4 Universiteit
%45 Leiden
The Netherlands

Massively collaborative machine learning
Rijn, J.N. van

Citation

Rijn, J. N. van. (2016, December 19). Massively collaborative machine learning. IPA
Dissertation Series. Retrieved from https://hdl.handle.net/1887/44814

Version: Not Applicable (or Unknown)
) Licence agreement concerning inclusion of doctoral thesis in the
License:

Institutional Repository of the University of Leiden
Downloaded from: https://hdl.handle.net/1887/44814

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/44814

Cover Page

The handle http://hdl.handle.net/1887/44814 holds various files of this Leiden University
dissertation

Author: Rijn, Jan van
Title: Massively collaborative machine learning
Issue Date: 2016-12-19

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/44814

Massively Collaborative Machine Learning

Jan N. van Rijn

v, Universiteit
4] Leiden

The author of this PhD thesis was employed at Leiden University, and also used facil-
ities of the University of Waikato.

D=l
The work in this thesis has been carried out under the auspices of the research school
IPA (Institute for Programming research and Algorithmics).

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

The author was funded by the Netherlands Organization for Scientific Research (NWO)
as part of the project ‘Massively Collaborative Data Mining’ (number 612.001.206).

Copyright 2016 by Jan N. van Rijn

Open-access: https://openaccess.leidenuniv.nl

Typeset using BIgX, diagrams generated using GGPLOT and GNUPLOT

Cover image by Olivier H. Beauchesne and SCImago Lab (used with permission)
Printed by Ridderprint B.V.

ISBN 978-94-6299-506-2

Massively Collaborative Machine Learning

Proefschrift

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,
op gezag van Rector Magnificus prof. mr. C.J.J.M. Stolker,
volgens besluit van het College voor Promoties
te verdedigen op maandag 19 december 2016
klokke 12:30 uur

door

Jan Nicolaas van Rijn
geboren te Katwijk
in 1987

Promotiecommissie

Promotor: prof. dr. J. N. Kok
Copromotores: dr. A. J. Knobbe
dr. J. Vanschoren (Technische Universiteit Eindhoven)
Promotiecommissie: prof. dr. T. H. W. Bick (secretaris)
prof. dr. E. Marchiori (Radboud Universiteit)
prof. dr. B. Pfahringer (University of Waikato, Nieuw Zeeland)
prof. dr. A. Plaat (voorzitter)

1

3

Introduction

1.1 Introduction.
1.2 Publications

Machine Learning

2.1 Introduction.
22 Data

2.4.2 Decision trees
2.4.3 Probabilistic reasoning
2.4.4 Nearest Neighbour models
2.4.5 Logistic Regression
2.4.6 Support Vector Machines
2.4.7 Neural Networks
2.5 Evaluation.............
2.6 Discussion

Meta-Learning

3.1 Introduction.

23 Tasks.
24 Models.
2.4.1 Decision rules

Contents

W =

c O O U1 U1

vi

3.2 Learning Approach 27
3.2.1 Featurespace i ittt 28
3.2.2 Performancespace 29

3.3 Search Approach 30
3.3.1 Combining Search and Learning 32

3.4 Ensembles e 33

3.5 Conservation for Generalization Performance 35

3.6 Model CharacteristicS v v v v i et e e e e e 36

3.7 BiasVariance Profile 37

3.8 Discussion e e e e 38

Experiment Databases 41

4.1 IntroducCtion v v v vt e e e e e e e e e e e 41

4.2 Networkedscience it 42
4.2.1 Designing networked science 43

4.3 Machinelearning 44
4.3.1 Reusability and reproducibility 45
432 Priorwork. e 45

4.4 OpenML e e e e e 46
441 Datasets ot e e e e e e e 46
442 Tasktypes o i e 48
443 Tasks. e 49
4.4.4 FIOWS . . o v vt e e e e e e e e e 49
445 SetUPS i e e e e e e e 51
446 RUNS i i e e e e e e e e e 51
447 Studies e 52
4.48 Plug-ins e 52

4.5 Learning fromthepast 55
4.5.1 Model-level analysis 56
4.5.2 Data-level analysis, 63
4.5.3 Method-level analysis 68

4.6 Conclusions i e e e e e 69

Data Streams 71

5.1 Introduction v v v i i i e e e e e e 72

5.2 RelatedWork e 73

5.3 Methods e 76
5.3.1 Online Performance Estimation 76
5.3.2 Ensemble Composition 79

533 BLAST e e 80

vii

5.3.4 Meta-Feature Ensemble 83

5.4 Experimental Setup. 84
54.1 DataStreams 84

5.4.2 Parameter Settings it i e 87

5.4.3 Baselines 87

5.5 Results e 88
5.5.1 Ensemble Performance 88

5.5.2 Effect of Parameters 93

5.6 Designed Serendipity o oo 98
5.7 Conclusions e e e e 100

6 Combining Accuracy and Run Time 103
6.1 Introduction i 103
6.2 RelatedWork 105
6.3 Methods e 107
6.3.1 Pairwise Curve Comparison 107

6.3.2 ActiveTesting 111

6.3.3 Combining Accuracy and Run Time 113

6.4 Experiments 114
6.4.1 Predicting the Best Classifier. 116

6.4.2 Ranking of Classifiers 118

6.4.3 LossTimeSpace 121

6.4.4 Optimizing on Accuracy and Run Time 124

6.5 Conclusion 125

7 Conclusions 129
7.1 Open Machine Learning 129
7.2 Massively Collaborative Machine Learning 130
7.3 Community AdOPtion v v v v i it e e 131
7.4 Future Work e 131
Bibliography 133
Dutch Summary 147
English Summary 149
Curriculum Vitae 151

Acknowledgements 153

viii

Publication List 155

Titles in the IPA Dissertation Series since 2013 159

List of Figures

2.1 Scatter plot of the ‘iris’dataset 7
2.2 Decision rule model of the ‘mushroom’ dataset. 11
2.3 Decision tree model of the ‘mushroom’ dataset 13
2.4 Logistic Regression model of the ‘ris’dataset. 17
2.5 Support Vector Machine model built upon the ‘iris’ dataset 19
2.6 Example of aneuralnetwork 20
2.7 ROC curves of three classifiers on the ‘German credit’ dataset 22
3.1 The Algorithm Selection Framework 27
3.2 Example of Bayesian Optimization 31
3.3 BiasandVariance e e e 38
4.1 Example of an OpenML task description 49
4.2 Example of an OpenMLflow 50
4.3 Exampleofan OpenMLrun, 53
4.4 WEKA integrationof OpenML 54
4.5 Example of a RapidMiner workflow 55
4.6 Rintegrationof OpenML 56
4.7 Various algorithms on the ‘letter’ dataset 57
4.8 Effect of optimizing parameters, 59
4.9 Effect of gamma parameter for SVM’s 60
4.10 Ranking of algorithms over all datasets 61

4.11 Results of Nemenyi test on classifiers in OpenML 62

List of Figures

4.12 Optimal values of parameters 64
4.13 The effect of feature selection 66
4.14 Hierarchical clustering of stream classifiers 69
5.1 Performance of four classifiers on intervals of the ‘electricity’ dataset . 73
5.2 Schematic view of Windowed Performance Estimation 77
5.3 The effect of a prediction when using Fading Factors 78
5.4 Online Performance Estimation 79
5.5 Performance of 25 data stream classifiers based on 60 data streams. . . 81
5.6 Effect of the ensemble size parameter. 89
5.7 Performance of the various meta-learning techniques 90
5.8 Accuracy perdatastream e e 92
5.9 Resultsof Nemenyitest 93
5.10 Effect of the decay rate and window parameter 94
5.11 Effect of the grace parameter on accuracy 95
5.12 Performance for various valuesof k 97
5.13 Performance differences between Leveraging Bagging ensembles and
single classifiers 98
5.14 Performance differences between Online Bagging ensembles and single
classifiers 99
6.1 Learning curves on the ‘letter’ dataset 108
6.2 Number of datasets with maximum number of learning curve samples 114
6.3 Performance of meta-algorithm on predicting the best classifier 117
6.4 Example LosS CUIVES v v v v v v i e e et e e e e e e e 119
6.5 Average Area Under the Loss Curves for various meta-algorithms . . . 120
6.6 Results of Nemenyi test on the Area Under the Loss Curve scores . .. 121
6.7 Example Loss Time CUrves v v v v v v v v v v oo e o 122
6.8 Average Area under the Loss Time Curve scores for the various meta-
algorithms 123
6.9 Results of Nemenyi test on the Area Under the Loss Time Curves scores 123
6.10 Loss TIMe CUIVeS o v v v vt it e e e e e et e e e 126

6.11 Results of Nemenyi test on the Area Under the Loss Time Curve scores 128

Introduction

1.1 Introduction

We are surrounded by data. On a daily basis, we are confronted by many forms of
it. Companies try to spread their commercials by means of billboards, commercials
and online advertisements. We have instant access to our friends’ social lives using
services as Facebook and Twitter, and we can obtain information about countless
topics of interest by means of websites such as Wikipedia. In most cases, this is a
double-edged sword. Companies and governments also collect information about us.
For example, most websites store information about our browsing behaviour, banks
know most about our financial transactions, and telecom providers even have access
to our exact whereabouts, as our GPS coordinates are shared by our mobile phones.

Data is also gathered for scientific purposes. Large sensor networks and telescopes
measure complex processes, happening around us on Earth or throughout the Uni-
verse. Any estimation of the amount of data that is being produced, transferred and
gathered would be pointless, as it will be outdated some moments after publication.

All this data is valuable for the information, knowledge and eventually wisdom
we could obtain from it. We could identify fraudulent transactions based on finan-
cial data, develop new medicines based on clinical data, or locate extraterrestrial life
based on telescope data. This process is called learning. The scientific community has
created many techniques for analysing and processing data. A traditional scientific
tasks is modelling, where the aim is to describe the data in a simplified way, in order
to learn something from it. Many data modelling techniques have been developed,
based on various intuitions and assumptions. This area of research is called Machine
Learning.

However, all data is different. For example, data about clinical trials is typically

2 1.1. Introduction

very sparse, but well-structured, whereas telescopes gather large amounts of data,
albeit initially unstructured. We cannot assume that there is one algorithm that works
for all sorts of data. Each algorithm has its own type of expertise. We have only little
knowledge about which algorithms work well on what data.

The field of Machine Learning contains many challenging aspects. The data itself is
often big, describing a complex concept. Algorithms are complex computer programs,
containing many lines of code. In order to study the interplay between these two,
we need data about the data and the algorithms. This data is called meta-data, and
learning about the learning process itself is called meta-learning. It is possible to gain
knowledge about the learning process when there is sufficient meta-data. Some ef-
fort has been devoted to building a large repository of this experimental data, called
the ‘open experiment database’ [153]. It contains a large amount of publicly avail-
able Machine Learning results. This way, existing experimental data can be used to
answer new research questions. Although this has proven extremely useful, there is
still room for improvement. For example, sharing experiments was difficult: while all
experimental data was accessible to the public, contributing new results towards the
experiment database was only practically possible for a small circle of researchers.
Furthermore, sensibly defining the types of meta-data that are being stored would
expand the range of information and knowledge that can be obtained from the data.
For example, storing all evaluation measures per cross-validation fold enables stat-
istical analysis on the gathered data, and storing the individual predictions of the
algorithms enables instance-level analysis. Our aim is to build upon the existing work
of experiment databases, and demonstrate new opportunities for Machine Learning
and meta-learning.

Our contributions are the following. We have developed an online, open experi-
ment database, called ‘OpenML’. This enables researchers to freely share their data,
algorithms and empirical results. This significantly scales up the size of typical ma-
chine learning and meta-learning studies. Implementing algorithms and modelling
data are both time-intensive tasks. Instead of setting up the experiments themselves,
researchers can now simply look up the results by querying the database, covering
a much larger set of experiments. OpenML automatically indexes and organizes the
uploaded meta-data, allowing researchers to investigate common questions about the
performance of algorithms, such as which parameters are important to tune, what
the effect is of a given data property on the performance of algorithms, or which
algorithm works best on a certain type of data.

We have demonstrated the effectiveness of this collaborative approach to meta-
learning with two large-scale studies that were not practically feasible before. The first
study covers the data stream setting, which contains some challenging real-world as-
pects: large amounts of data need to be processed at high speed and learned models

Chapter 1. Introduction 3

can become outdated. In this work, we created a novel approach that, while pro-
cessing the stream, dynamically changes the modelling algorithm when another al-
gorithm seemed more appropriate. The study covered 60 data streams, which to the
best of our knowledge, is the largest meta-learning study in the data stream literature
to date.

The second study covers a conventional meta-learning task, where the goal is to
find an algorithm that adequately models the dataset. However, it is also important
to find that algorithm as fast as possible. Indeed, whenever such an algorithm is
recommended, it can be tested (e.g., using cross-validation) and if its performance is
not sufficient, another one can be tried, but this can be a very slow process. This study
showed that there are techniques that trade off performance and run time. If one is
willing to settle for an algorithm that is almost as good as the absolute best algorithm
for that dataset, the run time can be decreased by orders of magnitude.

The remainder of this thesis is organised as follows. Chapter 2 introduces some
basic aspects about Machine Learning, and introduces some well-known model types.
Chapter 2 surveys common meta-learning techniques. It approaches meta-learning
both from a learning and a search perspective. Chapter 4 describes the online experi-
ment database on which we collect experimental results. Chapter 5 describes the first
study that demonstrates the use of OpenML for data streams. Chapter 6 describes a
second study that shows how meta-learning techniques can trade off accuracy and
run time. Chapter 7 concludes and points to future work.

1.2 Publications

The different chapters of this thesis are based on the following peer-reviewed public-
ations:

¢ J. N. van Rijn, B. Bischl, L. Torgo, B. Gao, V. Umaashankar, S. Fischer, P. Winter,
B. Wiswedel, M. R. Berthold, and J. Vanschoren. OpenML: A Collaborative
Science Platform. In Machine Learning and Knowledge Discovery in Databases,
pages 645-649. Springer, 2013 (Chapter 4)

e J. N. Van Rijn, V. Umaashankar, S. Fischer, B. Bischl, L. Torgo, B. Gao, P. Winter,
B. Wiswedel, M. R. Berthold, and J. Vanschoren. A RapidMiner extension for
Open Machine Learning. In RapidMiner Community Meeting and Conference,
pages 59-70, 2013 (Chapter 4)

e J. N. van Rijn, G. Holmes, B. Pfahringer, and J. Vanschoren. Algorithm Selection
on Data Streams. In Discovery Science, volume 8777 of Lecture Notes in Computer
Science, pages 325-336. Springer, 2014 (Chapter 5)

4 1.2. Publications

e J. N. van Rijn, G. Holmes, B. Pfahringer, and J. Vanschoren. Towards Meta-
learning over Data Streams. In J. Vanschoren, P. Brazdil, C. Soares, and L. Kot-
thoff, editors, Proceedings of the 2014 International Workshop on Meta-learning
and Algorithm Selection (MetaSel), number 1201 in CEUR Workshop Proceed-
ings, pages 37-38, Aachen, 2014 (Chapter 5)

e J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo. OpenML: networked
science in machine learning. ACM SIGKDD Explorations Newsletter, 15(2):49-
60, 2014 (Chapter 4)

e J. N.van Rijn, S. M. Abdulrahman, P. Brazdil, and J. Vanschoren. Fast Algorithm
Selection using Learning Curves. In Advances in Intelligent Data Analysis XIV,
pages 298-309. Springer, 2015 (Chapter 6)

e J. N. van Rijn, G. Holmes, B. Pfahringer, and J. Vanschoren. Case Study on Bag-
ging Stable Classifiers for Data Streams. In Proceedings of the 24th Belgian-Dutch
Conference on Machine Learning (BeNeLearn 2015), 6 pages, 2015 (Chapter 5)

e J. N. van Rijn, G. Holmes, B. Pfahringer, and J. Vanschoren. Having a Blast:
Meta-Learning and Heterogeneous Ensembles for Data Streams. In Data Mining
(ICDM), 2015 IEEE International Conference on, pages 1003-1008. IEEE, 2015
(Chapter 5)

e J. N. van Rijn and J. Vanschoren. Sharing RapidMiner Workflows and Experi-
ments with OpenML. In J. Vanschoren, P. Brazdil, C. Giraud-Carrier, and L. Kot-
thoff, editors, Proceedings of the 2015 International Workshop on Meta-Learning
and Algorithm Selection (MetaSel), number 1455 in CEUR Workshop Proceed-
ings, pages 93-103, Aachen, 2015 (Chapter 4)

e J. Vanschoren, J. N. van Rijn, and B. Bischl. Taking machine learning research
online with OpenML. In Proceedings of the 4th International Workshop on Big
Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Program-
ming Models and Applications, pages 1-4. JLMR.org, 2015 (Chapter 4)

A full list of publications by the author can be found on page 155 of this thesis.

Machine Learning

As argued in Chapter 1, there is a great amount of data being generated every day.
Collecting data in itself is only useful if we are able to make sense out of it. A great
challenge lies in analysing and modelling the collected data.

2.1 Introduction

Model building is a time-consuming task that has already been practised for a long
time by many scientists. In the 16th century, Nicolaus Copernicus described a model
that considered the sun to be the centre of the universe, rather than the Earth. The
data that he based this model on were the observations he made of the sun and its
orbiting planets. Although his model was not entirely accurate, it is widely accepted
that his ideas led to great scientific breakthroughs in his time and thereafter. Many
examples of scientific models based on data can be found, where data can be literally
anything, ranging from measurements obtained through a microscope to observations
obtained through a telescope.

Machine Learning is the field of research that focuses on the automatic building of
predictive models from collected data, that can be evaluated using an objective perform-
ance measure. As the term ‘automatic’ indicates, it uses algorithms, aiming to keep
the human expert out of the loop. Of course, there are also Machine Learning tech-
niques that deliberately use domain experts’ knowledge [157]. However, even those
techniques are focused on automating the process, effectively taking over the work-
load and suggesting interesting patterns that would be too complex to distinguish
otherwise. As the term ‘predictive’ indicates, the models should be capable of making
predictions for yet unseen data. It is easy to perform well on the already seen data

6 2.2. Data

Table 2.1: Random sample from the ‘iris’ dataset, as provided by [44].

sepal sepal petal petal class sepal sepal petal petal class
length width length width length width length width

5.1 3.7 1.5 0.4 setosa 5.5 4.2 1.4 0.2 setosa
5.1 3.3 1.7 0.5 setosa 6.4 3.2 4.5 1.5 versicolor
6.2 2.8 4.8 1.8 virginica 7.1 3.0 5.9 2.1 virginica
6.9 3.1 5.4 2.1 virginica 5.1 3.5 1.4 0.2 setosa
6.1 3.0 4.6 1.4 versicolor 5.5 3.5 1.3 0.2 setosa
4.7 3.2 1.3 0.2 setosa 5.6 2.8 4.9 2.0 virginica
4.4 3.2 1.3 0.2 setosa 6.3 2.5 4.9 1.5 versicolor
6.5 2.8 4.6 1.5 versicolor 5.8 4.0 1.2 0.2 setosa
6.8 3.0 5.5 2.1 virginica 6.0 2.2 5.0 1.5 virginica
6.3 3.4 5.6 2.4 virginica 5.0 3.4 1.5 0.2 setosa
5.1 3.5 1.4 0.3 setosa 4.8 3.0 1.4 0.3 setosa
6.3 3.3 6.0 2.5 virginica 6.8 3.2 5.9 2.3 virginica
5.0 3.2 1.2 0.2 setosa 5.8 2.6 4.0 1.2 versicolor
5.1 3.8 1.9 0.4 setosa 5.7 2.9 4.2 1.3 versicolor
5.7 4.4 1.5 0.4 setosa 7.4 2.8 6.1 1.9 virginica

(just memorize it); Machine Learning is about generalizing beyond this. Typically, the
models will be evaluated based on predictions made for unseen data. An evaluation
criterion can be the percentage of correct predictions, but in some cases more subtle
measures are required. This is the objective performance measure.

The main concepts of Machine Learning are data, tasks, models, algorithms and
evaluation measures. Chapter 2.2 gives examples of common types of data(sets),
Chapter 2.3 overviews some common tasks that will recur in this thesis. In Chapter 2.4,
we review the most common model types and mention the algorithms used to build
them. Chapter 2.5 discusses the various ways of evaluating such models. Chapter 2.6
concludes with a discussion about meta-learning.

2.2 Data

In this chapter we will explore some common datasets that can be modelled using
Machine Learning techniques.

2.2.1 Iris

Iris is a species of flowering plants, named after a Greek mythological goddess who
rides the rainbows. Many iris flowers exist, e.g., iris unguicularis, iris latifolia and iris
tectorum, to name a few. Some of these are easy to distinguish, others are harder.
The English statistician and biologist Fisher created a dataset, containing measurable
features about three types of iris flowers [44].

Chapter 2. Machine Learning 7

2.5 o oo
. °
eeee o o o L]
o0 .
ecee o .
20 [IIT) e o
o0 o
0o e0 o0 o
. °
oo o °
S 1.5F © ooo oee
<] ° © ooo °
g © ooooocoo
= 0 00 o
5 ° o0
A, 1.0 000 oo
°
0.5 °
© oco o
000 o
o e00000 o
° oo
0.0
.
1 2 3 4 5 6 7
Petal length

Figure 2.1: Scatter plot of the ‘iris’ dataset, as provided by [44].

Table 2.1 shows a random sample from the dataset, in the tabular form that data
often is represented in. Each row in this dataset represents an iris flower. We call
these rows instances or observations. Because of limited space, we only show a few.
The dataset describes for each iris flower some perceptible features, such as sepal
length, sepal width and petal length (all measured in centimetres). These we call the
attributes of a dataset. Based on these features, flower experts can determine to which
type of iris plants a certain instance belongs (the attribute ‘class’). This dataset was
created with the purpose of automatically modelling whether an iris flower belongs
to the type setosa, versicolor or virginica. That makes this attribute somewhat special,
hence we call it the class or the target attribute.

This is a numeric dataset. All attributes (except for the class) contain only num-
bers, making it easy to plot the data. This is done in Figure 2.1. The z-axis shows the
petal length, the y-axis shows the petal width. The attributes sepal length and sepal
width are omitted. Each dot represents an iris flower (150 in total), and the colour
and shape of a dot shows to which class that flower belongs.

From this plot, we already see that it is quite easy to distinguish the setosa flowers
from the others, just by looking at the petal size. We can draw a straight line that
separates the setosa flowers from the others. This class is linearly separable. However,
it is harder to distinguish the versicolor from the virginica. In general, the versicolor
flowers have smaller petals than the virginica. But when presented with an uncategor-

8 2.2. Data

ised iris flower with a petal length of 5 cm and a petal width of 1.5 cm, it becomes
hard to classify it. One way of solving this problem would be also looking at the sepal
length and sepal width, but we can only plot a limited number of variables.

Having only four numeric attributes and a total of 150 instances, from a compu-
tational point of view the iris dataset is considered to be an easy dataset to model.
Despite the challenges for human experts, machine learning techniques are quite suc-
cessful at modelling this dataset.

2.2.2 Mushroom

Mushrooms are popular for their edible, medicinal and psychoactive properties. As
some mushrooms are very poisonous, knowing which mushrooms are edible and pois-
onous is quite important. Table 2.2 shows the ‘mushroom’ dataset. Each row in this
dataset represents a mushroom. To keep this table simple, we have left some attrib-
utes out. The dataset describes for each mushroom some perceptible features, such
as cap colour, odour and gill size. Based on these features, mushroom experts can
determine whether a mushroom is edible or poisonous. This dataset was created with
the purpose of modelling which properties makes a mushroom edible.

This is a nominal dataset. Each attribute can have certain values, for example,
the attribute ‘stalk surface above ring’ can be either silky, smooth or sometimes even
fibrous. There is no particular order in the values, making it hard to plot them mean-
ingfully.

Many things can be observed by just looking at this sample. First, we notice some
properties about distributions. Although mushrooms come in many colours, it appears
that most of them have a red, grey or brown cap. Many mushrooms have either no
odour or a foul odour, although some can smell spicy, musty or fishy. The gill colour
is more equally distributed amongst the mushrooms, and can be chocolate, pink, buff
or something completely different. Moreover, we can already see some correlations
between mushroom features and the target. It appears that whenever a mushroom has
a foul odouy, it is not advisable to eat it. Conversely, from the data sample it seems
that when a mushroom has no odour at all, it is edible. However, great care is still
advised when eating an unknown mushroom without odour. As this data sample only
covers part of the existing mushrooms, in reality many mushrooms have no odour
and yet are poisonous. Sometimes, the person collecting the data makes a mistake. A
poisonous mushroom can be recorded as edible, or the other way around. Erroneous
recorded feature values or class values are called noise, which is a common problem
data modellers should deal with.

