
Massively collaborative machine learning
Rijn, J.N. van

Citation
Rijn, J. N. van. (2016, December 19). Massively collaborative machine learning. IPA
Dissertation Series. Retrieved from https://hdl.handle.net/1887/44814

Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/44814

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/44814

Cover Page

The handle http://hdl.handle.net/1887/44814 holds various files of this Leiden University
dissertation

Author: Rijn, Jan van
Title: Massively collaborative machine learning
Issue Date: 2016-12-19

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/44814

3
Meta-Learning

Machine Learners have been very successful at integrating data-driven methods in
many other domains and sciences: Chemist model the activity of chemical compounds
by means of Machine Learning [81], popular media companies use knowledge ob-
tained from previous data to recommend new content to their subscribers, and mod-
ern cars use Machine Learning techniques to take away the burden of parking.

However, when it comes to Machine Learning itself, decisions are seldom made by
what previous gathered data has learned. When presented with a new problem, often
a solution is chosen by trial and error. Typically, a small set of algorithms is selected
by intuition, and the best of these is selected to solve the problem. This trial and error
is sometimes called ‘the black art of Machine Learning’ [38], implying that a more
scientific approach is desirable.

A huge challenge lies in solving Machine Learning problems in a data-driven way.
This scientific challenge is called meta-learning; the research field that aims to learn
from previous applications and experiments.

3.1 Introduction

The field of meta-learning has attracted quite some attention, and quite some prob-
lems and challenges in various directions have been addressed. Although it is im-
possible to capture the whole field in one single definition, we will consider the defin-
ition by Vilalta et al. [159]: “The field of meta-learning has as one of its primary
goals the understanding of the interaction between the mechanism of learning and
the concrete contexts in which that mechanism is applicable.” In this definition, the
‘mechanisms of learning’ are the algorithms (that build models) and the ‘contexts in

26 3.1. Introduction

which that mechanism is applicable’ are the Machine Learning tasks and datasets.
Basically, we want to obtain knowledge (or learn) which algorithm and parameter
setting should be used on what kind of data.

This problem can be viewed from many different perspectives. Most notable, the
algorithm selection problem, is defined as: given a dataset, which algorithm and para-
meters will obtain maximal performance according to a specified measure [119].
As the amount of algorithm and parameter combinations is infinite, this in itself is
already a hard but important problem. Considering common applications of Machine
Learning, e.g., in healthcare and epidemiology, performing slightly better on a given
task can already result in making the difference for human lives.

In many realistic settings, the algorithm selection problem can also be seen as a
search problem. A model, algorithm and parameter settings are recommended, and
these are being tested (either in production or using cross-validation). For example,
a company modelling customer behaviour, could already apply the recommended
model in their production environment. However, they can still continuously test
other models to find one that improves upon the original selected model. This process
is repeated until a satisfactory model has been found.

Sometimes, the model is fixed a priori because of, e.g., empirical performance
evidence, or interpretability requirements. In this case, the main challenge is to select
the appropriate hyperparameters. Hence, this task is called hyperparameter optimiz-
ation (e.g., [8, 75, 89]). Many techniques from the optimization literature can be
used for this, e.g., Particle Swarm Optimization, Evolutionary Algorithms or Bayesian
optimization.

Rather than looking at algorithm performance, we can also look at dataset prop-
erties. Where meta-learning is often focussed on categorizing datasets as a whole
entity, Smith et al. [140] focusses on individual instances, attempting to categorize
which are often misclassified, why this happened and how they contribute to data set
complexity. This research potentially improves the learning process and can guide the
development of learning algorithms.

