
Massively collaborative machine learning
Rijn, J.N. van

Citation
Rijn, J. N. van. (2016, December 19). Massively collaborative machine learning. IPA
Dissertation Series. Retrieved from https://hdl.handle.net/1887/44814

Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/44814

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/44814

Cover Page

The handle http://hdl.handle.net/1887/44814 holds various files of this Leiden University
dissertation

Author: Rijn, Jan van
Title: Massively collaborative machine learning
Issue Date: 2016-12-19

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/44814

4
Experiment Databases

Many fields of science have made significant breakthroughs by adopting online tools
that help organize, structure and mine information that is too detailed to be printed in
journals. In this chapter, we introduce OpenML, an online platform for machine learn-
ing researchers to share and organize data in fine detail, so that they can work more
effectively, be more visible, and collaborate with others to tackle harder problems. We
discuss some important concepts upon which it is built and showcase various types
of Machine Learning studies that can be conducted using information from previous
experiments.

4.1 Introduction

When Galileo Galilei discovered the rings of Saturn, he did not write a scientific paper.
Instead, he wrote his discovery down, jumbled the letters into an anagram, and sent
it to his fellow astronomers. This was common practice among respected scientists of
the age, including Leonardo, Huygens and Hooke.

The reason was not technological. The printing press was well in use those days
and the first scientific journals already existed. Rather, there was little personal gain
in letting your rivals know what you were doing. The anagrams ensured that the
original discoverer alone could build on his ideas, at least until someone else made
the same discovery and the solution to the anagram had to be published in order to
claim priority.

This behaviour changed gradually in the late 17th century. Members of the Royal
Society realized that this secrecy was holding them back, and that if they all agreed
to publish their findings openly, they would all do better [79]. Under the motto “take

42 4.2. Networked science

nobody’s word for it”, they established that scientists could only claim a discovery
if they published it first, if they detailed their experimental methods so that results
could be verified, and if they explicitly gave credit to all prior work they built upon.

Moreover, wealthy patrons and governments increasingly funded science as a pro-
fession, and required that findings be published in journals, thus maximally benefiting
the public, as well as the public image of the patrons. This effectively created an eco-
nomy based on reputation [79, 96]. By publishing their findings, scientists were seen
as trustworthy by their peers and patrons, which in turn led to better collaboration,
research funding, and scientific jobs. This new culture continues to this day and has
created a body of shared knowledge that is the basis for much of human progress.

Today, however, the ubiquity of the Internet is allowing new, more scalable forms
of scientific collaboration. We can now share detailed observations and methods (data
and code) far beyond what can be printed in journals, and interact in real time with
many people at once, all over the world.

As a result, many sciences have turned to online tools to share, structure and ana-
lyse scientific data on a global scale. Such networked science is dramatically speeding
up discovery because scientists are now able to build directly on each other’s ob-
servations and techniques, reuse them in unforeseen ways, mine all collected data
for patterns, and scale up collaborations to tackle much harder problems. Whereas
the journal system still serves as our collective long-term memory, the Internet in-
creasingly serves as our collective short-term working memory [97], collecting data
and code far too extensive and detailed to be comprehended by a single person, but
instead (re)used by many to drive much of modern science.

Many challenges remain, however. In the spirit of the journal system, these online
tools must also ensure that shared data is trustworthy so that others can build on it,
and that it is in individual scientists’ best interest to share their data and ideas. In this
chapter, we introduce OpenML, a collaboration platform through which scientists can
automatically share, organize and discuss machine learning experiments, data, and
algorithms.

4.2 Networked science

Networked science tools are changing the way we make discoveries in several ways.
They allow hundreds of scientists to discuss complex ideas online, they structure in-
formation from many scientists into a coherent whole, and allow anyone to reuse all
collected data in new and unexpected ways.

Chapter 4. Experiment Databases 43

4.2.1 Designing networked science

Nielsen [97] reviews many examples of networked science, and explains their suc-
cesses by the fact that, through the interaction of many minds, there is a good chance
that someone has just the right expertise to contribute at just the right time:

Designed serendipity Because many scientists have complementary expertise, any
shared idea, question, observation, or tool may be noticed by someone who has
just the right (micro)expertise to spark new ideas, answer questions, reinterpret
observations, or reuse data and tools in unexpected new ways. By scaling up
collaborations, such ‘happy accidents’ become ever more likely and frequent.

Dynamic division of labour Because each scientist is especially adept at certain re-
search tasks, such as generating ideas, collecting data, mining data, or inter-
preting results, any seemingly hard task may be routine for someone with just
the right skills, or the necessary time or resources to do so. This dramatically
speeds up progress.

Designed serendipity and a dynamic division of labour occur naturally when ideas,
questions, data, or tools are broadcast to a large group of people in a way that allows
everyone in the collaboration to discover what interests them, and react to it easily
and creatively. As such, for online collaborations to scale, online tools must make it
practical for anybody to join and contribute any amount at any time. This can be
expressed in the following ‘design patterns’ [97]:

• Encourage small contributions, allowing scientists to contribute in (quasi) real
time. This allows many scientists to contribute, increasing the cognitive diversity
and range of available expertise.

• Split up complex tasks into many small subtasks that can be attacked (nearly)
independently. This allows many scientists to contribute individually and ac-
cording to their expertise.

• Construct a rich and structured information commons, so that people can effi-
ciently build on prior knowledge. It should be easy to find previous work, and
easy to contribute new work to the existing body of knowledge.

• Human attention does not scale infinitely. Scientists only have a limited amount
of attention to devote to the collaboration, and should thus be able to focus on
their interests and filter out irrelevant contributions.

• Establish accepted methods for participants to interact and resolve disputes.
This can be an ‘honour code’ that encourages respectable and respectful beha-

44 4.3. Machine learning

viour, deters academic dishonesty, and protects the contributions of individual
scientists.

Still, even if scientists have the right expertise or skill to contribute at the right
time, they typically also need the right incentive to do so.

This problem was actually solved already centuries ago by establishing a reputa-
tion system implemented using the best medium for sharing information of the day,
the journal. Today, the internet and networked science tools provide a much more
powerful medium, but they also need to make sure that sharing data, code and ideas
online is in scientists’ best interest.

The key to do this seems to lie in extending the reputation system [97]. Online
tools should allow everyone to see exactly who contributed what, and link valuable
contributions to increased esteem amongst the users of the tools and the scientific
community at large. The traditional approach to do this is to link useful online contri-
butions to authorship in ensuing papers, or to link the reuse of shared data to citation
of associated papers or DOI’s. Scientific communities are typically small worlds, thus
scientists are encouraged to respect such agreements.

