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6
Combining Accuracy and Run Time

Meta-learning focuses on finding classifiers and parameter settings that work well on
a given dataset. Evaluating all possible combinations typically takes too much time,
hence many solutions have been proposed that attempt to predict which classifiers are
most promising to try. As discussed in Chapter 3, the first recommended classifier is
not always the correct choice, so multiple recommendations should be made, making
this a ranking problem rather than a classification problem.

Even though this is a well studied problem, in the meta-learning literature there
is no common way of evaluating these. We advocate the use of Loss Time Curves, as
used in the field of optimization. These visualize the amount of budget (time) needed
to converge to an acceptable solution. We investigate two methods that utilize the
measured performances of classifiers on small samples of data to make such recom-
mendation, and adapt it so that these works well in Loss Time space. Experimental
results show that this method converges extremely fast to an acceptable solution.

OpenML was used as an experiment repository. The datasets and tasks that were
used take many resources (time and memory) to model, so this work was greatly
accelerated by including prior results that were collaboratively generated.

6.1 Introduction

When presented with a new classification problem, a key challenge is to identify a
classifier and parameter settings that obtain good predictive performance. This prob-
lem is known as the Algorithm Selection Problem [119]. Since many classifiers exist, all
containing a number of parameters that potentially influence predictive performance,
this is a challenging problem. Performing a cross-validation evaluation procedure on
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all possible combinations of classifiers and parameters (e.g., using a grid search) is
typically infeasible and suboptimal, for the reasons mentioned in Chapter 3. The field
of meta-learning attempts to solve this by learning from prior examples. Typically, a
set of classifiers is recommended based on the performance on similar datasets.

The meta-learning method SAM [87] identifies similar datasets based on the learn-
ing curves of classifiers trained on them, and recommends the classifier that performs
best on these similar datasets. A learning curve is an ordered set of performance
scores of a classifier on data samples of increasing size [113]. Although the results
are convincing, it does not take into account some important aspects of algorithm
selection. First, it only recommends the single best classifier, rather than a ranking
of candidates. Second, it does not take the training time of the models into account,
making it unable to distinguish between fast and slow classifiers. Indeed, in practical
applications there is typically a budget (e.g., limited time or a maximum number of
cross-validation runs) within which a number of classifiers can be evaluated. As such,
the meta-learning method should be evaluated on how well it performs within a given
budget.

Another popular meta-learning technique is Active Testing [88]. It recommends
a ranking of classifiers, advising in which order these should be cross-validated to
check their applicability to the inspected dataset. This ranking is dynamically updated,
based on results from earlier performed cross-validation tests on the dataset at hand.
This method also does not take the training time of the models into account, making
it unable to distinguish between fast and slow classifiers.

This chapter covers the following contributions. We extend the aforementioned
techniques so that these produce a ranking of classifiers and takes into account the
run times of classifiers. For this, a new evaluation measure is explored, A3R′, capable
of trading of accuracy and run time. Furthermore, we study the performance of this
method in Loss space and Loss Time space. We will argue that Loss Curves as presen-
ted in [88] are biased, and propose the use of Loss Time Curves, as commonly used in
Optimization literature (e.g., [74]). Finally, we compare the method against a range
of alternative methods, including a rather strong baseline that recommends the clas-
sifier that performed best on a small sample of the data [52]. Our proposed technique
dominates the baseline methods in some scenarios. Moreover, our results suggest that
a simple, sample-based baseline technique has been mistakenly neglected in the lit-
erature. Finally, we will see that meta-learning techniques that adopt A3R′ improve
their performance in Loss Time space.

This chapter is organized as follows. Chapter 6.2 surveys related work. Chapter 6.3
formalizes both methods, and adapt them to work in Loss Time space. Chapter 6.4
contains experiments. Chapter 6.5 concludes.
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6.2 Related Work

Meta-learning aims to learn which learning techniques work well on what data [141].
A common task, known as the Algorithm Selection Problem [119], is to determ-
ine which classifier performs best on a given dataset. We can predict this by train-
ing a meta-model on meta-data comprised of dataset characterizations, i.e., meta-
features [20], and the performances of different classifiers on these datasets. The
same meta-features can be computed on each new dataset and fed to the meta-model
to predict which classifiers will perform well.

Hence, the Algorithm Selection Problem is reduced to a Machine Learning prob-
lem. Meta-features are often categorized as either simple (e.g., number of examples,
number of attributes), statistical (e.g., mean standard deviation of attributes, mean
skewness of attributes), information theoretic (e.g., class entropy, mean mutual in-
formation) or landmarkers [108] (performance evaluations of simple classifiers).
Many meta-learning studies follow this approach [125, 133, 144, 158, 163].

As argued in Chapter 3, meta-feature-based approaches have some intrinsic limita-
tions. First, it is hard to construct a meta-feature set that adequately characterizes the
problem space [86]. Second, the most successful meta-features, landmarkers, can be
computationally expensive, limiting the options [108]. Finally, because not all clas-
sifiers can model all datasets, or take prohibitively long to do so, the meta-dataset
usually contains many missing values, complicating the classification task.

In order to overcome these problems, Leite and Brazdil [86, 87] identify similar
datasets based on partial learning curves. In this particular method, a partial learn-
ing curve is computed, using small samples, to identify similar datasets and use per-
formance information from those datasets to extrapolate the learning curve. As such,
running classifiers on these samples is rather cheap. There is also a clear connection
with multi-armed bandit strategies [89], where results on a small sample determine
whether it is worthwhile to continue learning.