The remainder of this chapter is organised as follows. We discuss three general
approaches to algorithm selection. Section 3.2 approaches this from the learning
paradigm; Section 3.3 approaches this from the search paradigm; Section 3.4 intro-
duces the notion of ensembles. Next, we introduce some important aspects to meta-
learning. Section 3.5 discusses the ‘Law of Conservation for Generalization Perform-
ance’, which is sometimes erroneously cited to dismiss meta-analysis. Section 3.6 dis-
cusses some analytically obtained knowledge about models, which is a very general
form of meta-knowledge. Section 3.7 examines the bias variance trade-off, and the di-
lemma that comes with choosing between over-fitting and under-fitting. Section 3.8
concludes with a discussion.

Chapter 3. Meta-Learning 27

x ∈ P

Problem
Space

f(x) ∈ F

Feature
Space

α ∈ A

Algorithm
Space

y ∈ Y

Performance
Space

feature
extraction f

α = S(f(x))

Selection Mapping

y(α(x)) apply
algorithm α

select α to
maximise ||y||

Figure 3.1: The Algorithm Selection Framework, taken from [141].

3.2 Learning Approach

The algorithm selection problem occurs in many other fields besides Machine Learn-
ing. Many optimization problems can be solved with a wide range of algorithms and
parameters, and therefore there is room for algorithm selection. For example, satis-
fiability problems, travelling salesman problems and vehicle routing problems.

The algorithm selection framework, formalised by Rice [119], addresses this. The
framework is illustrated in Figure 3.1. According to this definition, the problem space
P consists of all problems (tasks) from a certain domain. Each problem x ∈ P can be
mapped by means of some feature extraction procedure f(x) into the feature space
F . The feature space F contains measurable characteristics calculated upon these
problems, e.g., the number of instances or the number of attributes. We call these
meta-features. The algorithm space A is the set of all considered algorithms that can
be used to solve these tasks. And finally, the performance space Y represents the
mapping of these algorithms to a set of performance measures. The task is for any
given x ∈ P , to select the algorithm α ∈ A that maximizes a predefined performance
measure y ∈ Y .

Essentially, this itself is a learning problem, and can be solved using conventional
Machine Learning techniques. Often, Random Forests are used [144]. Like with any
learning problem, there are instances, represented by features that have a certain
class feature. In this case, the best performing algorithm is the class attribute. This
task can also be casted as a ranking or a regression problem. In the case of the ranking
problem, the goal is to order the classifiers by their expected performance; in the case
of the regression problem, the goal is to predict the expected performance for a set of

28 3.2. Learning Approach

given algorithms.
Indeed, by approaching the algorithm selection problem as a learning problem,

all Machine Learning algorithms can be used as meta-learner and solve the algorithm
selection problem. Various solutions solving this problem in novel ways have been
proposed (see, e.g., [4, 27, 87, 144]).

Some non-trivial considerations remain. Most importantly, as with any modelling
task, the set of (meta-)features determines the quality of the solution. These need
to be chosen and constructed appropriately. Furthermore, the performance space de-
termines on what performance criteria the algorithm should be selected.

3.2.1 Feature space

The performance of a meta-learning solution typically depends on the quality of the
meta-features. Typical meta-features are often categorized as either simple, statistical,
information theoretic, algorithm/model-based or landmarkers.

The simple meta-features can all be calculated by one single pass over all instances
and describe the data set in an aggregated manner, e.g., number of instances, number
of attributes and number of classes [20]. The statistical meta-features are calculated
by considering a statistical concept (e.g., standard deviation, skewness or kurtosis),
calculate this for all numeric attributes and taking the mean of this. This leads to,
e.g., the mean standard deviation of numeric attributes. Other statistical aggregation
methods can also be used instead of the mean, e.g., the minimum, the maximum,
or the median. Likewise, the information theoretic meta-features are calculated by
considering an information theoretic concept (e.g., mutual information or attribute
entropy), calculate this for all nominal attributes and taking the mean of this. This
leads to, e.g., mean mutual information. Again, other statistical aggregation methods
can be used as well. By aggregating the statistical and information theoretic con-
cepts, information is lost by definition. A main challenge lies in finding a way of
preserving this information. Sometimes the meta-data is built upon datasets with the
exact same features. In that case, no aggregation over the meta-features is needed;
these can be calculated and used for every individual features, without losing any
information [164].

