condition space 

low-pass filtering high-pass filtering 

I 2 

30 0 REFI 
30 0 HI : L2 
30 l H2 
28 6 H3 
18 32 H4 
18 33 H5 
18 27 H6 
9 44 REF0 
0 0 

! 2 

30 0 
30 I 
30 - 7 
26 - 2 0  
24 - 2 8  
21 - 4 0  
18 - 4 2  

0 0 

The noise condition space has been rotated, such that the first compo- 
nent runs through the two reference points, REF0 and REFI. The compo- 
nent weights of the unrotated solution equal .31 and .0l respectively, 
and all weights sum to zero. The decimal points have been omitted 
from the body of the table. The table has been split in three parts to 
facilitate comparison within the type of degradation. 
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Relation between the amount of  information and directions in the noise-condition space 
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TABLE 10 

F r o n t a l  P l a n e s  of  t h e  Core M a t r i x  f rom t h e  TUCKALS3 a n a l y s i s  

"amount of information" 
(component I for noise conditions) 

89 

energy 
periodicity/burst order 
nasality 

energy p/b order nasality 
I 2 3 

13 - 0  - 1 
1 5 0 
! - 0  4 

"average frequency of unfiltered band" 
(component 2 for noise conditions) 

energy 
periodicity/burst order 
nasality 

energy p/b order nasality 
I 2 3 

18 - 2  - 2  
2 23 1 
2 - 2 23 

Decimal points omitted,i.e. 13 is actually 1.3 

Core Matrices 

Finally we want to say something about the core matrices, both of  the TUCKALS3  
and the TUCKALS2  analyses. As mentioned above we have performed a number  of  rota- 
tions on the stimulus- and noise-condition spaces. In particular, the component  matrices 
were rotated in such a way that the frontal planes of  the core matrix were far more diago- 
nal than before. At the same time this improved the interpretability of  the axes of  the 
stimulus spaces of  the consonants. In the TUCKALS3  case the noise condition space was 
rotated in such a way that one of  the axes went through the Point L3 (see Figure 8), with 
the appropriate counterrotations of  the core matrix. The final effect o f  these rotations on 
the core matrix of  the TUCKALS3  analysis is shown in Figure 10, where the frontal 
planes are shown, and where, as far as possible, the appropriate labels o f  the components 
have been added. The main pattern of  the frontal planes is that each of  the components  of  
the first mode (spoken consonants) is predominantly related to the corresponding one of  
the second mode (heard consonants), thus although the consonants are often confused 
they are mainly confused on the basis of  the characteristics specified by the components.  
Secondly all components have their largest loadings in the frontal plane we called for lack 
of  anything better the "average frequency of  the unfiltered band" plane, and thirdly that 
the "energy" component  seems to be the only one substantially contributing to the 
amount-of-information distinctions, where as all three components play an equal role in 
the other noise-condition component.  We are unfortunately not well enough versed in the 
substantive theory of acoustic phonetics to further interpret these findings. The  frontal 
planes of  the core matrix of  the TUC KALS 2  analysis provide us with the relations be- 
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tween the first and second mode components for each of  the degrading conditions. In a 
sense these planes provide a summary of  how the noise conditions affect the three major 
components of the stimulus space of  the consonants. In Table 11 some typical examples 
are given. 

TABLE II 

Rotated Frontal Planes of Core Matrix from the TUCKALS2 Analysis 

Masking 

N6 -18db, 200-6500 N5 -12db, 200-6500 

energy 
p/b order 
nasality 

e p n e p n 
! 2 3 ! 2 3 

1 - ] ] 26 -4 3 

-2 9 -2 - 1 54 -4 
0 2 7 3 - 4 47 

Low-pass filtering 

L7 12db, 200- 300 L4 12db, 200-1200 

energy 
p/b order 
nasality 

e p n e p n 
I 2 3 I 2 3 

15 - 5 2 36 2 3 
- 3 57 - 3 5 65 - 1 

1 - 3 57 I - 1 66 

High-pass filtering 

H6 12db,4500-5000 H3 12db,2000-5000 

energy 
p/b order 
nasality 

e p n e p n 
I 2 3 1 2 3 

45 - 2 0 60 1 4 
- 2 I0 I I 47 - 4 

2 1 2 2 0 37 

Decimal points omitted, i.e. 26 is actually 2.6 
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11. Final  R e m a r k s  

We have shown in the previous sections that it is possible to solve the estimation 
problem of the general Tucker principal component model with least squares techniques. 
In addition, the algorithm developed can be used to solve less general problems, as is here 
exemplified by the so-called Tucker2 model or "generalized subjective metrics" model. 
The programs based on the algorithm, TUCKALS2 and TUCKALS3,  were written in 
F O R T R A N  for an IBM 370/158, and can be obtained from the first author. 

