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Machine Learning

As argued in Chapter 1, there is a great amount of data being generated every day.
Collecting data in itself is only useful if we are able to make sense out of it. A great
challenge lies in analysing and modelling the collected data.

2.1 Introduction

Model building is a time-consuming task that has already been practised for a long
time by many scientists. In the 16th century, Nicolaus Copernicus described a model
that considered the sun to be the centre of the universe, rather than the Earth. The
data that he based this model on were the observations he made of the sun and its
orbiting planets. Although his model was not entirely accurate, it is widely accepted
that his ideas led to great scientific breakthroughs in his time and thereafter. Many
examples of scientific models based on data can be found, where data can be literally
anything, ranging from measurements obtained through a microscope to observations
obtained through a telescope.

Machine Learning is the field of research that focuses on the automatic building of
predictive models from collected data, that can be evaluated using an objective perform-
ance measure. As the term ‘automatic’ indicates, it uses algorithms, aiming to keep
the human expert out of the loop. Of course, there are also Machine Learning tech-
niques that deliberately use domain experts’ knowledge [157]. However, even those
techniques are focused on automating the process, effectively taking over the work-
load and suggesting interesting patterns that would be too complex to distinguish
otherwise. As the term ‘predictive’ indicates, the models should be capable of making
predictions for yet unseen data. It is easy to perform well on the already seen data
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Table 2.1: Random sample from the ‘iris’ dataset, as provided by [44].

sepal sepal petal petal  class sepal sepal petal petal  class
length  width  length  width length  width  length  width

5.1 3.7 1.5 0.4 setosa 5.5 4.2 1.4 0.2 setosa
5.1 3.3 1.7 0.5 setosa 6.4 3.2 4.5 1.5 versicolor
6.2 2.8 4.8 1.8 virginica 7.1 3.0 5.9 2.1 virginica
6.9 3.1 5.4 2.1 virginica 5.1 3.5 1.4 0.2 setosa
6.1 3.0 4.6 1.4 versicolor 5.5 3.5 1.3 0.2 setosa
4.7 3.2 1.3 0.2 setosa 5.6 2.8 4.9 2.0 virginica
4.4 3.2 1.3 0.2 setosa 6.3 2.5 4.9 1.5 versicolor
6.5 2.8 4.6 1.5 versicolor 5.8 4.0 1.2 0.2 setosa
6.8 3.0 5.5 2.1 virginica 6.0 2.2 5.0 1.5 virginica
6.3 3.4 5.6 2.4 virginica 5.0 3.4 1.5 0.2 setosa
5.1 3.5 1.4 0.3 setosa 4.8 3.0 1.4 0.3 setosa
6.3 3.3 6.0 2.5 virginica 6.8 3.2 5.9 2.3 virginica
5.0 3.2 1.2 0.2 setosa 5.8 2.6 4.0 1.2 versicolor
5.1 3.8 1.9 0.4 setosa 5.7 2.9 4.2 1.3 versicolor
5.7 4.4 1.5 0.4 setosa 7.4 2.8 6.1 1.9 virginica

(just memorize it); Machine Learning is about generalizing beyond this. Typically, the
models will be evaluated based on predictions made for unseen data. An evaluation
criterion can be the percentage of correct predictions, but in some cases more subtle
measures are required. This is the objective performance measure.

The main concepts of Machine Learning are data, tasks, models, algorithms and
evaluation measures. Chapter 2.2 gives examples of common types of data(sets),
Chapter 2.3 overviews some common tasks that will recur in this thesis. In Chapter 2.4,
we review the most common model types and mention the algorithms used to build
them. Chapter 2.5 discusses the various ways of evaluating such models. Chapter 2.6
concludes with a discussion about meta-learning.

2.2 Data

In this chapter we will explore some common datasets that can be modelled using
Machine Learning techniques.