Landmarkers are performance evaluations of fast algorithms on a dataset [108].
Sometimes, knowledge about how simple classifiers perform on a dataset yields in-
formation on the performance of the more complex and time-consuming algorithms.
However, these procedures should be used with great care, as the time for calculating
the meta-features should not exceed the time of bluntly running all algorithms on the
dataset.

Taking this idea one step further leads to model-based features [104]. Again, a

Chapter 3. Meta-Learning 29

simple model is built upon the data, most commonly, decision trees. Topological prop-
erties from this model can be used as meta-features, e.g., shape, number of leafs, or
maximum tree depth.

Sun and Pfahringer [144] propose pairwise meta-rules. These are simple decision
rules that determine for each pair of algorithms, which will work best under which
conditions. This type of meta-feature assumes that plain information from landmark-
ers is not necessarily represented best in its numeric form, and transforms this in-
formation to a binary attribute, at the cost of additional computation time.

It has proven hard to come up with an appropriate set of meta-features. Therefore,
Provost et al. [113] proposes Partial Learning Curves as an intuitive way of mapping
a problem into the feature space. A learning curve is an ordered set of performance
scores of a classifier on data samples of increasing size. Intuitively, we have now
information on how the actual classifiers that we are interested in work on the actual
dataset that we are interested in. Various methods have been proposed that exploit
partial learning curves to solve the algorithm selection problem [86, 87, 127].

Pinto et al. [110] propose a framework that enables the systematic generation
of meta-features specific to a certain domain. The framework detects what kind of
meta-features can lead to the generation of new meta-features. For example, when
using a decision tree landmarker, this can trigger the generation of model-based meta-
features extracted from the decision tree. Their results indicate that sets of system-
atically generated meta-features are more informative and contain more predictive
power than ad-hoc selected meta-features.

3.2.2 Performance space

Commonly, solutions to the algorithm selection problem focus on finding an algorithm
that maximizes predictive accuracy. This makes sense for a variety of theoretical and
pragmatic reasons; it objectively orders the full set of available algorithms, is easy to
establish (e.g., by means of cross-validation) and is what we are commonly interested
in [59]. However, as there are many tasks where almost all algorithms perform well in
terms of accuracy [69], it makes sense to also consider other ways of selection criteria
for algorithms. Some options for this are computational complexity, compactness of
the resulting model or comprehensibility of the resulting model [59]. Sometimes it
is sensible to make a trade-off between accuracy and run-time [21, 127]. In some
problem domains, the balance between the classes is skewed. Although in those cases
it might be easy to obtain a high accuracy by predicting the majority class, it is more
interesting to have a model that performs well on the other class(es). Measures such
as area under the ROC curve, precision and f-measure are decent options for those
problems.

30 3.3. Search Approach

Furthermore, it is debatable whether the single best model should be recommen-
ded. Alternatively, a statistical test could be performed, and all algorithms that per-
form statistically equivalent to the classifier obtaining the highest score are considered
good recommendations. Intuitively, this makes sense: if there is no statistical evidence
that there is a difference between the performance of the algorithms, then there is no
strong evidence to prefer one over the other. In many modern applications, it is not
enough to predict a single algorithm. Rather than predicting one single algorithm, a
ranking is produced, giving alternatives if the first advised algorithm does not per-
form adequately. The algorithm selection problem could even be seen as a regression
problem: for each algorithm α ∈ A an estimated performance should be predicted,
and the algorithm with the highest estimated score can be selected.

3.3 Search Approach

Alternatively, the algorithm selection problem can be cast as a search problem, which
can be solved by many techniques from the field of black-box optimization. Typically,
an optimization algorithm recommends an algorithm and parameter setting, and it is
then tested using some evaluation procedure, e.g., cross-validation. It continues on
recommending these procedures, until the budget runs out. Then the best performing
algorithm and parameter setting combination is selected.