A major shortcoming of the algorithm described is that it is only suitable for uncon- 
ditional, metric data, but within the already existing ALS-framework of  the algorithm it is 
possible to expand it with an optimal scaling phase to accommodate other types of  data. 
For a discussion on conditionality and related measurement problems, and on the exten- 
sion of metric procedures to data with other measurement characteristics the reader is re- 
ferred to Young, de Leeuw & Takane [1980]. An example how the inclusion of  optimal 
scaling works in the principal component analysis of three-mode data in a very specific 
case, is described by Sands & Young [1980]. 

Append ix  

S ta t ionary  Points  

For convenience we have used in this paper a more restricted definition of a station- 
ary point of  a function than is customary. If we let S be defined as in (8), and if we let h be 
a real continuous differentiable function on S, then (t~,/q,£ 7) E S is a stationary point if 
(G,/t,L') is a solution of the stationary equations 

6 
6"--X Ih (G,H,E)  - t r L ( G ' G  - L )  - t r M ( H ' H -  I,) - t r N ( E ' E -  L)I = o ,  

with X -- G, H, E, L, M, N respectively, and L, M, and N are matrices of  Lagrange multi- 
pliers. 

P r o o f  o f  Theorem 1 (Section 4) 

(a.) I. Let us first determine the stationary equations for 

p ( G , H , E )  = t r G ' P G  = t r H ' Q H  = t r E ' R E .  

Incorporating the constraints on the parameter space into the function to be maximized, 
we get 

p ( G , H , E , L , M , N )  = t r G ' e G  - t r L ( G ' G  - Ix) - t r M ( H ' H  - L )  - t r N ( E ' E  - I ,) .  

Differentiating with respect to all parameter matrices, and setting all the derivatives equal 
to zero, we obtain the following set of  equations which have to be solved simultaneously 
for all parameters. 

(27) P(/ t ,~ ' )d = G/~, and G'G = L ,  

(28) Q(/~,~)/-~ =/~hT/ and H ' / ]  = / , ,  

(29) R(d,/:/)/~ = ~ r  and /~'~ = / ~ .  

To simplify the notation we will drop the carets from now on. Note that L, M, and N are 
necessarily symmetric, because, for instance, the restriction g,'gj = $,j is identical to the re- 
striction gfg, = Sj,, where g, is the i 'm column of  G, and $,j is the Kronecker delta. 
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(a.) 2. As G and L are solutions of  (27), it follows from PG = GL, that L = G'PG. 
Furthermore L is positive definite (because P is positive definite), and in addition, be- 
cause L is symmetric there exists a F E K ~×s such that L = FAF'  with A E / T  ×', w h e r e / T  ×" 
is the class of s x s diagonal matrices. Substituting this into (27), and postmultiplying with 
F we get PGF = GFA. By defining U = GF (and thus G = UF') it follows that A is an 
eigenvalue matrix of  P, U is the associated eigenvector matrix, and G is an orthonormal 
transformation of U. Analogously there exists a P E K '×' such that H = v P ' ,  and M = 
P A P ' ,  and there exists a P E K "×u such that E = w P ' ,  and N = P A P ' .  

(a.) 3. Conversely, if we let U, V, W, and A, 3,, 3, be eigenvector matrices and eigen- 
value matrices of P, Q, and R respectively, then (U, V, IV) as well as their orthonormal 
transformations (G,H,E) with G = UF' ,  H -- VF' ,  and E = WF' with the F's  defined as 
above, satisfy (27) through (29), and thus are stationary points ofp .  

(b.) 1. Let T b e  defined as 
T = {t ] t = (G,H,E); G, H, and E are eigenvector matrices of  P, Q, and R 

respectively, or orthornormal transformations thereof}.  
We already know that there exists a (G,H,E) E S such that p attains its maximum (see 
Section 3). Now we can state that this maximum will, and can only be attained for some 
( G,H,E) E T. 

(b.) 2. Any (G,H,E) E T can be written as (UF' ,  VF', WF') with the F's  defined as 
above. Thus 

p( G,H,E) = p( UF', vP',  WF') = trFU'Z( VF'PV'  ® WF'PW' )Z '  UF' 

= tr U'Z( VV' ® WW')Z '  U = p(U, V, IF). 

(b.) 3. Let (G,H,E) E T be the point at which p attains its maximum, then 

p(d,/~,£7) = p(O, 12, # )  = max p(U, I7, I8 ') = max trU'P(f",ffd)U 
U U 

= max ~ ?~i 
X i =  I 

(with the maximum taken over all possible ways to combine s of  the total of l eigenvalues 
of (P(~', a0 ) 

--Xx, 
i"= I 

(where ~, (i = 1,... , s) are the s largest eigenvalues of P( 12, # )  ). 