Moreover, beyond bibliographic measures, online tools can define new measures
to demonstrate the scientific (and societal) impact of contributions. These are some-
times called altmetrics or article-level metrics [112]. An interesting example is ArXiv,
an online archive of preprints (unpublished manuscripts) with its own reference track-
ing system (SPIRES). In physics, preprints that are referenced many times have a high
status among physicists. They are added to resumes and used to evaluate candidates
for scientific jobs. This illustrates that what gets measured, gets rewarded, and what
gets rewarded, gets done [97, 100]. If scholarly tools define useful new measures and
track them accurately, scientists will use them to assess their peers.

4.3 Machine learning

Machine learning is a field where a more networked approach would be particularly
valuable. Machine learning studies typically involve large datasets, complex code,
large-scale evaluations and complex models, none of which can be adequately repres-
ented in papers. Still, most work is only published in papers, in highly summarized
forms such as tables, graphs and pseudo-code. Oddly enough, while machine learning
has proven so crucial in analysing large amounts of observations collected by other
scientists, the outputs of machine learning research are typically not collected and
organized in any way that allows others to reuse, reinterpret, or mine these results to
learn new things, e.g., which techniques are most useful in a given application.

Chapter 4. Experiment Databases 45

4.3.1 Reusability and reproducibility

This makes us duplicate a lot of effort, and ultimately slows down the whole field
of machine learning [63, 153]. Indeed, without prior experiments to build on, each
study has to start from scratch and has to rerun many experiments. This limits the
depth of studies and the interpretability and generalizability of their results [4, 63]. It
has been shown that studies regularly contradict each other because they are biased
toward different datasets [80], or because they do not take into account the effects
of dataset size, parameter optimization and feature selection [71, 105]. This makes it
very hard, especially for other researchers, to correctly interpret the results. Moreover,
it is often not even possible to rerun experiments because code and data are missing,
or because space restrictions imposed on publications make it practically infeasible to
publish many details of the experiment setup. This lack of reproducibility has been
warned against repeatedly [80, 102, 142], and has been highlighted as one of the
most important challenges in data mining research [67].

4.3.2 Prior work

Many machine learning researchers are well aware of these issues, and have worked
to alleviate them. To improve reproducibility, there exist repositories to publicly share
benchmarking datasets, such as UCI [90]. Moreover, software can be shared on the
MLOSS website. There also exists an open source software track in the Journal for Ma-
chine Learning Research (JMLR) where short descriptions of useful machine learning
software can be submitted. Also, some major conferences have started checking sub-
missions for reproducibility [91], or issue open science awards for submissions that
are reproducible (e.g., ECML/PKDD 2013).

Moreover, there also exist experiment repositories. First, meta-learning projects
such as StatLog [93] and MetaL [22], and benchmarking services such as MLcomp
run many algorithms on many datasets on their servers. This makes benchmarks com-
parable, and even allows the building of meta-models, but it does require the code
to be rewritten to run on their servers. Moreover, the results are not organized to be
easily queried and reused.

Second, data mining challenge platforms such as Kaggle [29] and TunedIT [162]
collect results obtained by different competitors. While they do scale and offer mon-
etary incentives, they are adversarial rather than collaborative. For instance, code is
typically not shared during a competition.

Finally, the experiment database for machine learning [153] was introduced, which
organizes results from different users and makes them queryable through an online
interface. Unfortunately, it does not allow collaborations to scale easily. It requires
researchers to transcribe their experiments into XML, and only covers classification

46 4.4. OpenML

experiments.
While all these tools are very valuable in their own right, they do not provide many

of the requirements for scalable collaboration discussed above. It can be quite hard
for scientists to contribute, there is often no online discussion, and they are heavily
focused on benchmarking, not on sharing other results such as models. By introducing
OpenML, we aim to provide a collaborative science platform for machine learning.

4.4 OpenML

OpenML is an online platform where machine learning researchers can automatically
share data in fine detail and organize it to work more effectively and collaborate on
a global scale [124, 155, 154].

It allows anyone to challenge the community with new data to analyse, and every-
one able to mine that data to share their code and results (e.g., models, predictions,
and evaluations). In this sense, OpenML is similar to data mining challenge plat-
forms, except that it allows users to work collaboratively, building on each other’s
work. OpenML makes sure that each (sub)task is clearly defined, and that all shared
results are stored and organized online for easy access, reuse and discussion.

Moreover, it is being integrated in popular data mining platforms such as Weka [61],
R [16, 148], Scikit-learn [28, 103], RapidMiner [151, 121], MOA [13] and Cort-
ana [92]. This means that anyone can easily import the data into these tools, pick any
algorithm or workflow to run, and automatically share all obtained results. Results
are being produced locally: everyone that participates can run experiments on his
own computers and share the results on OpenML. The web-interface provides easy
access to all collected data and code, compares all results obtained on the same data
or algorithms, builds data visualizations, and supports online discussions. Finally, it is
an open source project, inviting scientists to extend it in ways most useful to them.

OpenML offers various services to share and find datasets, to download or create
scientific tasks, to share and find algorithms (called flows), and to share and organize
results. These services are available through the OpenML website, as well as through
a REST API for integration with software tools.

4.4.1 Datasets

Anyone can provide the community with new datasets to analyse. To be able to ana-
lyse the data, OpenML accepts a limited number of formats. For instance, currently it
requires the ARFF format [61] for tabular data, although more formats will be added
over time.

Chapter 4. Experiment Databases 47

Table 4.1: Standard Meta-features.

Category Meta-features
Simple # Instances, # Attributes, # Classes, Dimensionality, Default Ac-

curacy, # Observations with Missing Values, # Missing Values,
% Observations With Missing Values, % Missing Values, # Numeric
Attributes, # Nominal Attributes, # Binary Attributes, % Numeric
Attributes, % Nominal Attributes, % Binary Attributes, Majority
Class Size, % Majority Class, Minority Class Size, % Minority Class

Statistical Mean of Means of Numeric Attributes, Mean Standard Deviation
of Numeric Attributes, Mean Kurtosis of Numeric Attributes, Mean
Skewness of Numeric Attributes

Information Theoretic Class Entropy, Mean Attribute Entropy, Mean Mutual Information,
Equivalent Number Of Attributes, Noise to Signal Ratio

Landmarkers [108] Accuracy of Decision Stump, Kappa of Decision Stump, Area un-
der the ROC Curve of Decision Stump, Accuracy of Naive Bayes,
Kappa of Naive Bayes, Area under the ROC Curve of Naive Bayes,
Accuracy of k-NN, Kappa of k-NN, Area under the ROC Curve of
k-NN, . . .

The data can either be uploaded or referenced by a URL. This URL may be a
landing page with further information or terms of use, or it may be an API call to
large repositories of scientific data such as the SDSS [146]. In some cases, such as
Twitter feeds, data may be dynamic, which means that results won’t be repeatable.
However, in such tasks, repeatability is not expected. OpenML will automatically ver-
sion each newly added dataset. Optionally, a user-defined version name can be added
for reference. Next, authors can state how the data should be attributed, and which
(creative commons) licence they wish to attach to it. Authors can also add a reference
for citation, and a link to a paper. Finally, extra information can be added, such as the
(default) target attribute(s) in labelled data, or the row-id attribute for data where
instances are named.