In some cases the task is to find the best algorithm and parameter setting, in other
cases the algorithm is fixed a priori, and the task is to find the optimal parameter
settings. This task is called hyperparameter optimization.

A commonly used search strategy for hyperparameter optimization is grid search,
which bluntly tries all possible parameter settings. As many parameters accept contin-
ues values, for most algorithms there are infinitely many parameter settings. There-
fore grid search requires the intervention of a human expert, who selects sensible
parameters, ranges and discretizations. Grid search has no natural way of dealing
with a budget.

To overcome these limitations, random search could be used as an alternative. As
the name suggests, it randomly tries some parameter settings from all possibilities.
This way, there is no real need for the human expert to select parameters, ranges
and discretizations (although it can still benefit from the input of a human expert).
Furthermore, it naturally deals with a budget, as it can just stop whenever the budget
runs out. The best parameter settings so far will be selected. Random search often
performs better than grid search. When exploring the same parameter space it finds
an acceptable setting much faster, and when using a fixed budget it goes beyond the
selected parameters and ranges that grid search is restricted to [8].

Chapter 3. Meta-Learning 31

acquisition max

acquisition function (u(·))

observation (x)
objective fn (f(·))

t = 2

new observation (xt)

t = 3

posterior mean (µ(·))

posterior uncertainty
(µ(·)±σ(·))

t = 4

Figure 3.2: Example of Bayesian Optimization on one variable. The dashed line rep-
resents the objective function, which we only know partly (at the black dots); the
striped line represents the posterior mean, and the purple area the posterior uncer-
tainty; the acquisition function is plotted in green. Image taken from [26].

Both grid search and random search are static search methods, information ob-
tained from results of earlier test is ignored. Opposite to this, dynamic search methods
attempt to use this information. For example, when a certain parameter setting ob-
tains good results, it is plausible that similar parameter settings will also obtain good
results and possibly improve on the current best result.

32 3.3. Search Approach

Bayesian Optimization is a strategy that attempts to exploit knowledge obtained
from earlier tests [26]. The parameter space is often modelled as a Gaussian process;
it assumes that the underlying function is smooth, i.e., small fluctuations in the para-
meter settings will lead to only small fluctuations in the result. A so-called acquisition
function determines which parameter setting is evaluated next based on high un-
certainty and high potential. Figure 3.2 illustrates this in an example, in which one
parameter is optimized. At each point t, it selects a new parameter setting that is be-
ing evaluated. Sequential Model-based Bayesian Optimization extends this idea, also
selecting among various learning algorithms [75]. Notably, Auto-Weka applies this
on Machine Learning, automatically searching for a good algorithm and parameter
setting among all algorithms from the toolbox WEKA [147].

The search problem can also be modelled as a Multi-armed Bandit problem [68,
89], named appropriately after a gambler who’s aim is to select a slot machine that
gives him maximal reward. Typically there is a set of arms, each representing an
algorithm with parameter configuration. Pulling an arm is associated with a certain
cost (training a model on an amount of data) and reward (the performance of this
model). Pulling a certain arm multiple times corresponds to training that model on an
increasing amount of data, gaining a higher confidence in the measured performance
of this model. Two notable algorithms are Successive Halving and Hyperband [89].
These start with testing a large number of algorithms on a small amount of data; badly
performing algorithms are eliminated and good performing algorithms are tested with
more data. This works very well in practise. Additionally, these algorithms come with
theoretical guarantees about the maximum regret, i.e., the difference between the
recommended algorithm and parameter setting and the absolute best one.

Despite these sophisticated techniques and theoretical guarantees, the simplicity
of Random Search still proves to be a strong baseline. Given twice the budget, it often
outperforms guided search schema’s [9].

