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bstract

Conversion paralysis is characterized by a loss of voluntary motor functioning without an organic cause. Despite its prevalence among neurological
utpatients, little is known about the neurobiological basis of this motor dysfunction. We have examined whether the motor dysfunction in conversion
aralysis can be linked to inhibition of the motor system, or rather to enhanced self-monitoring during motor behavior.

We measured behavioral and cerebral responses (with fMRI) in eight conversion paralysis patients with a lateralized paresis of the arm as they
ere engaged in imagined actions of the affected and unaffected hand. We used a within-subjects design to compare cerebral activity during

magined movements of the affected and the unaffected hand.
Motor imagery of the affected hand and the unaffected hand recruited comparable cerebral resources in the motor system, and generated equal

ehavioral performance.

However, motor imagery of the affected limb recruited additional cerebral resources in the ventromedial prefrontal cortex and superior temporal

ortex. These activation differences were caused by a failure to de-activate these regions during movement imagery of the affected hand. These
ndings lend support to the hypothesis that conversion paralysis is associated with heightened self-monitoring during actions with the affected
rm.

2007 Elsevier Ltd. All rights reserved.
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. Introduction

Conversion paralysis (CP) is a mental disorder characterized
y loss of voluntary motor functioning. Although the symp-
oms may suggest a neuropathological condition, they cannot
e adequately explained by known neurological or other organic
isorders (American Psychiatric Association, 1994). Moreover,
here is an exacerbation of symptoms at times of psychological
tress, which suggest that psychological mechanisms play a role.

Conversion disorder and related disorders are common in

linical practice: about one-third of new neurological outpa-
ients exhibit medically unexplained symptoms (Carson et al.,
000; Stone, Carson, & Sharpe, 2005a). Despite the high preva-
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ence and the long history of speculations as to the cause of
P (Halligan, Bass, & Marshall, 2001; Vuilleumier, 2005), the
xact nature of CP is still not well understood. Only recently, a
ew studies have tried to determine objective neural correlates of
unctional mechanisms that, in the absence of a structural brain
esion, may be able to explain CP symptomatology. The first
tudy to investigate the functional anatomy of conversion paral-
sis was by Marshall, Halligan, Fink, Wade, and Frackowiak
1997). Using positron emission tomography (PET), the authors
ecorded brain activity when a patient with unilateral CP tried to
ove either her affected or her unaffected leg. When attempting

o move the unaffected (right) leg, there was a normal pattern
f cerebral activity, including activation in the contralateral pri-
ary motor cortex (M1). However, when attempting to move the
ffected (left) leg, there was no activation in the contralateral M1,
ut there was a relative increase in activation of the right ante-
ior cingulate cortex (ACC) and the ventromedial part of the
refrontal cortex (vmPFC). These results were interpreted as

mailto:floris.delange@fcdonders.ru.nl
dx.doi.org/10.1016/j.neuropsychologia.2007.02.002
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uggesting that the loss of voluntary movements observed in CP
s caused by increased response inhibition mediated by ACC and
mPFC. Similar results were obtained in a related study, in which
ypnosis was used to induce paralysis of the leg in a healthy sub-
ect (Halligan, Athwal, Oakley, & Frackowiak, 2000). When the
ypnotized participant tried to move his “affected” leg, ACC
nd vmPFC showed increased activity, suggesting that simi-
ar mechanisms support hypnotically induced paralysis and CP
Halligan et al., 2000). In contrast, Spence, Crimlisk, Cope, Ron,
nd Grasby (2000) observed that when CP patients moved their
aretic limb, there was a de-activation in their dorsolateral pre-
rontal cortex (dlPFC), as compared to healthy control subjects.
inally, Burgmer et al. (2006) did not find any differences in
refrontal or motor cortex activity between CP patients and
ealthy controls during execution of hand movements. Although
hese conflicting results may be partly due to the limited sample
ize (N = 1–4), and the type of comparisons carried out (within-
ubjects versus between-subjects), a more fundamental issue
ay relate to the nature of the tasks employed. Namely, in these

tudies, patients were asked to carry out a task (“move/try to
ove your affected limb”) that they could not appropriately

erform due to their condition. Accordingly, it is conceivable
hat these results reveal cerebral effects related to the cognitive
onsequences of a failed movement (like altered effort, motiva-
ion, or error processing), rather than a proximal cause of CP.
or instance, the increased ACC activity (Halligan et al., 2000;
arshall et al., 1997) may reflect enhanced monitoring trig-

ered by movement failure or by conflicting action tendencies
Vuilleumier et al., 2001). This possibility is supported by our
ecent finding of increased action monitoring in the ACC of six
nilateral CP patients during generation of movements with the
ffected limb (Roelofs, de Bruijn, & Van Galen, 2006).