The full dataset contains more than 8,000 instances, and a total of 22 attributes
(not including the target). This makes it hard to do a full analysis by hand. In compar-

Chapter 2. Machine Learning

snouostod spoom Areljos 918[0201D umoiq ATIS Aris £e1d peoiq ENp} oy Mo[[aL
snouostod spoom Areajos 918[0201D nq Apis Aqis 91B[0201D peoiq 9so[d noj Keid
snouostod spoom [BI9A9S aYMm aym ATIS yroows Jnq moireu 9s0[d Aords umoiq
snouostod syred [e12A9S 91B[0201D yurd A1s AT1S Aeid peoiq ENep) oy Aeid
91qIpa spoom Arejrjos umoiq yurd oouws loows umoiq peoiq asop suou umoiq
snouostod ueqin paI191Ieds umoliq AIyM oows yloowss YoRIQ MOIIRU ssop juadund AIyM
snouostod spoom pa121snd aym uowreuun ATeds Aqis MOT[RA peoiq asop fAsnw uowreuu»
9IqIpa sasse1d snoraumnu umoiq aAyMm oouws loows Ae1d peoiq asop puowye AYM
9IqIpa smopeaur paI1aneds yorIq AMYM oouws loows aAMyM peoiq asop astue MOT[A
snouostod sasse1d paI1aneds 91B[0D0TD aAMyM snoiqy lo0ws Elizi(enle)ip] peoiq asop mojy £e1d
9IqIpa sasse1d juepunge yor|q AIyM oows snoiqy yor[q peOIlq PapMOId suou £e13
9IqIpa J1seM pa1a1sn AYM pa1 oows yloows pa1 peoiq asop suou 1nq
snouostod S9ABI] [BI9A9S YM yurd Apis Ais Jng moireu 9s0[d noj pai1
snouostod spoom AEYEY aANYM aAMYM oows s Jnq moireu asop nojy pa1
9IqIpa spoom Arejrjos yor[q Ke13 oows loows umoiq peoiq asop suou pa1
snouostod syred [eIanas ArYMm yurd ppoows yroows Jng molreu ENp} Aords pail
snouostod spoom LACYEY aym yuid Aqpis Aqis Jnq moireu 9sop [nojy pa1
9IqIpa sasse1d Ppa19118d8 yoe|q aAyM oows loows 918[0d01D peOlq papMOId auou Ke1d
9IqIpa sasse1d juepunge umoiq AMYM snoiqy snoiqy Elizi (enle)ip] peOlq PapMOId auou umoiq
9IqIpa spoom L2EYEY ordmnd aAMyM oows lo0ws qurd moireu papmond astue MOT[A
snouostod syred [eIaAds 918[0201D umoiq ATIS Aris yurd peoiq ENp} oy Mmo[eA
9IqIpa sasseId pa191Ieds umoliq aAIym oows yloows umoiq peoiq 3502 puourfe Mo[[oA
snouostod spoom LAEYEY umoiq AIYM oows loows UMOIq MOILIRU 9S0[> 910S09Id AYM
snouostod syred [BI9A9S AyYMm aym ATIS yloowss Jnq moireu 9s0[d [noj pa1
9IqIpa sasse1d paI1aneds AMYM AYM Ais loows yurd peOI1q PIpMOId auou AMYM
snouostod sasse1d J2EYEN 918[0D0TD AMyM oows loows yurd peoiq asop mojy 3nq
snouostod spoom [e19A3s aym AIYM yoows yloowss Jnq moireu 3502 Aysy umoliq
snouostod spoom [eIaA9s AYMm yuid s Ais Jng moireu ENop} £ouds umoiq
snouostod syred [BI9A9S 91B[0201D nq Apis Ais Ae1d peoiq ENdp} noj Ae1d
9IqIpa spoom Areajos 91B[020TD AyMm snoiqy loows 91B[OD0YD MOIIRU asop auou u92213
9IqIpa sasse1d snoroumu AMYM AMYM Apis lo0ws Ke1d peOI1q papMOId suou AYM
9IqIpa sasse1d pa1eneds AryMm aaym ATIS yroows yurd peoiq papmoI suou Ae1d
9IqIpa J1seM paIa3sn aym AIyM oows yloows aym peoiq 9sop suou 3nq
snouostod sasse1d [eI9A9S 91B[0201D nq s Aqis Ae1d peoiq ENdp} noj Keid
snouostod sasse1d Axeyrfos 91e[0201D yuid ATIS Aris 91e[0201D peoiq ENdp} mojy Ae1d
Inojod 3urr mofaq 3urr mofaq 3ur1 aaoqe Bumoeds INnojod
ssep jenqey uopendod juud ozods INO[OD M[BIS 90BJINS M[BIS 9JBJINS Y[BIS INO[0D I 9ZIS [[I3 s Inopo deo

‘[9¢1] 4q papraoid se

Joselep woolysnui, 3yl woij s[dures wopuey :g'z 9[qel

10 2.3. Tasks

ison to other datasets, such as astronomical telescope data, this is only a very small
dataset. We need more sophisticated models and techniques to analyse data sources
of increasing size adequately.

2.3 Tasks

As the previous chapter argued, a common machine learning task is to model the
available data, such that predictions for new, yet unseen, instances can be made. The
task of modelling the ‘mushroom’ dataset is what we call binary classification, as there
are only two classes to choose from (the data is dichotomous). In the case of the ‘iris’
dataset, there are already three possible classes. Whenever a dataset has more than
two classes, we call the appropriate modelling task multi-class classification.

Many real world applications of machine learning are actually multi-class classi-
fication tasks, with a rather high number of classes. For example, face recognition
programs typically get raw image data as input, and have to determine which per-
son is displayed. In fact, in this case each person in the database is a unique class.
Inconveniently, many Machine Learning models are only capable of solving the bin-
ary classification task. In order to overcome this limitation, a binary model can be
turned into a multi-class model by a divide and conquer strategy called One-versus-
All. Consider a dataset that consists of n classes, we build n — 1 models, such that
each separates one class from all the other classes. Allwein et al. [5] propose a frame-
work that consists of various strategies that make binary models useful for multi-class
classification. Sometimes, we are not interested in modelling the whole dataset, but
in finding an interesting subgroup of the data. The resulting model then describes the
data only partially, the other data is out of the scope. This is called subgroup discovery.

The previous described datasets contained a nominal target. It is also possible to
model datasets with a numeric target. This task type is known as regression.

Furthermore, the shown data did not have any concept of time or predefined order.
We call it stationary data. This is different when modelling, for example, the stock
price of a company. Observations obey a certain order, big changes in the economic
landscape can have a huge impact on the performance of the model, therefore it
needs to be updated constantly. This task type is called data stream classification or
data stream regression. Chapter 5 covers this in detail.

Many other tasks exists, such as clustering, pattern mining and association rule
discovery, but as these are out of the scope of this thesis we will not cover them here.

Chapter 2. Machine Learning 11

if (odour = foul) then class=poisonous (2160)

if (gill size = narrow) and (gill colour = buff) then class=poisonous (1152)
if (gill size = narrow) and (odour = pungent) then class=poisonous (256)

if (odour = creosote) then class=poisonous (192)

s| if (spore print colour = green) then class=poisonous (72)

if (stalk surface above ring = silky) and (gill spacing = close)

then class=poisonous (68)
if (habitat = leaves) and (cap colour = white) then class=poisonous (8)
if (stalk colour above ring = yellow) then class=poisonous (8)
otherwise class=edible (4208)

Figure 2.2: Decision rule model of the ‘mushroom’ dataset. Between brackets is the
number of instances that are captured by each rule.

2.4 Models

In this chapter, we will describe common Machine Learning methods. Domingos [38]
describes a machine learning algorithm as a combination of representation, evaluation
and optimization. The representation is the resulting model, the optimization is the
procedure that creates that model and the evaluation is the way that model is eval-
uated (i.e., how good it fits the data). In this chapter we focus on commonly used
model types and how they work, rather than on how these are constructed. For each
model type, many optimization algorithms exist that are capable of creating them.
For simplicity, these algorithms can be seen as black boxes that take data as input and
produce a model.

2.4.1 Decision rules

Rule-based models are amongst the most intuitive types of models. Recall that by first
inspecting the ‘mushroom’ dataset, we already came up with some decision rules: if
the odour is foul then the mushroom is poisonous and if it has no odour then the
mushroom is edible.

The rules depicted above are an example of the famous ‘One Rule’ model [69].
As it uses only one feature, the name is chosen accordingly. It highly simplifies the
concept underlying the data, but is already quite accurate. The model gives great in-
sight in what an important property of the problem is. Although the One Rule model
adequately captures more than two-thirds of the data sample in this case, typically,
a conjunction of many rules is needed to accurately describe the whole concept. De-
cision rules are commonly used for classification and subgroup discovery.

Some technicalities arise when using decision rule models for classification. For

12 2.4. Models

example, what happens to an instance that is covered by multiple rules, or what
happens to an instance that is not covered by any of the rules. Figure 2.2 shows an
example of a decision rule list. Here, the rules have a certain order. If an instance is
captured by multiple rules, the first rule that it complies to is used. Furthermore, it
uses the concept of a default rule. All instances that are not captured by any rule are
in this case classified as edible.

One of the nice properties about decision rules is that they are typically quite
interpretable; human experts can verify and learn from them. Also, in most cases
they are quite accurate in modelling the underlying concept.

Many rule induction algorithms exist, e.g., Repeated Incremental Pruning to Pro-
duce Error Reduction (RIPPER) [32], Fuzzy Unordered Rule Induction Algorithm
(FURIA) [72] and Ripple-Down Rules (RIDOR) [33].

2.4.2 Decision trees

Decision trees are very similar to decision rules. Figure 2.3 shows an example of a
decision tree, built upon the mushroom dataset. A decision tree consists of various
nodes. Tree nodes are drawn round and contain an attribute name; the attribute that
is being checked. Leaf nodes are drawn rectangular and contain a class value, in this
case whether a mushroom is edible or not. The number between brackets denotes
the number of instances that end up in that leaf node. For each observation, we start
at the root node and traverse the tree in the direction that the test indicates. For
example, for mushrooms that have an almond or anise odour, we traverse the left
edge; these appear to be edible. For mushrooms that have no odour, we traverse the
middle edge, and end up in the tree node where we will check the spore print colour.
This process continues until we end in a leaf node.

When creating a tree, an important question is: which attribute should be used at
some point as the splitting criterion. In the seminal paper by Quinlan, the attribute
that obtains the highest information gain is used [115]. At each node in the tree, we
can calculate the entropy H (X) as follows:

P p n n

H(X):_p+n10g2p+n_p+n10g2p+n 2.1
where p is the number of instances at that tree node belonging to one class, X is the
sub-sample of the dataset that is considered in the node (the full dataset at the root,
but it is gradually getting smaller at lower levels) and n is the number of instances
belonging to the other class. When all the instances belong to the same class, the
entropy is 0. When exactly half of the instances belong to both classes, the entropy is
1. In all other cases, entropy is somewhere between the two.

Chapter 2. Machine Learning 13

almond, anise

edible
(592)

poisonous edible
(16) (48)

Figure 2.3: Decision tree model of the ‘mushroom’ dataset.

Suppose we consider an attribute ¢ having v distinct values, and p; instances of
one class and p,, instances of the other class for each 1 < ¢ < v. We can determine the
entropy after the split in the following way:

H'(X) = - pi“‘ni{_ Pi Di

n;
2.2
o prm } @2

n
log — log
pitni Cpitng pitni Ol pi+ng

The attribute that minimizes H'(X) is chosen as splitting criterion. This process is
repeated at each node, until a certain stopping criterion is met, e.g., all instances in a
node belong to one class.

When using the described procedure, the decision tree is built in a greedy way;
sometimes a splitting criterion is chosen that turns out to be suboptimal. As it is
proven that building an optimal decision tree is NP-complete [76], we have to resort
to such greedy procedures when working with large amounts of data.

As with the decision rule models, decision trees are easy to interpret, and therefore
commonly used in practice. Many tree induction algorithms exist, e.g., Classification
and Regression Tree (CART) [25], C4.5 [116] and Hoeffding Trees [39].

14 2.4. Models

2.4.3 Probabilistic reasoning

Another way to model the mushroom dataset is by probabilistic modelling. In the data
sample from Table 2.2, out of the 35 mushrooms, 20 mushrooms are poisonous and
15 mushrooms are edible. We say that the prior probability of a mushroom being pois-
onous P(class = poisonous) = 20/35 = 0.57 and the prior probability of a mushroom
being edible P(class = edible) = 15/35 ~ 0.43. This observation gives us reason to be-
lieve that in general a mushroom is more likely to be poisonous than edible. However,
for each individual mushroom, we can adapt this probability based on the observed
features. For example, we observe that the mushroom has a smooth stalk surface
above the ring. We immediately observe that the prior probability of a mushroom hav-
ing a smooth stalk surface (above the ring) P(stalk surface = smooth) = 21/35 = 0.6.
We want to know the probability of a mushroom being poisonous, given the fact that
is has a smooth stalk surface. Conveniently, Bayes’ theorem states that given a hypo-
thesis and evidence that bears on that hypothesis:

P(evidence|hypothesis) - P(hypothesis)
P(evidence)

In this case, the evidence is a smooth stalk surface and the hypothesis is that the
mushroom is poisonous. In fact, the hypothesis could as well be that the mushroom
is edible, as this is the exact opposite of the previous hypothesis.

Of all the 20 observed poisonous mushrooms, 8 had a smooth stalk surface above
the ring. The likelihood of a smooth stalk surface above the ring given that the mush-
room is poisonous P(stalk surface = smooth|class = poisonous) = 8/20 = 0.4. Like-
wise, of the 15 edible mushrooms, 13 had a smooth stalk surface above the ring. Thus,
the likelihood of a smooth stalk surface above the ring given that the mushroom is
edible P(stalk surface = smooth|class = edible) = 13/15 ~ 0.87.

Plugging these numbers in Eq. 2.3 results in a probability of a mushroom being
poisonous given that the stalk surface (above the ring) is smooth:

2.3)

P(hypothesis|evidence) =

4-0.
P(class = poisonous|stalk surface = smooth) = % ~ 0.38 24
Likewise, the probability of a mushroom being edible given that the stalk surface
is smooth:
0.87-0.43
P(class = edible|stalk surface = smooth) » 06~ 0.62 (2.5)

This model scales trivially to multiple attributes; when classifying a mushroom,
we should not only take into account the stalk surface (as we did in the previous ex-
ample), but all other attributes that seem to be of influence. In the case of the mush-
rooms, we should also use odour, gill size, and probably even more. With probabilistic

Chapter 2. Machine Learning 15

modelling, the main challenge lies in identifying which attributes are important for
classifying an instance.

There are many algorithms capable of building a probabilistic model. One of the
most well-known is Naive Bayes, which is built upon the ‘naive’ assumption that all
attributes are independent from each other, i.e., they do not interact. More soph-
isticated models can be built by means of Bayesian Networks. Creating an optimal
Bayesian model is NP-complete [31, 34]. This implies that we have to rely on greedy
or heuristic techniques when modelling large datasets.

2.4.4 Nearest Neighbour models

The main idea of Nearest Neighbour models is to identify and store some key in-
stances from the dataset. Whenever presented with a new instance, find among the
remembered instances the ones that are most similar to this new instance [35].

Two important issues arise. First, how do we define which are the key instances,
and second, how do we determine which of the instances are most similar.

In the case of the ‘iris’ and ‘mushroom’ dataset, the issue of the key instances can
be easily resolved. As both datasets contains only a small number of instances, all can
be maintained in memory. However, with bigger datasets this becomes a serious issue
that needs to be addressed, for example by sampling random instances.

One of the most commonly used measures of similarity is the Euclidean distance.
Formally:

dist(z,2') = \[(21 = 24)2 + (w2 — 24)2 + ..+ (g — })? (2.6)

Here, x is the new instance, z’ is one of the key instances, and x; and z denote the
value of a given attribute, with i = (1,2,...,k).

Having a similarity measure, it is easy to find the instances that have the lowest
distance to z. Many other distance functions can be used as well. This technique is
called k-Nearest Neighbours.

When creating a nearest neighbour model such as the one described, the data
needs to be prepared with care. When dealing with attributes that are on different
scales, the attribute with the biggest scale often dominates the Euclidean distance.
Therefore, the data is often normalized to get the values of all attributes within the
same interval. Moreover, all distance-based models suffer from a concept that is called
the curse of dimensionality [50]. As high-dimensional datasets tend to be extremely
sparse, the data points are often far away from each other. As such, instance-based
models are also vulnerable to irrelevant attributes. It is recommended to use these
models in combination with a feature selection technique [111].

16 2.4. Models

2.4.5 Logistic Regression

Regression is a commonly used technique to model the relationship between numeric
input variables and a numeric target. However, it can also be used for classification. In
that case, Logistic Regression is used. Logistic Regression is a technique that models the
probability of a newly observed instance belonging to a certain class. One interesting
property is that it gives a degree of certainty that an instance belongs to a certain
class. For example, consider the ‘iris’ dataset (Table 2.1). When classifying the third
example, we would be much less certain that it actually belongs to the class virginica
than when classifying, e.g., the fourth example. This is because the third example is
much closer to the so-called decision boundary.

A typical regression model usually has the form:
Yy =wo + w1z, + Wwokg + ... + WrTk 2.7)

where z; are the attribute values, w is a weight vector and y is the target.

By setting y = 0, we get a line or (hyper)plane that represents the model. In the
case of normal regression, this line or (hyper)plane aims to fit the data points. In the
case of Logistic Regression, this line or (hyper)plane separates the various classes,
and is therefore called the linear discriminant. Figure 2.4 shows a Logistic Regression
model built upon the petal width and petal length attributes of the ‘iris’ dataset.

As the ‘iris’ dataset is a multi-class classification task, we can not separate them
using one linear discriminant. Instead, we use the One-versus-All strategy to first
separate instances of the class setosa from the others (y = 34+ —1-length + —1 - width,
see Figure 2.4a). If an instance does not belong to the setosa class, we can further
establish whether it belongs to the versicolor class (y = 4.3+—0.55-length+—1-width,
see Figure 2.4b). If it does not belong to that class either, it will be classified as
virginica.

The values of any new instance can be plugged into the respective formulas, res-
ulting in a value ranging from [—oo, 0o]. If the outcome is bigger than 0, it means it
belongs to the specified class. If it is smaller than 0, it belongs to the other class (or
set of classes). When the value is exactly 0, the model does not know to which class it
belongs, and will have to guess. Conveniently, we can use the logistic function to map
these back to the interval [0, 1], in order to obtain proper probability estimates.

Logistic Regression requires a dataset to be linearly separable to perfectly fit the
training data. For the ‘iris’ dataset this is not the case, as can be seen from Figure 2.4b.
The resulting model therefore classifies some of the instances wrongly.

Chapter 2. Machine Learning

17

2.5

2.0

Petal width
=
[3

=
=}

0.5

0.0

Petal length

(a) Setosa vs. the rest

g
:
8
& 1sf o 000 oee E
° o ooo °
o 0000000
e o o o
o oo
1.0 e o o oo d
0.5 - - - - -
3 4 5 6 7
Petal length

(b) Versicolor vs. Virginica

Figure 2.4: Logistic Regression model of the ‘iris’ dataset.

18 2.4. Models

2.4.6 Support Vector Machines

Similar to Logistic Regression models, a Support Vector Machine (SVM) is a (hyper)plane-
based model that separates the classes. Typically, there are many lines or (hyper)planes
that do so. Support Vector Machines maximize the margin around the linear discrim-
inant. The data points that lie closest to the decision surface are typically the most
difficult to classify. These are called the support vectors. Based on these, the separating
hyperplane is calculated. The distance between the support vectors and the separating
hyperplane is maximized. This distance is called the margin.

Figure 2.5 shows an example of a Support Vector Machine built upon the ‘ris’
dataset. Support Vector Machines are suitable for binary classification tasks. There-
fore, in this case it uses the One-versus-All strategy to first separate the setosa class
from the others (Figure 2.5a), after which it separates the Versicolor from the Vir-
ginica (Figure 2.5b). As with Logistic Regression, it requires linear separability. Oth-
erwise, misclassifications already occur in the training set. In Figure 2.5b we see 5
misclassified instances, and even 8 instances that fall within the separation margin.

Often it occurs that the data is not linearly separable in the original representa-
tion, but is linearly separable when you represent it differently. Support Vectors Ma-
chines are often used in combination with a kernel. Kernels map the data in a higher
dimension, effectively resulting in more attributes. For the task of finding the sep-
arating hyperplane and classifying new instances, we only need the dot product of
the original features, saving us from additional memory usage. Popular kernels for
classification purposes are the Radial Basis Function kernel (RBF), Polynomial kernel
and Sigmoid kernel. Mapping the data to a higher input space should be done with
great care, due to the curse of dimensionality. Increasing the number of variables,
exponentially increases the number of possible solutions, yielding many sub-optimal
solutions [98].

A Support Vector Machine model is based on a small amount of data points, mak-
ing it a rather stable model. Adding or removing data points does not affect the model,
unless that data point is in fact one of the support vectors. Support Vector Machines
are typically not affected by local minima. The name of Support Vector Machines
can be misleading. It is not a machine, it is a model. When using the right kernel,
Support Vector Machines are very powerful models, building upon a solid theoretical
foundation.

2.4.7 Neural Networks

An alternative modelling approach is based on the human brain. The human brain is
a collection of billions of neurons, that are ordered in a certain graph structure. Each
neuron has certain inputs and outputs. A neuron outputs a signal if the combined

Chapter 2. Machine Learning 19

\
2.5 [y E
N °
) .
N ° °
2.0 \ o000 o o 4
\ o0 ° L]
\ 0o o000 o
° °
o o o L]
S 15 © 000 oee B
<t ° o ooo °
3 \ o 0000000
—~ o0 00 o
8 @ oo
& 1.0 0 © 0o oo B
\
\
\
0.5 \ R
\
\
© 000000 o \ \
o oo \ \
0.0 \ \ R
\ \
\ \
L L \ \\ L L L
1 2 3 4 5 6 7
Petal length
(a) Setosa vs. the rest
2.5 -
.
°
o
20 . 1
<=
=
g
3
]
®
A 151]
o
1.0k i
0.5 ‘ :

Petal length
(b) Versicolor vs. Virginica

Figure 2.5: Support Vector Machine model built upon the ‘iris’ dataset. The solid line is
the separating hyperplane, the circled data points are the support vectors. The striped
line indicates the margin of the separated hyperplane.

20 2.4. Models

Input Hidden Output
layer layer layer

Bias

O— w1
Activation
function Output

Inputs O—> W2 —>| Yy

O— w3
Weights

(a) A single neuron (b) Structure of a network with 1 hid-
den layer that contains 5 neurons

Figure 2.6: Example of a neural network.

input signals exceed a certain threshold. Inspired by the success of the human brain,
machine learners imitated this paradigm by means of Neural Networks.

Figure 2.6 shows an example of a neural network. Figure 2.6a shows an abstrac-
tion of a neuron. This neuron has 3 preceding input neurons, which are all associated
with a certain weight. Each neuron has a certain threshold value, here displayed with
b. The output value y of each neuron is determined by adding all the weighted inputs
together; the result is put in the activation function. The activation function f has two
purposes. First, it determines whether the threshold value is exceeded or not, and
second, it maps the resulting output of the neuron in the desired domain, typically
[0, 1].

This determines the outcome of the neuron. Typically, neural networks are built
as acyclic graphs, consisting of distinguishable layers. These networks are called feed
forward networks. Figure 2.6b shows an example of the network structure. It contains
an input layer, one hidden layer and an output layer. Typically, the feature values of
a given instance are fed into the input layer; all the other layers are the neurons as
described before.

Indeed, a network that contains no hidden layers (and thus only has one real
neuron, i.e., the output node) has a model corresponding to Linear Regression: each
input variable is associated with a certain weight, and the bias of the neuron cor-
responds to wq of the Logistic Regression model. These neural networks are called
perceptrons.

The real power of neural networks lies in the hidden layers. Effectively, these are
capable of simulating derivatives of feature combinations, that are not manifested in

Chapter 2. Machine Learning 21

the original input space, giving it a tremendous expressive power. Great care should
be taken with noisy data. Due to the high expressive power, it can easily learn a
wrong concept from the noise. The biggest challenges in neural networks is finding
a good network structure and the right weights for each neuron. Various algorithms
are proposed for this, most commonly back-propagation. Training a 3-node neural
network is already NP-complete [17].