2.2.1 Iris

Iris is a species of flowering plants, named after a Greek mythological goddess who
rides the rainbows. Many iris flowers exist, e.g., iris unguicularis, iris latifolia and iris
tectorum, to name a few. Some of these are easy to distinguish, others are harder.
The English statistician and biologist Fisher created a dataset, containing measurable
features about three types of iris flowers [44].
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Figure 2.1: Scatter plot of the ‘iris’ dataset, as provided by [44].

Table 2.1 shows a random sample from the dataset, in the tabular form that data
often is represented in. Each row in this dataset represents an iris flower. We call
these rows instances or observations. Because of limited space, we only show a few.
The dataset describes for each iris flower some perceptible features, such as sepal
length, sepal width and petal length (all measured in centimetres). These we call the
attributes of a dataset. Based on these features, flower experts can determine to which
type of iris plants a certain instance belongs (the attribute ‘class’). This dataset was
created with the purpose of automatically modelling whether an iris flower belongs
to the type setosa, versicolor or virginica. That makes this attribute somewhat special,
hence we call it the class or the target attribute.

This is a numeric dataset. All attributes (except for the class) contain only num-
bers, making it easy to plot the data. This is done in Figure 2.1. The z-axis shows the
petal length, the y-axis shows the petal width. The attributes sepal length and sepal
width are omitted. Each dot represents an iris flower (150 in total), and the colour
and shape of a dot shows to which class that flower belongs.

From this plot, we already see that it is quite easy to distinguish the setosa flowers
from the others, just by looking at the petal size. We can draw a straight line that
separates the setosa flowers from the others. This class is linearly separable. However,
it is harder to distinguish the versicolor from the virginica. In general, the versicolor
flowers have smaller petals than the virginica. But when presented with an uncategor-
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ised iris flower with a petal length of 5 cm and a petal width of 1.5 cm, it becomes
hard to classify it. One way of solving this problem would be also looking at the sepal
length and sepal width, but we can only plot a limited number of variables.

Having only four numeric attributes and a total of 150 instances, from a compu-
tational point of view the iris dataset is considered to be an easy dataset to model.
Despite the challenges for human experts, machine learning techniques are quite suc-
cessful at modelling this dataset.

2.2.2 Mushroom

Mushrooms are popular for their edible, medicinal and psychoactive properties. As
some mushrooms are very poisonous, knowing which mushrooms are edible and pois-
onous is quite important. Table 2.2 shows the ‘mushroom’ dataset. Each row in this
dataset represents a mushroom. To keep this table simple, we have left some attrib-
utes out. The dataset describes for each mushroom some perceptible features, such
as cap colour, odour and gill size. Based on these features, mushroom experts can
determine whether a mushroom is edible or poisonous. This dataset was created with
the purpose of modelling which properties makes a mushroom edible.

This is a nominal dataset. Each attribute can have certain values, for example,
the attribute ‘stalk surface above ring’ can be either silky, smooth or sometimes even
fibrous. There is no particular order in the values, making it hard to plot them mean-
ingfully.

Many things can be observed by just looking at this sample. First, we notice some
properties about distributions. Although mushrooms come in many colours, it appears
that most of them have a red, grey or brown cap. Many mushrooms have either no
odour or a foul odour, although some can smell spicy, musty or fishy. The gill colour
is more equally distributed amongst the mushrooms, and can be chocolate, pink, buff
or something completely different. Moreover, we can already see some correlations
between mushroom features and the target. It appears that whenever a mushroom has
a foul odouy, it is not advisable to eat it. Conversely, from the data sample it seems
that when a mushroom has no odour at all, it is edible. However, great care is still
advised when eating an unknown mushroom without odour. As this data sample only
covers part of the existing mushrooms, in reality many mushrooms have no odour
and yet are poisonous. Sometimes, the person collecting the data makes a mistake. A
poisonous mushroom can be recorded as edible, or the other way around. Erroneous
recorded feature values or class values are called noise, which is a common problem
data modellers should deal with.