To overcome these interpretational limitations, Vuilleumier
t al. (2001) assessed brain responsiveness to sensory stimula-
ion in CP patients suffering from unilateral sensorimotor loss.
n an elegant design, both the affected and the unaffected limb
ere stimulated, and the cerebral responses of CP patients were
easured at two time points: first, when conversion symptoms
ere present, and several weeks later, when the symptoms were

esolved. Patients had decreased activity in the basal ganglia
nd thalamus contralateral to the affected limb during sensory
timulation of the affected limb compared to stimulation of
he unaffected limb. This decrease resolved after recovery of
onversion symptoms, suggesting that differences in sensory
rocessing may play an important role in the pathophysiology
f CP. However, it has yet to be investigated how these sensory
eficits relate to the core feature of CP, namely the disturbance
f volitional motor processes. Finally, a recent study explored
hether CP is associated with abnormal brain activity during
bservation of hand movements (Burgmer et al., 2006). This
tudy showed that compared to healthy controls, CP patients
ad reduced M1 activity during observation of hand movements,
pecifically for the affected hand. However, despite the known

ehavioral and neural correspondences between action observa-
ion and action execution (Grezes & Decety, 2001; Hamilton,

olpert, & Frith, 2004), it is not trivial to link this finding to the
ain symptomatology of CP (limb paralysis), given that action
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bservation does not entail an active volitional motor simula-
ion. In the present study, we aimed to examine volitional action
imulation while controlling for processes associated with actual
otor execution like altered sensory feedback or enhanced mon-

toring of failed movements. We addressed this issue by using a
otor imagery paradigm.
Using motor imagery to study the generation and prepara-

ion of actions is supported by a wealth of evidence showing
hat imagined and executed movements overlap in terms of
ime course (Parsons, 1987, 1994; Sekiyama, 1982), autonomic
esponses (Decety, Jeannerod, Germain, & Pastene, 1991),
nd neural architecture (de Lange, Hagoort, & Toni, 2005;
eannerod, 1994; Parsons, Gabrieli, Phelps, & Gazzaniga, 1998).
ccordingly, previous behavioral studies have used motor

magery tasks to reveal impairments in motoric simulations of
he affected limb in patients with CP (Maruff & Velakoulis, 2000;
oelofs et al., 2001). Here we used a well-known motor imagery

ask: the hand-laterality judgment task. In this mental rotation
aradigm, subjects have to judge the laterality of rotated images
f left and right hands. Many studies have showed that subjects
olve this task by mentally moving their own hand to match the
rientation of the visually presented stimulus (Parsons, 1987,
994). This approach allowed us to compare cerebral activity
using fMRI) evoked by motor imagery of the affected and the
naffected hand, while quantifying imagery performance. We
ypothesized that, if CP entails an inhibition of the movement
lan, activity should be increased in the cingulate and prefrontal
ortex during motor imagery of the affected hand, while there
hould be a reduction of preparatory activity in motor-related
tructures (Burgmer et al., 2006; Marshall et al., 1997). Alterna-
ively, if CP entails heightened action monitoring triggered by

ovement failure or by conflicting action tendencies (Roelofs et
l., 2006; Vuilleumier et al., 2001), we expected the prefrontal
yperactivity to be accompanied by normal or even greater activ-
ty in the motor system, due to the increased effort in forming a

otor plan.

. Materials and methods

.1. Participants

We studied eight patients (mean age of 34.6 years, range 18–56, S.D. = 13.2)
iagnosed with conversion disorder according to the DSM-IV criteria (American
sychiatric Association, 1994) and showing a full or partial paralysis lateralized

o one arm as a major symptom. A criterion for inclusion was a strictly unilateral
oss of motor function, clearly related to psychogenic factors and in the absence
f any neurological disease (American Psychiatric Association, 1994). After
eferral by a neurologist, a trained psychologist assessed whether the patients
et the DSM-IV criteria for conversion disorder and checked for other axis-I