For known data formats, OpenML will then compute an array of data character-
istics, also called meta-features. Typical meta-features are often categorized as either
simple, statistical, information theoretic or landmarkers. Table 4.1 shows some meta-
features computed by OpenML.

OpenML indexes all datasets and allows them to be searched through a standard
keyword search and search filters. Each dataset has its own page with all known in-
formation. This includes the general description, attribution information, and data
characteristics, but also statistics of the data distribution and, and all scientific tasks
defined on this data (see below). It also includes a discussion section where the data-

48 4.4. OpenML

set and results can be discussed.

4.4.2 Task types

A dataset alone does not constitute a scientific task. We must first agree on what types
of results are expected to be shared. This is expressed in task types: they define what
types of inputs are given, which types of output are expected to be returned, and what
scientific protocols should be used. For instance, classification tasks should include
well-defined cross-validation procedures, labelled input data, and require predictions
as outputs.

OpenML covers the following task types:

Supervised Classification Given a dataset with a nominal target and a set of train/test
splits (e.g., generated by a cross-validation procedure) train a model and re-
turn the predictions of that model. The server will evaluate these, and compute
standard evaluation measures, such as predictive accuracy, f-measure and area
under the ROC curve.

Supervised Regression Given a dataset with a numeric target and a set of train/test
splits (e.g., generated by a cross-validation procedure) train a model and re-
turn the predictions of that model. The server will evaluate these, and compute
standard evaluation measures, such as root mean squared error (RMSE), mean
absolute error and root relative squared error.

Learning Curve Analysis A variation of Supervised Classification. Given a dataset
with a nominal target, various data samples of increasing size are defined. A
model is build for each individual data sample. For each of these samples, vari-
ous evaluation measures are calculated; from these a learning curve can be
drawn. Chapter 6 will elaborate on this.

Data Stream Classification The online version of classification. Given a sequence of
observations, build a model that is able to process these one by one and adapts
to possible changes in the input space. Chapter 5 will elaborate on this.

Machine Learning Challenge A variation of Supervised Classification, similar to the
setup of Kaggle [29]. The user is presented with a partly labelled dataset. The
task is to label the unlabelled instances. As a result, there can be no cross-
validation procedure, as there will always be a completely hidden test set.

Subgroup Discovery Given a dataset, return a conjunction of rules that describes
a subgroup that is interesting with respect to a given quality measure. These
quality measures can be weighted relative accuracy, jaccard measure or chi-
squared.

Chapter 4. Experiment Databases 49

Given inputs

source data anneal (1) Dataset (required)

estimation procedure 10-fold Cross-validation EstimationProcedure

(required)

evaluation measures predictive accuracy String (optional)

target feature class String (required)

data splits http://www.openml.org/api splits/get/1/1/Task 1 splits.arff TrainTestSplits (hidden)

Expected outputs

model A file containing the model built on all the input data. File (optional)

evaluations A list of user-defined evaluations of the task as key-value pairs. KeyValue (optional)

predictions An arff file with the predictions of a model Predictions (required)

Figure 4.1: Example of an OpenML task description.

4.4.3 Tasks

If scientists want to perform, for instance, classification on a given dataset, they can
create a new machine learning task. Tasks are instantiations of task types with specific
inputs (e.g., datasets). Tasks are created once, and then downloaded and solved by
anyone.

An example of such a task is shown in Figure 4.1. In this case, it is a classification
task defined on dataset ‘anneal’ (version 1). Next to the dataset, the task includes the
target attribute, the evaluation procedure (here: 10-fold cross-validation) and a file
with the data splits for cross-validation. The latter ensures that results from different
researchers can be objectively compared. For researchers doing an (internal) hyper-
parameter optimization, it also states the evaluation measure to optimize for. The
required outputs for this task are the predictions for all test instances, and option-
ally, the models built and evaluations calculated by the user. However, OpenML will
also compute a large range of evaluation measures on the server to ensure objective
comparison.

Finally, each task has its own numeric id, a machine-readable XML description, as
well as its own web page including all runs uploaded for that task and leaderboards.

4.4.4 Flows

Flows are implementations of single algorithms, workflows, or scripts designed to
solve a given task. Flows can either be uploaded directly (source code or binary)

50 4.4. OpenML

moa.HoeffdingTree

Visibility: public Uploaded on 24-06-2014 by Jan van Rijn Moa 2014.03 270 runs

A Hoeffding tree (VFDT) is an incremental, anytime decision tree induction algorithm that is

capable of learning from massive data streams, assuming that the distribution generating examples

does not change over time. Hoeffding trees exploit the fact that a small sample can often be

enough to choose an optimal splitting attribute. This idea is supported mathematically by the

Hoeffding bound, which quantifies the number of observations (in our case, examples) needed to

estimate some statistics within a prescribed precision (in our case, the goodness of an attribute).

Please cite: Geoff Hulten, Laurie Spencer, Pedro Domingos: Mining time-changing data streams.

In: ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining, 97–106, 2001

Parameters

b binarySplits: Only allow binary splits. default: false

c splitConfidence: The allowable error in split decision, values closer to 0 will

take longer to decide.

default: 1.0E-7

e memoryEstimatePeriod: How many instances between memory consumption

checks.

default: 1000000

g gracePeriod: The number of instances a leaf should observe between split

attempts.

default: 200

l leafprediction: Leaf prediction to use. default: NBAdaptive

m maxByteSize: Maximum memory consumed by the tree. default: 33554432

p noPrePrune: Disable pre-pruning. default: false

q nbThreshold: The number of instances a leaf should observe before permit-

ting Naive Bayes.

default: 0

r removePoorAtts: Disable poor attributes. default: false

s splitCriterion: Split criterion to use. default: InfoGainSplitCriterion

t tieThreshold: Threshold below which a split will be forced to break ties. default: 0.05

z stopMemManagement: Stop growing as soon as memory limit is hit. default: false

Figure 4.2: Example of an OpenML flow.

or reference it by URL. The latter is especially useful if the code is hosted on an
open source platform such as GitHub or CRAN. Flows can be updated as often as
needed. OpenML will version each uploaded flow, while users can provide their own
version name for reference. Ideally, what is uploaded is software that takes a task id as
input and then produces the required outputs. This can be a wrapper around a more
general implementation. If not, the description should include instructions detailing
how users can run an OpenML task (e.g., to verify submitted results).

OpenML stores meta-data about the uploaded flow, such as the dependencies, a

Chapter 4. Experiment Databases 51

flow description and citation information. A flow can also contain one or more para-
meters. For each parameter, the name, description and default value (if known) are
stored. Flows can also contain subflows. This way meta-algorithms such as Bagging
can be distinguishable, e.g., Bagging CART trees would be different from Bagging REP
Trees.