3.3.1 Combining Search and Learning

Various strategies have been proposed that combine the thoroughness of the search
strategies with the knowledge-based approach of meta-learning.

Active Testing combines grid search with meta-knowledge [2, 88], intelligently se-
lecting the order in which the algorithm and parameter combinations are tried. It aims
to minimize the number of algorithms that need to be evaluated before an adequate
model has been built. It assumes that there is a meta-dataset containing informa-
tion on how the algorithms and parameter settings under consideration performed
on other problems. Furthermore, it assumes that already one algorithm is selected as
the most promising to try first. This could be the one that performed best on historic

Chapter 3. Meta-Learning 33

data, an algorithm recommended by another meta-learning system, or even one that
was randomly selected. This algorithm is called the current best. From then on, the
algorithm that outperforms the current best algorithm on most historic datasets that
seem similar to the current dataset, is tested next. For each new algorithm to try, it
only focusses on historic datasets on which the new algorithm outperforms the cur-
rent best. This is inspired by the idea that we are interested in volatile algorithms.
Naturally, if the newly tried algorithm turns out to be better than the current best,
from that moment on it is the current best. This process is repeated until an appro-
priate algorithm has been selected or a predefined budget (e.g., run time) runs out.
Chapter 6 details on this method.

Alternatively, meta-learning can be used to initialize complex search methods. It
has been known that Sequential Model-based Bayesian Optimization converges fast
when its initial points yield already good performance. Hence, meta-learning can be
natively used to find promising parameter settings on similar datasets [43]. These can
be used as initial evaluations for the Sequential Model-based Bayesian Optimization,
leading to faster convergence.

3.4 Ensembles

Another approach to select the best model, is to combine multiple models in an en-
semble of classifiers. Ensemble techniques train multiple classifiers (also called mem-
bers) on a set of weighted training examples; these weights can vary for different
classifiers. In order to classify test examples, all individual models produce a predic-
tion, also called a vote, and the final prediction is made according to a predefined
voting policy. For example, the class with the most votes is selected. Dietterich [37]
identifies three reasons why ensembles work better than individual models.

• Statistical. When there is insufficient training data, there will be multiple mod-
els that fit the training set well, but have various (unknown) performance on
the test set. Combining multiple models spreads the risk of a misclassification
among multiple models.

• Computational. Even when there is sufficient data, the learning algorithm that
induces the model might get stuck in a local optimum. Running the learning
algorithm multiple times from various starting points may give a better per-
formance on the unknown test set.

• Representational. In many Machine Learning applications, the true concept
that is being modelled can not be represented by a given algorithm. For ex-
ample, Logistic Regression can not represent the XOR-function, because it is

34 3.4. Ensembles

not linearly separable (see Chapter 2.4.5). However, an ensemble of multiple
Logistic Regression models is able to perfectly represent it.

Condorcet’s jury theorem [83] gives theoretical evidence that the error rate of an
ensemble in the limit goes to the Bayesian optimum (i.e., the maximum obtainable
accuracy) if two conditions are met. First, the individual models must do better than
random guessing. Second, the individual models must be diverse, i.e., their errors
should not be correlated. If these conditions are met, increasing the ensemble size
decreases the amount of misclassifications [64]. Indeed, if the models do worse than
random guessing, increasing the ensemble size also increases the amount of misclas-
sifications.

Basically, two approaches of model combination exist [22]. The first one exploits
variability in the data, and trains similar models on different subsamples of the data.
The second one exploits variability among models, and trains fundamentally different
models on the same data. Bagging [23] exploits the instability of classifiers by training
them on different subsamples called bootstrap replicates. A bootstrap replicate is a set
of examples randomly drawn with replacement, to match the size of the original
training set. Some examples will occur multiple times, some will not occur in the
bootstrap replicate. Bagging works particularly good with unstable algorithms, were
small fluctuations in the training set lead to dissimilar models. Bagging reduces the
variance error of a model, and only slightly affects the bias error. Algorithms that have
a high variance error typically perform much better when used in a Bagging setting,
at the cost of losing interpretability.