iagnoses using the Structured Clinical Interview for DSM-IV Axis-I Disorders
SCID-1/p (First, Spitzer, Gibbon, & Williams, 1996)]. Exclusion criteria were
ymptoms involving pseudo-epileptic insults, tremors, sudden movements and
eteriorated speech or vision. Four patients showed conversion paresis to the
ight arm and the other four patients to the left arm. Lateralization of the paresis
as examined by measuring maximal contraction force. Isometric force mea-
urements of maximum voluntary contractions (MVC) of the left and right hand
ere obtained with a Biometrics hand dynamometer (Almere, The Netherlands).
orce measures confirmed that the maximal force that could be exerted with the
ffected arm was considerably lower than with the unaffected hand in all patients
t(7) = 5.26, p = 0.001). One patient used antidepressant medication (Sertraline,
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Table 1
Demographical characteristics of the participants

Patient Age Gender Affected
hand

Dominant
hand

Duration of
complaintsa

MVCb

affected
MVCb

unaffected
History of
traumatic events

Events preceding
symptom onset

Axis-I comorbidity
(SCID-I)

1 48 Female Right Right 36 100.8 139.4 Emotional and
sexual abuse

Family conflict Depressive disorder in
remission

2 34 Male Left Right 35 157.2 219.4 – Suicide attempt by
sibling

–

3 43 Female Right Right 3 8.9 106.8 Sexual and
physical abuse

Family conflict –

4 23 Female Right Right 41 59.3 139.4 – Car accident –
5 27 Male Left Left 26 172.0 261.0 – Work accident –
6 56 Male Left Left 14 53.4 231.3 Involved in deadly

accident
Death of partner, loss
of house

–

7 28 Female Right Right 19 86.0 127.5 – School exam –
8 18 Female Left Right 3 4.4 154.2 Emotional abuse;

left arm fracture
Panic attack, change
of living situation

Anxiety disorder
n.o.s.
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a In months.
b Maximum voluntary contraction in Newtons, measured with a hand dynamo

0 mg/day). None of the patients used anti-convulsants, benzo-diazepines, or
ther substances that are known to have an effect on cerebral blood flow. Table 1
hows demographic information of all the participants. The study was approved
y the local medical ethical committee and all patients gave their informed
onsent before participation.

.2. Task

We used a well-known motor imagery task, in which the participants have
o judge the laterality of the visually presented rotated hand stimulus (Parsons,
987). We used line drawings of left and right hands, in different orientations
arying from 0◦ to 180◦ in 45◦ steps (both clockwise and counter-clockwise).
e defined the 0◦ orientation of the hand as the orientation in which the fingers

re vertical and pointing upwards. The hand could be shown in either palmar
r dorsal orientation. The stimuli were serially presented to the patients in a
andom order. For each trial, the hand stimulus was presented centrally on the
creen, and patients were instructed to judge as fast and as accurately as possible
hether the stimulus constituted a left or a right hand. When the patient provided
is/her response, the stimulus was replaced with a fixation cross, which stayed
n until the start of the next trial (inter-trial interval: 1.5–2.5 s). The experiment
onsisted of 160 trials of motor imagery. After a series of 10 motor imagery
rials, a rest period of 10 s was introduced to sample baseline activity. During
his rest period, patients were instructed to look at the fixation cross.

Patients responded by pressing one of two buttons attached to their left or
ight big toe. The patients’ left and right feet were firmly attached to a button
ox, and reaction times and error rates were measured for subsequent behavioral
nalysis. The stimuli were presented using Presentation software (Neurobehav-
oral systems, Albany, USA), and they were projected onto a screen at the back
f the scanner and seen through a mirror above the patients’ heads.

.3. Behavioral analysis

Mean response times (RTs) were calculated for each level of the two exper-
mental factors (hand, rotation). A two-way (2 × 5) repeated-measures ANOVA
as carried out to examine the effects of hand (affected, unaffected) and rotation

0–180◦ in 45◦ steps) on RT. Differences in error rate between the affected and
he unaffected hand were investigated using a paired-samples T-test. Alpha-level
as set at P < 0.05.
.4. MRI acquisition and analysis

Functional images were acquired on a Siemens (Erlangen, Germany)
.5 T MRI system equipped with echo planar imaging (EPI) capabilities
sing the standard head coil for radio frequency transmission and signal

d
A
u
t
p

r.