Alternatively, the Best on Sample method uses the performance estimates of clas-
sifiers on a small subset (sample) of the data, and recommends the classifiers which
perform best on this sample, in descending order [107]. The smaller this sample is,
the fewer time this method takes to execute. Prior work is inconclusive about its
performance. The authors of [107] suggest that this technique should be used as a
baseline method in meta-learning research. The authors of [52] show that this in-
formation is not useful as a landmarker. Indeed, it has been correctly observed that
learning curves sometimes cross, i.e., one classifier can outperform another on a small
data sample, but can be surpassed when trained on the whole dataset [86]. However,
this happens less often as the sample size increases, making this method quite reliable
when using the right sample size, as we will see in Chapter 6.4.
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These three methods all aim to recommend an algorithm with high accuracy. How-
ever, in a setting where multiple classifiers will be tried sequentially and the budget
is time, it might make sense to first try many fast algorithms, rather than a few slow
ones. This can be done by selecting classifiers based on a trade-off between accuracy
and run time. Brazdil et al. [21] proposes adjusted ratio of ratios (ARR), which is
defined as:

ARRdi
ap,aq

=

SRdi
ap

SRdi
aq

1 + AccD · log2

(
T di
ap

T di
aq

) (6.1)

where SRdi
ap

and SRdi
aq

are the predictive accuracy (success rate) of classifiers ap and
aq (respectively) on dataset di. Likewise, T di

ap
and T di

aq
are the run times of classifiers

ap and aq (respectively) on dataset di. Finally, AccD is a parameter controlled by the
user, influencing the relative importance of accuracy to run time.

As was pointed out by [1], there are some problems with this measure: it is not
monotonic, and even approaches infinity at some point. Therefore, the measure A3R

was introduced:

A3Rdi
ap,aq

=

SRdi
ap

SRdi
aq

r

√
T di
ap/T

di
aq

(6.2)

where, similar to ARR, SRdi
ap

and SRdi
aq

are the predictive accuracy (success rate) of
classifiers ap and aq (respectively) on dataset di. Likewise, T di

ap
and T di

aq
are the run

times of classifiers ap and aq (respectively) on dataset di. Finally, r is a parameter
controlled by the user, influencing the relative importance of accuracy versus run
time.

Although both ARR and A3R are suitable for finding fast classifiers, these have
not been used as such before. Experimental evaluations have focused on recommend-
ing classifiers that work well on this criterion. This seems a bit arbitrary. Indeed, we
are still interested in finding the algorithm with the highest accuracy, however we
want to find it as fast as possible (i.e., with fewest number of cross-validation test or
time). In this respect our approach differs from earlier meta-learning approaches by
using this measure to build a ranking of classifiers that finds a reasonable classifier as
fast as possible.
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6.3 Methods

In this chapter we describe two methods that extend the work of [86, 87, 88] in
several ways. We consider a set A of classifiers, am (m = 1, 2, 3, . . . ,M). We also
consider a set D of datasets, dn (n = 1, 2, 3, . . . , N), on which we have information
on the performance of the classifiers in A (dnew is not in D). The total amount of
trainings instances available for dataset dn is denoted as |dn|. Let Pm,n,s and P ′m,n,s

denote the performance of classifier am on dataset dn, for a given evaluation meas-
ure (e.g., predictive accuracy), using a sample size of s. Furthermore, Ω denotes the
size of a dataset given by the context. Hence, Pm,n,Ω (equals Pm,n,|dn|) denotes the
performance of classifier am on the full dataset dn.

6.3.1 Pairwise Curve Comparison

Various methods that are successful at recommending algorithms make use of so-
called learning curves. A learning curve is an ordered set of performance scores of
a classifier on data samples of increasing size [113]. The method proposed by [86]
builds a partial learning curve for a pair of algorithms, and finds among earlier seen
datasets (on which these algorithms were also run) the one that has the most similar
partial learning curves. Based on the performance of the algorithms on that full data-
set, it makes a recommendation. This idea is extended to multiple classifiers (rather
than a pair) in [87].

In this chapter, we propose a novel method that extends the method as defined
by [87] in three ways. First, it recommends a ranking of classifiers, rather than just a
single best classifier. Second, it can take arbitrary evaluation measures into account,
such as run time. Lastly, we introduce an optimization called Smaller Sample, that
improves performance when the sizes of datasets differ a lot.

Let S be the set of samples of dataset d of increasing size st = 25.5+0.5·t with
t = (1, 2, 3, . . . , T ), and T being a parameter set by the user such that 1 ≤ T ≤
2 · (blog2 |dn|c − 5.5). This ensures that the biggest data sample never exceeds the
available amount of training data. The samples follow a geometric increase, as sug-
gested by [113]. When using a higher value for T , larger samples are calculated,
presumably yielding more accurate estimates at the expense of higher run times.

Figure 6.1 shows learning curves of all model types introduced in Chapter 2.4.
The x-axis is displayed on a logarithmic scale, to show the geometrical increase in
sample sizes. It shows some typical learning curve behaviour. First, when presented
with more data, the classifiers typically perform better. However, this is not always the
case. Sometimes a classifier handles a new batch of data not so well, and accuracy
decreases. Furthermore, there is also a trend of diminishing increases. At the begin-
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Figure 6.1: Learning curves on the ‘letter’ dataset.

ning the accuracy gain of adding more data is considerable, whereas at some point it
flattens out. This is especially visible for models like Naive Bayes and Logistic Regres-
sion. Lastly, as already noted by [86], learning curves can cross. This also happens
quite often for small samples, but less often for bigger samples.

The distance between two datasets di and dj can be determined using the follow-
ing function [86]:

dist(di, dj , ap, aq, T ) =

T∑
t=1

(Pp,i,st − Pp,j,st)
2 +

T∑
t=1

(Pq,i,st − Pq,j,st)
2 (6.3)

This distance function is related to the Euclidean distance. It gives a measure of how
similar two datasets are, based on the learning curves of the two classifiers. Other
work proposes a distance function that measures the Manhattan distance between
learning curves, but experiments show that the difference in performance between
these variants is negligible [87].