The full dataset contains more than 8,000 instances, and a total of 22 attributes
(not including the target). This makes it hard to do a full analysis by hand. In compar-
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ison to other datasets, such as astronomical telescope data, this is only a very small
dataset. We need more sophisticated models and techniques to analyse data sources
of increasing size adequately.

2.3 Tasks

As the previous chapter argued, a common machine learning task is to model the
available data, such that predictions for new, yet unseen, instances can be made. The
task of modelling the ‘mushroom’ dataset is what we call binary classification, as there
are only two classes to choose from (the data is dichotomous). In the case of the ‘iris’
dataset, there are already three possible classes. Whenever a dataset has more than
two classes, we call the appropriate modelling task multi-class classification.

Many real world applications of machine learning are actually multi-class classi-
fication tasks, with a rather high number of classes. For example, face recognition
programs typically get raw image data as input, and have to determine which per-
son is displayed. In fact, in this case each person in the database is a unique class.
Inconveniently, many Machine Learning models are only capable of solving the bin-
ary classification task. In order to overcome this limitation, a binary model can be
turned into a multi-class model by a divide and conquer strategy called One-versus-
All. Consider a dataset that consists of n classes, we build n — 1 models, such that
each separates one class from all the other classes. Allwein et al. [5] propose a frame-
work that consists of various strategies that make binary models useful for multi-class
classification. Sometimes, we are not interested in modelling the whole dataset, but
in finding an interesting subgroup of the data. The resulting model then describes the
data only partially, the other data is out of the scope. This is called subgroup discovery.

The previous described datasets contained a nominal target. It is also possible to
model datasets with a numeric target. This task type is known as regression.

Furthermore, the shown data did not have any concept of time or predefined order.
We call it stationary data. This is different when modelling, for example, the stock
price of a company. Observations obey a certain order, big changes in the economic
landscape can have a huge impact on the performance of the model, therefore it
needs to be updated constantly. This task type is called data stream classification or
data stream regression. Chapter 5 covers this in detail.

Many other tasks exists, such as clustering, pattern mining and association rule
discovery, but as these are out of the scope of this thesis we will not cover them here.
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if (odour = foul) then class=poisonous (2160)

if (gill size = narrow) and (gill colour = buff) then class=poisonous (1152)
if (gill size = narrow) and (odour = pungent) then class=poisonous (256)

if (odour = creosote) then class=poisonous (192)

s| if (spore print colour = green) then class=poisonous (72)

if (stalk surface above ring = silky) and (gill spacing = close)

then class=poisonous (68)
if (habitat = leaves) and (cap colour = white) then class=poisonous (8)
if (stalk colour above ring = yellow) then class=poisonous (8)
otherwise class=edible (4208)

Figure 2.2: Decision rule model of the ‘mushroom’ dataset. Between brackets is the
number of instances that are captured by each rule.

2.4 Models

In this chapter, we will describe common Machine Learning methods. Domingos [38]
describes a machine learning algorithm as a combination of representation, evaluation
and optimization. The representation is the resulting model, the optimization is the
procedure that creates that model and the evaluation is the way that model is eval-
uated (i.e., how good it fits the data). In this chapter we focus on commonly used
model types and how they work, rather than on how these are constructed. For each
model type, many optimization algorithms exist that are capable of creating them.
For simplicity, these algorithms can be seen as black boxes that take data as input and
produce a model.

2.4.1 Decision rules

Rule-based models are amongst the most intuitive types of models. Recall that by first
inspecting the ‘mushroom’ dataset, we already came up with some decision rules: if
the odour is foul then the mushroom is poisonous and if it has no odour then the
mushroom is edible.

The rules depicted above are an example of the famous ‘One Rule’ model [69].
As it uses only one feature, the name is chosen accordingly. It highly simplifies the
concept underlying the data, but is already quite accurate. The model gives great in-
sight in what an important property of the problem is. Although the One Rule model
adequately captures more than two-thirds of the data sample in this case, typically,
a conjunction of many rules is needed to accurately describe the whole concept. De-
cision rules are commonly used for classification and subgroup discovery.