eception. Functional images were acquired using a gradient EPI-sequence
TE/TR = 40/2540 ms; 32 axial slices, voxel size = 3.5 mm; FOV = 224 mm).
n average, the duration of the experiment was 23 min in which 547 scans
ere acquired. High-resolution anatomical images were acquired using a
P-RAGE sequence (TE/TR = 3.93/2250 ms; voxel size = 1.0 mm, 176 sagittal

lices; FOV = 256 mm). Preprocessing of the functional data and calcula-
ion of the contrast images for statistical analysis was done with SPM5
http://www.fil.ion.ucl.ac.uk/spm). First, functional images were realigned,
lice-time corrected, normalized to a common stereotactic space (MNI: Montreal
eurological Institute, Canada) and smoothed with a 10 mm FWHM Gaus-

ian kernel. By jittering trial onsets with respect to image acquisition and
andomizing stimulus rotations, our experimental design allowed for an event-
elated analysis of the fMRI time series. For each patient, we modeled activity
voked by motor imagery (two levels: affected versus unaffected), as well as
he increase in activity with increasing biomechanical complexity during motor
magery. The laterality of the affected hand was pooled across subjects. We
ased the biomechanical complexity of the movement on the average behav-
oral response for each level of rotation (five levels: from 0◦ to 180◦ in 45◦
teps). In other words, we parameterized the fMRI rotation-related increase as
non-linear process with the same shape as the RTs. Incorrect responses were

eparately included in the model. To remove any artifactual signal changes due
o head motion, we included six parameters describing the head-movements
three translations, three rotations) as confounds in the model. Linear con-
rasts pertaining to the main effects of the factorial design constituted the data
or the second-stage analysis, which treated participants as a random factor.
n this second-stage analysis, we tested the following contrasts: (1) common
ncreases in activity with rotation (as parameterized by the regressors describ-
ng the rotation-related increase) versus baseline; (2) rotation-related differences
etween the affected and the unaffected hand; (3) overall activity differences
etween the affected and the unaffected hand; and (4) overall activity differ-
nces between the left and the right hand. Because the relatively small sample
ize could potentially violate the normality assumption of the data, we car-
ied out the second-stage analysis in a non-parametric framework (Holmes,
lair, Watson, & Ford, 1996) using SnPM3 (http://www.sph.umich.edu/ni-

tat/SnPM). We employed a locally pooled variance estimate, with a Gaussian
ernel of 10 mm FWHM (Nichols & Holmes, 2002). To optimize statistical sen-
itivity for both spatially extended clusters and high intensity signals, we used
combined threshold on the basis of voxel-intensity and cluster size (Hayasaka
Nichols, 2004), using a pseudo-T value of 2.8 (corresponding to p ≈ 0.01) for

dentification of supra-threshold clusters. Note that this threshold is only used to

efine clusters, and does not denote the threshold for significance of activations.
ll reported clusters survive whole-brain correction for multiple comparisons,
sing a statistical threshold of p < 0.05. Anatomical details of activated clus-
ers were obtained by superimposing the SPMs on the structural images of the
atients.

http://www.fil.ion.ucl.ac.uk/spm
http://www.sph.umich.edu/ni-stat/SnPM
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Fig. 1. Behavioral data. (a) Reaction times (mean ± S.E.M.) for laterality judg-
ments of the affected hand (in red) and the unaffected hand (in green). (b) Error
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Fig. 2. Regions showing an increase in activity with increasing biomechanical
complexity for both hands. (a) Anatomical localization of regions showing a
significant linear increase in activity with increasing biomechanical complexity
for both hands. The statistical map is thresholded at the same threshold used
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ates (mean ± S.E.M.) for laterality judgments of the affected hand (in red) and
he unaffected hand (in green). (For interpretation of the references to colour in
his figure legend, the reader is referred to the web version of the article.)