Boosting [135] is a technique that corrects the bias of weak learners. A strong
learner is one that produces a highly accurate model; a weak learner is one whose
models perform slightly better than random guessing [149]. In his seminal paper,
Schapire [135] shows weak learners and strong learners are equivalent; he presents
an algorithm that combines various weak learners that combined perform as a strong
learner. Boosting sequentially trains multiple classifiers, in which more weight is given
to examples that where misclassified by earlier classifiers. It decreases both bias and
variance error. Some common forms of boosting are Adaptive Boosting [45], Logistic
Boosting [48] and Gradient Boosting [51].

Stacking [163] combines heterogeneous models in the classical batch setting. It
trains multiple models on the training data. All members output a prediction, and
a meta-learner makes a final decision based on these predictions. Cascade Gener-
alization [53] imposes an order to the ensemble members. Each member makes a
prediction also based on the prediction of the previous members. Empirical evidence
suggests that Cascade Generalization performs better than vanilla Stacking. Caruana
et al. [30] propose a hill-climbing method to select an appropriate set of base-learners
from a large library of models.

Chapter 3. Meta-Learning 35

3.5 Conservation for Generalization Performance

The ‘Law of Conservation for Generalization Performance’ (also known as the No
Free Lunch Theorem), states that when taken across all learning tasks, all learning al-
gorithms perform equally well [134]. Basically, it states that for each algorithm there
are datasets on which it performs well, and there are datasets on which it performs
badly; each algorithm makes its own assumptions about the data.

This theorem can be illustrated by means of the following example. Consider a
binary dataset d on which a deterministic algorithm α obtains a certain predictive
accuracy y(α, d) on a test set of unseen examples. In the universe of all imaginable
datasets, there exists a dataset d̂ that has the exact same training instances, yet all
class labels of the unseen test set are exactly opposite, leading to a predictive accuracy
of y(α, d̂). It is easy to see that in this example y(α, d) + y(α, d̂) = 1. A generalization
leads to the conclusion that taken over all existing datasets, the performance of all
deterministic algorithms is exactly the same.

It might seem that this theoretical result subverts the purpose of meta-learning. If
all algorithms perform equally, building a meta-algorithm that overcomes this limita-
tion would be paradoxical. However, Giraud-Carrier and Provost [60] point out that
under a reasonable assumption, the ‘Law of Conservation for Generalization Perform-
ance’ is irrelevant to Machine Learning research.

They define the weak assumption of Machine Learning to be that the process that
presents us with learning problems induces a non-uniform probability distribution
over the possible functions. In other words, among all possible learning tasks, some
are more probable to occur than others. This assumption is widely accepted; without
accepting this assumption, all Machine Learning research would be pointless, as there
would be no reason to believe that the learned models generalize beyond the dataset.
Under this assumption, meta-learning does not violate the law of conservation for
generalization performance.

Furthermore, they define the the strong assumption of Machine Learning that the
probability distribution of these functions is known implicitly or explicitly, at least to
a useful approximation. In some cases, even this assumption is reasonable. A good
meta-learning system selects algorithms that work well on the tasks that are prob-
able to occur in the problem domain of interest. A meta-learning system based on
knowledge from one domain of tasks can not be expected to make accurate recom-
mendations for tasks from another domain.

The most important contribution of the ‘Law of Conservation for Generalization
Performance’ is that it shows that learning comes with assumptions. The stronger the
assumptions we make, the more efficient a learning procedure can be. Meta-learning
relies on the same assumptions as any other learning procedure does.

36 3.6. Model Characteristics

Table 3.1: Some characteristics about different models. Taken from [65].