Some technicalities arise when using decision rule models for classification. For
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example, what happens to an instance that is covered by multiple rules, or what
happens to an instance that is not covered by any of the rules. Figure 2.2 shows an
example of a decision rule list. Here, the rules have a certain order. If an instance is
captured by multiple rules, the first rule that it complies to is used. Furthermore, it
uses the concept of a default rule. All instances that are not captured by any rule are
in this case classified as edible.

One of the nice properties about decision rules is that they are typically quite
interpretable; human experts can verify and learn from them. Also, in most cases
they are quite accurate in modelling the underlying concept.

Many rule induction algorithms exist, e.g., Repeated Incremental Pruning to Pro-
duce Error Reduction (RIPPER) [32], Fuzzy Unordered Rule Induction Algorithm
(FURIA) [72] and Ripple-Down Rules (RIDOR) [33].

2.4.2 Decision trees

Decision trees are very similar to decision rules. Figure 2.3 shows an example of a
decision tree, built upon the mushroom dataset. A decision tree consists of various
nodes. Tree nodes are drawn round and contain an attribute name; the attribute that
is being checked. Leaf nodes are drawn rectangular and contain a class value, in this
case whether a mushroom is edible or not. The number between brackets denotes
the number of instances that end up in that leaf node. For each observation, we start
at the root node and traverse the tree in the direction that the test indicates. For
example, for mushrooms that have an almond or anise odour, we traverse the left
edge; these appear to be edible. For mushrooms that have no odour, we traverse the
middle edge, and end up in the tree node where we will check the spore print colour.
This process continues until we end in a leaf node.

When creating a tree, an important question is: which attribute should be used at
some point as the splitting criterion. In the seminal paper by Quinlan, the attribute
that obtains the highest information gain is used [115]. At each node in the tree, we
can calculate the entropy H (X) as follows:

P p n n

H(X):_p+n10g2p+n_p+n10g2p+n 2.1
where p is the number of instances at that tree node belonging to one class, X is the
sub-sample of the dataset that is considered in the node (the full dataset at the root,
but it is gradually getting smaller at lower levels) and n is the number of instances
belonging to the other class. When all the instances belong to the same class, the
entropy is 0. When exactly half of the instances belong to both classes, the entropy is
1. In all other cases, entropy is somewhere between the two.



Chapter 2. Machine Learning 13

almond, anise

edible
(592)

poisonous edible
(16) (48)

Figure 2.3: Decision tree model of the ‘mushroom’ dataset.

Suppose we consider an attribute ¢ having v distinct values, and p; instances of
one class and p,, instances of the other class for each 1 < ¢ < v. We can determine the
entropy after the split in the following way:

H'(X) = - pi“‘ni{_ Pi Di

n;
2.2
o prm } @2

n
log — log
pitni Cpitng pitni Ol pi+ng

The attribute that minimizes H'(X) is chosen as splitting criterion. This process is
repeated at each node, until a certain stopping criterion is met, e.g., all instances in a
node belong to one class.

When using the described procedure, the decision tree is built in a greedy way;
sometimes a splitting criterion is chosen that turns out to be suboptimal. As it is
proven that building an optimal decision tree is NP-complete [76], we have to resort
to such greedy procedures when working with large amounts of data.