2.5 Evaluation

For a created model, an important issue that needs to be addressed is, how well does
it perform. In order to do so, we need an evaluation measure, which quantitatively
defines performance. We could give the model some instances of which we already
know the correct class label, and see in what percentage of cases it classifies them
correctly. These instances are called the test set. This measure is often called predictive
accuracy, and one of the most natural ways of measuring the performance. Predictive
accuracy is a measure that is calculated over the whole test set. It is important to
measure the generalization capabilities of a classifier, i.e., how good the predictions
are for instances that it has not been trained on.

Sometimes, there is an asymmetry in the importance of misclassifications. For ex-
ample, it is worse to classify a poisonous mushroom as edible than the other way
around. Likewise, banks determine whether a person is eligible for receiving credit
based on social-economic attributes such as employment status, age and credit his-
tory. From their perspective, it is worse to give credit to someone that is not credit-
worthy, than the other way around. The ‘German credit’ dataset contains past records
of credit applications; the goal is to model when someone is eligible for receiving
credit. For this purpose, we could use class-specific evaluation measures, that only
address the performance on a given class. The sensitivity or true positive rate (TPR) is
the proportion of instances that belong to a certain class that are correctly classified as
such. The specificity or true negative rate (TNR) is the proportion of instances that do
belong to a certain class and that are correctly classified as such. Typically, there is a
trade-off between the sensitivity and specificity. For example, when a classifier always
predicts a given class, it will have a perfect true positive rate, but a true negative rate
of 0, and vice versa. A similar trade-off between the true positive rate and the false
positive rate is depicted in the receiver operating characteristic curve (ROC-curve), a
common graphical evaluation measure.

Figure 2.7 shows the ROC curve of three classifiers that model whether someone is
credible or not. Banking companies that want to model future credit applications can
choose between Naive Bayes and the Nearest Neighbour approach. Although Naive

22 2.5. Evaluation

True positive rate

04

02

Naive Bayes —+—
Nearest Neighbour
Vs Decision Tree ---K---
0 Y ‘ ‘)))) MaJnrity C‘lass

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False positive rate
Figure 2.7: ROC curves of three classifiers on the ‘German credit’ dataset. The grey
line shows a virtual classifier that always predicts the same class.

Bayes has a higher accuracy (this can not be deduced from the image), the nearest
neighbour method might be selected based on the ROC curve; not credit-worthy per-
sons will be classified as credit-worthy less often. The decision tree model is domin-
ated by the Naive Bayes model, it obtains a lower true positive rate and a higher false
positive rate.

It is important to always evaluate the performance of a model based on data
that the model is not trained on. It is easy to see that by memorization it is easy
to perform well on the full training set. What we are interested in is generalization
beyond this. For this reason, typically a holdout set is used: the model is trained based
on a percentage of the data, and then evaluated on the other part of the data.

There are two drawbacks to this approach. First, the model is not tested on all
instances. When the instances that are hard to classify all end up in either the training
set or the test set, this will give respectively an optimistic or pessimistic assessment
of the model. Second, as the model is only evaluated once, it does not give a stable
assessment of performance.

In order to overcome these problems, n-fold cross-validation is usually preferred.
The data set is split in split in n equal subsets, and n different models are trained using
n — 1 of these subsets and tested on the remaining one. This way, it tests the model
using each instance exactly once. Cross-validation is widely considered a reliable way

Chapter 2. Machine Learning 23

of evaluating a model on a single dataset.

However, from a Machine Learning point of view, it is often desirable to make
more general conclusions, based on evaluations over many datasets. To this end, stat-
istical tests are used. This allows making statements about the performance of clas-
sifiers over multiple datasets or cross-validation runs. Demsar [36] reviews various
statistical tests appropriate for assessing the quality of Machine Learning models and
algorithms.

2.6 Discussion

This chapter showed some examples of common Machine Learning data, tasks and
models. We have seen various models, all leading to a different representation and
therefore a different expressive power and bias towards certain kinds of data. Having
more expressive power does not guarantee better classification performance. Some-
times highly complex models over-fit on an irrelevant concept and perform unexpec-
tedly mediocre.

One aspect that is nearly not covered are algorithms. These are sets of rules to
be followed in order to create the models. For each model type, there are many al-
gorithms that are able to create such models. Each of these algorithms in turn contains
various parameters to be determined by the user; these parameters enable small or
big nuances in the resulting model. This makes it hard for anyone interested in model-
ling a dataset to select the appropriate model, algorithm and parameter settings. One
question that arises from this is, can we learn from previous machine learning exper-
iments what kind of algorithm should be used to model a new dataset; this is called
meta-learning. As machine learning aims to model a certain dataset, meta-learning
aims to model what kind of data should be modelled by what kind of technique. In
the next chapter, we will review common techniques of doing so.

Meta-Learning

Machine Learners have been very successful at integrating data-driven methods in
many other domains and sciences: Chemist model the activity of chemical compounds
by means of Machine Learning [81], popular media companies use knowledge ob-
tained from previous data to recommend new content to their subscribers, and mod-
ern cars use Machine Learning techniques to take away the burden of parking.

However, when it comes to Machine Learning itself, decisions are seldom made by
what previous gathered data has learned. When presented with a new problem, often
a solution is chosen by trial and error. Typically, a small set of algorithms is selected
by intuition, and the best of these is selected to solve the problem. This trial and error
is sometimes called ‘the black art of Machine Learning’ [38], implying that a more
scientific approach is desirable.

A huge challenge lies in solving Machine Learning problems in a data-driven way.
This scientific challenge is called meta-learning; the research field that aims to learn
from previous applications and experiments.

3.1 Introduction

The field of meta-learning has attracted quite some attention, and quite some prob-
lems and challenges in various directions have been addressed. Although it is im-
possible to capture the whole field in one single definition, we will consider the defin-
ition by Vilalta et al. [159]: “The field of meta-learning has as one of its primary
goals the understanding of the interaction between the mechanism of learning and
the concrete contexts in which that mechanism is applicable.” In this definition, the
‘mechanisms of learning’ are the algorithms (that build models) and the ‘contexts in

26 3.1. Introduction

which that mechanism is applicable’ are the Machine Learning tasks and datasets.
Basically, we want to obtain knowledge (or learn) which algorithm and parameter
setting should be used on what kind of data.

This problem can be viewed from many different perspectives. Most notable, the
algorithm selection problem, is defined as: given a dataset, which algorithm and para-
meters will obtain maximal performance according to a specified measure [119].
As the amount of algorithm and parameter combinations is infinite, this in itself is
already a hard but important problem. Considering common applications of Machine
Learning, e.g., in healthcare and epidemiology, performing slightly better on a given
task can already result in making the difference for human lives.

In many realistic settings, the algorithm selection problem can also be seen as a
search problem. A model, algorithm and parameter settings are recommended, and
these are being tested (either in production or using cross-validation). For example,
a company modelling customer behaviour, could already apply the recommended
model in their production environment. However, they can still continuously test
other models to find one that improves upon the original selected model. This process
is repeated until a satisfactory model has been found.

Sometimes, the model is fixed a priori because of, e.g., empirical performance
evidence, or interpretability requirements. In this case, the main challenge is to select
the appropriate hyperparameters. Hence, this task is called hyperparameter optimiz-
ation (e.g., [8, 75, 89]). Many techniques from the optimization literature can be
used for this, e.g., Particle Swarm Optimization, Evolutionary Algorithms or Bayesian
optimization.

Rather than looking at algorithm performance, we can also look at dataset prop-
erties. Where meta-learning is often focussed on categorizing datasets as a whole
entity, Smith et al. [140] focusses on individual instances, attempting to categorize
which are often misclassified, why this happened and how they contribute to data set
complexity. This research potentially improves the learning process and can guide the
development of learning algorithms.

The remainder of this chapter is organised as follows. We discuss three general
approaches to algorithm selection. Section 3.2 approaches this from the learning
paradigm; Section 3.3 approaches this from the search paradigm; Section 3.4 intro-
duces the notion of ensembles. Next, we introduce some important aspects to meta-
learning. Section 3.5 discusses the ‘Law of Conservation for Generalization Perform-
ance’, which is sometimes erroneously cited to dismiss meta-analysis. Section 3.6 dis-
cusses some analytically obtained knowledge about models, which is a very general
form of meta-knowledge. Section 3.7 examines the bias variance trade-off, and the di-
lemma that comes with choosing between over-fitting and under-fitting. Section 3.8
concludes with a discussion.

Chapter 3. Meta-Learning 27

xr € P yey
Problem Performance
Space Space
select « to
feature maximise ||y y(a(x)) apply
extraction f algorithm «
f(z) e F a e A
Feature Algorithm
a=5(f(x))

Space Space

Selection Mapping
Figure 3.1: The Algorithm Selection Framework, taken from [141].

3.2 Learning Approach

The algorithm selection problem occurs in many other fields besides Machine Learn-
ing. Many optimization problems can be solved with a wide range of algorithms and
parameters, and therefore there is room for algorithm selection. For example, satis-
fiability problems, travelling salesman problems and vehicle routing problems.

The algorithm selection framework, formalised by Rice [119], addresses this. The
framework is illustrated in Figure 3.1. According to this definition, the problem space
P consists of all problems (tasks) from a certain domain. Each problem x € P can be
mapped by means of some feature extraction procedure f(x) into the feature space
F. The feature space F contains measurable characteristics calculated upon these
problems, e.g., the number of instances or the number of attributes. We call these
meta-features. The algorithm space A is the set of all considered algorithms that can
be used to solve these tasks. And finally, the performance space Y represents the
mapping of these algorithms to a set of performance measures. The task is for any
given x € P, to select the algorithm o € A that maximizes a predefined performance
measurey € Y.

Essentially, this itself is a learning problem, and can be solved using conventional
Machine Learning techniques. Often, Random Forests are used [144]. Like with any
learning problem, there are instances, represented by features that have a certain
class feature. In this case, the best performing algorithm is the class attribute. This
task can also be casted as a ranking or a regression problem. In the case of the ranking
problem, the goal is to order the classifiers by their expected performance; in the case
of the regression problem, the goal is to predict the expected performance for a set of

28 3.2. Learning Approach

given algorithms.

Indeed, by approaching the algorithm selection problem as a learning problem,
all Machine Learning algorithms can be used as meta-learner and solve the algorithm
selection problem. Various solutions solving this problem in novel ways have been
proposed (see, e.g., [4, 27, 87, 144]).

Some non-trivial considerations remain. Most importantly, as with any modelling
task, the set of (meta-)features determines the quality of the solution. These need
to be chosen and constructed appropriately. Furthermore, the performance space de-
termines on what performance criteria the algorithm should be selected.

3.2.1 Feature space

The performance of a meta-learning solution typically depends on the quality of the
meta-features. Typical meta-features are often categorized as either simple, statistical,
information theoretic, algorithm/model-based or landmarkers.

The simple meta-features can all be calculated by one single pass over all instances
and describe the data set in an aggregated manner, e.g., number of instances, number
of attributes and number of classes [20]. The statistical meta-features are calculated
by considering a statistical concept (e.g., standard deviation, skewness or kurtosis),
calculate this for all numeric attributes and taking the mean of this. This leads to,
e.g., the mean standard deviation of numeric attributes. Other statistical aggregation
methods can also be used instead of the mean, e.g., the minimum, the maximum,
or the median. Likewise, the information theoretic meta-features are calculated by
considering an information theoretic concept (e.g., mutual information or attribute
entropy), calculate this for all nominal attributes and taking the mean of this. This
leads to, e.g., mean mutual information. Again, other statistical aggregation methods
can be used as well. By aggregating the statistical and information theoretic con-
cepts, information is lost by definition. A main challenge lies in finding a way of
preserving this information. Sometimes the meta-data is built upon datasets with the
exact same features. In that case, no aggregation over the meta-features is needed;
these can be calculated and used for every individual features, without losing any
information [164].

Landmarkers are performance evaluations of fast algorithms on a dataset [108].
Sometimes, knowledge about how simple classifiers perform on a dataset yields in-
formation on the performance of the more complex and time-consuming algorithms.
However, these procedures should be used with great care, as the time for calculating
the meta-features should not exceed the time of bluntly running all algorithms on the
dataset.

Taking this idea one step further leads to model-based features [104]. Again, a

Chapter 3. Meta-Learning 29

simple model is built upon the data, most commonly, decision trees. Topological prop-
erties from this model can be used as meta-features, e.g., shape, number of leafs, or
maximum tree depth.

Sun and Pfahringer [144] propose pairwise meta-rules. These are simple decision
rules that determine for each pair of algorithms, which will work best under which
conditions. This type of meta-feature assumes that plain information from landmark-
ers is not necessarily represented best in its numeric form, and transforms this in-
formation to a binary attribute, at the cost of additional computation time.

It has proven hard to come up with an appropriate set of meta-features. Therefore,
Provost et al. [113] proposes Partial Learning Curves as an intuitive way of mapping
a problem into the feature space. A learning curve is an ordered set of performance
scores of a classifier on data samples of increasing size. Intuitively, we have now
information on how the actual classifiers that we are interested in work on the actual
dataset that we are interested in. Various methods have been proposed that exploit
partial learning curves to solve the algorithm selection problem [86, 87, 127].

Pinto et al. [110] propose a framework that enables the systematic generation
of meta-features specific to a certain domain. The framework detects what kind of
meta-features can lead to the generation of new meta-features. For example, when
using a decision tree landmarker, this can trigger the generation of model-based meta-
features extracted from the decision tree. Their results indicate that sets of system-
atically generated meta-features are more informative and contain more predictive
power than ad-hoc selected meta-features.

3.2.2 Performance space

Commonly, solutions to the algorithm selection problem focus on finding an algorithm
that maximizes predictive accuracy. This makes sense for a variety of theoretical and
pragmatic reasons; it objectively orders the full set of available algorithms, is easy to
establish (e.g., by means of cross-validation) and is what we are commonly interested
in [59]. However, as there are many tasks where almost all algorithms perform well in
terms of accuracy [69], it makes sense to also consider other ways of selection criteria
for algorithms. Some options for this are computational complexity, compactness of
the resulting model or comprehensibility of the resulting model [59]. Sometimes it
is sensible to make a trade-off between accuracy and run-time [21, 127]. In some
problem domains, the balance between the classes is skewed. Although in those cases
it might be easy to obtain a high accuracy by predicting the majority class, it is more
interesting to have a model that performs well on the other class(es). Measures such
as area under the ROC curve, precision and f-measure are decent options for those
problems.

30 3.3. Search Approach

Furthermore, it is debatable whether the single best model should be recommen-
ded. Alternatively, a statistical test could be performed, and all algorithms that per-
form statistically equivalent to the classifier obtaining the highest score are considered
good recommendations. Intuitively, this makes sense: if there is no statistical evidence
that there is a difference between the performance of the algorithms, then there is no
strong evidence to prefer one over the other. In many modern applications, it is not
enough to predict a single algorithm. Rather than predicting one single algorithm, a
ranking is produced, giving alternatives if the first advised algorithm does not per-
form adequately. The algorithm selection problem could even be seen as a regression
problem: for each algorithm o € A an estimated performance should be predicted,
and the algorithm with the highest estimated score can be selected.

3.3 Search Approach

Alternatively, the algorithm selection problem can be cast as a search problem, which
can be solved by many techniques from the field of black-box optimization. Typically,
an optimization algorithm recommends an algorithm and parameter setting, and it is
then tested using some evaluation procedure, e.g., cross-validation. It continues on
recommending these procedures, until the budget runs out. Then the best performing
algorithm and parameter setting combination is selected.

In some cases the task is to find the best algorithm and parameter setting, in other
cases the algorithm is fixed a priori, and the task is to find the optimal parameter
settings. This task is called hyperparameter optimization.

A commonly used search strategy for hyperparameter optimization is grid search,
which bluntly tries all possible parameter settings. As many parameters accept contin-
ues values, for most algorithms there are infinitely many parameter settings. There-
fore grid search requires the intervention of a human expert, who selects sensible
parameters, ranges and discretizations. Grid search has no natural way of dealing
with a budget.

To overcome these limitations, random search could be used as an alternative. As
the name suggests, it randomly tries some parameter settings from all possibilities.
This way, there is no real need for the human expert to select parameters, ranges
and discretizations (although it can still benefit from the input of a human expert).
Furthermore, it naturally deals with a budget, as it can just stop whenever the budget
runs out. The best parameter settings so far will be selected. Random search often
performs better than grid search. When exploring the same parameter space it finds
an acceptable setting much faster, and when using a fixed budget it goes beyond the
selected parameters and ranges that grid search is restricted to [8].

Chapter 3. Meta-Learning 31

observation (x)

V¥ acquisition max

T~ acquisition function (u(-))

/ posterior mean (u(-))

posterior uncertainty

(u(-) £a(-)) v

Figure 3.2: Example of Bayesian Optimization on one variable. The dashed line rep-
resents the objective function, which we only know partly (at the black dots); the
striped line represents the posterior mean, and the purple area the posterior uncer-
tainty; the acquisition function is plotted in green. Image taken from [26].

Both grid search and random search are static search methods, information ob-
tained from results of earlier test is ignored. Opposite to this, dynamic search methods
attempt to use this information. For example, when a certain parameter setting ob-
tains good results, it is plausible that similar parameter settings will also obtain good
results and possibly improve on the current best result.

32 3.3. Search Approach

Bayesian Optimization is a strategy that attempts to exploit knowledge obtained
from earlier tests [26]. The parameter space is often modelled as a Gaussian process;
it assumes that the underlying function is smooth, i.e., small fluctuations in the para-
meter settings will lead to only small fluctuations in the result. A so-called acquisition
function determines which parameter setting is evaluated next based on high un-
certainty and high potential. Figure 3.2 illustrates this in an example, in which one
parameter is optimized. At each point ¢, it selects a new parameter setting that is be-
ing evaluated. Sequential Model-based Bayesian Optimization extends this idea, also
selecting among various learning algorithms [75]. Notably, Auto-Weka applies this
on Machine Learning, automatically searching for a good algorithm and parameter
setting among all algorithms from the toolbox WEKA [147].

The search problem can also be modelled as a Multi-armed Bandit problem [68,
89], named appropriately after a gambler who’s aim is to select a slot machine that
gives him maximal reward. Typically there is a set of arms, each representing an
algorithm with parameter configuration. Pulling an arm is associated with a certain
cost (training a model on an amount of data) and reward (the performance of this
model). Pulling a certain arm multiple times corresponds to training that model on an
increasing amount of data, gaining a higher confidence in the measured performance
of this model. Two notable algorithms are Successive Halving and Hyperband [89].
These start with testing a large number of algorithms on a small amount of data; badly
performing algorithms are eliminated and good performing algorithms are tested with
more data. This works very well in practise. Additionally, these algorithms come with
theoretical guarantees about the maximum regret, i.e., the difference between the
recommended algorithm and parameter setting and the absolute best one.

Despite these sophisticated techniques and theoretical guarantees, the simplicity
of Random Search still proves to be a strong baseline. Given twice the budget, it often
outperforms guided search schema’s [9].

3.3.1 Combining Search and Learning

Various strategies have been proposed that combine the thoroughness of the search
strategies with the knowledge-based approach of meta-learning.

Active Testing combines grid search with meta-knowledge [2, 88], intelligently se-
lecting the order in which the algorithm and parameter combinations are tried. It aims
to minimize the number of algorithms that need to be evaluated before an adequate
model has been built. It assumes that there is a meta-dataset containing informa-
tion on how the algorithms and parameter settings under consideration performed
on other problems. Furthermore, it assumes that already one algorithm is selected as
the most promising to try first. This could be the one that performed best on historic

Chapter 3. Meta-Learning 33

data, an algorithm recommended by another meta-learning system, or even one that
was randomly selected. This algorithm is called the current best. From then on, the
algorithm that outperforms the current best algorithm on most historic datasets that
seem similar to the current dataset, is tested next. For each new algorithm to try, it
only focusses on historic datasets on which the new algorithm outperforms the cur-
rent best. This is inspired by the idea that we are interested in volatile algorithms.
Naturally, if the newly tried algorithm turns out to be better than the current best,
from that moment on it is the current best. This process is repeated until an appro-
priate algorithm has been selected or a predefined budget (e.g., run time) runs out.
Chapter 6 details on this method.

Alternatively, meta-learning can be used to initialize complex search methods. It
has been known that Sequential Model-based Bayesian Optimization converges fast
when its initial points yield already good performance. Hence, meta-learning can be
natively used to find promising parameter settings on similar datasets [43]. These can
be used as initial evaluations for the Sequential Model-based Bayesian Optimization,
leading to faster convergence.

3.4 Ensembles

Another approach to select the best model, is to combine multiple models in an en-
semble of classifiers. Ensemble techniques train multiple classifiers (also called mem-
bers) on a set of weighted training examples; these weights can vary for different
classifiers. In order to classify test examples, all individual models produce a predic-
tion, also called a vote, and the final prediction is made according to a predefined
voting policy. For example, the class with the most votes is selected. Dietterich [37]
identifies three reasons why ensembles work better than individual models.

e Statistical. When there is insufficient training data, there will be multiple mod-
els that fit the training set well, but have various (unknown) performance on
the test set. Combining multiple models spreads the risk of a misclassification
among multiple models.

e Computational. Even when there is sufficient data, the learning algorithm that
induces the model might get stuck in a local optimum. Running the learning
algorithm multiple times from various starting points may give a better per-
formance on the unknown test set.

e Representational. In many Machine Learning applications, the true concept
that is being modelled can not be represented by a given algorithm. For ex-
ample, Logistic Regression can not represent the XOR-function, because it is

34 3.4. Ensembles

not linearly separable (see Chapter 2.4.5). However, an ensemble of multiple
Logistic Regression models is able to perfectly represent it.

Condorcet’s jury theorem [83] gives theoretical evidence that the error rate of an
ensemble in the limit goes to the Bayesian optimum (i.e., the maximum obtainable
accuracy) if two conditions are met. First, the individual models must do better than
random guessing. Second, the individual models must be diverse, i.e., their errors
should not be correlated. If these conditions are met, increasing the ensemble size
decreases the amount of misclassifications [64]. Indeed, if the models do worse than
random guessing, increasing the ensemble size also increases the amount of misclas-
sifications.

Basically, two approaches of model combination exist [22]. The first one exploits
variability in the data, and trains similar models on different subsamples of the data.
The second one exploits variability among models, and trains fundamentally different
models on the same data. Bagging [23] exploits the instability of classifiers by training
them on different subsamples called bootstrap replicates. A bootstrap replicate is a set
of examples randomly drawn with replacement, to match the size of the original
training set. Some examples will occur multiple times, some will not occur in the
bootstrap replicate. Bagging works particularly good with unstable algorithms, were
small fluctuations in the training set lead to dissimilar models. Bagging reduces the
variance error of a model, and only slightly affects the bias error. Algorithms that have
a high variance error typically perform much better when used in a Bagging setting,
at the cost of losing interpretability.

Boosting [135] is a technique that corrects the bias of weak learners. A strong
learner is one that produces a highly accurate model; a weak learner is one whose
models perform slightly better than random guessing [149]. In his seminal paper,
Schapire [135] shows weak learners and strong learners are equivalent; he presents
an algorithm that combines various weak learners that combined perform as a strong
learner. Boosting sequentially trains multiple classifiers, in which more weight is given
to examples that where misclassified by earlier classifiers. It decreases both bias and
variance error. Some common forms of boosting are Adaptive Boosting [45], Logistic
Boosting [48] and Gradient Boosting [51].

Stacking [163] combines heterogeneous models in the classical batch setting. It
trains multiple models on the training data. All members output a prediction, and
a meta-learner makes a final decision based on these predictions. Cascade Gener-
alization [53] imposes an order to the ensemble members. Each member makes a
prediction also based on the prediction of the previous members. Empirical evidence
suggests that Cascade Generalization performs better than vanilla Stacking. Caruana
et al. [30] propose a hill-climbing method to select an appropriate set of base-learners
from a large library of models.

Chapter 3. Meta-Learning 35

3.5 Conservation for Generalization Performance

The ‘Law of Conservation for Generalization Performance’ (also known as the No
Free Lunch Theorem), states that when taken across all learning tasks, all learning al-
gorithms perform equally well [134]. Basically, it states that for each algorithm there
are datasets on which it performs well, and there are datasets on which it performs
badly; each algorithm makes its own assumptions about the data.

This theorem can be illustrated by means of the following example. Consider a
binary dataset d on which a deterministic algorithm « obtains a certain predictive
accuracy y(«, d) on a test set of unseen examples. In the universe of all imaginable
datasets, there exists a dataset d that has the exact same training instances, yet all
class labels of the unseen test set are exactly opposite, leading to a predictive accuracy
of y(a, d). It is easy to see that in this example y(c, d) + y(a, d) = 1. A generalization
leads to the conclusion that taken over all existing datasets, the performance of all
deterministic algorithms is exactly the same.