Characteristic Neural
Networks

SVM Trees MARS k-NN,
Kernels

Natural handling of mixed data
types

- - + + -

Handling of missing values - - + + +
Robustness to outliers in input
space

- - + - +

Insensitive to monotone transform-
ations of inputs

- - + - -

Computational Scalability (many
instances)

- - + + -

Ability to deal with irrelevant in-
puts

- - + + -

Ability to extract linear combina-
tions of features

+ + - - +/-

Interpretability - - +/- + -
Predictive Power + + - +/- +

3.6 Model Characteristics

Although applications to the algorithm selection problem (Chapter 3.2–3.4) are use-
ful in their own right and lead to various valuable insights, a disadvantage is that they
typically focus on a small set of problems, and that it is hard to interpret and general-
ize the results. On the other side of the spectrum, Hastie et al. [65] composed a set of
simple characteristics, describing strong and weak points of models. These are shown
in Table 3.1. Most of these models are already described in Chapter 2.4. MARS [49] is
a regression model based on splines, a mathematical function that consist of various
polynomials at different input domains.

Most of the characteristics actually make a lot of sense. For example, it followed
already from the model description in Chapter 2.4 that Logistic Regression, Support
Vector Machines and Neural Networks do not handle missing values natively, as it
would remove one part of the equation. Furthermore, trees and splines are typically
considered quite interpretable, even though this is a subjective matter. This kind of
simple characteristics already have great value. It summarizes the strong and weak
points of various models, and gives domain experts that use machine learning a good
overview of what kind of models they should use for their problem.

The mentioned characteristics also have shortcomings. For example, the results

Chapter 3. Meta-Learning 37

are presented without any discussion or evidence. Although most of the statements
seem intuitively correct, there are also some controversies. For example, it is widely
considered that decision trees have a high ability to deal with irrelevant inputs. How-
ever, experimental results suggest that the truth is a bit more subtle [111]. Also, the
low robustness to outliers in input space of Support Vector Machines is debatable.

This table immediately exploits a huge problem in current Machine Learning lit-
erature. New models are typically evaluated solely based on predictive power; some-
times interpretability and computational scalability are also taken into account. How-
ever, every new method should be evaluated on more than just these criteria. Of
course, a method does not have to excel on all of the characteristics. As can be seen,
none of the currently characterised models do. Extending this table to additional
models, algorithms and characteristics is a very useful form of meta-learning.

3.7 Bias Variance Profile

A common problem of modelling is over-fitting, a phenomenon where irrelevant re-
lationships between the data and the class are being encoded. This typically happens
when there is too little data, there is too much noise in the data or the model is
too complex. When a model performs well on the training set and mediocre on the
test set, it is likely that it over-fitted the training data. One way of analysing and
understanding this better, is by means of a bias variance decomposition [82]. Kohavi
et al. [82] define three types of errors, bias errors, variance errors and irreducible
errors. The irreducible errors are the errors that can not be avoided by any learner,
e.g., when the test set contains instances with the same attribute values, yet different
labels. Variance is the tendency to learn random things irrespective of the real func-
tion (it hallucinates patterns). This often happens when a model is too complex, and
models dependencies that do not exist in the real world; it over-fits the data. Bias is
the tendency to consistently learn the same wrong thing. This often happens when a
model is too simple, and unable to model the true relationship between the data and
the class; it under-fits the data. Bias and variance are often resembled by throwing
darts at a board (see Figure 3.3). A model that only makes irreducible errors is called
a Bayes-optimal model.

Many methods attempt to prevent over-fitting. One way of doing so is adding a
regularization component, penalizing complex models, and therefore favouring sim-
pler models with less room to over-fit. However, by imposing this preference towards
simpler models, the solution is exposed to the other type of error, i.e., under-fitting.
A notable exception is Bagging, a technique that reduces the risk of over-fitting with
slightly increasing the bias (Chapter 3.4). Dealing with bias and variance is essentially

38 3.8. Discussion

Low variance High variance

High
Bias

Low
Bias

•••
••• •

•

•

•

•• •

•

••• ••••
•

• •
• • ••

Figure 3.3: Bias and Variance. Image adapted from [38].

about finding a trade-off between the possibility of over-fitting and under-fitting. As
additional components are added to the model, the model complexity rises, the bias
reduces and the variance increases. In other words, bias has a negative first-order
derivative in response to model complexity while variance has a positive slope. The
task of a Machine Learning practitioner is to find a good trade-off between the two.