It is also possible to annotate flows with characteristics (similar to the charac-
teristics in Table 3.1 on page 36), such as whether it can handle missing attributes,
(non)numeric features and (non)numeric targets. As with datasets, each flow has its
own page which combines all known information and all results obtained by running
the flow on OpenML tasks, as well as a discussion section, see Figure 4.2.

It is important to emphasize that, although flows can contain pieces of software,
these are not executed on the OpenML server. Flows are executed on the computer(s)
of the users; it is their responsibility to link the uploaded results to the correct flow.
In that sense, a flow on the OpenML server is a reference that links all the results
obtained by the same algorithm to each other.

4.4.5 Setups

A setup is the combination of a flow and a certain setting of the parameters. Whenever
a flow is uploaded, the user can also register the parameters that exist. It has been
noted that parameter settings have a tremendous effect on the performance of an
algorithm [9]. This widely accepted claim is easy to confirm using the experimental
results of OpenML and the concepts of setups, as we will see further on. Setups that
are run with default parameter settings, are flagged as such.

4.4.6 Runs

Runs are applications of flows on a specific task. They are submitted by uploading
the required outputs (e.g. predictions) together with the task id, the flow id, and any
parameter settings. Each run also has its own page with all details and results, shown
partially in Figure 4.3. In this case, it is a classification run, where the predictions
of the specific task are uploaded, and the evaluation measures are calculated on the
server. Based on the parameter settings, the run is also linked to a setup.

OpenML calculates the evaluations per fold. The fold-specific scores are aggreg-
ated as standard deviations in the web-interface, but can be obtained individually via
the Rest API. For class-specific measures such as area under the ROC curve, precision
and recall, per-class results are stored. Also the confusion matrix is available. Apart
from the shown evaluation measures, a wide range of other evaluation measures is

52 4.4. OpenML

also calculated, e.g., f-measure, kappa and root mean squared error. Additional in-
formation, such as run times and details on hardware can be provided by the user.

Moreover, because each run is linked to a specific task, flow, setup, and author,
OpenML can aggregate and visualize results accordingly.

4.4.7 Studies

Studies are a combinations of datasets, tasks, flows, setups and runs. It is possible to
link all these resources together, resulting in a permanent link that can be referred
to in papers. Studies have a web-interface where general information can be given
and results can be discussed. Having this all linked together makes it convenient for
journal reviewers to verify the obtained results, for fellow researchers to build upon
each others results and for anyone in general to investigate earlier obtained results.

4.4.8 Plug-ins

OpenML is being integrated in several popular machine learning environments, so
that it can be used out of the box. These plug-ins can be downloaded from the web-
site. Figure 4.4 shows how OpenML is integrated in WEKA’s Experimenter [61]. After
selecting OpenML as the result destination and providing login credentials, a num-
ber of tasks can be added through a dialogue. The plug-in supports many additional
features, such as the use of filters (for pre-processing operations), uploading of para-
meter sweep traces (for parameter optimization) and uploading of human readable
model representations.

It has been widely recognized that the quality of an algorithm can be markedly im-
proved by also selecting the right pre-processing and post-processing operators [41,
95, 145]. For example, the quality of k Nearest Neighbour algorithms typically de-
grades when the number of features increases [50], so it makes sense to combine
these algorithms with feature selection [77, 111] or feature construction. The com-
plete chain of pre-processing operators, algorithms and post-processing operators is
typically referred to as a workflow. In order to extend the support for workflow re-
search, OpenML is integrated in RapidMiner [121]. The integration consists of three
new RapidMiner operators: one for downloading OpenML tasks, one for executing
them and one for uploading the results, see Figure 4.5.

Typically, they will be connected as shown in Figure 4.5a. However, this modu-
larization in three operators will likely be beneficial in some cases. The operators
require an OpenML account to interact with the server. The “Execute OpenML Task”
is a so-called super-operator; it contains a sub-workflow that is expected to solve the
task that is delivered at the input port. The subroutine is executed for each defined

Chapter 4. Experiment Databases 53

Run 24996

Task 59 (Supervised Classification) Iris Uploaded on 13-08-2014 by Jan van Rijn

Flow

weka.J48 Ross Quinlan (1993). C4.5: Programs for Machine Learning.

weka.J48 C 0.25

weka.J48 M 2

Result files

Description

XML file describing the run, including user-defined evaluation measures.
xml

Model readable

A human-readable description of the model that was built.
model

Model serialized

A serialized description of the model that can be read by the tool that generated it.
model

Predictions

ARFF file with instance-level predictions generated by the model.
arff

Evaluations

Area under the roc curve

0.9565± 0.0516

Iris-setosa Iris-versicolor Iris-virginica

0.98 0.9408 0.9488

Confusion matrix

actual\predicted Iris-setosa Iris-versicolor Iris-virginica

Iris-setosa 48 2 0

Iris-versicolor 0 47 3

Iris-virginica 0 3 47

Precision

0.9479± 0.0496

Iris-setosa Iris-versicolor Iris-virginica

1 0.9038 0.94

Predictive accuracy 0.9467± 0.0653

Recall

0.9467± 0.0653

Iris-setosa Iris-versicolor Iris-virginica

0.96 0.94 0.94

Figure 4.3: Example of an OpenML run.

54 4.4. OpenML

Figure 4.4: WEKA integration of OpenML.

training set, and produces a model. This model is then used to predict the labels
for the observations in the associated test set. An example of such a sub-workflow,
including several pre-processing steps, is shown in Figure 4.5b. The output of this
super-operator is a data structure containing predictions for all instances in the test
sets, and basic measurements such as run times.

Additionally, researchers that use R can use the openml package, to work in com-
pliance with the mlr package [16]. It supports a wide range of functionalities, mainly
focussing on supervised classification and regression. An example of how to run an
OpenML task is shown in Figure 4.6. OpenML is also integrated in ‘Scikit-learn’ [28,
103], a common Python package for Machine Learning. It supports similar function-
alities as the openml package in R.

Furthermore, OpenML is integrated in MOA [13]. It has been widely recognized
that mining data streams differs from conventional batch data mining [14, 118]. In
the conventional batch setting, usually a limited amount of data is provided and the
goal is to build a model that fits the data as well as possible, whereas in the data
stream setting, there is a possibly infinite amount of data, with concepts possibly
changing over time, and the goal is to build a model that captures general trends.
With the MOA plug-in, OpenML facilitates data stream research, as we will see in
Chapter 5.

Chapter 4. Experiment Databases 55

(a) Main Workflow

(b) Subroutine solving OpenML task

Figure 4.5: Example of a RapidMiner workflow solving an OpenML task.

Finally, OpenML is also integrated in Cortana [92], a workbench that facilitates
Subgroup Discovery [7]. Subgroup Discovery is a form of Supervised Learning that
aims to describe certain parts in the data that comply to a certain measure of inter-
estingness. What quality measure is desired, is defined in the OpenML task.