It might seem that this theoretical result subverts the purpose of meta-learning. If
all algorithms perform equally, building a meta-algorithm that overcomes this limita-
tion would be paradoxical. However, Giraud-Carrier and Provost [60] point out that
under a reasonable assumption, the ‘Law of Conservation for Generalization Perform-
ance’ is irrelevant to Machine Learning research.

They define the weak assumption of Machine Learning to be that the process that
presents us with learning problems induces a non-uniform probability distribution
over the possible functions. In other words, among all possible learning tasks, some
are more probable to occur than others. This assumption is widely accepted; without
accepting this assumption, all Machine Learning research would be pointless, as there
would be no reason to believe that the learned models generalize beyond the dataset.
Under this assumption, meta-learning does not violate the law of conservation for
generalization performance.

Furthermore, they define the the strong assumption of Machine Learning that the
probability distribution of these functions is known implicitly or explicitly, at least to
a useful approximation. In some cases, even this assumption is reasonable. A good
meta-learning system selects algorithms that work well on the tasks that are prob-
able to occur in the problem domain of interest. A meta-learning system based on
knowledge from one domain of tasks can not be expected to make accurate recom-
mendations for tasks from another domain.

The most important contribution of the ‘Law of Conservation for Generalization
Performance’ is that it shows that learning comes with assumptions. The stronger the
assumptions we make, the more efficient a learning procedure can be. Meta-learning
relies on the same assumptions as any other learning procedure does.

36 3.6. Model Characteristics

Table 3.1: Some characteristics about different models. Taken from [65].

Characteristic Neural SVM Trees MARS k-NN,
Networks Kernels

Natural handling of mixed data - - + + -

types

Handling of missing values - - + + +

Robustness to outliers in input - - + - +

space

Insensitive to monotone transform- - - + - -

ations of inputs

Computational Scalability (many - - + + -

instances)

Ability to deal with irrelevant in- - - + + -

puts

Ability to extract linear combina- + + - - +/-

tions of features

Interpretability - - +/- + -

Predictive Power + + - +/- +

3.6 Model Characteristics

Although applications to the algorithm selection problem (Chapter 3.2-3.4) are use-
ful in their own right and lead to various valuable insights, a disadvantage is that they
typically focus on a small set of problems, and that it is hard to interpret and general-
ize the results. On the other side of the spectrum, Hastie et al. [65] composed a set of
simple characteristics, describing strong and weak points of models. These are shown
in Table 3.1. Most of these models are already described in Chapter 2.4. MARS [49] is
a regression model based on splines, a mathematical function that consist of various
polynomials at different input domains.

Most of the characteristics actually make a lot of sense. For example, it followed
already from the model description in Chapter 2.4 that Logistic Regression, Support
Vector Machines and Neural Networks do not handle missing values natively, as it
would remove one part of the equation. Furthermore, trees and splines are typically
considered quite interpretable, even though this is a subjective matter. This kind of
simple characteristics already have great value. It summarizes the strong and weak
points of various models, and gives domain experts that use machine learning a good
overview of what kind of models they should use for their problem.

The mentioned characteristics also have shortcomings. For example, the results

Chapter 3. Meta-Learning 37

are presented without any discussion or evidence. Although most of the statements
seem intuitively correct, there are also some controversies. For example, it is widely
considered that decision trees have a high ability to deal with irrelevant inputs. How-
ever, experimental results suggest that the truth is a bit more subtle [111]. Also, the
low robustness to outliers in input space of Support Vector Machines is debatable.
This table immediately exploits a huge problem in current Machine Learning lit-
erature. New models are typically evaluated solely based on predictive power; some-
times interpretability and computational scalability are also taken into account. How-
ever, every new method should be evaluated on more than just these criteria. Of
course, a method does not have to excel on all of the characteristics. As can be seen,
none of the currently characterised models do. Extending this table to additional
models, algorithms and characteristics is a very useful form of meta-learning.

3.7 Bias Variance Profile

A common problem of modelling is over-fitting, a phenomenon where irrelevant re-
lationships between the data and the class are being encoded. This typically happens
when there is too little data, there is too much noise in the data or the model is
too complex. When a model performs well on the training set and mediocre on the
test set, it is likely that it over-fitted the training data. One way of analysing and
understanding this better, is by means of a bias variance decomposition [82]. Kohavi
et al. [82] define three types of errors, bias errors, variance errors and irreducible
errors. The irreducible errors are the errors that can not be avoided by any learner,
e.g., when the test set contains instances with the same attribute values, yet different
labels. Variance is the tendency to learn random things irrespective of the real func-
tion (it hallucinates patterns). This often happens when a model is too complex, and
models dependencies that do not exist in the real world; it over-fits the data. Bias is
the tendency to consistently learn the same wrong thing. This often happens when a
model is too simple, and unable to model the true relationship between the data and
the class; it under-fits the data. Bias and variance are often resembled by throwing
darts at a board (see Figure 3.3). A model that only makes irreducible errors is called
a Bayes-optimal model.

Many methods attempt to prevent over-fitting. One way of doing so is adding a
regularization component, penalizing complex models, and therefore favouring sim-
pler models with less room to over-fit. However, by imposing this preference towards
simpler models, the solution is exposed to the other type of error, i.e., under-fitting.
A notable exception is Bagging, a technique that reduces the risk of over-fitting with
slightly increasing the bias (Chapter 3.4). Dealing with bias and variance is essentially

38 3.8. Discussion

Low variance High variance
Low

Bias

High
Bias

Figure 3.3: Bias and Variance. Image adapted from [38].

about finding a trade-off between the possibility of over-fitting and under-fitting. As
additional components are added to the model, the model complexity rises, the bias
reduces and the variance increases. In other words, bias has a negative first-order
derivative in response to model complexity while variance has a positive slope. The
task of a Machine Learning practitioner is to find a good trade-off between the two.

Although in general Machine Learning applications the total number of errors
matters, understanding bias and variance gives insight in the predictive behaviour of
learning algorithms. Therefore, it is a very important aspect of meta-learning, poten-
tially increasing both our knowledge about algorithms and the performance of newly
created algorithms.

3.8 Discussion

This chapter reviewed aspects of meta-learning; techniques that improve knowledge
of the learning process and techniques that help selecting an appropriate learning
algorithm. The algorithm selection problem can be solved by learning techniques as
well as search techniques. Often, the decision of which paradigm to chose comes
down to whether experimentation with the data is allowed. When the data is not ac-
cessible yet or a recommendation must be provided relatively fast, the search paradigm
is not applicable; hence the learning paradigm should be preferred. On the other
hand, when there is time to try multiple configurations, the search paradigm is likely
to recommend a good algorithm and parameter setting combination. Sometimes, the

Chapter 3. Meta-Learning 39

search methods can be guided by some form of meta-learning.

The advantages of the learning approaches are plenty. First, the resulting meta-
model is very general; it can be applied to all unseen problems. Second, algorithm
selection for new tasks is rather inexpensive. Although building the meta-model can
be a computational intensive task, applying it to new tasks happens typically fast.
Finally, it is reasonable to expect the first attempted solution already to yield good
result. Apart from calculating the meta-features, there are no start-up costs.

However, this approach also has some intrinsic limitations. First, it is hard to
construct a meta-feature set that adequately characterizes the problem space [86].
Second, the most successful meta-features, landmarkers, can be computationally ex-
pensive, limiting the options [108]. Finally, because not all classifiers run on all data-
sets, or take prohibitively long to do so, the meta-dataset usually contains many miss-
ing values, complicating the classification task.

The search paradigm can be seen as a more thorough alternative. First, as it nat-
urally tries multiple promising candidates, it will return a good solution with high
probability. In the multi-armed bandit approach, there are even theoretical guaran-
tees about the performance. Second, it is an iterative approach, that is constantly
expected to improve itself. After a few iterations we can already expect reasonable
recommendations, and it is likely that these keep on improving. Third, most search
methods do not require a meta-dataset. As it is considered a laborious task to cre-
ate an appropriate meta-dataset, it is convenient that search methods do not require
such.

There are also limitations, compared to the learning paradigm. Most prominently,
it comes with additional run time. Search methods are built upon function evalu-
ations, i.e., multiple models are built and evaluated. Furthermore, obtained results
do not generalize. The search procedure needs to be executed for each task again.
Nothing is learned about the interaction between the mechanism of learning and the
concrete contexts in which that mechanism is applicable. In that sense, this form of al-
gorithm selection does not obey the definition of meta-learning given by Vilalta et al.
[159].

There are some additional challenges that meta-learners are faced with. Many
algorithm selection problems are subject to the curse of dimensionality [152]. Vari-
ous studies proposed many different types of meta-features, yet the amount of avail-
able datasets is relatively small. Although many datasets exists, most of these are
in people’s labs and heads, not available to the community. Furthermore, there is a
high computational cost for each instance. Indeed, all algorithms should be ran on
it, which takes a lot of resources. For these reasons, experiment databases have been
proposed [124, 153, 154, 155]. These aim to store and organise datasets and results
from earlier experiments, available to the whole community. In the next chapter we

40 3.8. Discussion

will review how Machine Learning and meta-learning research can benefit from such
infrastructures.

Experiment Databases

Many fields of science have made significant breakthroughs by adopting online tools
that help organize, structure and mine information that is too detailed to be printed in
journals. In this chapter, we introduce OpenML, an online platform for machine learn-
ing researchers to share and organize data in fine detail, so that they can work more
effectively, be more visible, and collaborate with others to tackle harder problems. We
discuss some important concepts upon which it is built and showcase various types
of Machine Learning studies that can be conducted using information from previous
experiments.

4.1 Introduction

When Galileo Galilei discovered the rings of Saturn, he did not write a scientific paper.
Instead, he wrote his discovery down, jumbled the letters into an anagram, and sent
it to his fellow astronomers. This was common practice among respected scientists of
the age, including Leonardo, Huygens and Hooke.

The reason was not technological. The printing press was well in use those days
and the first scientific journals already existed. Rather, there was little personal gain
in letting your rivals know what you were doing. The anagrams ensured that the
original discoverer alone could build on his ideas, at least until someone else made
the same discovery and the solution to the anagram had to be published in order to
claim priority.

This behaviour changed gradually in the late 17th century. Members of the Royal
Society realized that this secrecy was holding them back, and that if they all agreed
to publish their findings openly, they would all do better [79]. Under the motto “take

42 4.2. Networked science

nobody’s word for it”, they established that scientists could only claim a discovery
if they published it first, if they detailed their experimental methods so that results
could be verified, and if they explicitly gave credit to all prior work they built upon.

Moreover, wealthy patrons and governments increasingly funded science as a pro-
fession, and required that findings be published in journals, thus maximally benefiting
the public, as well as the public image of the patrons. This effectively created an eco-
nomy based on reputation [79, 96]. By publishing their findings, scientists were seen
as trustworthy by their peers and patrons, which in turn led to better collaboration,
research funding, and scientific jobs. This new culture continues to this day and has
created a body of shared knowledge that is the basis for much of human progress.

Today, however, the ubiquity of the Internet is allowing new, more scalable forms
of scientific collaboration. We can now share detailed observations and methods (data
and code) far beyond what can be printed in journals, and interact in real time with
many people at once, all over the world.

As a result, many sciences have turned to online tools to share, structure and ana-
lyse scientific data on a global scale. Such networked science is dramatically speeding
up discovery because scientists are now able to build directly on each other’s ob-
servations and techniques, reuse them in unforeseen ways, mine all collected data
for patterns, and scale up collaborations to tackle much harder problems. Whereas
the journal system still serves as our collective long-term memory, the Internet in-
creasingly serves as our collective short-term working memory [97], collecting data
and code far too extensive and detailed to be comprehended by a single person, but
instead (re)used by many to drive much of modern science.

Many challenges remain, however. In the spirit of the journal system, these online
tools must also ensure that shared data is trustworthy so that others can build on it,
and that it is in individual scientists’ best interest to share their data and ideas. In this
chapter, we introduce OpenML, a collaboration platform through which scientists can
automatically share, organize and discuss machine learning experiments, data, and
algorithms.

4.2 Networked science

Networked science tools are changing the way we make discoveries in several ways.
They allow hundreds of scientists to discuss complex ideas online, they structure in-
formation from many scientists into a coherent whole, and allow anyone to reuse all
collected data in new and unexpected ways.

Chapter 4. Experiment Databases 43

4.2.1 Designing networked science

Nielsen [97] reviews many examples of networked science, and explains their suc-
cesses by the fact that, through the interaction of many minds, there is a good chance
that someone has just the right expertise to contribute at just the right time:

Designed serendipity Because many scientists have complementary expertise, any
shared idea, question, observation, or tool may be noticed by someone who has
just the right (micro)expertise to spark new ideas, answer questions, reinterpret
observations, or reuse data and tools in unexpected new ways. By scaling up
collaborations, such ‘happy accidents’ become ever more likely and frequent.

Dynamic division of labour Because each scientist is especially adept at certain re-
search tasks, such as generating ideas, collecting data, mining data, or inter-
preting results, any seemingly hard task may be routine for someone with just
the right skills, or the necessary time or resources to do so. This dramatically
speeds up progress.

Designed serendipity and a dynamic division of labour occur naturally when ideas,
questions, data, or tools are broadcast to a large group of people in a way that allows
everyone in the collaboration to discover what interests them, and react to it easily
and creatively. As such, for online collaborations to scale, online tools must make it
practical for anybody to join and contribute any amount at any time. This can be
expressed in the following ‘design patterns’ [97]:

e Encourage small contributions, allowing scientists to contribute in (quasi) real
time. This allows many scientists to contribute, increasing the cognitive diversity
and range of available expertise.

e Split up complex tasks into many small subtasks that can be attacked (nearly)
independently. This allows many scientists to contribute individually and ac-
cording to their expertise.

e Construct a rich and structured information commons, so that people can effi-
ciently build on prior knowledge. It should be easy to find previous work, and
easy to contribute new work to the existing body of knowledge.

e Human attention does not scale infinitely. Scientists only have a limited amount
of attention to devote to the collaboration, and should thus be able to focus on
their interests and filter out irrelevant contributions.

e Establish accepted methods for participants to interact and resolve disputes.
This can be an ‘honour code’ that encourages respectable and respectful beha-

44 4.3. Machine learning

viour, deters academic dishonesty, and protects the contributions of individual
scientists.

Still, even if scientists have the right expertise or skill to contribute at the right
time, they typically also need the right incentive to do so.

This problem was actually solved already centuries ago by establishing a reputa-
tion system implemented using the best medium for sharing information of the day,
the journal. Today, the internet and networked science tools provide a much more
powerful medium, but they also need to make sure that sharing data, code and ideas
online is in scientists’ best interest.

The key to do this seems to lie in extending the reputation system [97]. Online
tools should allow everyone to see exactly who contributed what, and link valuable
contributions to increased esteem amongst the users of the tools and the scientific
community at large. The traditional approach to do this is to link useful online contri-
butions to authorship in ensuing papers, or to link the reuse of shared data to citation
of associated papers or DOI’s. Scientific communities are typically small worlds, thus
scientists are encouraged to respect such agreements.

Moreover, beyond bibliographic measures, online tools can define new measures
to demonstrate the scientific (and societal) impact of contributions. These are some-
times called altmetrics or article-level metrics [112]. An interesting example is ArXiv,
an online archive of preprints (unpublished manuscripts) with its own reference track-
ing system (SPIRES). In physics, preprints that are referenced many times have a high
status among physicists. They are added to resumes and used to evaluate candidates
for scientific jobs. This illustrates that what gets measured, gets rewarded, and what
gets rewarded, gets done [97, 100]. If scholarly tools define useful new measures and
track them accurately, scientists will use them to assess their peers.

4.3 Machine learning

Machine learning is a field where a more networked approach would be particularly
valuable. Machine learning studies typically involve large datasets, complex code,
large-scale evaluations and complex models, none of which can be adequately repres-
ented in papers. Still, most work is only published in papers, in highly summarized
forms such as tables, graphs and pseudo-code. Oddly enough, while machine learning
has proven so crucial in analysing large amounts of observations collected by other
scientists, the outputs of machine learning research are typically not collected and
organized in any way that allows others to reuse, reinterpret, or mine these results to
learn new things, e.g., which techniques are most useful in a given application.

Chapter 4. Experiment Databases 45

4.3.1 Reusability and reproducibility

This makes us duplicate a lot of effort, and ultimately slows down the whole field
of machine learning [63, 153]. Indeed, without prior experiments to build on, each
study has to start from scratch and has to rerun many experiments. This limits the
depth of studies and the interpretability and generalizability of their results [4, 63]. It
has been shown that studies regularly contradict each other because they are biased
toward different datasets [80], or because they do not take into account the effects
of dataset size, parameter optimization and feature selection [71, 105]. This makes it
very hard, especially for other researchers, to correctly interpret the results. Moreover,
it is often not even possible to rerun experiments because code and data are missing,
or because space restrictions imposed on publications make it practically infeasible to
publish many details of the experiment setup. This lack of reproducibility has been
warned against repeatedly [80, 102, 142], and has been highlighted as one of the
most important challenges in data mining research [67].

4.3.2 Prior work

Many machine learning researchers are well aware of these issues, and have worked
to alleviate them. To improve reproducibility, there exist repositories to publicly share
benchmarking datasets, such as UCI [90]. Moreover, software can be shared on the
MLOSS website. There also exists an open source software track in the Journal for Ma-
chine Learning Research (JMLR) where short descriptions of useful machine learning
software can be submitted. Also, some major conferences have started checking sub-
missions for reproducibility [91], or issue open science awards for submissions that
are reproducible (e.g., ECML/PKDD 2013).

Moreover, there also exist experiment repositories. First, meta-learning projects
such as StatLog [93] and MetaL [22], and benchmarking services such as MLcomp
run many algorithms on many datasets on their servers. This makes benchmarks com-
parable, and even allows the building of meta-models, but it does require the code
to be rewritten to run on their servers. Moreover, the results are not organized to be
easily queried and reused.

Second, data mining challenge platforms such as Kaggle [29] and TunedIT [162]
collect results obtained by different competitors. While they do scale and offer mon-
etary incentives, they are adversarial rather than collaborative. For instance, code is
typically not shared during a competition.

Finally, the experiment database for machine learning [153] was introduced, which
organizes results from different users and makes them queryable through an online
interface. Unfortunately, it does not allow collaborations to scale easily. It requires
researchers to transcribe their experiments into XML, and only covers classification

46 4.4. OpenML

experiments.

While all these tools are very valuable in their own right, they do not provide many
of the requirements for scalable collaboration discussed above. It can be quite hard
for scientists to contribute, there is often no online discussion, and they are heavily
focused on benchmarking, not on sharing other results such as models. By introducing
OpenML, we aim to provide a collaborative science platform for machine learning.

4.4 OpenML

OpenML is an online platform where machine learning researchers can automatically
share data in fine detail and organize it to work more effectively and collaborate on
a global scale [124, 155, 154].

It allows anyone to challenge the community with new data to analyse, and every-
one able to mine that data to share their code and results (e.g., models, predictions,
and evaluations). In this sense, OpenML is similar to data mining challenge plat-
forms, except that it allows users to work collaboratively, building on each other’s
work. OpenML makes sure that each (sub)task is clearly defined, and that all shared
results are stored and organized online for easy access, reuse and discussion.

Moreover, it is being integrated in popular data mining platforms such as Weka [61],
R [16, 148], Scikit-learn [28, 103], RapidMiner [151, 121], MOA [13] and Cort-
ana [92]. This means that anyone can easily import the data into these tools, pick any
algorithm or workflow to run, and automatically share all obtained results. Results
are being produced locally: everyone that participates can run experiments on his
own computers and share the results on OpenML. The web-interface provides easy
access to all collected data and code, compares all results obtained on the same data
or algorithms, builds data visualizations, and supports online discussions. Finally, it is
an open source project, inviting scientists to extend it in ways most useful to them.

OpenML offers various services to share and find datasets, to download or create
scientific tasks, to share and find algorithms (called flows), and to share and organize
results. These services are available through the OpenML website, as well as through
a REST API for integration with software tools.

4.4.1 Datasets

Anyone can provide the community with new datasets to analyse. To be able to ana-
lyse the data, OpenML accepts a limited number of formats. For instance, currently it
requires the ARFF format [61] for tabular data, although more formats will be added
over time.

Chapter 4. Experiment Databases 47

Table 4.1: Standard Meta-features.

Category Meta-features
Simple # Instances, # Attributes, # Classes, Dimensionality, Default Ac-

curacy, # Observations with Missing Values, # Missing Values,
% Observations With Missing Values, % Missing Values, # Numeric
Attributes, # Nominal Attributes, # Binary Attributes, % Numeric
Attributes, % Nominal Attributes, % Binary Attributes, Majority
Class Size, % Majority Class, Minority Class Size, % Minority Class

Statistical Mean of Means of Numeric Attributes, Mean Standard Deviation
of Numeric Attributes, Mean Kurtosis of Numeric Attributes, Mean
Skewness of Numeric Attributes

Information Theoretic Class Entropy, Mean Attribute Entropy, Mean Mutual Information,
Equivalent Number Of Attributes, Noise to Signal Ratio

Landmarkers [108] Accuracy of Decision Stump, Kappa of Decision Stump, Area un-
der the ROC Curve of Decision Stump, Accuracy of Naive Bayes,
Kappa of Naive Bayes, Area under the ROC Curve of Naive Bayes,
Accuracy of k-NN, Kappa of k-NN, Area under the ROC Curve of
k-NN, ...

The data can either be uploaded or referenced by a URL. This URL may be a
landing page with further information or terms of use, or it may be an API call to
large repositories of scientific data such as the SDSS [146]. In some cases, such as
Twitter feeds, data may be dynamic, which means that results won’t be repeatable.
However, in such tasks, repeatability is not expected. OpenML will automatically ver-
sion each newly added dataset. Optionally, a user-defined version name can be added
for reference. Next, authors can state how the data should be attributed, and which
(creative commons) licence they wish to attach to it. Authors can also add a reference
for citation, and a link to a paper. Finally, extra information can be added, such as the
(default) target attribute(s) in labelled data, or the row-id attribute for data where
instances are named.

For known data formats, OpenML will then compute an array of data character-
istics, also called meta-features. Typical meta-features are often categorized as either
simple, statistical, information theoretic or landmarkers. Table 4.1 shows some meta-
features computed by OpenML.

OpenML indexes all datasets and allows them to be searched through a standard
keyword search and search filters. Each dataset has its own page with all known in-
formation. This includes the general description, attribution information, and data
characteristics, but also statistics of the data distribution and, and all scientific tasks
defined on this data (see below). It also includes a discussion section where the data-

48 4.4. OpenML

set and results can be discussed.

4.4.2 Task types

A dataset alone does not constitute a scientific task. We must first agree on what types
of results are expected to be shared. This is expressed in task types: they define what
types of inputs are given, which types of output are expected to be returned, and what
scientific protocols should be used. For instance, classification tasks should include
well-defined cross-validation procedures, labelled input data, and require predictions
as outputs.

OpenML covers the following task types:

Supervised Classification Given a dataset with a nominal target and a set of train/test
splits (e.g., generated by a cross-validation procedure) train a model and re-
turn the predictions of that model. The server will evaluate these, and compute
standard evaluation measures, such as predictive accuracy, f-measure and area
under the ROC curve.

Supervised Regression Given a dataset with a numeric target and a set of train/test
splits (e.g., generated by a cross-validation procedure) train a model and re-
turn the predictions of that model. The server will evaluate these, and compute
standard evaluation measures, such as root mean squared error (RMSE), mean
absolute error and root relative squared error.

Learning Curve Analysis A variation of Supervised Classification. Given a dataset
with a nominal target, various data samples of increasing size are defined. A
model is build for each individual data sample. For each of these samples, vari-
ous evaluation measures are calculated; from these a learning curve can be
drawn. Chapter 6 will elaborate on this.

Data Stream Classification The online version of classification. Given a sequence of
observations, build a model that is able to process these one by one and adapts
to possible changes in the input space. Chapter 5 will elaborate on this.

Machine Learning Challenge A variation of Supervised Classification, similar to the
setup of Kaggle [29]. The user is presented with a partly labelled dataset. The
task is to label the unlabelled instances. As a result, there can be no cross-
validation procedure, as there will always be a completely hidden test set.

Subgroup Discovery Given a dataset, return a conjunction of rules that describes
a subgroup that is interesting with respect to a given quality measure. These
quality measures can be weighted relative accuracy, jaccard measure or chi-
squared.