Although in general Machine Learning applications the total number of errors
matters, understanding bias and variance gives insight in the predictive behaviour of
learning algorithms. Therefore, it is a very important aspect of meta-learning, poten-
tially increasing both our knowledge about algorithms and the performance of newly
created algorithms.

3.8 Discussion

This chapter reviewed aspects of meta-learning; techniques that improve knowledge
of the learning process and techniques that help selecting an appropriate learning
algorithm. The algorithm selection problem can be solved by learning techniques as
well as search techniques. Often, the decision of which paradigm to chose comes
down to whether experimentation with the data is allowed. When the data is not ac-
cessible yet or a recommendation must be provided relatively fast, the search paradigm
is not applicable; hence the learning paradigm should be preferred. On the other
hand, when there is time to try multiple configurations, the search paradigm is likely
to recommend a good algorithm and parameter setting combination. Sometimes, the

Chapter 3. Meta-Learning 39

search methods can be guided by some form of meta-learning.

The advantages of the learning approaches are plenty. First, the resulting meta-
model is very general; it can be applied to all unseen problems. Second, algorithm
selection for new tasks is rather inexpensive. Although building the meta-model can
be a computational intensive task, applying it to new tasks happens typically fast.
Finally, it is reasonable to expect the first attempted solution already to yield good
result. Apart from calculating the meta-features, there are no start-up costs.

However, this approach also has some intrinsic limitations. First, it is hard to
construct a meta-feature set that adequately characterizes the problem space [86].
Second, the most successful meta-features, landmarkers, can be computationally ex-
pensive, limiting the options [108]. Finally, because not all classifiers run on all data-
sets, or take prohibitively long to do so, the meta-dataset usually contains many miss-
ing values, complicating the classification task.

The search paradigm can be seen as a more thorough alternative. First, as it nat-
urally tries multiple promising candidates, it will return a good solution with high
probability. In the multi-armed bandit approach, there are even theoretical guaran-
tees about the performance. Second, it is an iterative approach, that is constantly
expected to improve itself. After a few iterations we can already expect reasonable
recommendations, and it is likely that these keep on improving. Third, most search
methods do not require a meta-dataset. As it is considered a laborious task to cre-
ate an appropriate meta-dataset, it is convenient that search methods do not require
such.

There are also limitations, compared to the learning paradigm. Most prominently,
it comes with additional run time. Search methods are built upon function evalu-
ations, i.e., multiple models are built and evaluated. Furthermore, obtained results
do not generalize. The search procedure needs to be executed for each task again.
Nothing is learned about the interaction between the mechanism of learning and the
concrete contexts in which that mechanism is applicable. In that sense, this form of al-
gorithm selection does not obey the definition of meta-learning given by Vilalta et al.
[159].

There are some additional challenges that meta-learners are faced with. Many
algorithm selection problems are subject to the curse of dimensionality [152]. Vari-
ous studies proposed many different types of meta-features, yet the amount of avail-
able datasets is relatively small. Although many datasets exists, most of these are
in people’s labs and heads, not available to the community. Furthermore, there is a
high computational cost for each instance. Indeed, all algorithms should be ran on
it, which takes a lot of resources. For these reasons, experiment databases have been
proposed [124, 153, 154, 155]. These aim to store and organise datasets and results
from earlier experiments, available to the whole community. In the next chapter we

40 3.8. Discussion

will review how Machine Learning and meta-learning research can benefit from such
infrastructures.