All-together, these plug-ins enable frictionless collaboration, as users do not have
any additional burden to share their experimental results. This leads to an extensive
database of experiments, that enables us to learn from the past.

4.5 Learning from the past

Having a vast set of experiments, collected and organized in a structured way, al-
lows us to conduct various types of experiments. In this chapter, we will demonstrate
various ways of research that OpenML facilitates. Vanschoren et al. [153] describes
specifically three types of experiments, offering increasingly generalizable results:

56 4.5. Learning from the past

1 l i b ra ry (mlr)
2 l i b ra ry (OpenML)
3

4 # s e t API key to read only key (rep lace i t with your own key)
5 setOMLConfig (apikey = ” b2994bdb7ecb3c6f3c8f3b35f4b47f1f ”)
6

7 l r n = makeLearner (” c l a s s i f . randomForest ”)
8

9 # upload the new flow (with informat ion about the algor i thm and s e t t i n g s) ;
10 # i f t h i s a lgor i thm al ready e x i s t s on the server , one w i l l r e c e i v e a message
11 # with the ID of the e x i s t i n g flow
12 f low . id = uploadOMLFlow(l r n)
13

14 # the l a s t s tep i s to perform a run and upload the r e s u l t s
15 run . mlr = runTaskMlr (task , l r n)
16 run . id = uploadOMLRun(run . mlr)

Figure 4.6: R integration of OpenML.

Model-level analysis evaluate machine learning methods over one or multiple data-
sets, using a given performance measure (e.g., predictive accuracy or area under
the ROC curve). These studies give insight in HOW a particular method works.

Data-level analysis give insight in how the performance of specific machine learn-
ing methods is affected by given data characteristics (e.g., number of features,
number of classes). These studies attempt to explain WHEN (on which kinds of
data) a particular method should be preferred over the other.

Method-level analysis leverage given algorithm characteristics (e.g., bias-variance
profile, model predictions on earlier datasets) in order to explain WHY a partic-
ular algorithm behaves the way it does.

4.5.1 Model-level analysis

In this first type of study, we use the vast amount of runs in OpenML to gain insight
in how certain algorithms perform. Many flows (and setups) are run over a vast set
of tasks, and the results can be used to benchmark, compare or rank algorithms.

4.5.1.1 Comparing flows

For each task, OpenML automatically plots all evaluation scores of all performed al-
gorithms. Figure 4.7 shows this for the commonly used UCI dataset ‘letter’ [47]. In

Chapter 4. Experiment Databases 57

 0.5

 0.6

 0.7

 0.8

 0.9

 1

w
eka.SM

O
_R

B
FK

ernel

classif.random
Forest

m
lr.classif.random

Forest

classif.ranger

classif.random
ForestSR

C

w
eka.R

andom
Forest

rm
.k_nn

w
eka.B

agging_IB
k

w
eka.IB

k

classif.IB
k

w
eka.A

daB
oostM

1_IB
k

w
eka.M

ultiB
oostA

B
_IB

k

w
eka.IB

1

w
eka.A

daB
oostM

1_LM
T

w
eka.K

Star

classif.kknn

w
eka.A

daB
oostM

1_J48

w
eka.SM

O
_PolyK

ernel

w
eka.B

agging_LM
T

w
eka.R

andom
C
om

m
ittee_R

andom
Tree

w
eka.EN

D
_N

D
_J48

classif.svm

w
eka.M

ultiB
oostA

B
_J48

w
eka.M

ultiB
oostA

B
_JR

ip

w
eka.B

agging_R
andom

Tree

w
eka.A

daB
oostM

1_R
EPTree

classif.ksvm

w
eka.B

agging_JR
ip

w
eka.B

agging_J48

w
eka.LM

T

w
eka.M

ultiB
oostA

B
_R

EPTree

w
eka.R

andom
SubSpace_R

EPTree

w
eka.A

1D
E

w
eka.FU

R
IA

w
eka.C

lassificationV
iaR

egression_M
5P

classif.cforest

w
eka.B

agging_R
EPTree

w
eka.LW

L_J48

classif.PA
R
T

w
eka.PA

R
T

P
re

d
ic

ti
v

e
A

cc
u

ra
cy

Figure 4.7: Performance of various algorithms on the ‘letter’ dataset.

this dataset the task is to classify letters produced by various fonts, based on pre-
extracted attributes. This dataset has 26 classes (each letter from the alphabet is a
class), which is fairly high for a classification task. The x-axis shows a particular flow,
and each dot represents a given parameter setting that obtained a certain score. This
type of query shows what kind of algorithm is suitable for a given dataset.

In order not to overload the image, we only show the 40 best performing flows.
Ensemble methods are grouped by the base-learner that is used (e.g., Bagging IBk is
considered a different flow than Bagging J48). The result contains flows from various
classification workbenches that are integrated in OpenML, i.e., Weka, R and Rapid-
Miner. In this case, it seems that instance-based methods perform fairly well. Among
the top performing algorithms, there are many variations of Random Forest and k-NN,
with IBk being the Weka version of instance-based classification.

A similar image was published in [153], based on the experiment database for
machine learning. The results are similar to the ones we present. However, the results
from OpenML are based on more algorithms from more toolboxes, produced by vari-
ous people from all over the world. For this reason, we expect that the observations

58 4.5. Learning from the past

Table 4.2: Classifiers and the important parameters that were optimized for populat-
ing the database.

Classifier Parameters Range Scale
SVM (RBF Kernel) complexity [2−12–212] log

gamma [2−12–212] log
J48 confidence factor [10−4–10−1] log

minimal leaf size [20–26] log
k-NN number of neighbours [1–50] linear
Logistic Regression ridge [2−12–212] log
Random Forest nr of variables per split [21–28] log
LogitBoost (REPTree) shrinkage [10−4–10−1] log

max depth [1–5] linear
number of iterations [500–1000] linear

made upon OpenML experiments are more substantial.

4.5.1.2 Effect of parameter optimization

OpenML facilitates that parameter optimization techniques can store all intermediate
results, giving more options to analyse the specific effects of parameters. We used
Weka’s MultiSearch package to populate the database with the classifiers and para-
meter settings specified in Table 4.2. If the number of parameter combinations ex-
ceeded 200, Random Search [8] was used to randomly select 200 parameter settings.

A 10-fold cross-validation procedure was used, with for each fold an internal 2-fold
cross-validation procedure to select the best parameter setting for this fold, resulting
in at most 2,000 attempted setups per run. Figure 4.8 shows violin plots of the varying
accuracy results. All individual results can be obtained from OpenML.