Chapter 4. Experiment Databases 49

Given inputs

source_data anneal (1) Dataset (required)
estimation_procedure 10-fold Cross-validation EstimationProcedure
(required)
evaluation_measures predictive_accuracy String (optional)
target_feature class String (required)
data_splits http://www.openml.org/api_splits/get/1/1/Task_1_splits.arff TrainTestSplits (hidden)

Expected outputs

model A file containing the model built on all the input data. File (optional)
evaluations A list of user-defined evaluations of the task as key-value pairs. KeyValue (optional)
predictions An arff file with the predictions of a model Predictions (required)

Figure 4.1: Example of an OpenML task description.

4.4.3 Tasks

If scientists want to perform, for instance, classification on a given dataset, they can
create a new machine learning task. Tasks are instantiations of task types with specific
inputs (e.g., datasets). Tasks are created once, and then downloaded and solved by
anyone.

An example of such a task is shown in Figure 4.1. In this case, it is a classification
task defined on dataset ‘anneal’ (version 1). Next to the dataset, the task includes the
target attribute, the evaluation procedure (here: 10-fold cross-validation) and a file
with the data splits for cross-validation. The latter ensures that results from different
researchers can be objectively compared. For researchers doing an (internal) hyper-
parameter optimization, it also states the evaluation measure to optimize for. The
required outputs for this task are the predictions for all test instances, and option-
ally, the models built and evaluations calculated by the user. However, OpenML will
also compute a large range of evaluation measures on the server to ensure objective
comparison.

Finally, each task has its own numeric id, a machine-readable XML description, as
well as its own web page including all runs uploaded for that task and leaderboards.

4.4.4 Flows

Flows are implementations of single algorithms, workflows, or scripts designed to
solve a given task. Flows can either be uploaded directly (source code or binary)

50 4.4. OpenML

3 .
& moa.HoeffdingTree
@ Visibility: public & Uploaded on 24-06-2014 by Jan van Rijn st Moa_2014.03 * 270 runs

A Hoeffding tree (VFDT) is an incremental, anytime decision tree induction algorithm that is
capable of learning from massive data streams, assuming that the distribution generating examples
does not change over time. Hoeffding trees exploit the fact that a small sample can often be
enough to choose an optimal splitting attribute. This idea is supported mathematically by the
Hoeffding bound, which quantifies the number of observations (in our case, examples) needed to
estimate some statistics within a prescribed precision (in our case, the goodness of an attribute).

Please cite: Geoff Hulten, Laurie Spencer, Pedro Domingos: Mining time-changing data streams.
In: ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining, 97-106, 2001

Parameters
b binarySplits: Only allow binary splits. default: false
c splitConfidence: The allowable error in split decision, values closer to 0 will default: 1.0E-7

take longer to decide.

e memoryEstimatePeriod: How many instances between memory consumption default: 1000000
checks.

g gracePeriod: The number of instances a leaf should observe between split default: 200

attempts.
| leafprediction: Leaf prediction to use. default: NBAdaptive
m maxByteSize: Maximum memory consumed by the tree. default: 33554432
p noPrePrune: Disable pre-pruning. default: false
q nbThreshold: The number of instances a leaf should observe before permit- default: 0

ting Naive Bayes.

r removePoorAtts: Disable poor attributes. default: false
s splitCriterion: Split criterion to use. default: InfoGainSplitCriterion
t tieThreshold: Threshold below which a split will be forced to break ties. default: 0.05
z stopMemManagement: Stop growing as soon as memory limit is hit. default: false

Figure 4.2: Example of an OpenML flow.

or reference it by URL. The latter is especially useful if the code is hosted on an
open source platform such as GitHub or CRAN. Flows can be updated as often as
needed. OpenML will version each uploaded flow, while users can provide their own
version name for reference. Ideally, what is uploaded is software that takes a task id as
input and then produces the required outputs. This can be a wrapper around a more
general implementation. If not, the description should include instructions detailing
how users can run an OpenML task (e.g., to verify submitted results).

OpenML stores meta-data about the uploaded flow, such as the dependencies, a

Chapter 4. Experiment Databases 51

flow description and citation information. A flow can also contain one or more para-
meters. For each parameter, the name, description and default value (if known) are
stored. Flows can also contain subflows. This way meta-algorithms such as Bagging
can be distinguishable, e.g., Bagging CART trees would be different from Bagging REP
Trees.

It is also possible to annotate flows with characteristics (similar to the charac-
teristics in Table 3.1 on page 36), such as whether it can handle missing attributes,
(non)numeric features and (non)numeric targets. As with datasets, each flow has its
own page which combines all known information and all results obtained by running
the flow on OpenML tasks, as well as a discussion section, see Figure 4.2.

It is important to emphasize that, although flows can contain pieces of software,
these are not executed on the OpenML server. Flows are executed on the computer(s)
of the users; it is their responsibility to link the uploaded results to the correct flow.
In that sense, a flow on the OpenML server is a reference that links all the results
obtained by the same algorithm to each other.

4.4.5 Setups

A setup is the combination of a flow and a certain setting of the parameters. Whenever
a flow is uploaded, the user can also register the parameters that exist. It has been
noted that parameter settings have a tremendous effect on the performance of an
algorithm [9]. This widely accepted claim is easy to confirm using the experimental
results of OpenML and the concepts of setups, as we will see further on. Setups that
are run with default parameter settings, are flagged as such.

4.4.6 Runs

Runs are applications of flows on a specific task. They are submitted by uploading
the required outputs (e.g. predictions) together with the task id, the flow id, and any
parameter settings. Each run also has its own page with all details and results, shown
partially in Figure 4.3. In this case, it is a classification run, where the predictions
of the specific task are uploaded, and the evaluation measures are calculated on the
server. Based on the parameter settings, the run is also linked to a setup.

OpenML calculates the evaluations per fold. The fold-specific scores are aggreg-
ated as standard deviations in the web-interface, but can be obtained individually via
the Rest API. For class-specific measures such as area under the ROC curve, precision
and recall, per-class results are stored. Also the confusion matrix is available. Apart
from the shown evaluation measures, a wide range of other evaluation measures is

52 4.4. OpenML

also calculated, e.g., f-measure, kappa and root mean squared error. Additional in-
formation, such as run times and details on hardware can be provided by the user.

Moreover, because each run is linked to a specific task, flow, setup, and author,
OpenML can aggregate and visualize results accordingly.

4.4.7 Studies

Studies are a combinations of datasets, tasks, flows, setups and runs. It is possible to
link all these resources together, resulting in a permanent link that can be referred
to in papers. Studies have a web-interface where general information can be given
and results can be discussed. Having this all linked together makes it convenient for
journal reviewers to verify the obtained results, for fellow researchers to build upon
each others results and for anyone in general to investigate earlier obtained results.

4.4.8 Plug-ins

OpenML is being integrated in several popular machine learning environments, so
that it can be used out of the box. These plug-ins can be downloaded from the web-
site. Figure 4.4 shows how OpenML is integrated in WEKA's Experimenter [61]. After
selecting OpenML as the result destination and providing login credentials, a num-
ber of tasks can be added through a dialogue. The plug-in supports many additional
features, such as the use of filters (for pre-processing operations), uploading of para-
meter sweep traces (for parameter optimization) and uploading of human readable
model representations.

It has been widely recognized that the quality of an algorithm can be markedly im-
proved by also selecting the right pre-processing and post-processing operators [41,
95, 145]. For example, the quality of k£ Nearest Neighbour algorithms typically de-
grades when the number of features increases [50], so it makes sense to combine
these algorithms with feature selection [77, 111] or feature construction. The com-
plete chain of pre-processing operators, algorithms and post-processing operators is
typically referred to as a workflow. In order to extend the support for workflow re-
search, OpenML is integrated in RapidMiner [121]. The integration consists of three
new RapidMiner operators: one for downloading OpenML tasks, one for executing
them and one for uploading the results, see Figure 4.5.

Typically, they will be connected as shown in Figure 4.5a. However, this modu-
larization in three operators will likely be beneficial in some cases. The operators
require an OpenML account to interact with the server. The “Execute OpenML Task”
is a so-called super-operator; it contains a sub-workflow that is expected to solve the
task that is delivered at the input port. The subroutine is executed for each defined

Chapter 4. Experiment Databases 53
W Run 24996
® Task 59 (Supervised Classification) = Iris &8 Uploaded on 13-08-2014 by Jan van Rijn
Flow
weka.J48 Ross Quinlan (1993). C4.5: Programs for Machine Learning.
weka.J48_C 0.25
weka.J48_M 2
Result files
a Description
xml
XML file describing the run, including user-defined evaluation measures.
Model readable
a model
A human-readable description of the model that was built.
Model serialized
a model
A serialized description of the model that can be read by the tool that generated it.
Predictions
a arff

ARFF file with instance-level predictions generated by the model.

Evaluations
0.9565 £ 0.0516
Area under the roc curve Iris-setosa Iris-versicolor Iris-virginica
0.98 0.9408 0.9488
actual\predicted Iris-setosa Iris-versicolor Iris-virginica
. . Iris-setosa 48 2 0
Confusion matrix
Iris-versicolor 0 47 3
Iris-virginica 0 3 47

0.9479 £ 0.0496

Precision Iris-setosa | Iris-versicolor = Iris-virginica
1 0.9038 0.94
Predictive accuracy 0.9467 £+ 0.0653

0.9467 £+ 0.0653
Recall Iris-setosa Iris-versicolor Iris-virginica

0.96 0.94 0.94

Figure 4.3: Example of an OpenML run.

54 4.4. OpenML

@ © @ openML Experimenter

Setup | Run
Results Destination
OpenMLlorg R e e] Change
Tasks _ Algorithms
Add new... Edit select... Delete sele... Add new... Edit selected... Delete selected
|| Use relative p...
MaiveBayes
Task 2: anneal (Supervised Classification) Bk -K1 W 0 -A "weka.core.neighboursearch.LinearNNSea
Task 3: krs-kp (Supenvised Classification) Logistic -R 1.0E-8 -M -1 -num-decimal-places 4
Task 4: labor (Supervised Classification) SMO -C 1,0 -L 0,001 -P 1.0E-12 N O A -1 W 1 K "weka.claj
Task 5: arrhythmia (Supervised Classification) LogitBoost -P 100 L -1.7976931348523157E308 -H 1.0 -2
Task 6: letter (Supervised Classification) 148 -C 0,25 -M 2
Task 7: audiology (Supervised Classification) RandomForest -P 100 -1 100 -num-slots 1 K 0 -M 1.0 4/ 0.0
Task 8: liver-disorders (Supervised Classification)
Task 9: autos (Supervised Classification) <k 7 "
Up Down Load options... Save options... Ur Down

Motes

Figure 4.4: WEKA integration of OpenML.

training set, and produces a model. This model is then used to predict the labels
for the observations in the associated test set. An example of such a sub-workflow,
including several pre-processing steps, is shown in Figure 4.5b. The output of this
super-operator is a data structure containing predictions for all instances in the test
sets, and basic measurements such as run times.

Additionally, researchers that use R can use the openml package, to work in com-
pliance with the mlr package [16]. It supports a wide range of functionalities, mainly
focussing on supervised classification and regression. An example of how to run an
OpenML task is shown in Figure 4.6. OpenML is also integrated in ‘Scikit-learn’ [28,
103], a common Python package for Machine Learning. It supports similar function-
alities as the openml package in R.

Furthermore, OpenML is integrated in MOA [13]. It has been widely recognized
that mining data streams differs from conventional batch data mining [14, 118]. In
the conventional batch setting, usually a limited amount of data is provided and the
goal is to build a model that fits the data as well as possible, whereas in the data
stream setting, there is a possibly infinite amount of data, with concepts possibly
changing over time, and the goal is to build a model that captures general trends.
With the MOA plug-in, OpenML facilitates data stream research, as we will see in
Chapter 5.

Chapter 4. Experiment Databases 55

inp res

Download Execute Upload
! tas tas ¢ pre pre
=] =] = =]

(a) Main Workflow

Sample (Ke... Remove Co... Detect Outl...
exa [} (] exa eca) (] exa axa [} (] exa . oexaly] mae
? ori :1 @ ari) ﬁj:l ari)
(2] [c] (5]
Remove Us... Maive Bayes

(| exa @ axa [} { tra O mod
ori :1 W exa
[e] (2]

T

(b) Subroutine solving OpenML task

Figure 4.5: Example of a RapidMiner workflow solving an OpenML task.

Finally, OpenML is also integrated in Cortana [92], a workbench that facilitates
Subgroup Discovery [7]. Subgroup Discovery is a form of Supervised Learning that
aims to describe certain parts in the data that comply to a certain measure of inter-
estingness. What quality measure is desired, is defined in the OpenML task.

All-together, these plug-ins enable frictionless collaboration, as users do not have
any additional burden to share their experimental results. This leads to an extensive
database of experiments, that enables us to learn from the past.

4.5 Learning from the past

Having a vast set of experiments, collected and organized in a structured way, al-
lows us to conduct various types of experiments. In this chapter, we will demonstrate
various ways of research that OpenML facilitates. Vanschoren et al. [153] describes
specifically three types of experiments, offering increasingly generalizable results:

56 4.5. Learning from the past

library (mlr)
library (OpenML)

set API key to read only key (replace it with your own key)

5| setOMLConfig (apikey = "b2994bdb7ecb3c6f3¢c8f3b35f4b47f1f")

Irn = makeLearner(”classif.randomForest”)

upload the new flow (with information about the algorithm and settings);
if this algorithm already exists on the server, one will receive a message
with the ID of the existing flow

flow.id = uploadOMLFlow (lrn)

| # the last step is to perform a run and upload the results

run.mlr = runTaskMlr(task, Irn)

5| run. id = uploadOMLRun (run.mlr)

Figure 4.6: R integration of OpenML.

Model-level analysis evaluate machine learning methods over one or multiple data-
sets, using a given performance measure (e.g., predictive accuracy or area under
the ROC curve). These studies give insight in HOW a particular method works.

Data-level analysis give insight in how the performance of specific machine learn-
ing methods is affected by given data characteristics (e.g., number of features,
number of classes). These studies attempt to explain WHEN (on which kinds of
data) a particular method should be preferred over the other.

Method-level analysis leverage given algorithm characteristics (e.g., bias-variance
profile, model predictions on earlier datasets) in order to explain WHY a partic-
ular algorithm behaves the way it does.

4.5.1 Model-level analysis

In this first type of study, we use the vast amount of runs in OpenML to gain insight
in how certain algorithms perform. Many flows (and setups) are run over a vast set
of tasks, and the results can be used to benchmark, compare or rank algorithms.

4.5.1.1 Comparing flows

For each task, OpenML automatically plots all evaluation scores of all performed al-
gorithms. Figure 4.7 shows this for the commonly used UCI dataset ‘letter’ [47]. In

Chapter 4. Experiment Databases 57

1II
Qooo00a0a000
2 B°B©0CC0000g000000000e
Cooo
o O00p i
09 O
o @] 000
5 o o
E 0.8 —
8
B O
5
B 07 E
& o
0.6 - —
O
O
0.5 | NN S Y Y Y S [N S Y N [[S Y Y Y S [N N N O ' S N N Y U [N O U U I I N N S _—_—
4 C 0/(/lp lt,lt//lt,lt/lt,lt,lp(ylplplplplp(‘/lplplblp(‘/lblplp 4. lL
%.;w,o ot ;.Z\ o zng%;fz%%;ﬁz?%;@:@gg PO sz Z@ gfrz;%ﬁfagf; 50 Gﬁ, % Gf %, ig ““‘J,e , % s
< ; ; ¢
Y 0) ot Uy e, 0 e % 0 e %‘@:o,ng»,”f s s JJ,“'",:’W 4’}
< %o,); &:%o,. o, o %,%, N %, O/o 92(\4, 6’00 220 %0, % Lo &O s 7.8 o (P
o, e % T, A i B g, %, "%
o, Yo, NNy DAY A N AN &% %
s R W e e, iy, e
%, ¢ G ONSN (<
%, DO
22 € <
o "

Figure 4.7: Performance of various algorithms on the ‘letter’ dataset.

this dataset the task is to classify letters produced by various fonts, based on pre-
extracted attributes. This dataset has 26 classes (each letter from the alphabet is a
class), which is fairly high for a classification task. The z-axis shows a particular flow,
and each dot represents a given parameter setting that obtained a certain score. This
type of query shows what kind of algorithm is suitable for a given dataset.

In order not to overload the image, we only show the 40 best performing flows.
Ensemble methods are grouped by the base-learner that is used (e.g., Bagging IBKk is
considered a different flow than Bagging J48). The result contains flows from various
classification workbenches that are integrated in OpenML, i.e., Weka, R and Rapid-
Miner. In this case, it seems that instance-based methods perform fairly well. Among
the top performing algorithms, there are many variations of Random Forest and k-NN,
with IBk being the Weka version of instance-based classification.

A similar image was published in [153], based on the experiment database for
machine learning. The results are similar to the ones we present. However, the results
from OpenML are based on more algorithms from more toolboxes, produced by vari-
ous people from all over the world. For this reason, we expect that the observations

58 4.5. Learning from the past

Table 4.2: Classifiers and the important parameters that were optimized for populat-
ing the database.

Classifier Parameters Range Scale
SVM (RBF Kernel) complexity [2712-212] log
gamma [2712-212] log
J48 confidence factor [107%-1071] log
minimal leaf size [20-29] log
k-NN number of neighbours [1-50] linear
Logistic Regression ridge [2712-212] log
Random Forest nr of variables per split [2!-2%] log
LogitBoost (REPTree) shrinkage [1074-1071] log
max depth [1-5] linear
[

number of iterations 500-1000] linear

made upon OpenML experiments are more substantial.

4.5.1.2 Effect of parameter optimization

OpenML facilitates that parameter optimization techniques can store all intermediate
results, giving more options to analyse the specific effects of parameters. We used
Weka’s MultiSearch package to populate the database with the classifiers and para-
meter settings specified in Table 4.2. If the number of parameter combinations ex-
ceeded 200, Random Search [8] was used to randomly select 200 parameter settings.

A 10-fold cross-validation procedure was used, with for each fold an internal 2-fold
cross-validation procedure to select the best parameter setting for this fold, resulting
in at most 2,000 attempted setups per run. Figure 4.8 shows violin plots of the varying
accuracy results. All individual results can be obtained from OpenML.

These kind of studies lead to interesting observations. They show that especially
Support Vector Machines need proper parameter tuning: the median performance is
very low compared to the maximum performance. The probability of obtaining a low
score for this is rather high, as can be seen by the high density area at the bottom
of the plot. The other algorithms perform more robust, especially Random Forest and
Decision Tree (high density at the top of the plot, small tail at the bottom). By further
inspecting the results, we observe that all outliers can be attributed to a sub-optimal
value of a specific parameter. The outliers of the J48 decision tree were all produced
by a high value (64) for the parameter that determines the minimal leaf size. The
outliers of the Random Forest were produced by a low value (2) for the attributes
that are available at each split. The outliers of LogitBoost were produced when the

Chapter 4. Experiment Databases 59

99-

©
@

Predictive Accuracy
© © © ©
< { i 3
/‘)‘/ | ‘ l

Figure 4.8: Variation in predictive accuracy when optimizing parameters on the “sick”
dataset.

base-learner was built with a maximum depth of 1, effectively making it a decision
stump.

It is plausible that when using a decision tree, a relation exists between the num-
ber of instances and the optimal value for minimal leaf size. If the dataset is too
small, setting this value too high restricts the flexibility of the model, possibly leading
to under-fitted models. Similarly, when building a Random Forest, having too few at-
tributes to select a split from can lead to suboptimal trees. Although these results will
make sense to most machine learning experts, currently there are no publications or
data to back up these observations. These kind of data-driven experiments can be a
first step towards a better understanding of parameter behaviour in machine learning.

4.5.1.3 Parameter effect across datasets

It is possible to track the effect of a certain parameter over a range of values. Fig-
ure 4.9 plots the effect of the gamma parameter of the RBF kernel for Support Vector
Machines, on various datasets.

As we can see, the parameter has a similar effect on most of the displayed data-
sets. By increasing the value, performance grows to an optimum. After that it rapidly
degrades. In the case of ‘car’, ‘optdigits’ and ‘waveform’, performance degrades to the
default accuracy, after which it stabilizes. In the case of the letter dataset, the de-
gradation hasn’t finished yet, but it is to be expected that it continues in a similar
way. For the ‘soybean’ dataset, it stabilizes above this level. The optimal value of the

60 4.5. Learning from the past

09 F . ,

0.7 | 3 1

0.6 - 4
05 F B e

04 | i

g} = = al
03 | i
*--
car (7) Hoooeoe Hoooooenn Hoeoooon e
02+ letter (17) i
soybean (36) ---%---
waveform-5000 (41) =
optdigits (65)
0.1 1 L L L
0.008 0.04 0.2 1 5 25 125

Figure 4.9: Effect of gamma parameter of the RBF kernel for Support Vector Machines
on various datasets. The number between brackets indicates the number of attributes
of such dataset.

parameter is different for all datasets, as would be expected. It seems that setting this
value too low is less harmful for performance than setting it too high. All-together,
the parameter landscape seems to be smooth, i.e., there are no spikes in the plots.

4.5.1.4 Comparison over many datasets

In order to gain a decent understanding of how a classifier performs, it could be
evaluated over a wide range of datasets. We selected a set of classifiers and datasets
from OpenML. All classifiers were ran on all datasets.

Figure 4.10 shows violin plots of various algorithms over a well selected set of
datasets (complete list in Table 6.1 on page 115). Violin plots show the probability
density of the performance scores at different values [66]. Additionally, a box plot is
shown in the middle. The classifiers are sorted based on the median. Classifiers to the
right perform generally better than classifiers to the left. Random Forest [24] performs
best on average, but also the other ensembles from Chapter 3 perform good, e.g.,
Adaptive Boosting [46] and Logistic Boosting [48]. Logistic Model Tree (LMT) [84]
(which is a combination of trees and Logistic Regression) also performs reasonably
well.

Note that when a classifier is ranked low, it does not necessarily mean that is it a

Chapter 4

. Experiment Databases

61

1.00-

Predictive Accuracy

0.75-
0.50-
0.25-

B

I

0.00-
&
) 4‘QQ‘ 5
&S
& S
q}\« (@)
&
e
‘?b
(a) Accuracy
1.0-
[o]
2
3 0s8-
Q
o
@
[}
o
=
o}
3
;: 0.6-
0.4-
,\@@
R
S
<
9\/

(b) Area under the ROC Curve

Figure 4.10: Ranking of algorithms over a set of 105 datasets.

62 4.5. Learning from the past

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
S S S S T S SR S S PO S S S S S S S S SO S SO

Logistic Model Tree —48 ————— L———— Ordinal Learning Method

Hyper Pipes
C i

SMO(Poly Kernel) Ad ccision Stump)
Simple Cart

Logit Boost(Decisic

J Rip

Multilayer Perceptron (10) k-NN (k = 1)
REP Tree Multilayer Perceptron (10,10)
k-NN (k = 10) LAD Tree

Figure 4.11: Results of Nemenyi test (o = 0.05) on the predictive accuracy of classifi-
ers in OpenML. Classifiers are sorted by their average rank (lower is better). Classifiers
that are connected by a horizontal line are statistically equivalent.

bad classifier. For example, Naive Bayes does not score well on the general ranking,
but is used quite often in text mining, which suggests that it is suitable for that specific
task. When a classifier does not end high in the general ranking, this typically indic-
ates that the algorithm designer must put more effort in specifying for what types of
data it works well.

To assess statistical significance of such results, we can use the Friedman test with
post-hoc Nemenyi test to establish the statistical relevance of our results. These tests
are considered the standard when it comes to comparing multiple classifiers [36]. The
Friedman test checks whether there is a statistical significant difference between the
classifiers; when this is the case the Nemenyi post-hoc test can be used to determine
which classifiers are significantly better than others. A statistical test operates on a
given evaluation measure.

Figure 4.11 shows the result of the Nemenyi test on the predictive accuracy of the
classifiers from Figure 4.10. We see a similar order of classifiers as in Figure 4.10;
again the Logistic Model Tree and Random Forest perform best. Classifiers that are
connected by a horizontal line are statistically equivalent, e.g., there was no statistical
evidence that the Logistic Model Tree is better than the SVM with Polynomial kernel.

These results are obtained by running the respective algorithms on the datasets
without hyperparameter tuning. It has been noted that hyperparameter optimization
has a big influence on the performance of algorithms. It would be interesting to see
how an optimization procedure (e.g., Random Search) will affect these rankings.

Chapter 4. Experiment Databases 63

4.5.2 Data-level analysis

In the previous chapter, we used the experiments from OpenML to gain insight in
how algorithms perform. Meta-learning focusses on when algorithms are expected to
perform well. In this chapter we demonstrate how to obtain this knowledge.