As with the decision rule models, decision trees are easy to interpret, and therefore
commonly used in practice. Many tree induction algorithms exist, e.g., Classification
and Regression Tree (CART) [25], C4.5 [116] and Hoeffding Trees [39].
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2.4.3 Probabilistic reasoning

Another way to model the mushroom dataset is by probabilistic modelling. In the data
sample from Table 2.2, out of the 35 mushrooms, 20 mushrooms are poisonous and
15 mushrooms are edible. We say that the prior probability of a mushroom being pois-
onous P(class = poisonous) = 20/35 = 0.57 and the prior probability of a mushroom
being edible P(class = edible) = 15/35 ~ 0.43. This observation gives us reason to be-
lieve that in general a mushroom is more likely to be poisonous than edible. However,
for each individual mushroom, we can adapt this probability based on the observed
features. For example, we observe that the mushroom has a smooth stalk surface
above the ring. We immediately observe that the prior probability of a mushroom hav-
ing a smooth stalk surface (above the ring) P(stalk surface = smooth) = 21/35 = 0.6.
We want to know the probability of a mushroom being poisonous, given the fact that
is has a smooth stalk surface. Conveniently, Bayes’ theorem states that given a hypo-
thesis and evidence that bears on that hypothesis:

P(evidence|hypothesis) - P(hypothesis)
P(evidence)

In this case, the evidence is a smooth stalk surface and the hypothesis is that the
mushroom is poisonous. In fact, the hypothesis could as well be that the mushroom
is edible, as this is the exact opposite of the previous hypothesis.

Of all the 20 observed poisonous mushrooms, 8 had a smooth stalk surface above
the ring. The likelihood of a smooth stalk surface above the ring given that the mush-
room is poisonous P(stalk surface = smooth|class = poisonous) = 8/20 = 0.4. Like-
wise, of the 15 edible mushrooms, 13 had a smooth stalk surface above the ring. Thus,
the likelihood of a smooth stalk surface above the ring given that the mushroom is
edible P(stalk surface = smooth|class = edible) = 13/15 ~ 0.87.

Plugging these numbers in Eq. 2.3 results in a probability of a mushroom being
poisonous given that the stalk surface (above the ring) is smooth:

2.3)

P(hypothesis|evidence) =

4-0.
P(class = poisonous|stalk surface = smooth) = % ~ 0.38 24
Likewise, the probability of a mushroom being edible given that the stalk surface
is smooth:
0.87-0.43
P(class = edible|stalk surface = smooth) » 06~ 0.62 (2.5)

This model scales trivially to multiple attributes; when classifying a mushroom,
we should not only take into account the stalk surface (as we did in the previous ex-
ample), but all other attributes that seem to be of influence. In the case of the mush-
rooms, we should also use odour, gill size, and probably even more. With probabilistic
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modelling, the main challenge lies in identifying which attributes are important for
classifying an instance.

There are many algorithms capable of building a probabilistic model. One of the
most well-known is Naive Bayes, which is built upon the ‘naive’ assumption that all
attributes are independent from each other, i.e., they do not interact. More soph-
isticated models can be built by means of Bayesian Networks. Creating an optimal
Bayesian model is NP-complete [31, 34]. This implies that we have to rely on greedy
or heuristic techniques when modelling large datasets.

2.4.4 Nearest Neighbour models

The main idea of Nearest Neighbour models is to identify and store some key in-
stances from the dataset. Whenever presented with a new instance, find among the
remembered instances the ones that are most similar to this new instance [35].

Two important issues arise. First, how do we define which are the key instances,
and second, how do we determine which of the instances are most similar.

In the case of the ‘iris’ and ‘mushroom’ dataset, the issue of the key instances can
be easily resolved. As both datasets contains only a small number of instances, all can
be maintained in memory. However, with bigger datasets this becomes a serious issue
that needs to be addressed, for example by sampling random instances.

One of the most commonly used measures of similarity is the Euclidean distance.
Formally:

dist(z,2') = \[ (21 = 24)2 + (w2 — 24)2 + ..+ (g — })? (2.6)

Here, x is the new instance, z’ is one of the key instances, and x; and z denote the
value of a given attribute, with i = (1,2,...,k).

Having a similarity measure, it is easy to find the instances that have the lowest
distance to z. Many other distance functions can be used as well. This technique is
called k-Nearest Neighbours.