Using either of these distance functions, k nearest datasets can be identified, and
from the performance of both classifiers on these datasets we can predict which of
the two will likely perform better on the new dataset. Controversially, it has been
remarked that as the number of used samples increases, the performance of this tech-
nique decreases [86]. The authors of [86] speculate that the learning curves on the
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nearest datasets are still not similar enough, and propose Curve Adaptation, a tech-
nique that can adapt retrieved curves to the learning curves on the new dataset. This
is done because some datasets are simply harder to model, hence the whole curve
will be higher or lower, and that is being corrected for. In order to adapt a learning
curve of classifier ap on dataset dr to dataset di, all points of the prior learning curve
are multiplied by a coefficient:

f(di, dr, ap, T ) =

∑T
t=1(Pp,i,st · Pp,r,st · s2

t )∑T
t=1((Pp,r,st)

2 · s2
t )

(6.4)

The resulting coefficient f can be used to scale the performance of the retrieved
learning curve of dataset dr to match the partial learning curve on dataset di, making
the final points of dr (that are not available in di) more realistic.

A novel optimization that could potentially improve performance is the Smaller
Sample technique. As not all datasets are of the same size, it is possible that a retrieved
dataset has a bigger size than the new dataset, which might give an unfair advantage
to particular learners. Suppose that the retrieved dataset contains a high number of
observations, and from a certain sample size on the learning curve of one algorithm
outperforms all other algorithms. If the new dataset is much smaller than the retrieved
dataset, this information might be irrelevant and potentially obfuscates the prediction
for the new dataset. In that case it might be beneficial to use the performance of the
classifiers at a sample size close to the full size of the new dataset. More formally,
when reasoning over the performance of a given classifier a on dataset dnew based
on a retrieved dataset dr, if |dnew | < |dr|, it might be more informative to use the
performance of algorithm a on a subset of dr, rather than the full dataset dr.

Algorithm 6.1 shows the full method in detail. It requires the new dataset as input,
and values for parameters k (number of similar datasets to retrieve) and T (number
of samples available to build the partial learning curve), and boolean parameters
indicating whether to use the Curve Adaptation and Smaller Sample technique. The
while-loop starting on line 3 identifies the most promising classifier left in A (lines 4–
29), appends this classifier to the final ranking R (line 30) and removes it from the
pool of remaining classifiers to rank.

To find the most promising classifier, we set abest first to an arbitrary classifier left
in A. We will compare it against all acomp (competing) classifiers left in A (for-loop on
line 5). On line 6 we retrieve a set D of datasets on which we have recorded perform-
ance results for both classifiers (recall that dnew is not amongst those). Line 9 uses
Equation 6.3 to retrieve the nearest dataset. Lines 12–15 show how Curve Adaptation
shifts the retrieved learning curve to the partial learning curve, using Equation 6.4.
Lines 16–18 show how the Smaller Sample option utilizes learning curves of a size
close to the size of the new dataset. The classifier that performed best on the retrieved
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Algorithm 6.1 Pairwise Curve Comparison (PCC)

Require: dnew , k ∈ N+, T ∈ N+, CurveAdaptation ∈ {0, 1}, SmallerSample ∈ {0, 1}
1: Initialize A as a set of all classifiers
2: Initialize R as empty list
3: while |A| > 0 do
4: abest ← Arbitrary element from A

5: for all acomp ∈ A : acomp 6= abest do
6: Initialize D as the set of all datasets on which abest and acomp were ran
7: votesBest = votesComp = 0

8: while votesBest + votesComp < k do
9: dsim ← arg min

di∈D
dist(dnew , di, abest, acomp, T )

10: coeff best = coeff comp = 1

11: samp ← Ω

12: if CurveAdaptation = 1 then
13: coeff best ← f(dnew , dsim , abest, T )

14: coeff comp ← f(dnew , dsim , acomp, T )

15: end if
16: if SmallerSample = 1 and |dnew | < |dsim | then
17: samp ← |dnew |
18: end if
19: if coeff best · P ′

best,dsim ,samp > coeff comp · P ′
comp,dsim ,samp then

20: votesBest ← votesBest + 1

21: else
22: votesComp ← votesComp + 1

23: end if
24: D ← D−−− dsim
25: end while
26: if votesBest < votesComp then
27: abest ← acomp

28: end if
29: end for
30: R← R+++ abest

31: A← A−−− abest
32: end while
33: return R {Ranking of classifiers in decreasing order}
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dataset (line 19) gets a vote, and the dataset is removed from the pool of available
datasets. This is repeated k times, for the k nearest datasets. The classifier that has
most votes is marked as abest, and will be compared against the next competitor acomp

in the following loop iteration. Note that the algorithm potentially utilizes two differ-
ent evaluation scores, denoted by P and P ′, but these can also be the same. The
scores of one evaluation measure are used for identifying similar datasets and Curve
Adaptation (i.e., the one denoted by P ); the scores of the other evaluation measure
are used for selecting an appropriate classifier (i.e., the one denoted by P ′). This is
useful because not all evaluation measures are suitable for both tasks. For example,
measures that trade-off accuracy and run time (e.g., ARR, A3R) are very suitable for
selecting appropriate algorithms, however learning curves that are built upon these
measures are typically neither informative nor stable.

Because we arbitrarily select the order in which classifiers are considered, the
ranking will not always be the same (the meta-algorithm is unstable). However, it
assumes that classifiers that perform consistently better on similar datasets will always
be ranked above their inferior competitors. Furthermore, the meta-algorithm has a
start up time, as it needs to build the partial learning curves. However, this is also
the case for conventional meta-learning techniques (e.g., when using landmarkers).
Therefore we will not consider these additional costs in the results.