4.5.2.1 Data property effect

As OpenML contains many runs of algorithms with different parameter settings, we
can use these results to gain more insight in the interplay between a certain data
characteristic and the optimal value of such parameter. In order to do so, we fix
all parameters to a given value (e.g., the default value) and vary the one that we
are interested in. The optimal value is the value with which the algorithm obtains
the highest performance on a given performance measure; in this case predictive
accuracy. In case of a tie, a lower value was preferred.

The Random Forest classifier has many parameters. In order to assure more di-
versity in the individual trees, at each node the tree induction algorithm can only
select a splitting criteria out of a restricted set of randomly chosen attributes. The
‘Number of Features’ parameter controls the number of attributes that can be chosen
from. Intuitively, there is a relationship between the number of features of the data-
set and the optimal value for this parameter. This intuition is built upon in popular
machine learning workbenches. For example, in Weka [61] this parameter defaults to
the logarithm of the number of features, and in Scikit-learn this value defaults to the
square root of the number of features. Figure 4.12a plots the optimal value against the
‘Number of Features’ data characteristic. Figure 4.12b plots the optimal value against
the ‘Dimensionality’ data characteristic (which is the number of features divided by
the number of instances). By definition, there can be no optimal values in the top left
area of Figure 4.12a: the optimal value for this parameter can not be higher than the
actual number of features of a dataset.

The plot seems to confirm some sort of relation between the number of attributes
and the optimal value for this parameter. However, these scatter-plots also have some
intrinsic disadvantages: overlapping points are not visible as such, it only shows the
absolute best value of the parameter and the results are circumstantial (i.e., the results
can be completely different when other parameters are varied). Conclusions should
be drawn with great care.

4.5.2.2 Effect of feature selection

It is often claimed that data pre-processing is an important factor contributing to-
wards the performance of classification algorithms. We can use the experiments in

64 4.5. Learning from the past

28 ‘
27 - ° ° ° -
26 - ° o -
é) 25 [(11} - i
< o oo .
Z 4
< - oo o o ° o
g 2 o oo . .
823 o o o L] (1] o ° B
22 Feee o ecsece L] oo B
21 ;- © © e00 @ o o o . B
0 L L L L L
2
22 24 26 28 210 212 214
(a) Number of Features
28 ‘ ‘
27 - . . . B
26 o ° ° ° B
'0_‘:-" 25 - . o cme g
< oo o o
Z 4
= - e @ . . 4
g7 TS
a
o 23 o ° L) e e . E
22 o . oo % e ®@ee o B
21 e . e®oe ococmmoce ® oo E
0 L L L L L L L L L
2
2—14 2-12 2—10 2—8 o) 6 2—4 2—2 20 22 24 26

(b) Dimensionality

Figure 4.12: The optimal values of the ‘Random Features per Split’ parameter of Ran-
dom Forests

Chapter 4. Experiment Databases 65

OpenML to investigate whether this is true, and on what kind of data this is the case.
We will focus on feature selection. Real world data sets can be rife with irrelevant
features, especially if the data was not gathered specifically for the classification task
at hand. For instance, in many business applications hundreds of customer attributes
may have been captured in some central data store, whilst only later is decided what
kind of models actually need to be built [114]. In order to help classifiers building a
good model, a feature selection procedure can be adopted, selecting a representative
set of features.

Many OpenML tasks have for a given classifier results on how it performed with
and without various pre-processing operators. For example, in Weka, we can use the
Feature Selected Classifier, to apply feature selection on a given dataset. We simply
combine the results of that algorithm with and without the feature selection proced-
ure, and store which one performed better. There are many different feature selection
techniques. In this experiment, we used Correlation-based Feature Subset Selection
as feature selector. It attempts to identify features that are highly correlated with the
target attribute, yet uncorrelated with each other [62]. However, also many other
feature selection procedures exists.

We can plot the effect of feature selection on classifier performance against data
characteristics. In Figure 4.13, each dot represents a dataset. Its position on the z-
axis represents the number of attributes of that dataset, and its position on the y-axis
represents the number of instances of that dataset. Then the colour of the dot shows
whether feature selection yielded better or worse results.

These scatter-plots show both some expected behaviour as well as some inter-
esting patterns. First of all, we can see that feature selection is most beneficial for
methods such as k-NN (Figure 4.13a) and Naive Bayes (Figure 4.13b). This is ex-
actly what we would expect: due to the curse of dimensionality, nearest neighbour
methods can suffer from too many attributes [117] and Naive Bayes is vulnerable
to correlated features [78]. Quite naturally, the trend seems that when using k-NN,
feature selection yields good results on datasets with many features [111]. We also
see unexpected behaviour. For example, it has been noted that some tree-induction
algorithms have built-in protection against irrelevant features [115]. However, it can
be observed that still in many cases it benefits from feature selection (Figure 4.13c).
Also, as one of the most dynamic and powerful model types, MultiLayer Perceptrons
are considered to be capable of selecting relevant features (Figure 4.13d). However,
in order to do so, the parameters need to be tuned accordingly. Intuitively, the more
features the dataset contains, the more epochs are needed to learn a good model.
If there is not enough budget to invest in an appropriate number of epochs, feature
selection can serve as an alternative.

66 4.5. Learning from the past

216 : -
o o © Better ©
s) - Equal @
27 r Worse @ b
14| e ° i
2 © o [¢)
13 °° %
2 B @ @ T
(S)
12 8 ° g0
2°r © ® . e 7
e o Yoo
- @ o
s) % & o oo ©® -

R ° . g © ® ®

210 | 8 8 § 9] ‘ i
e <

g % o2 o° N
29 L 08 © @ &) © E'j a
28 L L L L L L

20 22 24 26 28 210 212 214
(a) k-NN
216 ; . T
o o © Better ©
s ® . Equal @
27 r Worse (] b
14 e °
27 r ® ‘ ° b
13 ®° t
27 r e R) b
; N o . ~
12 | ° C) i
2 ° PO
o o ©
©
o . © 0o @
2” - 0] © & o oo @ 1

o g © ° o
10+ g 8§ o o .
2 e . - @ @ (0] "8

= D@ oo © e° _

@ @ [} [}
29t QB o @ © o |
28 L L L L L L

20 22 24 26 28 210 212 214

(b) Naive Bayes

Figure 4.13: The effect of feature selection on classifier performance, plotted against
two data characteristics (number of features on the z-axis, number of instances on the
y-axis). Each dot represents a dataset, the colour indicates whether the performance
was increased or decreased by feature selection.

Chapter 4. Experiment Databases

67

° Better

@
@ ®e - Equal @
Worse @ b
e ©
[¢] @ ° 1
OO (6} OG
® ° g
[SIPS]
8 - ° UCD‘U
© ® Y b
® O Yo e
. © o e o)
° ‘® & o oo a R
o . g © ® ®
° i
L 8
8 (“@ O\’:J% @° e
°8 %o o o ° g
° o “% sl
L L L L L L
22 24 26 28 210 212
(c) Decision Trees
T T T
° e © Better ©
® ° Equal @
Worse (9] R
P
© [¢] ® N
e ® 9
@ ¢} 7
%0 ©
8 @ V(-gO
© ® o © b
e o °
5
® o @
[} % (9 o 00 @ i
o © 8 ° ° J
8 8 6(; @ ° i
8 © —\«%; @ ©
® oo S a
°g ° o © 8
® e ‘e R
L L L L L L
22 24 26 28 210 212

(d) Multilayer Perceptron

Figure 4.13: The effect of feature selection on classifier performance, plotted against
two data characteristics (number of features on the z-axis, number of instances on the
y-axis). Each dot represents a dataset, the colour indicates whether the performance
was increased or decreased by feature selection (continued).

68 4.5. Learning from the past

4.5.3 Method-level analysis

In this last type of experiment, we will use the experimental results in OpenML to
generalize over methods. This way we attempt to gain more insight in why these
algorithms behave the way they do.

4.5.3.1 Instance-based analysis

For many tasks, OpenML stores the individual predictions that are done by specific
algorithms. We can use these to create a hierarchical agglomerative clustering of
data stream classifiers in an identical way to the authors of [85]. Classifier Output
Difference is a metric that measures the difference in predictions between a pair of
classifiers. For each pair of classifiers, we use the number of observations for which
the classifiers have different outputs, aggregated over all data streams involved. Hier-
archical agglomerative clustering (HAC) converts this information into a hierarchical
clustering. It starts by assigning each observation to its own cluster, and greedily joins
the two clusters with the smallest distance [132]. The complete linkage strategy is
used to measure the distance between two clusters. Formally, the distance between
two clusters A and B is defined as max { COD(a,b) : a € A,b € B}.

Figure 4.14 shows the resulting dendrogram, built over a large set of data stream
classifiers provided by MOA. Although the specific details of data stream classification
will be explained in Chapter 5, we can already make some observations. The figure
confirms some well-established assumptions. The clustering seems to respect the tax-
onomy of classifiers provided by MOA. Many of the tree-based and rule-based classi-
fiers are grouped together. There is a cluster of instance-incremental tree classifiers
(Hoeffding Tree, AS Hoeffding Tree, Hoeffding Option Tree and Hoeffding Adaptive
Tree), a cluster of batch-incremental tree-based and rule-based classifiers (REP Tree,
J48 and JRip) and a cluster of simple tree-based and rule-based classifiers (Decision
Stumps and One Rule). Also the Logistic and SVM models seem to produce similar
predictions, having a sub-cluster of batch-incremental classifiers (SMO and Logistic)
and a sub-cluster of instance incremental classifiers (Stochastic Gradient Descent and
SPegasos with both loss functions).

The dendrogram also provides some surprising results. For example, the instance-
incremental Rule Classifier seems to be fairly distant from the tree-based classifiers.
As decision rules and decision trees work with similar decision boundaries and can
easily be translated to each other, a higher similarity would be expected [6]. Also the
internal distances in the simple tree-based and rule-based classifiers seem rather high.

A possible explanation for this could be the mediocre performance of the Rule
Classifier. Even though COD clusters are based on instance-level predictions rather
than accuracy, well performing classifiers have a higher prior probability of being

Chapter 4. Experiment Databases 69

© |
o
Q1o
o o
8
A ?
o 8 c
E 58
© 28
° s g -
Tp o 2
a e 5
o [a s %]
o K o
c O
- 4 Cax=so o
I} I E 25 =
552z |2 3
3 - 203 I 5, [L8825
° S5 =2% 38 SE2055
wwn DD 2 g ETLF o Lo U292
€N 9D o 2 ~x T =230
) 8o < 090 g p=WST=2
0090] o E E2FooxXIzND
J 303)] = S8 ckEE I w S
w o O] e = T ® o =5
6o Y80 w ST=22 = o
292_1 = = &“<Q.EE = <z
< = < OT T
DIUJ X (o)) = e <
ry 52388
6P 3> ES I I
» ZQ O W
KR I:'c:)<
%)

Figure 4.14: Hierarchical clustering of stream classifiers, averaged over 51 data
streams from OpenML.

clustered together. As there are only few observations they predict incorrectly, natur-
ally there are also few observations their predictions can disagree on.

4.6 Conclusions

In many sciences, networked science tools are allowing scientists to make discoveries
much faster than was ever possible before. Hundreds of scientists are collaborating to
tackle hard problems, individual scientists are building directly on the observations
of all others, and students and citizen scientists are effectively contributing to real
science.

To bring these same benefits to machine learning researchers, we introduced
OpenML, an online service to share, organize and reuse data, code and experiments.
Following best practices observed in other sciences, OpenML allows collaborations to
scale effortlessly and rewards scientists for sharing their data more openly.

We have shown various types of studies that can be done with the results in
OpenML. Apart from many new discoveries that can be done, these studies also con-

70 4.6. Conclusions

firm or disclaim well established assumptions in a data-driven way.

We believe that this new, networked approach to machine learning will allow sci-
entists to work more productively, make new discoveries faster, be more visible, forge
many new collaborations, and start new types of studies that were practically im-
possible before.

Data Streams

Real-time analysis of data streams is a key area of data mining research. Many real
world collected data are in fact streams where observations come in one by one, and
algorithms processing these are often subject to time and memory constraints. This
chapter focusses on ensembles for data streams. Ensembles of classifiers are among
the best performing classifiers available in many data mining applications, including
the mining of data streams. Rather than training one classifier, multiple classifiers
are trained, and their predictions are combined according to a given voting sched-
ule. An important prerequisite for ensembles to be successful is that the individual
models are diverse. One way to vastly increase the diversity among the models is to
build an heterogeneous ensemble, comprised of fundamentally different model types.
However, most ensembles developed specifically for the dynamic data stream setting
rely on only one type of base-level classifier, most often Hoeffding Trees. This chapter
focusses on meta-learning techniques to combine the intrinsically different models to
heterogeneous ensembles.

OpenML played a vital role in the development of these techniques. In order to
build a good heterogeneous ensemble technique, two questions need to be addressed:
which classifiers to use and how to weight their individual votes. Having stored all
experimental results of possible base-classifiers, it becomes a matter of database quer-
ies to test certain combinations. Classifiers that appear to complement each other
well, can then be combined into a heterogeneous ensemble. Furthermore, most data
stream research involves only few streams. Having a large collection of datasets and
data streams, OpenML is an indispensable factor in scaling up this direction of re-
search. Finally, all these results organised together foster new research questions and
discoveries; Chapter 5.6 shows an example of this. OpenML is in this sense the open

72 5.1. Introduction

experiment database of data stream research.

5.1 Introduction

Modern society produces vast amounts of data coming, for instance, from sensor net-
works and various text sources on the internet. Much of this data is in fact a stream
where observations come in one by one. Real-time analysis of such data streams is a
key area of data mining research, typically the algorithms processing these are subject
to time and memory constraints. The research community developed a large number
of machine learning algorithms capable of online modelling general trends in stream
data and make accurate predictions for future observations. In many applications, en-
sembles of classifiers are the most accurate classifiers available. Rather than building
one model, a variety of models are generated that all vote for a certain class label.

One way to vastly improve the performance of ensembles is to build heterogen-
eous ensembles, consisting of models generated by different techniques, rather than
homogeneous ensembles, in which all models are generated by the same technique.
One technique to build such a heterogeneous ensemble is Stacking [53, 163]. It has
been extensively analysed in classical batch data mining applications. As the under-
lying techniques upon which Stacking relies can not be trivially transferred to the
data stream setting, there are currently no successful heterogeneous ensemble tech-
niques in the data stream setting. State of the art heterogeneous ensembles in a data
stream setting typically rely on meta-learning [125, 133]. These approaches both re-
quire the extraction of computationally expensive meta-features and yield marginal
improvements.

In this work we introduce an elegant technique that natively combines hetero-
geneous models in the data stream setting. As data streams are constantly subject to
change over time, the most accurate classifier for a given interval of observations also
changes frequently, as illustrated by Figure 5.1. We propose a way to measure the
performance of ensemble members on recent observations and combine their votes
based on this.

This chapter introduces the following concepts. First, we describe Online Perform-
ance Estimation, a framework that provides dynamic weighting of the votes of indi-
vidual ensemble members across the stream [128]. Utilizing this framework, we in-
troduce a new ensemble technique that combines heterogeneous models. The online
performance estimation framework can also be used to generate traditional meta-
features, which can also be used in a predictive manner. Finally, an experiment cover-
ing 60 data streams shows that both techniques are competitive with state of the art
ensembles, while requiring significantly less run time.

Chapter 5. Data Streams 73

0.95

09 |
0.85 |

%,
0.8 [
0.75 |

0.7 |

accuracy

0.65 [

06 [

% Hoeffding Tree —+— i

L b Naive Bayes ----w--- |
055 % SPegasos
k-NN
05 L A
0 5 10 15 20 25 30 35 40

interval

Figure 5.1: Performance of four classifiers on intervals (size 1,000) of the ‘electricity’
dataset. Each data point represents the accuracy of a classifier on the most recent
interval.

The remainder of this chapter is organised as follows. Chapter 5.2 surveys data
streams, and Chapter 5.3 introduces the proposed methods. Chapter 5.4 and Chapter
5.5 describe various experiments, covering the performance of the proposed methods
and the relevance of online performance estimation. Chapter 5.6 describes an inter-
esting pattern that was discovered by mining the experiment repository. Chapter 5.7
concludes.

5.2 Related Work

It has been widely recognized that data stream mining differs significantly from con-
ventional batch data mining [13, 14, 40, 57, 118]. In the conventional batch setting,
a finite amount of stationary data is provided and the goal is to build a model that fits
the data as well as possible. When working with data streams, we should expect an
infinite amount of data, where observations come in one by one and are being pro-
cessed in that order. Furthermore, the nature of the data can change over time, known
as concept drift. Classifiers (and other modelling techniques) operating on streams of
data should be able to detect when a learned model becomes obsolete and update it
accordingly.

Common Approaches. Some batch classifiers can be trivially adapted to a data
stream setting. Examples are k Nearest Neighbour [10, 165], Stochastic Gradient
Descent [18] and SPegasos (Stochastic Primal Estimated sub-GrAdient SOlver for
SVMs) [139]. Both Stochastic Gradient Descent and SPegasos are gradient descent
methods, capable of learning a variety of linear models, such as Support Vector Ma-

74 5.2. Related Work

chines and Logistic Regression, depending on the chosen loss function.

Other classifiers have been created specifically to operate on data streams. Most
notably, the Hoeffding Tree induction algorithm, which inspects every example only
once, and stores per-leaf statistics to calculate the information gain on which the split
criterion is determined [39]. The Hoeffding bound states that the true mean of a ran-
dom variable of a given range will not differ from the estimated mean by more than
a certain value. This provides statistical evidence that a certain split is superior over
others. As Hoeffding Trees seem to work very well in practice, many variants have
been proposed, such as Hoeffding Option Trees [109], Adaptive Hoeffding Trees [12]
and Random Hoeffding Trees [15].

Finally, a commonly used technique to adapt traditional batch classifiers to the
data stream setting is training them on a window of w recent examples: after w new
examples have been observed, a new model is built. This approach has the advantage
that old examples are ignored, providing natural protection against concept drift. A
disadvantage is that it does not operate directly on the most recently observed data,
not before w new observations are made and the model is retrained. Read et al. [118]
compare the performance of these batch-incremental classifiers with common data
stream classifiers, and conclude that the overall performance is equivalent, although
the batch-incremental classifiers generally use more resources (time and memory).

Ensembles. Ensemble techniques train multiple classifiers on a set of weighted
training examples, and these weights can vary for different classifiers. In order to
classify test examples, all individual models produce a prediction, also called a vote,
and the final prediction is made according to a predefined voting schema, e.g., the
class with the most votes is selected.

Bagging [23] exploits the instability of classifiers by training them on different
bootstrap replicates: resamplings (with replacement) of the training set. Effectively,
the training sets for various classifiers differ by the weights of their training ex-
amples. Online Bagging [101] operates on data streams by drawing the weight of
each example from a Poisson(1) distribution, which converges to the behaviour of
the classical Bagging algorithm if the number of examples is large. As the Hoeffding
bound gives statistical evidence that a certain split criteria is optimal, this makes them
more stable and hence less suitable for use in a Bagging scheme. However, empirical
evaluation suggests that this yields good results nonetheless.

Boosting [135] is a technique that sequentially trains multiple classifiers, in which
more weight is given to examples that where misclassified by earlier classifiers. On-
line Boosting [101] applies this technique on data streams by assigning more weight
to training examples that were misclassified by previously trained classifiers in the
ensemble. The Accuracy Weighted Ensemble (AWE) works well in combination with
batch-incremental classifiers [161]. It maintains multiple recent models trained on

Chapter 5. Data Streams 75

different batches of the data stream, and weights the votes of each model based on
the expected predictive accuracy.

Concept drift. One property of data streams is that the underlying concept that is
being learned can change over time (e.g., [161]). This is called concept drift. Some of
the aforementioned methods naturally deal with concept drift. For instance, k Nearest
Neighbour maintains a number of w recent examples, substituting each example
after w new examples have been observed. Change detectors, such as Drift Detec-
tion Method (DDM) [55] and Adaptive Sliding Window Algorithm (ADWIN) [11] are
stand-alone techniques that detect concept drift and can be used in combination with
any stream classifier. Both rely on the assumption that classifiers improve (or at least
maintain) their accuracy when trained on more data. When the accuracy of a classi-
fier drops in respect to a reference window, this could mean that the learned concept
is outdated, and a new classifier should be built. The main difference between DDM
and ADWIN is the way they select the reference window. Furthermore, classifiers can
have built-in drift detectors. For instance, Ultra Fast Forest of Trees [56] are Hoeffding
Trees with a built-in change detector for every node. When an earlier made split turns
out to be obsolete, a new split can be generated.

It has been recognised that some classifiers recover faster from sudden changes of
concepts than others. The recovery analysis framework measures the ability of clas-
sifiers to recover from concept drift [138]. It distinguishes instance-based classifiers
that operate directly on the data (e.g., k-NN) and model-based classifiers, that build
and maintain a model (e.g., tree algorithms, fuzzy systems). Their experimental res-
ults suggest, quite naturally, that instance-based classifiers generally have a higher
capability to recover from concept drift than model-based classifiers.

Evaluation. As data from streams is non-stationary, the well-known cross-validation
procedure for estimating model performance is not suitable. A commonly accepted es-
timation procedure is the prequential method [57], in which each example is first used
to test the current model, and afterwards (either directly after testing or after a delay)
becomes available for training. An advantage of this method is that it is tested on all
data, and therefore no specific holdout set is needed.

Meta-Learning. Meta-learning approaches on data streams often train multiple
base-classifiers and a meta-model decides, for each data point, which of the base-
learners will make a prediction. Meta-knowledge can be obtained from two sources.
The first option is to extract meta-knowledge obtained from earlier in the stream [133].
One advantage is that there is no representative meta-dataset required: we can as-
sume that the data from earlier in the stream is adequate. The disadvantage is that
it requires more run time, as a meta-model needs to be trained while processing the
stream. The other option is to extract meta-knowledge from other data streams [125,
126, 128]. The advantage is that this is relatively fast: the meta-model can be trained

76 5.3. Methods

a priori and does not require additional resources while processing the stream.

Another technique uses meta-learning on time series with recurrent concepts:
when concept drift is detected, a meta-learning algorithm decides whether a model
trained previously on the same stream could be reused, or whether the data is so dif-
ferent from before that a new model must be trained [54]. Nguyen et al. [94] propose
a method that combines feature selection and heterogeneous ensembles; members
that perform poorly according to a drift detector can be replaced.

5.3 Methods

Traditional Machine Learning problems consist of a number of examples that are ob-
served in arbitrary order. In this work we consider classification problems. Each ex-
ample e = (x,[(x)) is a tuple of p predictive attributes x = (z4,...,x,) and a target
attribute /(x). A data set is an (unordered) set of such examples. The goal is to ap-
proximate a labelling function [: x — [(x). In the data stream setting the examples
are observed in a given order, therefore each data stream S is a sequence of examples
S = (e1,ea,e3,...,€en,...), where n is the number of observations (possibly infinite).
Consequently, S; refers to the i*” example in data stream S. The set of predictive at-
tributes of that example is denoted by PS5, likewise [(PS;) maps to the corresponding
label. Furthermore, the labelling function that needs to be learned can change over
time due to concept drift. When applying an ensemble of classifiers, the most relev-
ant variables are which base-classifiers (members) to use and how to weight their
individual votes.

5.3.1 Online Performance Estimation

In most common ensemble approaches, all base-classifiers are given the same weight
(as done in Bagging and Boosting) or their predictions are otherwise combined to
optimise the overall performance of the ensemble (as done in Stacking). An import-
ant property of the data stream setting has not been taken into account: due to the
possible occurrence of concept drift it is likely that in most cases recent examples
are more relevant than older ones. Moreover, due to the fact that there is a tem-
poral component in the data, we can actually measure how ensemble members have
performed on recent examples, and adjust their weight in the voting accordingly. In
order to estimate the performance of a classifier on recent data, van Rijn et al. [127]
proposed:

S~ LUPS),UPS))

min(w,c — w)

Pyin(l',c,w,L) =1 — (5.1)

i=maz(l,c—w)

Chapter 5. Data Streams 77

w
hv v X v Xv v v v X 0.7
Lv v Xv v/ v v XXV 0.7
v VvV X v VvV vV 0.8

Figure 5.2: Schematic view of Windowed Performance Estimation. For all classifiers,
w flags are stored, each flag indicating whether it predicted a recent observation
correctly.

where [’ is the learned labelling function of an ensemble member, ¢ is the index of the
example we want to predict and w is the number of training examples over which we
want to estimate the performance of ensemble members. Finally, L is a loss function
that compares the labels predicted by the ensemble member to the true labels. The
most simple version is a zero/one loss function, which returns 0 when the predicted
label is correct and 1 otherwise. More complicated loss functions can also be incor-
porated. The outcome of P, is in the range [0, 1], with better performing classifiers
obtaining a higher score. The performance estimates for the ensemble members can
be converted into a weight for their votes, at various points over the stream. For in-
stance, the best performing members at that point could receive the highest weights.
Figure 5.2 illustrates this.