When creating a nearest neighbour model such as the one described, the data
needs to be prepared with care. When dealing with attributes that are on different
scales, the attribute with the biggest scale often dominates the Euclidean distance.
Therefore, the data is often normalized to get the values of all attributes within the
same interval. Moreover, all distance-based models suffer from a concept that is called
the curse of dimensionality [50]. As high-dimensional datasets tend to be extremely
sparse, the data points are often far away from each other. As such, instance-based
models are also vulnerable to irrelevant attributes. It is recommended to use these
models in combination with a feature selection technique [111].
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2.4.5 Logistic Regression

Regression is a commonly used technique to model the relationship between numeric
input variables and a numeric target. However, it can also be used for classification. In
that case, Logistic Regression is used. Logistic Regression is a technique that models the
probability of a newly observed instance belonging to a certain class. One interesting
property is that it gives a degree of certainty that an instance belongs to a certain
class. For example, consider the ‘iris’ dataset (Table 2.1). When classifying the third
example, we would be much less certain that it actually belongs to the class virginica
than when classifying, e.g., the fourth example. This is because the third example is
much closer to the so-called decision boundary.

A typical regression model usually has the form:
Yy =wo + w1z, + Wwokg + ... + WrTk 2.7)

where z; are the attribute values, w is a weight vector and y is the target.

By setting y = 0, we get a line or (hyper)plane that represents the model. In the
case of normal regression, this line or (hyper)plane aims to fit the data points. In the
case of Logistic Regression, this line or (hyper)plane separates the various classes,
and is therefore called the linear discriminant. Figure 2.4 shows a Logistic Regression
model built upon the petal width and petal length attributes of the ‘iris’ dataset.

As the ‘iris’ dataset is a multi-class classification task, we can not separate them
using one linear discriminant. Instead, we use the One-versus-All strategy to first
separate instances of the class setosa from the others (y = 34+ —1-length + —1 - width,
see Figure 2.4a). If an instance does not belong to the setosa class, we can further
establish whether it belongs to the versicolor class (y = 4.3+—0.55-length+—1-width,
see Figure 2.4b). If it does not belong to that class either, it will be classified as
virginica.

The values of any new instance can be plugged into the respective formulas, res-
ulting in a value ranging from [—oo, 0o]. If the outcome is bigger than 0, it means it
belongs to the specified class. If it is smaller than 0, it belongs to the other class (or
set of classes). When the value is exactly 0, the model does not know to which class it
belongs, and will have to guess. Conveniently, we can use the logistic function to map
these back to the interval [0, 1], in order to obtain proper probability estimates.

Logistic Regression requires a dataset to be linearly separable to perfectly fit the
training data. For the ‘iris’ dataset this is not the case, as can be seen from Figure 2.4b.
The resulting model therefore classifies some of the instances wrongly.
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Figure 2.4: Logistic Regression model of the ‘iris’ dataset.
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2.4.6 Support Vector Machines

Similar to Logistic Regression models, a Support Vector Machine (SVM) is a (hyper)plane-
based model that separates the classes. Typically, there are many lines or (hyper)planes
that do so. Support Vector Machines maximize the margin around the linear discrim-
inant. The data points that lie closest to the decision surface are typically the most
difficult to classify. These are called the support vectors. Based on these, the separating
hyperplane is calculated. The distance between the support vectors and the separating
hyperplane is maximized. This distance is called the margin.

Figure 2.5 shows an example of a Support Vector Machine built upon the ‘ris’
dataset. Support Vector Machines are suitable for binary classification tasks. There-
fore, in this case it uses the One-versus-All strategy to first separate the setosa class
from the others (Figure 2.5a), after which it separates the Versicolor from the Vir-
ginica (Figure 2.5b). As with Logistic Regression, it requires linear separability. Oth-
erwise, misclassifications already occur in the training set. In Figure 2.5b we see 5
misclassified instances, and even 8 instances that fall within the separation margin.