These kind of studies lead to interesting observations. They show that especially
Support Vector Machines need proper parameter tuning: the median performance is
very low compared to the maximum performance. The probability of obtaining a low
score for this is rather high, as can be seen by the high density area at the bottom
of the plot. The other algorithms perform more robust, especially Random Forest and
Decision Tree (high density at the top of the plot, small tail at the bottom). By further
inspecting the results, we observe that all outliers can be attributed to a sub-optimal
value of a specific parameter. The outliers of the J48 decision tree were all produced
by a high value (64) for the parameter that determines the minimal leaf size. The
outliers of the Random Forest were produced by a low value (2) for the attributes
that are available at each split. The outliers of LogitBoost were produced when the

Chapter 4. Experiment Databases 59

●

●

●●

●●●●

●●●●

●●●●

●

●

●●

●

●●

●

●●●●
●●●●

●●●●

●●●●

●●

●

●

●

●●●●

●

●

●●●

●●

●

●●

●●

●●●

●●●

●●●●●●

●

●●●●●

●

●

●

●●

●●●●●●●●●●●●

●

●●

●●

●

●

●

●

●●●

●

●

●●●

●●

●

●●

●●

●

●●

●●●

●●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●●

●●●

●●●

●●●●●●

●

●

●●●●

●

●

●

●

●
●●

●

●

●

●

●●●

●

●

●●●

●●

●

●●

●●

●

●●

●●●

●●

●

●●●

●

●

●

●●

●

●

●

●

●●
●●

●●

●●●

●

●

●●●

●●

●●●

●●

●●●

●●●●●

●

●●●

●●

●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●

●

●
●
●

●

●●

●

94

95

96

97

98

99

SM
O(R

BF K
er

ne
l)

k−
NN

Lo
gis

tic J4
8

Lo
git

 B
oo

st(
REP T

re
e)

Ran
do

m
 F

or
es

t

P
re

di
ct

iv
e

A
cc

ur
ac

y

Figure 4.8: Variation in predictive accuracy when optimizing parameters on the “sick”
dataset.

base-learner was built with a maximum depth of 1, effectively making it a decision
stump.

It is plausible that when using a decision tree, a relation exists between the num-
ber of instances and the optimal value for minimal leaf size. If the dataset is too
small, setting this value too high restricts the flexibility of the model, possibly leading
to under-fitted models. Similarly, when building a Random Forest, having too few at-
tributes to select a split from can lead to suboptimal trees. Although these results will
make sense to most machine learning experts, currently there are no publications or
data to back up these observations. These kind of data-driven experiments can be a
first step towards a better understanding of parameter behaviour in machine learning.

4.5.1.3 Parameter effect across datasets

It is possible to track the effect of a certain parameter over a range of values. Fig-
ure 4.9 plots the effect of the gamma parameter of the RBF kernel for Support Vector
Machines, on various datasets.

As we can see, the parameter has a similar effect on most of the displayed data-
sets. By increasing the value, performance grows to an optimum. After that it rapidly
degrades. In the case of ‘car’, ‘optdigits’ and ‘waveform’, performance degrades to the
default accuracy, after which it stabilizes. In the case of the letter dataset, the de-
gradation hasn’t finished yet, but it is to be expected that it continues in a similar
way. For the ‘soybean’ dataset, it stabilizes above this level. The optimal value of the

60 4.5. Learning from the past

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.008 0.04 0.2 1 5 25 125

car (7)
letter (17)

soybean (36)
waveform-5000 (41)

optdigits (65)

Figure 4.9: Effect of gamma parameter of the RBF kernel for Support Vector Machines
on various datasets. The number between brackets indicates the number of attributes
of such dataset.

parameter is different for all datasets, as would be expected. It seems that setting this
value too low is less harmful for performance than setting it too high. All-together,
the parameter landscape seems to be smooth, i.e., there are no spikes in the plots.

4.5.1.4 Comparison over many datasets

In order to gain a decent understanding of how a classifier performs, it could be
evaluated over a wide range of datasets. We selected a set of classifiers and datasets
from OpenML. All classifiers were ran on all datasets.

Figure 4.10 shows violin plots of various algorithms over a well selected set of
datasets (complete list in Table 6.1 on page 115). Violin plots show the probability
density of the performance scores at different values [66]. Additionally, a box plot is
shown in the middle. The classifiers are sorted based on the median. Classifiers to the
right perform generally better than classifiers to the left. Random Forest [24] performs
best on average, but also the other ensembles from Chapter 3 perform good, e.g.,
Adaptive Boosting [46] and Logistic Boosting [48]. Logistic Model Tree (LMT) [84]
(which is a combination of trees and Logistic Regression) also performs reasonably
well.

Note that when a classifier is ranked low, it does not necessarily mean that is it a

Chapter 4. Experiment Databases 61

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

Ord
ina

l L
ea

rn
ing

 M
et

ho
d

Hyp
er

 P
ipe

s

Con
jun

cti
ve

 R
ule

One
 R

ule

Ada
 B

oo
st(

Dec
isi

on
 S

tu
m

p)

Naiv
e

Bay
es

Ada
 B

oo
st(

Naiv
e

Bay
es

)

LA
D T

re
e

Ran
do

m
 T

re
e

Dec
isi

on
 T

ab
le

Bay
es

ian
 N

et
wor

k

SM
O(R

BF K
er

ne
l)

Hoe
ffd

ing
 T

re
e

M
ult

ila
ye

r P
er

ce
pt

ro
n

(1
0,

10
)

REP T
re

e

Lo
gis

tic

M
ult

ila
ye

r P
er

ce
pt

ro
n

(1
0)

M
ult

ila
ye

r P
er

ce
pt

ro
n

(2
0)

J R
ip

SM
O(P

oly
 K

er
ne

l)

Lo
git

 B
oo

st(
Dec

isi
on

 S
tu

m
p)

J4
8

Sim
ple

 C
ar

t

k−
NN (k

 =
 1

0)

k−
NN (k

 =
 1

)

FURIA

Bag
gin

g(
REP T

re
e)

Lo
gis

tic
 M

od
el

Tr
ee

Ada
 B

oo
st(

J4
8)

Ran
do

m
 F

or
es

t

P
re

di
ct

iv
e

A
cc

ur
ac

y

(a) Accuracy

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.4

0.6

0.8

1.0

Ord
ina

l L
ea

rn
ing

 M
et

ho
d

One
 R

ule

Con
jun

cti
ve

 R
ule

Hyp
er

 P
ipe

s

Ada
 B

oo
st(

Dec
isi

on
 S

tu
m

p)

SM
O(R

BF K
er

ne
l)

Ran
do

m
 T

re
e

Hoe
ffd

ing
 T

re
e

k−
NN (k

 =
 1

)

M
ult

ila
ye

r P
er

ce
pt

ro
n

(1
0,

10
)

Naiv
e

Bay
es

SM
O(P

oly
 K

er
ne

l)

Ada
 B

oo
st(

Naiv
e

Bay
es

)
J4

8

M
ult

ila
ye

r P
er

ce
pt

ro
n

(1
0)

Dec
isi

on
 T

ab
le

J R
ip

Sim
ple

 C
ar

t

M
ult

ila
ye

r P
er

ce
pt

ro
n

(2
0)

REP T
re

e

Lo
gis

tic

Bay
es

ian
 N

et
wor

k

LA
D T

re
e

FURIA

k−
NN (k

 =
 1

0)

Lo
git

 B
oo

st(
Dec

isi
on

 S
tu

m
p)

Ada
 B

oo
st(

J4
8)

Bag
gin

g(
REP T

re
e)

Lo
gis

tic
 M

od
el

Tr
ee

Ran
do

m
 F

or
es

t

A
re

a
U

nd
er

 R
oc

 C
ur

ve

(b) Area under the ROC Curve

Figure 4.10: Ranking of algorithms over a set of 105 datasets.