6.3.2 Active Testing

Active Testing was introduced in [88]. It is an algorithm selection method that com-
bines grid search with meta-knowledge. It recommends a ranking of classifiers (the
order in which they should be cross-validated), but it also updates the ranking of the
not yet cross-validated classifiers after every test.

Active Testing iteratively chooses new promising algorithms; those that have a
good possibility to outperform a current best algorithm. For each candidate algorithm,
it finds the historic datasets on which the candidate algorithm outperforms the current
best. This is done by the notion of relative landmarkers, which are defined as:

RL(at, abest , di, P ) = b(Pat,di,Ω > Pabest ,di,Ω) · (Pat,di,Ω − Pabest ,di,Ω) (6.5)

where Pak,di,Ω is the evaluation measure (obtained by cross-validation) of algorithm
ak (ak ∈ {best , t}) on dataset di, and b is an indicator function returning 1 if the
condition is true and 0 otherwise. Active Testing operates on the full dataset rather
than learning curves or sub-samples; the Ω subscript is maintained in the notation
for consistency. Basically, the relative landmakers measure the accuracy difference
between algorithms on datasets where the current best algorithm was outperformed,
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Algorithm 6.2 Active Testing (AT)
Require: dnew , abest ∈ A, P

1: Initialize A as a set of all classifiers except abest
2: Initialize R as list containing abest
3: P ′

best,new,Ω = CV (abest , dnew )

4: while |A| > 0 do
5: acomp = arg max

ai∈A

∑
di∈D

RL(at, abest , di, P ) · Sim(dnew , di)

6: A← A−−− acomp

7: P ′
comp,new,Ω = CV (acomp , dnew )

8: if P ′
comp,new,Ω > P ′

best,new,Ω then
9: abest = acomp

10: P ′
best,new,Ω = P ′

comp,new,Ω

11: end if
12: R← R+++ acomp

13: end while
14: return abest {Best classifier based on measure P ′}

and neglect the accuracy difference on datasets where the current best algorithm
was better. For each new cross-validation test, we are interested in the method that
obtained the highest relative landmarker score on datasets similar to the current one.
As such, we are optimizing:

acomp = arg max
at∈A

∑
di∈D

RL(at, abest , di, P ) · Sim(dnew , di) (6.6)

where Sim(dnew , di) is a measure of similarity between dataset dnew and dataset di.
Several similarity measures are proposed in [88]. The method Active Testing 0 na-
ively assumes that all datasets are equally similar, hence its corresponding similar-
ity function always returns 1. The method Active Testing 1 determines the similarity
based on only the last cross-validation test. If the last cross-validation test shows that
acomp is better than the best algorithm until that moment abest (i.e., Pacomp ,dnew ,Ω >

Pabest ,dnew ,Ω), then each dataset di ∈ D that satisfies Pacomp ,di,Ω > Pabest ,di,Ω is con-
sidered similar to dataset dnew .

Algorithm 6.2 puts this all together. It requires the user to choose a measure P ,
the evaluation measure that should be measured by the cross-validation test. Leite
et al. [88] considered only predictive accuracy, but it is clear that any measure can be
used for this, e.g., A3R. Note that although we are using the measure determined by
P to determine the order in which we search, we ultimately evaluate all algorithms
based on a measure P ′, which is typically predictive accuracy or area under the ROC
curve. The two are not necessarily identical.
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Furthermore, this method requires an arbitrary classifier to be selected first, abest .
In the work of [88], the top ranked algorithm from the global ranking was used. This
algorithm will be cross-validated first (line 3). Lines 4–13 show a while-loop, which
at each iteration removes an algorithm from A (line 6), cross-validates it (line 7) and
adds it to R (line 12). Which algorithm that is, is determined using Eq. 6.6 on line 5.
If that algorithm performed better than the best algorithm so far, it is considered
the new best algorithm (line 9–10). Finally, on line 14 the best algorithm found is
returned. Note that we do not need to return a ranking, as the algorithms are already
evaluated using a cross-validation test. We are guaranteed that the returned algorithm
is the best on the determined criterion.

6.3.3 Combining Accuracy and Run Time

Both Active Testing and Pairwise Curve Comparison select classifiers based on their
predictive accuracy on similar datasets. Both are designed such that instead of pre-
dictive accuracy any measure can be used for this selection. Because our experiments
focus on both accuracy and run time, we will experiment with A3R, which combines
predictive accuracy and run time [1]. A3R compares the run times and accuracy of
two classifiers on a dataset, so it could be used directly into methods that work based
on pairwise comparisons. However, in order to make it useful for methods that do
not compare classifiers pairwise, and allow a fair comparison in the experiments, we
define a slightly adapted version of the measure:

A3R′
di

ap
=

SRdi
ap

r

√
T di
ap

(6.7)

where SRdi
ap

is the predictive accuracy (success rate) of classifier ap on dataset di; T di
ap

is the run time of classifier ap on dataset di; finally, r is a parameter controlled by
the user, influencing the importance of time. Indeed, a lower value results in a higher
emphasize on time. The higher the A3R′ score, the more suitable the classifier is on
the combination of accuracy and run time.