Often it occurs that the data is not linearly separable in the original representa-
tion, but is linearly separable when you represent it differently. Support Vectors Ma-
chines are often used in combination with a kernel. Kernels map the data in a higher
dimension, effectively resulting in more attributes. For the task of finding the sep-
arating hyperplane and classifying new instances, we only need the dot product of
the original features, saving us from additional memory usage. Popular kernels for
classification purposes are the Radial Basis Function kernel (RBF), Polynomial kernel
and Sigmoid kernel. Mapping the data to a higher input space should be done with
great care, due to the curse of dimensionality. Increasing the number of variables,
exponentially increases the number of possible solutions, yielding many sub-optimal
solutions [98].

A Support Vector Machine model is based on a small amount of data points, mak-
ing it a rather stable model. Adding or removing data points does not affect the model,
unless that data point is in fact one of the support vectors. Support Vector Machines
are typically not affected by local minima. The name of Support Vector Machines
can be misleading. It is not a machine, it is a model. When using the right kernel,
Support Vector Machines are very powerful models, building upon a solid theoretical
foundation.

2.4.7 Neural Networks

An alternative modelling approach is based on the human brain. The human brain is
a collection of billions of neurons, that are ordered in a certain graph structure. Each
neuron has certain inputs and outputs. A neuron outputs a signal if the combined
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Figure 2.5: Support Vector Machine model built upon the ‘iris’ dataset. The solid line is
the separating hyperplane, the circled data points are the support vectors. The striped
line indicates the margin of the separated hyperplane.
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Figure 2.6: Example of a neural network.

input signals exceed a certain threshold. Inspired by the success of the human brain,
machine learners imitated this paradigm by means of Neural Networks.

Figure 2.6 shows an example of a neural network. Figure 2.6a shows an abstrac-
tion of a neuron. This neuron has 3 preceding input neurons, which are all associated
with a certain weight. Each neuron has a certain threshold value, here displayed with
b. The output value y of each neuron is determined by adding all the weighted inputs
together; the result is put in the activation function. The activation function f has two
purposes. First, it determines whether the threshold value is exceeded or not, and
second, it maps the resulting output of the neuron in the desired domain, typically
[0, 1].

This determines the outcome of the neuron. Typically, neural networks are built
as acyclic graphs, consisting of distinguishable layers. These networks are called feed
forward networks. Figure 2.6b shows an example of the network structure. It contains
an input layer, one hidden layer and an output layer. Typically, the feature values of
a given instance are fed into the input layer; all the other layers are the neurons as
described before.

Indeed, a network that contains no hidden layers (and thus only has one real
neuron, i.e., the output node) has a model corresponding to Linear Regression: each
input variable is associated with a certain weight, and the bias of the neuron cor-
responds to wq of the Logistic Regression model. These neural networks are called
perceptrons.

The real power of neural networks lies in the hidden layers. Effectively, these are
capable of simulating derivatives of feature combinations, that are not manifested in
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the original input space, giving it a tremendous expressive power. Great care should
be taken with noisy data. Due to the high expressive power, it can easily learn a
wrong concept from the noise. The biggest challenges in neural networks is finding
a good network structure and the right weights for each neuron. Various algorithms
are proposed for this, most commonly back-propagation. Training a 3-node neural
network is already NP-complete [17].

2.5 Evaluation

For a created model, an important issue that needs to be addressed is, how well does
it perform. In order to do so, we need an evaluation measure, which quantitatively
defines performance. We could give the model some instances of which we already
know the correct class label, and see in what percentage of cases it classifies them
correctly. These instances are called the test set. This measure is often called predictive
accuracy, and one of the most natural ways of measuring the performance. Predictive
accuracy is a measure that is calculated over the whole test set. It is important to
measure the generalization capabilities of a classifier, i.e., how good the predictions
are for instances that it has not been trained on.