There are a few drawbacks to this approach. Firstly, it requires the ensemble to
store the w x n additional values, which is inconvenient in a data stream setting,
where both time and memory are important factors. Secondly, it requires the user to
tune a parameter which highly influences performance. Lastly, there is a hard cut-off
point, i.e., an observation is either in or out of the window. What we would rather
model is that the most recent observations are given most weight, and gradually lower
this for less recent observations.

In order to address these issues, fading factors (further described in, e.g., Gama
et al. [58]) can be used as an alternative. Fading factors give a high importance to
recent predictions, whereas the importance fades away when they become older. This
is illustrated by Figure 5.3. The red (solid) line shows a relatively fast fading factor,
where the effect of a given prediction has already faded away almost completely after
500 new observations, whereas the blue (dashed) line shows a relatively slow fading

78 5.3. Methods

08 E

06 ,

effect

04 W ,

02 g
f(x) = 0.99 » f(x-1) ———
f(x) = 0.999 « f(x-1)
f(x) = 0.9999 « f(x-1) -
o s s s ‘ ; s ‘ ‘ s
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

observations

Figure 5.3: The effect of a prediction after a number of observations, relative to when
it was first observed (for various values of «).

factor, where the effect of an observation is still considerably high, even when 10,000
observations have passed in the meantime. Note that even though all these functions
start at 1, in practise we need to scale this down to 1 — «, in order to constrict the
complete function within the range [0, 1]. Putting this all together, we get:

1 iffc=0

Pl',e—1,a,L) - a+ (1 — L(I'(PS:),l(PS¢))) - (1 —a) otherwise 5.2

P({l',c,a,L) = {
where, similar to Eq. 5.1, [’ is the learned labelling function of an ensemble member,
¢ is the index of the last seen training example and L is a loss function that com-
pares the labels predicted by the ensemble member to the true labels. Fading factor
«a (range [0, 1]) determines at what rate historic performance becomes irrelevant, and
is to be tuned by the user. A value close to 0 will allow for rapid changes in estimated
performance, whereas a value close to 1 will keep them rather stable. The outcome
of P is in the range [0, 1], with better performing classifiers obtaining a higher score.
In Chapter 5.5 we will see that the fading factor parameter is more robust and easier
to tune than the window size parameter. When building an ensemble based upon
Online Performance Estimation, we can now choose between a Windowed approach
(Eq. 5.1) and Fading Factors (Eq. 5.2). Figure 5.4 shows how the estimated perform-
ance for each base-classifier evolves on the start of the electricity data stream. Both

Chapter 5. Data Streams 79

Z: \\\M ‘ac‘// W% A ﬂf e

0.6

NaiveBayes
05+ Perceptron
SGD

Online Performance Estimation

kNN
HoeffdingTree))))
0 2000 4000 6000 8000 10000
Observations

0.4

(a) Windowed, window size 1000

09 | 8
0.7 4

0.6

NaiveBayes
05 Perceptron

Online Performance Estimation

kNN
HoeffdingTree))))
0 2000 4000 6000 8000 10000

Observations

0.4

(b) Fading Factors, o = 0.999

Figure 5.4: The estimated performance of each algorithm given previous examples,
measured on the start of the electricity data stream.

figures expose similar trends: apparently, on this data stream the Hoeffding Tree clas-
sifier performs best and the Stochastic Gradient Descent algorithm performs worst.
However, both approaches differ subtly in the way the performance of individual
classifiers are measured. The Windowed approach contains many spikes, whereas the
Fading Factor approach seems more stable.

5.3.2 Ensemble Composition

In order for an ensemble to be successful, the individual classifiers should be both
accurate and diverse [64]. When employing a homogeneous ensemble, choosing an
appropriate base-learner is an important decision. For heterogeneous ensembles this
is even more true, as we have to choose a set of base-learners.

Figure 5.5 shows some basic performance results of the classifiers on 60 data
streams. Figure 5.5a shows a violin plot of the performance of all classifiers, with

80 5.3. Methods

a box plot in the middle. The classifiers are sorted by median accuracy. Two common
Data Stream baseline methods, the No Change classifier and the Majority Class clas-
sifier, end at the bottom of the ranking based on accuracy. This indicates that most of
the selected data streams are both balanced (in terms of class labels) and do not have
high auto-correlation. In general, tree-based methods seem to perform best.

Figure 5.5b shows the result of a statistical test on the base-classifiers. Classifiers
are sorted by their average rank (lower is better). Classifiers that are connected by
a horizontal line are statistically equivalent. The results confirm some of the obser-
vations made based on the violin plots, e.g., the baseline models (Majority Class and
No Change) perform worst; also other simple models such as the Decision Stumps
and OneRule (which is essentially a Decision Stump) are inferiour to the tree-based
models. Oddly enough, the instance incremental Rule Classifier does not compete at
all with the Batch-incremental counterpart (AWE(JRIP)).

A dendrogram like the one in Figure 4.14 (page 69) can serve to select a collec-
tion of diverse and well performing ensemble members. Classifier Output Difference
(COD) is a metric which measures the number of observations on which a pair of clas-
sifiers yields a different prediction [106]. This can be used to ensure diversity among
the ensemble members [85]. A threshold on the Classifier Output Difference needs
to be determined, selecting representative classifiers from all pairs of clusters with a
distance higher than this threshold. A higher threshold would result in a smaller set
of classifiers, and vice versa. For example, if we set the threshold to 0.2, we end up
with an ensemble consisting of classifiers from 11 clusters. The ensemble will consist
of one representative classifier from each cluster, which can be chosen based on ac-
curacy, run time, a combination of the two (see, e.g., [21]), or any arbitrary criterion.
Which exact criterion to use is outside the scope of this thesis, however in the exper-
iments we will use a combination of accuracy and run time. Clearly, when using this
technique in experiments, the dendrogram should be constructed in a leave-one-out
setting: it can be created based on all data streams except for the one that is being
tested.

5.3.3 BLAST

BLAST (short for best last) is an ensemble embodying the performance estimation
framework. Ideally, it consists of a group of diverse base-classifiers. These are all
trained using the full set of available training observations. For every test example, it
selects one of its members to make the prediction. This member is referred to as the
active classifier. The active classifier is selected based on Online Performance Estima-
tion: the classifier that performed best over the set of w previous trainings examples
is selected as the active classifier (i.e., it gets 100% of the weight), hence the name.

Chapter 5. Data Streams 81

Predictive Accuracy

il

g o FFEE L @“ D D ,&\e} &«I@e' & ,/'N eb ;Q N \<I) S @ @ & & @ &
o‘é\- & %\og @@“’ \0&0.0& @Q & \O& &«’\&\\\'5’6 & Q@ N A 4-@\(@ oég} o (‘/QV Q/\Q. é‘\ \&« \0« 'x\\‘/\
S \Q\.é\oq}@_\o«\egzgeq@ee$w$$$,@‘@o¢q§?
& F & TP & N FFE P FTET L TG ESS

R o o9 <’ < ?\‘$ O v © X @‘2\ (\5\0 ~

2 g & Y @Q & Y.L

N Q@ ?\ﬁ@ NS Ry R
(a) Performance of base-classifiers
CD
}—i
12345678910111213141516171819202122232425
L 1
HoeffdingOptionTree —— L——— NoChange
HoeffdingAdaptiveTree ——— L——— MajorityClass
HoeffdingTree ———— L———— SGD logloss
ASHoeffdingTree ——— L——————— SGD hingeloss
AWE(J48) —4m8¥ —— L SPegasos hingeloss
AWE(JRip) —8@™M L————————— DecisionStump
AWE(SMO(PolyKernel)) —— L SPegasos logloss
AWE(Logistic) —8 L————— AWE(OneR)
kNNwithPAW k = 1) —M8M8@™M— L AWE(DecisionStump)
AWE(REPTree) —48M8 ———— L RuleClassifier
kNN k = 10 Perceptron
kNN k =1 RandomHoeffdingTree
NaiveBayes

(b) Nemenyi test, « = 0.05

Figure 5.5: Performance of 25 data stream classifiers based on 60 data streams.

82 5.3. Methods

Algorithm 5.1 BLAST (Learning)

Require: Set of ensemble members M, Loss function L and Fading Factor «
1: Initialise ensemble members m;, with j € {1,2,3,...,|M|}

2: Setp; =1forallj

3: for all training examples e = (x,1(x)) do

4: forallmj; € M do
5 U (x) + predicted label of m; on attributes x of current example e
6 pj e pj o+ (1= L{5(x),1(x))) - (1 -)
7: Update m; with current example e
8 end for
9: end for
Formally,
AC. = argmax P(m;,c—1,a, L) (5.3)
m;eM

where M is the set of models generated by the ensemble members, ¢ is the index of
the current example, « is a parameter to be set by the user (fading factor) and L is a
zero/one loss function, giving a penalty of 1 to all misclassified examples. Note that
the performance estimation function P can be replaced by any measure. For example,
if we would replace it with Equation 5.1, we would get the exact same predictions as
reported by van Rijn et al. [127]. When multiple classifiers obtain the same estimated
performance, any arbitrary classifier can be selected as active classifier. The details of
this method are summarised in Algorithm 5.1.

Line 2 initialises a variable that keeps track of the estimated performance for each
base-classifier. Everything that happens from lines 5-7 can be seen as an internal pre-
quential evaluation method. At line 5 each training example is first used to test all
individual ensemble members on. The predicted label is compared against the true
label /(x) on line 7. If it predicts the correct label then the estimated performance for
this base-classifier will increase; if it predicts the wrong label, the estimated perform-
ance for this base-classifier will decrease (line 6). After this, base-classifier m; can
be trained with the example (line 7). When, at any time, a test example needs to be
classified, the ensemble looks up the highest value of p; and lets the corresponding
ensemble member make the prediction.

The concept of an active classifier can also be extended to multiple active classi-
fiers. Rather than selecting the best classifier on recent predictions, we can select the
best k classifiers, whose votes for the specified class-label are all weighted according
to some weighting schedule. First, we can weight them all equally. Indeed, when us-
ing this voting schedule and setting k¥ = |M|, we would get the same behaviour as
the Majority Vote Ensemble, as described by van Rijn et al. [127], which performed
only averagely. Alternatively, we can use Online Performance Estimation to weight the

Chapter 5. Data Streams 83

votes. This way, the best performing classifier obtains the highest weight, the second
best performing classifier a bit less, and so on. Formally, for each y € Y (with Y being
the set of all class labels):

votesy =y P(mj,i,a, L) - B(I;(PS;),y) (5.4)
mJ'EM

where M is the set of all models, I} is the labelling function produced by model
m; and B is an indicator function, returning 1 iff /’; voted for class label y and 0
otherwise. Other functions regulating the voting process can also be incorporated,
but are beyond the scope of this research. The label y that obtained the highest value
votes, is then predicted.

BLAST has been implemented in the MOA framework, and can be obtained in the
appropriate OpenML MOA package!.

5.3.4 Meta-Feature Ensemble

Alternatively, we can use meta-learning to dynamically select between various clas-
sifiers. Several notable techniques for heterogeneous model combination in the data
stream setting rely on meta-learning [125, 126, 133]. These techniques divide the
data stream in windows of size w. Over each of these windows, a set of meta-features
is calculated, and this is repeated for all previously known data streams. Using these
meta-features, a meta-classifier is trained to predict the best classifier for the next
window given the meta-features of the current window. Any batch classifier can be
used as the meta-classifier. Usually, Random Forest are used, since these have proven
to work well in the context of algorithm selection [144].

Table 5.1 shows the meta-features per category that are used in this work. The first
four categories are the commonly used ‘SSIL’ features. The ‘Drift detection’ features
were first introduced in [125]. These are obtained by running a drift detector (Adwin
or DDM) on the dataset, and measure the number of changes or warnings in a given
interval. The motivation behind this is that for volatile streams, where many changes
are detected, simple classifiers might be preferred, whereas in steady streams, more
complex classifiers have the opportunity to fit a good model.

The Stream Landmarkers represent the output of Online Performance Estimation
as meta-feature. After each window, Eq. 5.1 is used to give an estimation on how well
each base-classifier performed on that window. These performance estimations are
then used as meta-features. In fact, the Windowed version of BLAST has the same
information, when the grace period is equal to the window size.

1 Available on Maven Central: http://search.maven.org/ (artifact id: openmlmoa)

http://search.maven.org/

84 5.4. Experimental Setup

Table 5.1: Meta-features used by the Meta-Feature Ensemble.

Category Meta-features
Simple # Instances, # Attributes, # Classes, Dimensionality, Default Ac-
curacy, # Observations with Missing Values, # Missing Values,

% Observations With Missing Values, % Missing Values, # Numeric
Attributes, # Nominal Attributes, # Binary Attributes, % Numeric
Attributes, % Nominal Attributes, % Binary Attributes, Majority
Class Size, % Majority Class, Minority Class Size, % Minority Class

Statistical Mean of Means of Numeric Attributes, Mean Standard Deviation
of Numeric Attributes, Mean Kurtosis of Numeric Attributes, Mean
Skewness of Numeric Attributes

Information Theoretic ~ Class Entropy, Mean Attribute Entropy, Mean Mutual Information,
Equivalent Number Of Attributes, Noise to Signal Ratio

Landmarkers [108] Accuracy, Kappa and Area under the ROC Curve of the following
classifiers: Decision Stump, J48 (confidence factor: 0.01), k-NN,
NaiveBayes, REP Tree (maximum depth: 3)

Drift detection [125] Changes by Adwin (Hoeffding Tree), Warnings by Adwin (Hoeffd-
ing Tree), Changes by DDM (Hoeffding Tree), Warnings by DDM
(Hoeffding Tree), Changes by Adwin (Naive Bayes), Warnings by
Adwin (Naive Bayes), Changes by DDM (Naive Bayes), Warnings
by DDM (Naive Bayes)

Stream Landmarkers Accuracy Naive Bayes on previous window, Accuracy k-NN on pre-
vious window, ...

5.4 Experimental Setup

In order to establish the utility of Online Performance Estimation and the two pro-
posed techniques, we conduct experiments using a large set of data streams. The data
streams and results of all experiments are made publicly available in OpenML for the
purposes of verifiability, reproducibility and generalizability.

5.4.1 Data Streams

The data streams are a combination of real world data streams and synthetically
generated data commonly used in data stream research (e.g., [10, 13, 125]). Many
contain a natural drift of concept. Opposed to batch classification, in data stream
classification it is quite natural to test techniques on synthetically generated data, as
real world data is hard to obtain. We estimate the performance of the methods using
the prequential method: each observation is used as a test example first and as a
training example afterwards [57]. In total, a set of 60 different data streams is used.

Chapter 5. Data Streams 85

Table 5.2: Data streams used for the Data Stream experiment.

name obs. atts. cls. name obs. atts. cls.
SEA(50) 1,000,000 4 2 BNG(vote) 131,072 17 2
SEA(50000) 1,000,000 4 2 BNG (pendigits) 1,000,000 17 10
Staggerl 1,000,000 4 2 BNG(letter) 1,000,000 17 26
Stagger2 1,000,000 4 2 BNG(z0o) 1,000,000 18 7
Stagger3 1,000,000 4 2 BNG(lymph) 1,000,000 19 4
airlines 539,383 8 2 BNG (vehicle) 1,000,000 19 4
codrnaNorm 488,565 9 2 BNG (hepatitis) 1,000,000 20 2
electricity 45,312 9 2 BNG(segment) 1,000,000 20 7
Agrawall 1,000,000 10 2 BNG(credit-g) 1,000,000 21 2
BNG (tic-tac-toe) 39,366 10 2 BNG(mushroom) 1,000,000 23 2
BNG(cmce) 55,296 10 3 BNG(SPECT) 1,000,000 23 2
BNG(page-blocks) 295,245 11 5 LED(50000) 1,000,000 25 10
Hyperplane(10;0001) 1,000,000 11 5 AirlinesCodrnaAdult 1,076,790 30 2
Hyperplane(10;001) 1,000,000 11 5 BNG(trains) 1,000,000 33 2
RandomRBF(0;0) 1,000,000 11 5 BNG(ionosphere) 1,000,000 35 2)
RandomRBF(10;0001) 1,000,000 11 5 BNG(dermatology) 1,000,000 35 6
RandomRBF(10;001) 1,000,000 11 5 BNG(soybean) 1,000,000 36 19
RandomRBF(50;0001) 1,000,000 11 5 BNG (kr-vs-kp) 1,000,000 37 2
RandomRBF(50;001) 1,000,000 11 5 BNG(satimage) 1,000,000 37 6
pokerhand 829,201 11 10 BNG(anneal) 1,000,000 39 6
BNG(solar-flare) 1,000,000 13 8 BNG (waveform-5000) 1,000,000 41 3
BNG(bridges-version1) 1,000,000 13 6 covertype 581,012 55 7
BNG(heart-statlog) 1,000,000 14 2 BNG(spambase) 1,000,000 58 2
BNG(wine) 1,000,000 14 3 BNG(sonar) 1,000,000 61 2
BNG (heart-c) 1,000,000 14 5 BNG (optdigits) 1,000,000 65 10
BNG (vowel) 1,000,000 14 11 CovPokElec 1,455,525 73 10
adult 48,842 15 2 BNG (mfeat-fourier) 1,000,000 ad 10
BNG(JapaneseVowels) 1,000,000 15 9 vehicleNorm 98,528 101 2
BNG(credit-a) 1,000,000 16 2 20_newsgroups.drift 399,940 1,001 2
BNG(labor) 1,000,000 17 2 IMDB.drama 120,919 1,002 2

Table 5.2 shows all datasets used in this experiment. Some of the used data streams
and data generators are described below.

SEA Concepts The SEA Concepts Generator [143] generates three numeric attrib-
utes from a given distribution, of which only the first two are relevant. The class that
needs to be predicted is whether these values exceed a certain threshold. Several SEA
Concept generated data streams based on different data distributions can be joined
together in order to simulate concept drift.

STAGGER The STAGGER Concepts Generator [137] generates descriptions of geo-
metrical objects. Each instance describes the size, shape and colour of such an object.
A STAGGER concept is a binary classification rule distinguishing between the two
classes, e.g., all blue rectangles belong to the positive class.

86 5.4. Experimental Setup

Rotating Hyperplanes The Rotating Hyperplane Generator [73] generates a high-
dimensional hyperplane. Instances represent a point in this high-dimensional space.
The task is to predict whether such a point is below the hyperplane. Concept drift can
be introduced by rotating and moving the hyperplane.

LED The LED Generator [25] generates instances based on a LED display. Attributes
represent the various LED lights, and the task is to predict which digit is represented.
In order to add noise, attributes can display the wrong value with a certain probability.
Furthermore, additional (irrelevant) attributes can be added.

Random RBF The Random RBF Generator generates a number of centroids. Each
has a random position in Euclidean space, standard deviation, weight and class label.
Each example is defined by its coordinates in Euclidean Space and a class label re-
ferring to a centroid close by. Centroids move at a certain speed, generating gradual
concept drift.

Bayesian Network The Bayesian Network Generator [125] takes a batch data set
as input, builds a Bayesian Network over it, and generates instances based on the
probability tables. As the Bayesian Network does not change over time, it is unlikely
that a native form of concept drift occurs in the data stream.

Composed Data Streams Common batch datasets can be appended to each other,
forming one combined dataset covering all observations and attributes, containing
small periods or abrupt concept drift. This is commonly done with the ‘Covertype’,
‘Pokerhand’ and ‘Electricity’ dataset [14, 118]. We applied a similar merge to the
Airlines’, ‘CodeRNA and Adult’ dataset, forming AirlinesCodernaAdult’. The original
datasets are normalized before this operation is applied.

IMDB.drama The IMDB’ dataset contains 120,919 movie plots. Each movie is rep-
resented by a bag of words of the globally 1,000 most occurring words. Originally, it is
a multi-label dataset, with binary attributes indicating whether a movie belongs to a
given genre. We predict whether it is in the drama genre, which is the most frequently
occurring [118].

20 Newsgroups The original 20 Newsgroup dataset contains 19,300 newsgroup mes-
sages, each represented as a bag of words of the 1,000 most occurring words. Each
instance is part of at least one newsgroup. This data set is commonly converted into

Chapter 5. Data Streams 87

Table 5.3: Classifiers used in the experiments. All as implemented in MOA 2016.04
by Bifet et al. [13], default parameter settings are used unless stated otherwise.

Classifier Model type Parameters

Naive Bayes Bayesian

Stochastic Gradient Descent SVM Loss function: Hinge
k Nearest Neighbour Lazy k =10, w = 1,000
Hoeffding Option Tree Option Tree

Perceptron Neural Network

Random Hoeffding Tree Decision Tree

Rule Classifier Decision Rules

20 binary classification problems, with the task to determine whether an instance be-
longs to a given newsgroup. We append these data sets to each other, resulting in one
large binary-class dataset containing 386,000 records with 19 shifts in concept [118].

5.4.2 Parameter Settings

The heterogeneous ensembles contain the seven classifiers from Table 5.3 as base-
classifiers. The table also states the model type, as described in Chapter 2. The clas-
sifiers are selected using the dendrogram of Figure 4.14 (page 69), loosely omit-
ting some simple models such as No Change, Majority Class and Decision Stumps.
BLAST is tested with both Fading Factors (o« = 0.999) and the Windowed approach
(w = 1,000). For both versions k& = 1, thus a single best classifier is chosen for every
prediction. We explore the effect of larger values for k£ in Chapter 5.5.2. The Meta-
Feature Ensemble also uses windows of size 1,000.

5.4.3 Baselines

We compare the results of the defined methods with the Best Single Classifier. Each
heterogeneous ensemble consists of n base-classifiers. The one that performs best
on average over all data streams is considered the best single classifier. Following
Figure 5.5, the Hoeffding Option Tree is the best classifier (this is also confirmed
by [127]). This baseline enables us to measure the potential accuracy gains of adding
more classifiers (at the cost of using more computational resources).

Furthermore, we compare against the Majority Vote Ensemble (same base-classifiers
as in Table 5.3), which is a heterogeneous ensemble that predicts the label that is pre-
dicted by most ensemble members. This enables us to measure the potential accuracy

88 5.5. Results

gain of using Online Performance Estimation over just naively counting the votes of
base-classifiers. Finally, we also compare the techniques to state of the art homogen-
eous ensembles, such as Online Bagging, Leveraging Bagging, and Accuracy Weighted
Ensemble. In order to understand these a bit better, we provide some results.

Figure 5.6 shows violin plots of the performance of Accuracy Weighted Ensemble
(left bars, red), Leveraging Bagging (middle bars, green) and Online Bagging (right
bars, blue), with an increasing number of ensemble members. Accuracy Weighted
Ensebmble (AWE) uses J48 trees as ensemble members, both Bagging schemas use
Hoeffding Trees. Naturally, as the number of members increases, both accuracy and
run time increase, however Leveraging Bagging performs eminently better than the
others. Leveraging Bagging using 16 ensemble members already outperforms both
AWE and Online Bagging using 128 ensemble members, based on median accuracy.
This performance also comes at a cost, as it uses considerably more run time than
both other techniques, even when containing the same number of members. Acur-
racy Weighted Ensemble performs pretty constant, regardless of the number of en-
semble members. As the ensemble size grows, both accuracy and run time slightly
increase. We will compare BLAST against the homogeneous ensembles consisting of
128 members.

5.5 Results

In this chapter we present and discuss the experimental results.

5.5.1 Ensemble Performance

We run all techniques on the set of 60 data streams. The results are shown in Fig-
ure 5.7. As the Meta-Feature ensemble is a virtual classifier, there are no run time
results available. However, as it builds the same set of base-classifiers as the Majority
Vote Ensemble and both versions of BLAST, it is plausible that the run time is in the
same order of magnitude.

An important observation is that both versions of BLAST are competitive with
state of the art ensembles. These results suggest that Online Performance Estimation
is a useful technique when applied to data stream ensembles. Also note that BLAST
requires far fewer run time than the ensemble techniques. A peculiar observation is
that BLAST also outperforms the Meta-Feature Ensemble, which has access to the
same information and thus is supposed to perform at least equally good.