Thus 0 must be the eigenvector matrix corresponding to these largest eigenvalues. Analo- 
gously I7" and 1~ are the eigenvector matrices corresponding to the largest eigenvalues of  
O(l~,O) and R(O, fO. The value of  the maximum is 

i = l  j = l  k = l  

where/2 and b are analogously defined as ~ .  
(b.) 4. Conversely, let O, f", and W be the eigenvector matrices corresponding to the 

largest s, t, and u eigenvalues of  e(l~, l~ ,  Q( 1~, U), and R(U, P). Furthermore let G -- OF', 
/~ = I/P', and/~ = I~F' with the F's  defined as above. Then 

± x £ max 
i = l  j = l  k = l  (U ,  F, W) 
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As P(G,/-), £~) =P( ( / ,  V, gO, 

max p(U, V, 141) -- max p(G,H,E) ,  
( u . v , w )  (G,H,E)  

thus if (0 ,  V, VV) maximizes p, then any orthornormal transformations of  U, V, and l~ do 
so as well. 

Proof  o f  Theorem 2 (b.) 2 (Section 4) 

Let (d,/1,/~,~ be an exact solution of the minimization problem (3), then according 
to Theorem 2 part (a.): 

(30) Z = d d ' Z ( f l f l '  ®/~/~') with Z E R '×m" . 

Theorem 1 part (b.) states that G, H, /~  are the eigenvector matrices associated with the s, 
t, and u largest eigenvalues of P, Q, and R respectively. If  we define A E D "x" to be the 
eigenvalue matrix of  P associated with G, we have 

(31) d A d '  = e = Z(/-I/-I' ®/~/~')Z' with Z E R 'xm" . 

Pre- and postmultiplying (31) with Gd', and subsequently substituting this in (30) shows 
that 

d a d ' =  Z Z ' .  

In other words d is the eigenvector matrix of ZZ' ,  and A the associated eigenvalue ma- 
trix. Furthermore the rank of ~ ( = s) is equal to that of ZZ' ,  and thus the h, (i = 1,...,s) 
are the s non-zero eigenvalues of  ZZ'.  The analogous result holds f o r / t  and/~. 

The Monotonicity o f F  

Theorem 4. Let ~ be of  the form 

(32) +(X) = AX(X'A2X) -'/~ 

with X'A2X positive definite, and let h be defined as 

(33) h(X, Y) -- trX'A Y 

with X, Y E K "*b, and A E R °x° symmetric. If  Y = if(X), then 

(34) h(Y,Y)  >_ h(X,X) ,  

with equality if, and only if Y = X.  
Proof. As X'A2X is positive definite (see also Section 6), its inverse exists, and thus 

is uniquely defined. 
a. We first show that for every X E K °×~ 

(35) h(Y, X) -- max h(Z, X). 
Z ~ K  a×b 

To do this we incorporate the constraints on Z into the maximization 

(36) h(Z, X) = h(Z, X) - t r M ( Z ' Z  - Is) 

where M is a symmetric matrix of  Lagrange multipliers. Differentiating with respect to Z 
and M, and setting all the partial derivatives equal to zero, we obtain the following set of  
equations which have to be solved simultaneously 

(37) A X  = 2ZM,  
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(38) z ' z  =/b. 

Say that some (~, ~ is a solution of  the system. Then by premultiplying (37) by its trans- 
pose, reminding ourselves of  the symmetry of  A and hT/, and substituting (38) into (37) we 
get 

X, A2X-_ 4)f42, 

and 

Z = AX(X'A2X) -'/z -- q~(X) = Y 

according to (32). Thus for any X E K :×b Y maximizes h, or in other words 

h(Y, X) = max h(Z, X) >_ h(X, X) 
Z E K  a×b  

for all X E K °×b. 
b. Next we show that 

h(Y, X) <_ h(Y, Y)'/2h(X, X) '/2. 

As A is symmetric it may be decomposed into A = B'B, where B is an upper-triangular 
matrix. Thus 

h(Y, X) = t rY 'AX  = tr(BY)'(BX). 

The Cauchy-Schwarz inequality can now be applied 

tr Y'A X = tr(B Y)'(BX) _< {tr(B Y)'(B Y)} ,:2 {tr(BX)'(BX)} ,/2 

-- (trY'A Y)~2(trX'AX)I/z, 

and thus 

C. 

h(Y, X) <_ h(Y, Y)'~2h(x, x)  '~ 

Now we can prove inequality (34): 

h(X, X) <_ h(Y, X) <_<_ h(Y, Y)t/Eh(X, X) '/2. 