. Results

.1. Behavioral effects

Reaction times and error rates of the participants are shown
n Fig. 1. Reaction times increased with increasing stimu-
us rotation (main effect of rotation: F(4,28) = 10.39; p = 0.005;
ig. 1a). Trend analysis indicated that the RTs follow a combina-

ion of a linear (contrast estimate = 0.653 ± 0.072, mean ± S.E.;
< 0.001) and a quadratic (contrast estimate = 0.209 ± 0.065,
ean ± S.E.; p = 0.001) increase with rotation, while no

igher order trends were visible (3rd order: contrast esti-
ate = −0.061 ± 0.053, mean ± S.E.; p = 0.25; 4th order:

ontrast estimate = −0.016 ± 0.046, mean ± S.E.; p = 0.73).
Although reaction times appeared slightly longer for the

ffected hand than for the unaffected hand, this effect was not sta-
istically significant (main effect of hand: F(1,7) = 0.94; p = 0.37).
eaction times did not behave differently for the affected and the
naffected hand at different levels of rotation (hand × rotation
nteraction: F(4,28) = 0.037; p = 0.92). There were also no differ-
nces in reaction time between laterality judgments of the left
nd the right hand (main effect of hand: F(1,7) = 0.20; p = 0.67;

and × rotation interaction: F(4,28) = 0.61; p = 0.66). All patients
erformed with low error rates (Fig. 1b). There was no difference
n error rate between hand laterality judgments of the affected
and and of the unaffected hand (t(7) = 0.36, p = 0.73).

t

m
h

or inference (T > 2.8). (b) Effect size (±S.E.M.) of the parametric effect in the
ight dorsal precentral sulcus, which is highlighted in panel (a). Exact stereotactic
oordinates are given in Table 2.

.2. Cerebral effects—increases in activity with increasing
iomechanical complexity

In line with previous reports (de Lange et al., 2005; Parsons et
l., 1995), there was increasing activity with increasing biome-
hanical complexity in the right dorsal intraparietal sulcus, and
n the left and right dorsal precentral sulcus (Fig. 2). These
egions showed comparable responses for the affected and the
naffected hand.

There were no clusters that showed differential increases in
ctivity with increasing biomechanical complexity between the
ffected and the unaffected hand.

.3. Cerebral effects—activity differences between the
ffected and unaffected hand

There were several regions showing greater cerebral activity
uring motor imagery of the affected hand compared to motor
magery of the unaffected hand, independently of the stimulus
otation. There was significantly greater activity for the affected
and in the left superior temporal cortex (Fig. 3a) extending
o the parietal operculum, in the prefrontal cortex (Fig. 3c)
panning ventromedial and dorsomedial parts, and in the right
uperior temporal cortex, at the posterior end of the Sylvian
ssure (Fig. 3e). The activity patterns show that these effects
elate to reduced responses during motor imagery of the unaf-
ected hand (Fig. 3b, d and f). The observed activity differences
ere present in all patients in the prefrontal cortex (Fig. 3c),

nd in 7/8 patients in the left and right temporal (Fig. 3a and e)
ortex. Post hoc analyses ruled out that there were any activation
ifferences in these regions as a function of the laterality of the
onversion paralysis (prefrontal cortex: t(6) = −0.34; p = 0.75;
eft temporal cortex: t(6) = 0.71; p = 0.51; right temporal cortex:

(6) = 1.71; p = 0.14).

There were no clusters showing greater overall activity during
otor imagery of the unaffected hand compared to the affected

and.
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Table 2
Cerebral data—areas showing increasing activity with rotation

Contrast Region Pseudo-T value Cluster size Corrected p-value Stereotactic coordinates

x y z

Affected and unaffected
Intraparietal sulcus

5.5 2889 0.012 38 −36 38
4.8

1226 0.027
−28 −4 46

Dorsal precentral sulcus
4.0 −26 4 62
4.3
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ll reported coordinates are in MNI (Montreal Neurological Institute) space. Ste
omparisons.

.4. Cerebral effects—activity differences between the left
nd right hand

As illustrated in Fig. 4, there were several regions that mod-
lated their activity as a function of whether a left or right hand
as presented on screen. Notably, when patients saw a left hand

timulus they responded with their left foot, and when patients
aw a right hands stimulus they responded with their right foot.
ccordingly, we observed activity in the contralateral primary
otor cortex (medial wall, around the leg area) during task exe-

ution of left/right hands. Furthermore, motor imagery of the
eft hand showed higher activation in the dorsal premotor cor-
ex on the contralateral side, reflecting the additional processing
equired for motor imagery of the left hand in the dorsal premo-
or cortex of the contralateral hemisphere (de Lange, Helmich, &
oni, 2006; Parsons et al., 1995, 1998). Notably, these areas were
ot differentially activated for motor imagery of the affected and
f the unaffected hand.