Note that both Pairwise Curve Comparison and Active Testing can natively work
with A3R, as they work based on pairwise comparisons. However, as this does not
hold for some baseline methods, it is good to have the A3R′ as an alternative. It is
less complex and when comparing two classifiers it ranks these the same.
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6.4 Experiments

To evaluate the proposed algorithm selection strategies, we used 30 classifiers and 105

datasets from OpenML [154]. Table 6.1 shows all datasets used in this experiment.
The datasets have between 500 and 48,842 observations, and between 5 and 10,937

attributes.The size of the dataset is of importance to Pairwise Curve Comparison. In
order to construct a learning curve of a given number of such samples, the dataset
has to be sufficiently large (i.e., contain enough observations). In fact, to be able to
construct a learning curve of 7 samples, the training set of the dataset has to contain
at least 512 observations. Figure 6.2 shows the maximum number of samples that
a learning curve can contain per dataset. Note that because we use 10-fold cross-
validation in the experiments, a dataset actually needs 563 observations in order to
guarantee a trainings set of 512 observations.

The algorithms are all from Weka 3.7.13 [61], and include all model types from
Chapter 2 and all ensemble types from Chapter 3. The same algorithms are used as
those used in Figure 4.10 (page 61) and Figure 4.11 (page 62). All classifiers were
run on all datasets.

We will use two strong baseline methods to compare our method to. The Best on
Sample method runs all classifiers using a given sample size, and ranks the classifiers
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Table 6.1: Datasets used for the experiment.

name obs. atts. cls.
irish 500 6 2

autoUniv-au7-500 500 13 5

collins 500 24 15

kc2 522 22 2

climate-model-simulation 540 21 2

cylinder-bands 540 40 2

AP Breast Ovary 542 10,937 2

AP Colon Kidney 546 10,937 2

monks-problems-3 554 7 2

monks-problems-1 556 7 2

ilpd 583 11 2

synthetic control 600 62 6

monks-problems-2 601 7 2

AP Breast Kidney 604 10,937 2

balance-scale 625 5 3

AP Breast Colon 630 10,937 2

profb 672 10 2

soybean 683 36 19

Australian 690 15 2

credit-a 690 16 2

breast-w 699 10 2

autoUniv-au7-700 700 13 3

eucalyptus 736 20 5

blood-transfusion-serv. 748 5 2

autoUniv-au6-750 750 41 8

diabetes 768 9 2

analcatdata dmft 797 5 6

analcatdata authorship 841 71 4

vehicle 846 19 4

anneal 898 39 6

oh15.wc 913 3,101 10

oh5.wc 918 3,013 10

vowel 990 13 11

credit-g 1,000 21 2

autoUniv-au1-1000 1,000 21 2

autoUniv-au6-1000 1,000 41 8

oh0.wc 1,003 3,183 10

qsar-biodeg 1,055 42 2

MiceProtein 1,080 82 8

autoUniv-au7-1100 1,100 13 5

pc1 1,109 22 2

banknote-authentication 1,372 5 2

pc4 1,458 38 2

cmc 1,473 10 3

OVA Breast 1,545 10,937 2

OVA Colon 1,545 10,937 2

OVA Kidney 1,545 10,937 2

OVA Lung 1,545 10,937 2

OVA Omentum 1,545 10,937 2

OVA Ovary 1,545 10,937 2

OVA Uterus 1,545 10,937 2

pc3 1,563 38 2

semeion 1,593 257 10

name obs. atts. cls.
100-plants-texture 1,599 65 100

100-plants-margin 1,600 65 100

100-plants-shape 1,600 65 100

car 1,728 7 4

steel-plates-fault 1,941 34 2

mfeat-morphological 2,000 7 10

mfeat-zernike 2,000 48 10

mfeat-karhunen 2,000 65 10

mfeat-fourier 2,000 77 10

mfeat-factors 2,000 217 10

mfeat-pixel 2,000 241 10

kc1 2,109 22 2

cardiotocography 2,126 36 10

segment 2,310 20 7

scene 2,407 300 2

autoUniv-au4-2500 2,500 101 3

ozone-level-8hr 2,534 73 2

cjs 2,796 35 6

splice 3,190 62 3

kr-vs-kp 3,196 37 2

Internet-Advertisements 3,279 1,559 2

gina agnostic 3,468 971 2

Bioresponse 3,751 1,777 2

sick 3,772 30 2

abalone 4,177 9 29

ada agnostic 4,562 49 2

spambase 4,601 58 2

wilt 4,839 6 2

waveform-5000 5,000 41 3

phoneme 5,404 6 2

wall-robot-navigation 5,456 25 4

optdigits 5,620 65 10

first-order-theorem-proving 6,118 52 6

satimage 6,430 37 6

musk 6,598 170 2

isolet 7,797 618 26

mushroom 8,124 23 2

Gest.Ph. Segmentation Proc. 9,873 33 5

JapaneseVowels 9,961 15 9

jm1 10,885 22 2

pendigits 10,992 17 10

PhishingWebsites 11,055 31 2

sylva agnostic 14,395 217 2

eeg-eye-state 14,980 15 2

mozilla4 15,545 6 2

MagicTelescope 19,020 12 2

letter 20,000 17 26

webdata wXa 36,974 124 2

Click prediction small 39,948 12 2

electricity 45,312 9 2

tamilnadu-electricity 45,781 4 20

adult 48,842 15 2
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in the order of performance on that sample [107]. The Average Ranking method ranks
the classifiers in the order of their average rank on previously seen datasets [19, 88].
The Average Ranking method represents the typical approach that human experts in
machine learning wield. For each dataset, a set of favourite algorithms is selected
and tried in a static order. Both baseline methods have proven to be quite accurate in
previous studies.

Chapter 6.4.1 describes an experiment that focuses solely on predicting the best
classifier; here we attempt to reproduce the results obtained by [87] using a larger
number of datasets and classifiers. In Chapter 6.4.2 we show how the meta-algorithms
perform when predicting a ranking of classifiers in Loss space. Chapter 6.4.3 shows
how the meta-algorithms perform in Loss Time space. Chapter 6.4.4 describes our
main contribution, empirically evaluated on both accuracy and run times. This method
yields significant improvements while trading of accuracy and run time.