62 4.5. Learning from the past

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Logistic Model Tree
Random Forest

Bagging(REP Tree)
Ada Boost(J48)

FURIA
SMO(Poly Kernel)

Simple Cart
Logit Boost(Decision Stump)

Multilayer Perceptron (20)
J48

Logistic
J Rip

Multilayer Perceptron (10)
REP Tree

k-NN (k = 10) LAD Tree
Multilayer Perceptron (10,10)
k-NN (k = 1)
Decision Table
Hoeffding Tree
SMO(RBF Kernel)
Bayesian Network
Ada Boost(Naive Bayes)
Naive Bayes
Ada Boost(Decision Stump)
Random Tree
One Rule
Conjunctive Rule
Hyper Pipes
Ordinal Learning Method

CD

Figure 4.11: Results of Nemenyi test (α = 0.05) on the predictive accuracy of classifi-
ers in OpenML. Classifiers are sorted by their average rank (lower is better). Classifiers
that are connected by a horizontal line are statistically equivalent.

bad classifier. For example, Naive Bayes does not score well on the general ranking,
but is used quite often in text mining, which suggests that it is suitable for that specific
task. When a classifier does not end high in the general ranking, this typically indic-
ates that the algorithm designer must put more effort in specifying for what types of
data it works well.

To assess statistical significance of such results, we can use the Friedman test with
post-hoc Nemenyi test to establish the statistical relevance of our results. These tests
are considered the standard when it comes to comparing multiple classifiers [36]. The
Friedman test checks whether there is a statistical significant difference between the
classifiers; when this is the case the Nemenyi post-hoc test can be used to determine
which classifiers are significantly better than others. A statistical test operates on a
given evaluation measure.

Figure 4.11 shows the result of the Nemenyi test on the predictive accuracy of the
classifiers from Figure 4.10. We see a similar order of classifiers as in Figure 4.10;
again the Logistic Model Tree and Random Forest perform best. Classifiers that are
connected by a horizontal line are statistically equivalent, e.g., there was no statistical
evidence that the Logistic Model Tree is better than the SVM with Polynomial kernel.

These results are obtained by running the respective algorithms on the datasets
without hyperparameter tuning. It has been noted that hyperparameter optimization
has a big influence on the performance of algorithms. It would be interesting to see
how an optimization procedure (e.g., Random Search) will affect these rankings.

Chapter 4. Experiment Databases 63

4.5.2 Data-level analysis

In the previous chapter, we used the experiments from OpenML to gain insight in
how algorithms perform. Meta-learning focusses on when algorithms are expected to
perform well. In this chapter we demonstrate how to obtain this knowledge.

4.5.2.1 Data property effect

As OpenML contains many runs of algorithms with different parameter settings, we
can use these results to gain more insight in the interplay between a certain data
characteristic and the optimal value of such parameter. In order to do so, we fix
all parameters to a given value (e.g., the default value) and vary the one that we
are interested in. The optimal value is the value with which the algorithm obtains
the highest performance on a given performance measure; in this case predictive
accuracy. In case of a tie, a lower value was preferred.

The Random Forest classifier has many parameters. In order to assure more di-
versity in the individual trees, at each node the tree induction algorithm can only
select a splitting criteria out of a restricted set of randomly chosen attributes. The
‘Number of Features’ parameter controls the number of attributes that can be chosen
from. Intuitively, there is a relationship between the number of features of the data-
set and the optimal value for this parameter. This intuition is built upon in popular
machine learning workbenches. For example, in Weka [61] this parameter defaults to
the logarithm of the number of features, and in Scikit-learn this value defaults to the
square root of the number of features. Figure 4.12a plots the optimal value against the
‘Number of Features’ data characteristic. Figure 4.12b plots the optimal value against
the ‘Dimensionality’ data characteristic (which is the number of features divided by
the number of instances). By definition, there can be no optimal values in the top left
area of Figure 4.12a: the optimal value for this parameter can not be higher than the
actual number of features of a dataset.

The plot seems to confirm some sort of relation between the number of attributes
and the optimal value for this parameter. However, these scatter-plots also have some
intrinsic disadvantages: overlapping points are not visible as such, it only shows the
absolute best value of the parameter and the results are circumstantial (i.e., the results
can be completely different when other parameters are varied). Conclusions should
be drawn with great care.

4.5.2.2 Effect of feature selection

It is often claimed that data pre-processing is an important factor contributing to-
wards the performance of classification algorithms. We can use the experiments in

64 4.5. Learning from the past

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
2

2
4

2
6

2
8

2
10

2
12

2
14

O
p
ti

m
al

 v
al

u
e

(a) Number of Features

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
-14

2
-12

2
-10

2
-8

2
-6

2
-4

2
-2

2
0

2
2

2
4

2
6

O
p
ti

m
al

 v
al

u
e

(b) Dimensionality

Figure 4.12: The optimal values of the ‘Random Features per Split’ parameter of Ran-
dom Forests

Chapter 4. Experiment Databases 65

OpenML to investigate whether this is true, and on what kind of data this is the case.
We will focus on feature selection. Real world data sets can be rife with irrelevant
features, especially if the data was not gathered specifically for the classification task
at hand. For instance, in many business applications hundreds of customer attributes
may have been captured in some central data store, whilst only later is decided what
kind of models actually need to be built [114]. In order to help classifiers building a
good model, a feature selection procedure can be adopted, selecting a representative
set of features.

Many OpenML tasks have for a given classifier results on how it performed with
and without various pre-processing operators. For example, in Weka, we can use the
Feature Selected Classifier, to apply feature selection on a given dataset. We simply
combine the results of that algorithm with and without the feature selection proced-
ure, and store which one performed better. There are many different feature selection
techniques. In this experiment, we used Correlation-based Feature Subset Selection
as feature selector. It attempts to identify features that are highly correlated with the
target attribute, yet uncorrelated with each other [62]. However, also many other
feature selection procedures exists.