. Discussion

In this study, we measured cerebral activity in eight CP
atients with a unilateral paresis of the arm while they were
ngaged in a well-known motor imagery task: mental rotation

f hands. Motor imagery of the affected hand and the unaf-
ected hand recruited comparable cerebral resources in the motor
ystem, and generated equal behavioral performance. However,
otor imagery of the affected hand drew on additional cere-

a
T
l
e

able 3
erebral data—activation differences

ontrast Region Pseudo-T value

Medial frontal cortex
5.5
5.2
6.2

ffected > unaffected
Parietal operculum (PO4) 5.8
Superior temporal sulcus 5.1
Superior temporal gyrus 5.9

eft hand > right hand
Primary motor cortex 5.4
Precentral gyrus 7.0

ight hand > left hand Primary motor cortex 7.1

ll reported coordinates are in MNI (Montreal Neurological Institute) space. Stereotac
omparisons.
2889 0.012 28 0 60

tic coordinates denote the peak of the clusters surviving correction for multiple

ral resources, localized to the medial prefrontal cortex and the
uperior temporal cortex. Below we detail and interpret these
ehavioral and cerebral effects.

.1. Behavioral effects

There were no significant behavioral differences between
otor imagery of the affected and the unaffected hand (Fig. 1).
hese results are in line with an earlier study that observed
behavioral difference only if CP patients were explicitly

nstructed to imagine performing a rotational movement with
heir own hand, but only a non-significant trend when they were
ngaged in implicit motor imagery (Roelofs et al., 2001). Given
hat the patients could engage in motor imagery of the affected
nd unaffected hand with comparable behavioral performance,
he differences in cerebral activity cannot be a by-product of
ifferent task performance. Rather, they reflect qualitative differ-
nces in brain activity between imagery of the affected compared
o the unaffected hand (Wilkinson & Halligan, 2004).

.2. Cerebral effects

Motor imagery of both the affected and the unaffected hand
voked activity in the dorsal parietal and premotor cortex. This

ctivity increased with increasing stimulus rotation (Fig. 2).
his same parieto-frontal network has also been isolated in ear-

ier studies using similar motor imagery paradigms (de Lange
t al., 2005; Johnson et al., 2002), as well as during the selec-

Cluster size Corrected p-value Stereotactic coordinates

x y z

8 44 −24
1303 0.035 −12 62 32

−36 48 34

1065 0.039
−58 −6 10
−52 −36 −4

483 0.047 68 −28 10

4673 0.0039
16 −40 70
32 −10 68

1525 0.0098 −6 −36 64

tic coordinates denote the peak of the clusters surviving correction for multiple
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Fig. 3. Regions showing higher activity for the affected than the unaffected
hand. Anatomical localization and effect sizes (±S.E.M.) of clusters showing
overall (i.e., not rotation-related) higher activity for the affected hand than for
the unaffected hand. There was higher activity for the affected limb in the left
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Fig. 4. Regions showing differences in activity between the left and right hand.
Anatomical localization and effect sizes (±S.E.M.) of clusters showing overall
(i.e., not rotation-related) higher activity for the right hand compared to the left
hand (a and b) and for the left hand compared to the right hand (c and d). There
was higher activity in the contralateral somatosensory cortex for laterality judg-
m
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uperior temporal cortex (a and b), medial prefrontal cortex (c and d), and the
ight superior temporal cortex (e and f). Exact stereotactic coordinates are given
n Table 3. Other conventions as in Fig. 2.

ion and preparation of actual hand movements (Rushworth,
ohansen-Berg, Gobel, & Devlin, 2003; Thoenissen, Zilles, &
oni, 2002; Toni, Schluter, Josephs, Friston, & Passingham,
999). Given that both behavioral performance and cerebral
ctivity were not altered, it appears that CP patients can readily
magine actions of both their unaffected and affected hand,
sing the same cerebral resources as healthy participants. The
imilar increase of imagery-related cerebral activity for the
ffected arm in preparatory motor-related structure seems to
un counter to the predictions of CP models postulating a
eduction of preparatory activity within the motor system,
ue to increased cognitive inhibitory control (Marshall et al.,
997).
Other cortical regions, outside the motor system, showed
tronger responses during motor imagery of the affected than
he unaffected hand. Differently from the effect observed in the

otor system, these effects were independent of biomechan-

c
i
a
t

ents of left/right hands, which is related to the button press with the left/right
oot to respond to each trial. Exact stereotactic coordinates are given in Table 3.
ther conventions as in Fig. 2.