6.4.1 Predicting the Best Classifier

In the first experiment we aim to establish how well the meta-algorithm performs
when the task is just to recommend the best available classifier. A recommendation is
considered correct if there was no statistically significant difference between the abso-
lute best classifier and the recommended classifier (similar to the evaluation by [87]).
It uses predictive accuracy as the evaluation measure to identify similar datasets and
select the best classifier (i.e., P = P ′ = accuracy). Pairwise Curve Comparison has
several parameters. Most importantly, T (the number of samples used to construct
the learning curves) and k (the number of nearest datasets to be identified). Fur-
thermore, we explore the effect of Curve Adaptation (CA) and the Smaller Sample
technique (SS) by comparing meta-algorithms having these options enabled against
meta-algorithms having these options disabled.

Figure 6.3a shows the effect of varying the size of the learning curves. The x-
axis shows the value of T (number of samples used); the y-axis shows how often a
given meta-learner predicted the best algorithm or an algorithm that was statistic-
ally equivalent to the best one. Note that not all the datasets allow for the construc-
tion of learning curves containing 7–12 samples, therefore sometimes predictions are
made based on a smaller learning curve than the setup actually allowed. It can be
seen that for most methods, using more samples results almost consistently in better
performance, as is expected. All methods outperform the Average Ranking baseline
already with a small number of samples, i.e., the sample-based techniques do not
need much computational effort to perform better than the Average Ranking. It is
clear that the Best on Sample and Pairwise Curve Comparison with Curve Adaptation
perform clearly better, even when using only a small learning curve. There are some
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Figure 6.3: Performance of meta-algorithm on predicting the best classifier.
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drops in performance, which can probably be attributed to characteristics of the spe-
cific datasets used (e.g., dimensionality). When the number of attributes of a dataset
is in the same order or exceeds the number of observations, it becomes hard to learn
from it and some (base-)classifiers might exhibit unstable behaviour.

Figure 6.3b shows the effect of varying the number of nearest neighbours. In this
setting, the number of samples for the learning curve T was set to 5, as this seems
to be a reasonable small number. Hence, all predictions are made based on learning
curves containing 5 samples, with the largest sample consisting of 25.5+0.5·5 = 256

observations. Results obtained with higher values for T are less interesting, as the
time required for running the classifier on the consecutive samples increases. Average
Ranking remains constant, as it does not use samples nor identifies the nearest data-
sets. Setting k around 17 seem very suitable in this case, but presumably this depends
on the size of the meta-dataset. Setting this value too low might lead to instable beha-
viour, whereas setting it too high might result in including many datasets which are
not similar enough.

The Active Testing variants are not shown in both figures, as these are sequential
methods that solely focus on the ranking of classifiers. It is undefined which classifier
is advised first (see Algorithm 6.2). In our experiments, the classifier with the best
Average Ranking is selected, so the accuracy of the first prediction of Active Testing
would always be exactly the same as the Average Ranking method.

Both figures show similar trends. Best on Sample dominates the other techniques
in most of the cases, even though this method is rather simple. Furthermore, both
Pairwise Curve Comparison instances using Curve Adaptation (CA) outperform the
instances without Curve Adaptation. Smaller Sample (SS) also seems to improve
the prediction quality, although the difference is less prominent. In all, both Best
on Sample and Pairwise Curve Comparison obtain very reasonable performance, ad-
vising a (statistically) best or equally good classifier in more than 75% of the cases,
already when using a learning curve consisting of just 5 samples.

6.4.2 Ranking of Classifiers

Sometimes, recommencing the best base-classifier in 75 per cent of the cases is not
good enough, hence we need to use a different approach. When the recommended
base-classifier does not perform well enough, an alternative should be at hand. Rather
than recommending a single classifier, a ranking should be created, ordering the clas-
sifiers on their likelihood of performing well on the dataset. This way, the user can
make an informed decision about which models to try based on the available time and
resources. The standard approach to evaluate such a ranking is to compute the Spear-
man Correlation Coefficient [144]. However, it has a drawback: it penalizes every
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Figure 6.4: Loss Curves. The x-axis shows the number of tests, the y-axis shows the
loss.

wrongly ranked classifier equally, whereas we are mostly interested in classifiers at
the top of the ranking. Furthermore, we do not care at all about incorrect ranked
classifiers after the best one has been identified (although when applying the method
in practise, we will not know when we have found the best method).

An alternative approach is to use Loss Curves as done in, e.g., [88]. The authors
define loss to be the difference in accuracy between the current best classifier and
the global best classifier. In order to find the global best classifier on a dataset, we
evaluate all classifiers on this dataset in a certain order, for example by going down
the ranking. A Loss Curve plots the obtained loss against the number of classifiers that
have been tested. The goal is to find a classifier that has a low loss in relatively few
tests.

In the following experiments, Pairwise Curve Comparison was run with T = 5 and
k = 17. Likewise, Best on Sample was run with T = 5 (the sample on which base-
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Figure 6.5: Average Area Under the Loss Curves for various meta-algorithms.

classifiers were evaluated contained 256 observations). Figure 6.4 shows loss curves of
various strategies on some datasets. A loss curve is a visual evaluation measure show-
ing how well strategies work after evaluating a given number of algorithms (tests).
Similar to ROC Curves, for which commonly the Area Under the ROC Curve is calcu-
lated, we also can calculate the Area Under the Loss Curve, in which low values are
preferred over high values. Although this measure is less informative than the Loss
Curve itself, it can be used to objectively compare various meta-algorithms. Usually,
this is repeated over many datasets and an average Area Under the Loss Curve is re-
ported, as is done in [127]. Sometimes an area of interest is defined, and the Area
Under the Loss Curve for that interval is calculated [3]. This is useful when there is a
specific budget (expressed in number of tests) for the meta-algorithm.