We can plot the effect of feature selection on classifier performance against data
characteristics. In Figure 4.13, each dot represents a dataset. Its position on the x-
axis represents the number of attributes of that dataset, and its position on the y-axis
represents the number of instances of that dataset. Then the colour of the dot shows
whether feature selection yielded better or worse results.

These scatter-plots show both some expected behaviour as well as some inter-
esting patterns. First of all, we can see that feature selection is most beneficial for
methods such as k-NN (Figure 4.13a) and Naive Bayes (Figure 4.13b). This is ex-
actly what we would expect: due to the curse of dimensionality, nearest neighbour
methods can suffer from too many attributes [117] and Naive Bayes is vulnerable
to correlated features [78]. Quite naturally, the trend seems that when using k-NN,
feature selection yields good results on datasets with many features [111]. We also
see unexpected behaviour. For example, it has been noted that some tree-induction
algorithms have built-in protection against irrelevant features [115]. However, it can
be observed that still in many cases it benefits from feature selection (Figure 4.13c).
Also, as one of the most dynamic and powerful model types, MultiLayer Perceptrons
are considered to be capable of selecting relevant features (Figure 4.13d). However,
in order to do so, the parameters need to be tuned accordingly. Intuitively, the more
features the dataset contains, the more epochs are needed to learn a good model.
If there is not enough budget to invest in an appropriate number of epochs, feature
selection can serve as an alternative.

66 4.5. Learning from the past

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

Better
Equal

Worse

(a) k-NN

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

Better
Equal

Worse

(b) Naive Bayes

Figure 4.13: The effect of feature selection on classifier performance, plotted against
two data characteristics (number of features on the x-axis, number of instances on the
y-axis). Each dot represents a dataset, the colour indicates whether the performance
was increased or decreased by feature selection.

Chapter 4. Experiment Databases 67

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

Better
Equal

Worse

(c) Decision Trees

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

Better
Equal

Worse

(d) Multilayer Perceptron

Figure 4.13: The effect of feature selection on classifier performance, plotted against
two data characteristics (number of features on the x-axis, number of instances on the
y-axis). Each dot represents a dataset, the colour indicates whether the performance
was increased or decreased by feature selection (continued).

68 4.5. Learning from the past

4.5.3 Method-level analysis

In this last type of experiment, we will use the experimental results in OpenML to
generalize over methods. This way we attempt to gain more insight in why these
algorithms behave the way they do.

4.5.3.1 Instance-based analysis

For many tasks, OpenML stores the individual predictions that are done by specific
algorithms. We can use these to create a hierarchical agglomerative clustering of
data stream classifiers in an identical way to the authors of [85]. Classifier Output
Difference is a metric that measures the difference in predictions between a pair of
classifiers. For each pair of classifiers, we use the number of observations for which
the classifiers have different outputs, aggregated over all data streams involved. Hier-
archical agglomerative clustering (HAC) converts this information into a hierarchical
clustering. It starts by assigning each observation to its own cluster, and greedily joins
the two clusters with the smallest distance [132]. The complete linkage strategy is
used to measure the distance between two clusters. Formally, the distance between
two clusters A and B is defined as max {COD(a, b) : a ∈ A, b ∈ B}.

Figure 4.14 shows the resulting dendrogram, built over a large set of data stream
classifiers provided by MOA. Although the specific details of data stream classification
will be explained in Chapter 5, we can already make some observations. The figure
confirms some well-established assumptions. The clustering seems to respect the tax-
onomy of classifiers provided by MOA. Many of the tree-based and rule-based classi-
fiers are grouped together. There is a cluster of instance-incremental tree classifiers
(Hoeffding Tree, AS Hoeffding Tree, Hoeffding Option Tree and Hoeffding Adaptive
Tree), a cluster of batch-incremental tree-based and rule-based classifiers (REP Tree,
J48 and JRip) and a cluster of simple tree-based and rule-based classifiers (Decision
Stumps and One Rule). Also the Logistic and SVM models seem to produce similar
predictions, having a sub-cluster of batch-incremental classifiers (SMO and Logistic)
and a sub-cluster of instance incremental classifiers (Stochastic Gradient Descent and
SPegasos with both loss functions).

The dendrogram also provides some surprising results. For example, the instance-
incremental Rule Classifier seems to be fairly distant from the tree-based classifiers.
As decision rules and decision trees work with similar decision boundaries and can
easily be translated to each other, a higher similarity would be expected [6]. Also the
internal distances in the simple tree-based and rule-based classifiers seem rather high.

A possible explanation for this could be the mediocre performance of the Rule
Classifier. Even though COD clusters are based on instance-level predictions rather
than accuracy, well performing classifiers have a higher prior probability of being

Chapter 4. Experiment Databases 69

N
o

C
ha

ng
e

SG
D

 H
IN

G
EL

O
SS

SG
D

 L
O

G
LO

SS
SP

eg
as

os
 H

IN
G

EL
O

SS
SP

eg
as

os
 L

O
G

LO
SS

M
aj

or
ity

 C
la

ss
Pe

rc
ep

tro
n

AW
E(

O
ne

 R
ul

e)
D

ec
is

io
n

St
um

p
AW

E(
D

ec
is

io
n

St
um

p)
R

ul
e

C
la

ss
ifi

er
1−

N
N

k−
N

N
 w

ith
 P

AW
k−

N
N

R
an

do
m

 H
oe

ffd
in

g
Tr

ee
H

oe
ffd

in
g

Ad
ap

tiv
e

Tr
ee

H
oe

ffd
in

g
O

pt
io

n
Tr

ee
AS

 H
oe

ffd
in

g
Tr

ee
H

oe
ffd

in
g

Tr
ee AW

E(
JR

ip
)

AW
E(

R
EP

 T
re

e)
AW

E(
J4

8)
N

ai
ve

 B
ay

es
AW

E(
SM

O
)

AW
E(

Lo
gi

st
ic

)0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Figure 4.14: Hierarchical clustering of stream classifiers, averaged over 51 data
streams from OpenML.

clustered together. As there are only few observations they predict incorrectly, natur-
ally there are also few observations their predictions can disagree on.

4.6 Conclusions

In many sciences, networked science tools are allowing scientists to make discoveries
much faster than was ever possible before. Hundreds of scientists are collaborating to
tackle hard problems, individual scientists are building directly on the observations
of all others, and students and citizen scientists are effectively contributing to real
science.

To bring these same benefits to machine learning researchers, we introduced
OpenML, an online service to share, organize and reuse data, code and experiments.
Following best practices observed in other sciences, OpenML allows collaborations to
scale effortlessly and rewards scientists for sharing their data more openly.

We have shown various types of studies that can be done with the results in
OpenML. Apart from many new discoveries that can be done, these studies also con-

70 4.6. Conclusions

firm or disclaim well established assumptions in a data-driven way.
We believe that this new, networked approach to machine learning will allow sci-

entists to work more productively, make new discoveries faster, be more visible, forge
many new collaborations, and start new types of studies that were practically im-
possible before.