cal complexity. First, we found differential activity between
magined movements of the affected and unaffected hand in the
refrontal cortex (Fig. 3c), comprising both ventromedial and
orsomedial aspects of prefrontal cortex. This result replicates
he findings from previous case studies describing increased
ctivity in the ventromedial prefrontal cortex of a CP patient try-
ng to move her paralyzed limb (Marshall et al., 1997), and a hyp-
otized healthy subject trying to move her “hypnotically para-
yzed” limb (Halligan et al., 2000). While our results confirm the
nvolvement of vmPFC during volitional action generation in CP
atients, here we show that this involvement arises from a failure
o de-activate this region during motor imagery of the affected
and. The vmPFC is part of the “intrinsic” or “default” network
Raichle & Mintun, 2006), showing physiological decreases of
etabolic activity during performance of sensori-motor and cog-

itive tasks (Gusnard, Raichle, & Raichle, 2001). Our results
how that, in CP patients, generating motor plans involving the
ffected hand abolishes these physiological responses: cerebral
ctivity remains at resting-state levels, well above BOLD signals
easured during motor imagery of the unaffected hand. This

bservation is not immediately compatible with accounts of CP
hat associate vmPFC activity with an increased active inhibitory

ontrol of the motor system during the generation of movements
nvolving the affected hand (Halligan et al., 2000; Marshall et
l., 1997). The vmPFC effect appears in line with the notion
hat, in CP patients, simulating movements of the affected hand
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s associated with increased self-monitoring processes (Roelofs
t al., 2006; Vuilleumier, 2005). Namely, when normal subjects
re engaged in a demanding task, there is an inhibition of the
refrontal cortex compared to when subjects are engaged in
elf-reflexive processing (Goldberg, Harel, & Malach, 2006).
n a similar vein, damage to the prefrontal cortex can abolish
he awareness of actions (Frith, Blakemore, & Wolpert, 2000).
ccordingly, our findings may indicate that, in CP patients, self-

eferential processes persist during the performance of motor
imulations involving the affected hand. It remains to be seen
hether these processes are specifically related to monitor-

ng the expected autonomic or emotional consequences of the
ovement.
There was a second cortical cluster showing higher activity

uring imagined movements of the affected hand. This cluster
overed a rather large portion of the superior temporal cortex
extending into the parietal operculum—Fig. 3a and e), and it
howed similar responses to those observed in the medial PFC.
his temporal region has been consistently associated with per-
eptual and cognitive processes like the analysis of biological
nd implied motion (Allison, Puce, & McCarthy, 2000). There-
ore, the hyperactivity of this region during imagined actions
f the affected arm may – like the vmPFC – be a reflection of
eightened monitoring of actions with the affected limb, but in
he visual domain.

.3. Limitations

A limitation of the present study is our sample size (N = 8).
owever, this is the first study on CP patients in which the sta-

istical model (random effects analysis) allows one to generalize
he inferences beyond the sample studied (Friston, Holmes, &

orsley, 1999). Previous studies dealt either with case reports
Marshall et al., 1997) or made sample-specific inferences
Burgmer et al., 2006; Spence et al., 2000; Vuilleumier et al.,
001). Nevertheless, studies using larger sample sizes are clearly
eeded to investigate whether the (considerable) inter-individual
ifferences in severity of the paralysis are also reflected by,
.g., larger fluctuations in prefrontal and temporal activity dur-
ng imagined actions. A further limitation of this study is that
ur data are the result of within-patients comparisons, compar-
ng the affected arm to the unaffected arm. Therefore, possible
athological changes between patients with conversion paraly-
is and healthy subjects that are independent of the arm cannot
e isolated with this study.

. Conclusions

Our results show that, during imagery of movements with the
aralyzed arm, CP patients show similar responses in prepara-
ory motor structures but fail to de-activate the ventromedial
refrontal and superior temporal cortex. These results suggest
hat the paralysis that characterizes these patients does not man-

fest itself at the neural level as heightened inhibition of motor
rocesses. Rather, we observed cerebral responses that could
e more readily linked to altered monitoring of movements.
hese findings might provide a neurocognitive background for

H

logia 45 (2007) 2051–2058 2057

n effective therapeutic approach like cognitive behavioral ther-
py, that aim at abolishing perpetuating factors like heightened
elf-focus in CP (Stone, Carson, & Sharpe, 2005b).
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