As h is always non-negative 

and thus 

h(X, X) 'j2 <_ h(Y, y),~2, 

h(X, X) <_ h(Y, Y). 

d. In the Cauchy-Schwartz inequality the equality sign holds if and only if X and Y 
are proportional. Inspection shows that the only possible proportionality constant is 1. 

The extension to the monotonicity of F is straightforward. The equality condition 
can be seen to hold if one applies Theorem 4 successively in each substep of  the al- 
gorithm, arriving finally at the conclusion that the equality sign holds if  and only if  F(s) = 
S. 

Continuity o f F  

From the definitions of  F, F,, and q~, it follows that if all q,, are continuous, all F, and F 
will be as well. It is thus sufficient to show that q, as defined in (32) is continuous for all 
X E K °×b, as all 0, are of  the form (32). 
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Theorem 5. Let A be a given symmet r ic  matr ix,  and  let X'A2X be positive definite. Let 
,h be def ined as in (32), then ,# is continuous.  

Proof  As X'A2X is posit ive definite, its inverse exists, and thus 4, is uniquely  defined. 
Let $7 be an  arbi t rary  point  in K °×b, and  let Xo, X,, X2, --- be a sequence in K °×~, which 
converges  to X, such tha t  X, # )((i = 0, 1, 2, ...). Define Yt = do(X~), I = 0, l, 2, --- . For  
each  l par t  a o f  T h e o r e m  4, shows that  

tr EA X, >_ trZ'A X, 

for  all Z E K °×b. Because the sequence Yo, Y,, Y2, --" is defined on a compac t  set, there 
exists at least one limit point,  say 17, in K "*b. In  addit ion,  there exists a subsequence  Yto, 
Y~,, Y~, .-- which converges  to I 7. Fo r  such subsequences  it is true that  

tr17'A)? = l im tr Y~AXt, >- l im trZ'A X, j = trZ'A f (  
/ -~oo i--,oo 

for all Z ~ K ~×~, and  thus 

(39) t r17 'AX= max  trZ'Af(. 
Z ~ K  a×h 

In  T h e o r e m  4 par t  a it was shown that  if  Y = 4,(X) 

t r Y ' A X =  max  t r Z ' A X  
Z E K  a×~ 

for each X @ K °×b. This  also holds for X" and 17 = ¢~(X'), 

(40) tr 17'A X = max  trZ'A)(. 

C o m p a r i n g  (39) and (40) we m a y  conclude that  17 = I7. Thus  we know now that  every 
convergent  subsequence  o f  Yo, Y,  Y:, "'" has 17 as its limit point,  and  therefore 17 is the 
limit point  o f  Yo, Y,  Y2, "'" itself. Thus  we m a y  conclude that  for each $" E K axe, and  each 
Xo, X,, X2, .-- converging to X, the sequence Yo, Y~, Y2, "'" converges  to the limit point  17, 
which means  that  ,/,(Xo), ff(X~), if(X2), -.- converges  to 4,(X 0. Recal l ing the definit ion o f  
cont inui ty  o f  a function, we see that  d/, is cont inuous  for  each X E K °×~, and therefore  4~ is 
cont inuous  on K °×b. 

Limit Points o f  the Algorithm are Stationary Points o f  p 

Theorem 5. Let Z, G, H,  E, P, Q, R, and  p be  defined as in the previous  sections. I f  s 
= (G, H,  E) is a limit point  o f  the a lgori thm, then s is a s ta t ionary point  o f p .  

Proof  Let s = (G, H,  E) be a limit point  o f  the a lgori thm, then F(s) = s (see L e m m a  
3), and  thus 

G = PG(G'P2G) -'/z 

according to (18), and the paral lel  s ta tements  hold for H and E on the basis o f  (20) and  
(22). Define L = (G'P2G) '/2, then (G, L) is a solution o f  

(41) P G  = d £  and G ' d  = L. 

As L is symmetr ic ,  there exists a F E K ~×~, such that  L = F A F '  with A E / Y  ×s. Substi tut ing 
this in (41) we get 

PG = GFAF'  
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w h i c h  l eads  to  

P ( G F ) =  (GF)A or  e O =  GA w i t h  ( ~ =  GF. 

T h u s  0 is a m a t r i x  w i t h  e i g e n v e c t o r s  o f  P,  a n d  G is an  o r t h o n o r m a l  t r a n s f o r m a t i o n  o f  0 .  

T h e  a n a l o g o u s  resul t  h o l d s  fo r  H a n d  E.  T h e o r e m  1 par t  (a)  tel ls  us  t ha t  (G, H ,  E )  is a 

s t a t i o n a r y  p o i n t  o f p .  
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