Figure 6.5 plots the effect of the learning curve size on the Area Under the Loss
Curve. In order to not overload the figure, we omit the Pairwise Curve Comparison
instances without Curve Adaptation or the Smaller Sample option. Pairwise Curve
Comparison and Best on Sample techniques dominate the other techniques. Clearly,
these are the only techniques that benefit from increasing the learning curve size. The
other methods are by definition not influenced by this. Active Testing A1 outperforms
the Average Ranking method. It can only compete with the sample-based methods
that use a very small learning curve.
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Figure 6.6: Results of Nemenyi test (α = 0.05) on the Area Under the Loss Curve
scores. Classifiers are sorted by their Average Ranking (lower is better).

Although interesting for observing general trends, we should be careful with draw-
ing conclusions from the values from this plot: it can be dominated by outliers. There-
fore, we also rank the meta-algorithms by their Area Under the Loss Curve per task,
and calculate their average ranks over these. This shows which meta-algorithm per-
forms best on most datasets, and enables us to do a statistical test over it, such as the
Friedman test with post-hoc Nemenyi test. Figure 6.6 shows the result of the Nemenyi
test. Pairwise Curve Comparison and Best on Sample perform statistically equivalent.
The average ranks of these techniques are quite similar. Also Average Ranking, Act-
ive Testing A0 and Active Testing A1 perform statistically equivalent. Contrary to the
results depicted in the Average Loss Curve (Figure 6.4d), it can be seen that the dif-
ference between Active Testing A1 and Active Testing A0 is minuscule. Because of the
aforementioned reasons, conclusions based on the statistical test should have preced-
ence over conclusions based on the average loss curve.

6.4.3 Loss Time Space

Loss Curves assume that every test will take the same amount of time, which is not
realistic. For example, Multilayer Perceptrons take longer to train than Naive Bayes
classifiers. Therefore, it is better to use Loss Time Curves, which plot the average loss
against the time needed to obtain this loss. It describes how much time is needed on
average to converge to a certain loss (lower is better). The faster such curve goes to a
loss of zero, the better the technique is. They are commonly used in the Optimization
literature (see, e.g., [74]).

Figure 6.7 shows the Loss Time Curves of various strategies on some datasets. The
Loss Time Curves are drawn from the moment when the first cross-validation test
has finished. As can be seen by the Loss Time Curves from Figure 6.7d, also in Loss
Time space both Best on Sample and Pairwise Curve Comparison dominate the other
techniques.
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Figure 6.7: Loss Time Curves. The x-axis shows the time in milliseconds, the y-axis
shows the loss.

Similar to the Area Under the Loss Curve, we can calculate the Area Under the
Loss Time Curve. One important aspect to consider is what loss is defined before
the first cross-validation test has finished. In this work we use a loss of 1 (which is
the maximum possible loss), but also other values could be chosen. For example, [3]
uses default loss, which is defined as the difference between the default accuracy of a
dataset and the accuracy of the best performing algorithm on that dataset. Figure 6.8
plots the effect of the learning curve size on the Area Under the Loss Time Curve.
The legend is omitted for readability, but the meta-algorithms have the same colours
as in Figure 6.7. This again confirms the dominance of Pairwise Curve Comparison
and Best on Sample. However, opposed to Figure 6.5, there is no general trend that
Pairwise Curve Comparison and Best on Sample benefit from using more and big-
ger samples. One of the explanations for this is that although we are evaluating the
meta-algorithms based on accuracy and run time, internally the meta-algorithms are
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Figure 6.9: Results of Nemenyi test (α = 0.05) on the Area Under the Loss Time
Curves scores. Classifiers are sorted by their average rank (lower is better). Classifiers
that are connected by a horizontal line are statistically equivalent.

not aware of this and consider only accuracy. They build a ranking solely based on
accuracy, neglecting the run times, whereas high run times are punished by loss time
curves.

As done before, we can rank the meta-algorithms for each dataset based on Area
Under the Loss Time Curves. This enables us to do a statistical test on the performance
in Loss Time space. Figure 6.9 shows the result of the corresponding Friedman with
post-hoc Nemenyi test. The results seem similar to the results on the Area Under the
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Loss Curves: Pairwise Curve Comparison and Best on Sample perform statistically
equivalent, as well as Average Ranking, Active Testing A0 and Active Testing A1.
However, much performance gain can still be obtained by making the meta-algorithms
also consider run times, as we will see next.

6.4.4 Optimizing on Accuracy and Run Time

Next, our aim is to involve run times in the classifier selection process and evaluate
whether this improves the performance of the meta-algorithm in Loss Time space.
In this experiment, we will trade-off accuracy and run time. Recall that the meta-
algorithms potentially use different evaluation measures to identify similar datasets
and select classifiers. We adjust the methods to compare and select classifiers based
on their A3R′ scores, as introduced in Chapter 6.3. Pairwise curve comparison still
builds learning curves based on accuracy, but selects the most promising algorithm
to test next based on a higher A3R′ score. Active Testing identifies similar datasets
based on accuracy, but selects the most promising algorithm to test next based on a
higher A3R′ score. Formally, evaluation measure P = accuracy , evaluation measure
P ′ = A3R′. This way, decent classifiers that require a low run time are preferred over
better classifier that require a high run time. The baseline methods can be adapted in
a similar way such that they select classifiers based on A3R′.