Sometimes, there is an asymmetry in the importance of misclassifications. For ex-
ample, it is worse to classify a poisonous mushroom as edible than the other way
around. Likewise, banks determine whether a person is eligible for receiving credit
based on social-economic attributes such as employment status, age and credit his-
tory. From their perspective, it is worse to give credit to someone that is not credit-
worthy, than the other way around. The ‘German credit’ dataset contains past records
of credit applications; the goal is to model when someone is eligible for receiving
credit. For this purpose, we could use class-specific evaluation measures, that only
address the performance on a given class. The sensitivity or true positive rate (TPR) is
the proportion of instances that belong to a certain class that are correctly classified as
such. The specificity or true negative rate (TNR) is the proportion of instances that do
belong to a certain class and that are correctly classified as such. Typically, there is a
trade-off between the sensitivity and specificity. For example, when a classifier always
predicts a given class, it will have a perfect true positive rate, but a true negative rate
of 0, and vice versa. A similar trade-off between the true positive rate and the false
positive rate is depicted in the receiver operating characteristic curve (ROC-curve), a
common graphical evaluation measure.

Figure 2.7 shows the ROC curve of three classifiers that model whether someone is
credible or not. Banking companies that want to model future credit applications can
choose between Naive Bayes and the Nearest Neighbour approach. Although Naive
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Figure 2.7: ROC curves of three classifiers on the ‘German credit’ dataset. The grey
line shows a virtual classifier that always predicts the same class.

Bayes has a higher accuracy (this can not be deduced from the image), the nearest
neighbour method might be selected based on the ROC curve; not credit-worthy per-
sons will be classified as credit-worthy less often. The decision tree model is domin-
ated by the Naive Bayes model, it obtains a lower true positive rate and a higher false
positive rate.

It is important to always evaluate the performance of a model based on data
that the model is not trained on. It is easy to see that by memorization it is easy
to perform well on the full training set. What we are interested in is generalization
beyond this. For this reason, typically a holdout set is used: the model is trained based
on a percentage of the data, and then evaluated on the other part of the data.

There are two drawbacks to this approach. First, the model is not tested on all
instances. When the instances that are hard to classify all end up in either the training
set or the test set, this will give respectively an optimistic or pessimistic assessment
of the model. Second, as the model is only evaluated once, it does not give a stable
assessment of performance.

In order to overcome these problems, n-fold cross-validation is usually preferred.
The data set is split in split in n equal subsets, and n different models are trained using
n — 1 of these subsets and tested on the remaining one. This way, it tests the model
using each instance exactly once. Cross-validation is widely considered a reliable way
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of evaluating a model on a single dataset.

However, from a Machine Learning point of view, it is often desirable to make
more general conclusions, based on evaluations over many datasets. To this end, stat-
istical tests are used. This allows making statements about the performance of clas-
sifiers over multiple datasets or cross-validation runs. Demsar [36] reviews various
statistical tests appropriate for assessing the quality of Machine Learning models and
algorithms.

2.6 Discussion

This chapter showed some examples of common Machine Learning data, tasks and
models. We have seen various models, all leading to a different representation and
therefore a different expressive power and bias towards certain kinds of data. Having
more expressive power does not guarantee better classification performance. Some-
times highly complex models over-fit on an irrelevant concept and perform unexpec-
tedly mediocre.

One aspect that is nearly not covered are algorithms. These are sets of rules to
be followed in order to create the models. For each model type, there are many al-
gorithms that are able to create such models. Each of these algorithms in turn contains
various parameters to be determined by the user; these parameters enable small or
big nuances in the resulting model. This makes it hard for anyone interested in model-
ling a dataset to select the appropriate model, algorithm and parameter settings. One
question that arises from this is, can we learn from previous machine learning exper-
iments what kind of algorithm should be used to model a new dataset; this is called
meta-learning. As machine learning aims to model a certain dataset, meta-learning
aims to model what kind of data should be modelled by what kind of technique. In
the next chapter, we will review common techniques of doing so.