Figure 6.10 compares the Average Loss Time Curves obtained using A3R′ with
the Average Loss Time Curves based solely on accuracy. For example, in Figure 6.10a
the red dashed line is exactly the same as the red line depicted in Figure 6.7d. These
represent the ‘vanilla’ version of the Average Ranking method, that solely uses accur-
acy to build a ranking. In contrast, the solid red line is the version of the Average
Ranking method that considers both accuracy and run time, by means of A3R’. The
gain in performance is eminent. All methods using A3R′ converge to an acceptable
loss orders of magnitude faster than the ones based on solely accuracy. For example,
Pairwise Curve Comparison with A3R′ converges on average in 5 seconds to a loss
of less than 0.001, whereas vanilla Pairwise Curve Comparison takes on average 454

seconds for this. This can be very useful in practise, when data needs to be processed
at high speed.

Again, we do a Friedman with post-hoc Nemenyi test, based on the scores for
the Area Under the Loss Time Curves per task. Figure 6.11 shows the results. All
the meta-algorithms that rely on A3R’ to construct the ranking perform statistically
significant better than their vanilla counterparts. Furthermore, all meta-algorithms
that construct a ranking based on A3R’ perform better than the meta-algorithms that
just use accuracy. The average ranking method scores surprisingly well in practise,
which is confirmed by a similar study [3].
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6.5 Conclusion

This chapter addresses the problem of algorithm selection under a budget, where
multiple algorithms can be run on the full dataset until a given budget expires. This
budget can be expressed as the number of cross-validation tests; in that case the user
can only select a limited number of algorithms and parameter settings to evaluate.
The budget can also be expressed in time, where there is a certain amount of time
in which various algorithms with multiple parameter settings can be evaluated, after
which the best must be selected.

We have extended the method presented in [87] such that it generates a ranking
of classifiers, rather than just predicting the single best classifier. The ranking suggests
in which order the classifiers should be tested. Based on such ranking a loss curve can
be constructed, showing which meta-algorithms perform best after a given number of
tests. In order to objectively compare various meta-learning algorithms and to enable
statistical tests, the Area Under the Loss Curve can be calculated. Interestingly, a
simple and elegant baseline method called Best on Sample performs equally well
in our experiments, selecting a good classifier using only a few tests.

However, when tested in the more realistic setting where the budget is expressed
in time, rather than a number of tests, the performance of meta-algorithms becomes
unpredictable. This was reflected in Figure 6.8, where there was no general trend that
Pairwise Curve Comparison and Best on Sample benefit from using more and bigger
samples.

When evaluating in the time budget setting, the meta-algorithms should be aware
of the run time of the classifiers. A measure such as A3R’ (which trades off accuracy
and run time) can provide this, although other measures are also capable of doing so
as well (e.g., ARR). We evaluated all the meta-classifiers based on the Area Under
the Loss Time Curve. The meta-algorithms using A3R’ consistently outperformed the
meta-algorithms that did not use this measure. This suggests that A3R’ is very suitable
for algorithm selection applications with a limited time budget. Apparently, it is better
to try many reasonable (and fast) classifiers that a few potentially very good (but
expensive) classifiers.

These results are not unexpected; when using an evaluation measure that partly
considers run time (as the Area Under the Loss Time Curve does) the meta-algorithms
should be aware of the run time of the algorithm configurations. Using the novel
algorithm selection criterion, a reasonable performing classifier was typically selected
orders of magnitude faster than otherwise. Recall that Pairwise Curve Comparison
with A3R′ converges on average in 5 seconds to a loss of less than 0.001, whereas
vanilla Pairwise Curve Comparison takes on average 454 seconds for this; a speed-up
of almost factor 100.



126 6.5. Conclusion

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0
.0

0
0
9
7
6
5
6
2

 0
.0

3
1
2
5

 1  3
2

 1
0
2
4

 3
2
7
6
8

 1
.0

4
8
5
8
e+

0
6

 3
.3

5
5
4
4
e+

0
7

vanilla

A3R’

(a) Average Ranking

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0
.0

0
0
9
7
6
5
6
2

 0
.0

3
1
2
5

 1  3
2

 1
0
2
4

 3
2
7
6
8

 1
.0

4
8
5
8
e+

0
6

 3
.3

5
5
4
4
e+

0
7

vanilla

A3R’

(b) Best on Sample

Figure 6.10: Loss Time Curves. The x-axis shows the time in milliseconds, the y-axis
shows the loss.
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Figure 6.11: Results of Nemenyi test (α = 0.05) on the Area Under the Loss Time
Curve scores. Classifiers are sorted by their average rank (lower is better). Classifiers
that are connected by a horizontal line are statistically equivalent. The parameters
are fixed to t = 5, k = 17.

Future work should focus on applying this technique on the full meta-dataset of
OpenML. Currently, OpenML already contains many datasets from various domains,
e.g., data streams, text mining datasets and QSAR datasets. In this work we carefully
selected a set of datasets to perform the meta-learning tasks on. However, by defini-
tion this approach embraces ‘the strong assumption of Machine Learning’ (as defined
by Giraud-Carrier and Provost [60]). The strong assumption of Machine Learning is
that the distribution of datasets that we will model is explicitly or implicitly known,
at least to a useful approximation (see also Chapter 3). To the best of our knowledge,
there is currently no work in Machine Learning that does not make this assumption.
However, Machine Learning and meta-learning do not require such strong assump-
tions. In other words, one very promising area of future work would be setting up a
meta-learning experiment that involves all datasets from OpenML. Such experiment
would face many challenges, as one would be dealing with data and classifiers from
various domains, but the rewards could be high. Trading off accuracy and run time
using A3R′ might be a key aspect to this. This would be the first research that con-
vincingly demonstrates the true power of meta-learning, without making any strong
assumptions.