Figure 5.8 shows the accuracy of four heterogeneous ensemble techniques per
data stream. In order to not overload the figure, we only show BLAST (with fading

Chapter 5. Data Streams

89

1.00
%)
g
S50.75
0
o
<
g
‘=0.50
Q
°
g
o
0.25
o W 'b‘ Q
2> .2 ,° ,/'\9'
N N N o
B AWE(J48)8 Leveraging Baggingd Online Bagging
(a) Accuracy
10000
£
= 1000
=
o
O 100
c
S
o
10-
1.
o O & &
N e 0 N
N N Q &

EI AWE(J48)& Leveraging Baggingd Online Bagging
(b) Run time

Figure 5.6: Effect of the ensemble size parameter.

90 5.5. Results

99977

1.00-

0.75-

o
a
o

Predictive Accuracy

0.25-
!) ! ! !) ! !
) N & . N

s N & o & & & o
<« & o o & o \Yé\ F
v \© g) < &
«° «© & & & ? N
& > & <Z>\y. &
S & \q{ v
N W

(a) Accuracy

pert

Run Cpu Time

10-

(b) Run time

Figure 5.7: Performance of the various meta-learning techniques averaged over 60
data streams.

Chapter 5. Data Streams 91

factors), the Meta-Feature Ensemble, Leveraging Bagging and the Best Single Classi-
fier.

All techniques outperform the Best Single Classifier consistently. Especially on data
streams where the performance of the Best Single Classifier is mediocre (Figure 5.8
bottom part), accuracy gains are eminent. The difference between Leveraging Bag-
ging and BLAST is harder to assess. Although Leveraging Bagging seems to be slightly
better in many cases, there are some clear cases where there is a big difference in fa-
vour of BLAST (see, e.g., the difference in data stream ‘IMDB.drama’). Despite Lever-
aging Bagging is best on most data streams, other techniques are better on average.

To assess statistical significance of the results, we use the Friedman test with post-
hoc Nemenyi test to establish the statistical relevance of our results. These tests are
considered the state of the art when it comes to comparing multiple classifiers [36].
The Friedman test checks whether there is a statistical significant difference between
the classifiers; when this is the case the Nemenyi post-hoc test can be used to determ-
ine which classifiers are significantly better than others.

The results of the Nemenyi test are shown in Figure 5.9. It plots the average
rank of all methods and the critical difference. Classifiers for which not a statistically
significant difference was found are connected by a black line. For all other cases,
there was a significant difference in performance, in favour of the classifier with the
better (lower) average rank. We performed the test based on Accuracy and run time.
Again, no run time results are recorded for the Meta-Feature Ensemble.

Figure 5.9a shows that there is no statistically significant difference in terms of
accuracy between BLAST (using Fading Factors) and two of the homogeneous en-
sembles (i.e., Leveraging Bagging and Online Bagging using 128 Hoeffding Trees).
BLAST (Window) does perform significantly worse than Leveraging Bagging. Meta-
Feature Ensemble is significantly worse than Leveraging Bagging and BLAST (with
Fading Factors). As expected, the Best Single Classifier and the Majority Vote En-
semble perform significantly worse than most other techniques. Clearly, combining
heterogeneous ensemble members by simply counting votes does not work in this
setup. It seems that poor results from some ensemble members outweigh the diversity.

When comparing the techniques on computational efficiency, the overall outcome
is different, as reflected by Figure 5.9b. The best single classifier (Hoeffding Op-
tion Tree) requires fewest resources. There is no significant difference in resources
between BLAST (FF), BLAST (Window), Majority Vote Ensemble and Online Bagging.
This makes sense, as these the first three operate on the same set of base-classifiers.
The Accuracy Weighted Ensemble performs really well in terms of run time, even
though it uses 128 ensemble members. Due to its efficient trainings technique, adding
more classifiers does not necessarily result in more run time. Altogether, BLAST (FF)
performs equivalent to both Bagging schemas in terms of accuracy, while using signi-

92 5.5. Results

0.98 | R
0.96 .
0.94 .
0.92 i
09 .
0.88 - E
Best Single Classifier —+—
0.86 I Meta-learning Ensemble ——— i
: BLAST (FF) i
084 Il Il Il Il LCVCIaglng Bagglng Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il
KX %g;o“’AVGAV@AV@AV@AV“’AV“’&’AV@AV@AV@AV@ g»%%@ Sen e,
¢
Ko e e
0, Oy ety S e e e T,
%/ “% 'oe, @”@"@J 0% 0% Y Oz;g@
%, (s %, 20 N
@ K ~ S TG %
)
1
0.9 | 5 i
|—= —)\ \
= S \
08 | B Y :
o, \
07 k- \Y')A-*,,% i
06 4
0.5 | A
\
Best Single Classifier ——— \
04 | Meta-learning Ensemble ——<— \]
BLAST (FF) \
0 3 Il Il Il Il Leveraging Bagging Il Il Il Il Il Il Il T
‘ y
ettt 6, %gAV A@ffﬂ%}%"’" %gnynggo%gﬂv@ % 474 nvg@
St G, %% a0 004(,(@@@ G55,
7%, &"'%e”?;%o* % %‘?0%;(8’&0'@ ‘%?O' ‘i»o 7t N %, ‘f’g’oe’{v%?@
e % % o0 e ((\0/00&0;})’&00 % e (y ﬁ“o@ée%j 9,847 S
%, "%y <% GO Pt e S
’C}- ~ >0, ‘00047% g7 < g7 °0,
7 Gl "%, %, %
7 ¥ 7 ?) ’

Figure 5.8: Accuracy per data stream, sorted by accuracy of the best single classifier.

Chapter 5. Data Streams 93

1 2 3 4 5 6 7 8
L 1 1 1 1 1 1
Leveraging Bagging ——— L———— Majority Vote Ensemble
BLAST (FF) —mM8™ ™ L AWE(J48)
Online Bagging —M8M8M8@™M8 L————— Best Single Classifier
BLAST (Window) Meta-learning Ensemble
(a) Accuracy
CD
P
1 2 3 4 5 6 7
| | ! ! L L |
Best Single Classifier — L Leveraging Bagging
AWE(J48) —8 L Online Bagging
Majority Vote Ensemble BLAST (FF)

BLAST (Window)

(b) Run time

Figure 5.9: Results of Nemenyi test. Classifiers are sorted by their average rank (lower
is better). Classifiers that are connected by a horizontal line are statistically equival-
ent.

ficantly fewer resources.

5.5.2 Effect of Parameters

In this chapter we study the effect of the user-defined parameters of BLAST.

5.5.2.1 Window size and decay rate

First, for both version of BLAST, there is a parameter that controls the rate of dismissal
of old observations. For BLAST (FF) this is the o parameter (the fading factor); for
BLAST (Windowed) this is the w parameter (the window size). The « parameter is
always in the range [0, 1], and has no effect on the use of resources. The window
parameter can be in the range [0, n], where n is the size of the data stream. Setting
this value higher results in bigger memory requirements, although these are typically
neglectable compared to the memory usage of the base-classifiers.

Figure 5.10 shows violin plots and box plots of the effect of varying these para-
meters. The effect of the o (a) value on BLAST (FF) is displayed in the left (red)

94 5.5. Results

o
@

Prgdictive Accuracy
>

EIBLAST (FF)EIBLAST (Window)

Figure 5.10: Effect of the decay rate and window parameter.

violin plots; the effect of the window (w) value on BLAST (Window) is displayed in
the right (blue) violin plots. Even though it is hard to draw general conclusions from
this, the trend over 60 data streams seems to be that setting this parameter too low
results in suboptimal accuracy. Arguably, this is good in highly volatile streams when
concepts change rapidly, but in general we do not want to dismiss old information too
quickly. Altogether, BLAST (FF) seems to be slightly more robust, as the investigated
values of the « parameter does not perceptibly influence the performance.

5.5.2.2 Grace parameter

Prior work by Rossi et al. [133] and van Rijn et al. [127] introduced a grace para-
meter that controls the number of observations for which the active classifier was not
changed. This potentially saves resources, especially when the algorithm selection
process involves time consuming operations such as the calculation of meta-features.
On the other hand, it can be seen that in a data stream setting where concept drift
occurs, in terms of performance it is always optimal to act on changed behaviour as
fast as possible. Although we have omitted this parameter from the formal definition
of BLAST in Chapter 5.3, similar behaviour can be obtained by updating the active

Chapter 5. Data Streams 95

=
)

o
©

o
\‘

Predictive éccuracy
(o]

o
)

o
a

N

S N & o7

' Q N \
Y,

EIBLAST (FF)EIBLAST (Window)

Figure 5.11: Effect of the grace parameter on accuracy. The z-axis denotes the grace,
the y-axes the performance. BLAST (Window) was ran with w = 1,000; BLAST (FF)
was ran with a = 0.999.

classifier only at certain invervals. Formally, a grace period can be enforced by only
executing Eq. 5.3 when ¢ mod g = 0, where (following earlier definitions) c is the
index of the current observation, and ¢ is a grace period defined by the user.

Figure 5.11 shows the effect of the (hypothetical) grace parameter on perform-
ance, averaged over 60 data streams. The plots do not indicate that there is much
difference in performance. Moreover, the algorithm selection phase of BLAST simply
depends on finding the maximum element in an array. Therefore, the grace period
would not have any influence on the required resources.

5.5.2.3 Number of active classifiers

Rather than selecting one active classifier, multiple active classifiers can be selected
that all vote for a class label. The votes of these classifiers can either contribute equally
to the final vote, or be weighted accouring to their estimated performance. We used
BLAST (FF) to explore the effect of this parameter. We varied the number of active
classifiers k from one to five, and measured the performace according to both voting

96 5.5. Results

schemas. Figure 5.12 shows the results.

Figure 5.12a shows how the various strategies perform when evaluated using pre-
dictive accuracy. We can make several observations to verify the correctness of the
results. First, the results of both strategies are equal when k& = 1, as the algorithm
selects only one classifier, weights are obsolete. Second, the result of the Majority
weighting schema for £ = 7 is equal to the score of the Majority Weight Ensemble
(see Figure 5.7a), which is also correct, as these are the same by definition. Finally,
when using the weighted strategy, setting £ = 2 yields exactly the same scores for
accuracy as setting k£ = 1. This also makes sense, as it is guaranteed that the second
best base-classifier always has a lower weight as the best base-classifier, and thus it is
incapable of changing any prediction.

In all, it seems that increasing the number of active classifiers is not beneficial for
accuracy. Note that this is different from adding more classifiers in general, which
clearly would not decrease performance results. This behaviour is different from the
classical approach, where adding more classifiers (which inherently are all active)
yield better results up to a certain point [30]. However, in the data stream setting we
deal with a time component, and we can actually measure which classifiers performed
well on recent intervals. By increasing the number of active classifiers, we would add
classifiers to the vote of which we have empirical evidence that they performed worse
on recent observations.

Similarly, Figure 5.12b shows the Root Mean Squared Error (RMSE). RSME is
typically used as an evaluation measure for regression, but can be used in classific-
ation problems to assess the quality of class confidences. For every prediction, the
error is considered to be the difference between the class confidence for the correct
label and 1. This means that if the classifier had a confidence close to 1 for the par-
ticular class label, a low error is recorded, and vice versa. The violin plots indicate
that adding more active classifiers can lead to a lower median error. This also makes
sense, as the Root Mean Squared Error tends to punish classification errors harder
when these are made with a high confidence. We observe this effect until k¥ = 3, after
which adding more active classifiers starts to lead to a higher RMSE. It is unclear why
this effect holds until this particular value.

All together, from this experiment we conclude that adding more active classifiers
in the context of Online Performance Estimation does not necessarily yields better
results beyond selecting the expected best classifier at that point in the stream. This
might be different when using more base-classifiers, as we would expect to have
more similarly performing classifiers on each interval. As we expect to measure this
effect when using orders of magnitude more classifiers, this is considered future work.
Clearly, when using multiple active classifiers, weighting their votes using online per-
formance estimation seems beneficial.

Chapter 5. Data Streams 97

=
=)

o
o9

o
fo

Predictive Accuracy

N v % i & o A
Vv 7 7 V 7 7
\l~// \l~/ \l./ \l~/ \l~/ ‘3:/ \l~/
EMajority B Weighted
(a) Accuracy
0.6-
S
m
©
% 0.4-

Root Moean Squ
Ro

0.0
\L-/’\/ w-/’rll \1-/’% \l-//b‘ \1-/’(0 \1-/’6 w-/’/\
EIMajority BB Weighted

(b) Root Mean Squared Error

Figure 5.12: Performance for various values of k, weighted votes versus unweighted
votes.

98 5.6. Designed Serendipity
0.008 +
0.006

.
g 0004
2 +
] + t
S ooz ot
f prrtrTT "
g 0 SR o e A
< e S
N
-0.002
+
P e Loy Pageing INYINN) %,
9, 81 % 87, %,818181.8.8181.8.%, & 7 4 81 %, 1 81810 40,81
7“"67,,”’6%”'57’% AN 9/1'6@,7‘74/ /(4/31,,62%4@@% AL i,
en a0 e e ol o e, %%, o, P o
i, il %o BRI, b8, s, CRTe D e
G, e, VY 02, 0, e e & ey, G LN
v K2 %, %, 4y ° %%, Dy
4 5%, %, % w0 4
2
(a) Leveraged Bagging k-NN Vs. k-NN
0.6
N
0.5
0.4
é 03 T
= 4+
2 02 o
g +
§ 0.1
< 4+
0 R
4
¥
0.1 fp T
‘ __ diff(Ley Bagging NB NaiveBayes) +

7,5 4 05,8, 8, % G,
RS 0,%,%,0 @,
e, 5 S

%

2,

)

ST EN %, % %, %,
s 0 50, 0, W oy
s, "’%b/%; ao,%z gty
2 g, g,

oy e
o
(7357953
“0,0,%,
2 K 4%,

,
% 2%,

(b) Leveraged Bagging Naive Bayes Vs. Naive Bayes

Figure 5.13: Performance differences between Leveraging Bagging ensembles and
single classifiers.

5.6 Designed Serendipity

The philosophy of openly sharing results and working on massive amounts of data
streams leads to unexpected results that would possibly remain undiscovered oth-

erwise. In prior work was already observed that applying a Bagging technique like
Leveraged Bagging improves classification performance for k Nearest Neighbour [125].
This is a counter-intuitive result, as Breiman [23] already conjectured that Bagging
will not affect stable classifiers in the batch setting; & Nearest Neighbour with £ = 10

is considered a stable classifier. A follow-up study has been conducted for the data
stream setting, covering both k£ Nearest Neighbour and Naive Bayes, and comparing
the performance over two Bagging Schema’s, i.e., Online Bagging and Leveraging
Bagging [129].

Figure 5.13 and Figure 5.14 show the results of the experiments. The z-axis shows

Chapter 5. Data Streams 99

Accuracy Difference

Accuracy Difference

+or Tt

o
¢¢++++++++++++++++++++++++++

oo

diff(Online Bagging KNNKNN) +

0.004

0.003

0.002

0.001

0

-0.001
-0.002

-0.003

o005 L

A5,

A S S

1 ety o o e

0%] T,
¥

‘
e
it NS
0, %%, g 70, %, XS N
R G e e e
N7 %

% S
2, S
&

“a, %,

e
Y 2 2 %

(a) Online Bagging k-NN Vs. k-NN

+

+
s

+
P SIS R i

B S s S e e

4

(b) Online Bagging Naive Bayes Vs. Naive Bayes

Figure 5.14: Performance differences between Online Bagging ensembles and single
classifiers.

the dataset, the y-axis shows the difference in performance between the bagging
schema and the single classifier. Note that the single classifier performed better on
datasets where the difference is below zero, and vice versa for datasets where the
difference is above zero. Datasets are ordered by this difference.

Figure 5.13a shows a similar trend as seen in the figure presented in [125]. There

are few data streams on which & Nearest Neighbour performs best, but many data
streams on which Leveraging Bagging k& Nearest Neighbour performs best. One not-
able observation is the difference in scale between Figure 5.13b describing the effect
of using Naive Bayes in a Leveraging Bagging schema, and the other figures. In most
cases, the effect of a Bagging schema can attribute to performance gains of few per-
centages. However in the case of Leveraged Bagging Naive Bayes, the performance
gain can lead up to 50% in the ‘CovPokElec’ dataset, but also other data sets show
eminent improvements.

100 5.7. Conclusions

Among the 15 data streams on which Leveraged Bagging improves upon Naive
Bayes the most, many presumably contain concept drift. Compared to k Nearest
Neighbour, Naive Bayes’ performance is quite poor on these data streams?. Appar-
ently, k& Nearest Neighbour’s natural protection against concept drift (it removes old
instances as new ones come in) makes it perform quite well. Note that Leveraging
Bagging is a Bagging technique combined with a change detector and leveraging more
randomness. When using Naive Bayes in a Leveraging Bagging schema, the change
detector ensures that Naive Bayes also obtains this performance increase.

Figure 5.14b shows what we would expect to see when applying Online Bagging,
which is a pure form of Bagging described in Chapter 3, to a stable classifier. The dif-
ferences in accuracy are small and the performance gains are equally divided between
the single classifier and the bagging schema.

From this we learn three things.

e First, when applied in a normal Bagging schema, Naive Bayes classifiers exhibit
similar behaviour as in the batch setting (Figure 5.14b).

e Second, this result does not hold for Leveraging Bagging, which also embodies
a change detector. This can have a big influence on classification results (Fig-
ure 5.13b).

e Finally, concept drift has a big influence on the applicability of bagging schemas.

5.7 Conclusions

This chapter covered Data Streams and various Machine Learning techniques that
operate on them. We surveyed the Online Performance Estimation framework, which
can be used in data stream ensembles to weight the votes of ensemble members, in
particular when using fundamentally different model types. Online Performance Es-
timation measures the performance of all base-classifiers on recent training examples.
Using two different performance estimation functions, it can be used to built hetero-
geneous ensembles.

BLAST is a heterogeneous ensemble technique based on Online Performance Es-
timation that selects the single best classifier on recent predictions to classify new
observations. We have integrated both performance estimation functions into BLAST.
The Meta-Feature Ensemble uses a variety of traditional meta-features and meta-
features obtained from the Online Performance Estimation framework. The intro-
duced techniques were developed using experimental results stored in OpenML. Em-

2This information can not be deduced from the figures, therefore the reader is referred to OpenML or
Table 3 of [129]

Chapter 5. Data Streams 101

pirical evaluation shows that BLAST with fading factors outperforms the other meth-
ods. This is most likely because Fading Factors are better able to capture typical data
stream properties, such as changes of concepts. When this occurs, there will also be
changes in the performances of ensemble members, and the fading factors adapt to
this relatively fast. Based on an empirical evaluation covering 60 data streams, we ob-
serve that BLAST is statistically equivalent to current state of the art ensembles while
using significantly fewer resources.

We also evaluated the effect of the method’s parameters on the performance. The
most important parameter proves to be the one controlling the performance estima-
tion function: « for the fading factor, controlling the decay rate, and w for the win-
dowed approach, determining the window size. Our results show that the optimal
value for these parameters is dependent on the given dataset, although setting this
too low turns out to have a worse effect on accuracy than setting it too high.

To select the classifiers included in the heterogeneous ensemble, we used the hier-
archical clustering of 25 commonly used data stream classifiers that was presented in
Figure 4.14 (page 69). We used this clustering to gain methodological justification for
which classifiers to use, although the clustering is mainly a guideline. A human expert
can still determine to deviate from the resulting set of algorithms, in order to save re-
sources. The resulting dendrogram also has scientific value in itself. It confirms some
well-established assumptions regarding the typically used classifier taxonomy in data
streams, that have never been tested before. Many of the classifiers that were suspec-
ted to be similar were also clustered together, for example the various decision trees,
support vector machines and gradient descent models all formed their own clusters.
Moreover, some interesting observations were made that can be investigated in future
work. For instance, the Rule Classifier used turns out to perform averagely, and was
rather far removed from the decision trees, whereas we would expect it to perform
better and be clustered closer to the decision trees.

Utilizing the Online Performance Estimation framework opens up a whole new
line of data stream research. Rather than creating more data stream classifiers, com-
bining them in a suitable way can elegantly lead to highly improved results that effort-
lessly adapt to changes in the data stream. More than in the classical batch setting,
memory and time are of crucial importance. Experiments suggest that the selected
set of base-classifiers has a substantial influence on the performance of the ensemble.
Research should be conducted to explore what model types best complement each
other, and which work well together given a constraint on resources. Combining data
stream research with the open approach of OpenML led to new knowledge and tech-
niques. We believe that by exploring these possibilities we can further push the state
of the art in data stream ensembles.

Combining Accuracy and Run Time

Meta-learning focuses on finding classifiers and parameter settings that work well on
a given dataset. Evaluating all possible combinations typically takes too much time,
hence many solutions have been proposed that attempt to predict which classifiers are
most promising to try. As discussed in Chapter 3, the first recommended classifier is
not always the correct choice, so multiple recommendations should be made, making
this a ranking problem rather than a classification problem.

Even though this is a well studied problem, in the meta-learning literature there
is no common way of evaluating these. We advocate the use of Loss Time Curves, as
used in the field of optimization. These visualize the amount of budget (time) needed
to converge to an acceptable solution. We investigate two methods that utilize the
measured performances of classifiers on small samples of data to make such recom-
mendation, and adapt it so that these works well in Loss Time space. Experimental
results show that this method converges extremely fast to an acceptable solution.

OpenML was used as an experiment repository. The datasets and tasks that were
used take many resources (time and memory) to model, so this work was greatly
accelerated by including prior results that were collaboratively generated.

6.1 Introduction

When presented with a new classification problem, a key challenge is to identify a
classifier and parameter settings that obtain good predictive performance. This prob-
lem is known as the Algorithm Selection Problem [119]. Since many classifiers exist, all
containing a number of parameters that potentially influence predictive performance,
this is a challenging problem. Performing a cross-validation evaluation procedure on

104 6.1. Introduction

all possible combinations of classifiers and parameters (e.g., using a grid search) is
typically infeasible and suboptimal, for the reasons mentioned in Chapter 3. The field
of meta-learning attempts to solve this by learning from prior examples. Typically, a
set of classifiers is recommended based on the performance on similar datasets.

The meta-learning method SAM [87] identifies similar datasets based on the learn-
ing curves of classifiers trained on them, and recommends the classifier that performs
best on these similar datasets. A learning curve is an ordered set of performance
scores of a classifier on data samples of increasing size [113]. Although the results
are convincing, it does not take into account some important aspects of algorithm
selection. First, it only recommends the single best classifier, rather than a ranking
of candidates. Second, it does not take the training time of the models into account,
making it unable to distinguish between fast and slow classifiers. Indeed, in practical
applications there is typically a budget (e.g., limited time or a maximum number of
cross-validation runs) within which a number of classifiers can be evaluated. As such,
the meta-learning method should be evaluated on how well it performs within a given
budget.

Another popular meta-learning technique is Active Testing [88]. It recommends
a ranking of classifiers, advising in which order these should be cross-validated to
check their applicability to the inspected dataset. This ranking is dynamically updated,
based on results from earlier performed cross-validation tests on the dataset at hand.
This method also does not take the training time of the models into account, making
it unable to distinguish between fast and slow classifiers.

This chapter covers the following contributions. We extend the aforementioned
techniques so that these produce a ranking of classifiers and takes into account the
run times of classifiers. For this, a new evaluation measure is explored, A3R’, capable
of trading of accuracy and run time. Furthermore, we study the performance of this
method in Loss space and Loss Time space. We will argue that Loss Curves as presen-
ted in [88] are biased, and propose the use of Loss Time Curves, as commonly used in
Optimization literature (e.g., [74]). Finally, we compare the method against a range
of alternative methods, including a rather strong baseline that recommends the clas-
sifier that performed best on a small sample of the data [52]. Our proposed technique
dominates the baseline methods in some scenarios. Moreover, our results suggest that
a simple, sample-based baseline technique has been mistakenly neglected in the lit-
erature. Finally, we will see that meta-learning techniques that adopt A3R’ improve
their performance in Loss Time space.

This chapter is organized as follows. Chapter 6.2 surveys related work. Chapter 6.3
formalizes both methods, and adapt them to work in Loss Time space. Chapter 6.4
contains experiments. Chapter 6.5 concludes.

Chapter 6. Combining Accuracy and Run Time 105

6.2 Related Work

Meta-learning aims to learn which learning techniques work well on what data [141].
A common task, known as the Algorithm Selection Problem [119], is to determ-
ine which classifier performs best on a given dataset. We can predict this by train-
ing a meta-model on meta-data comprised of dataset characterizations, i.e., meta-
features [20], and the performances of different classifiers on these datasets. The
same meta-features can be computed on each new dataset and fed to the meta-model
to predict which classifiers will perform well.

Hence, the Algorithm Selection Problem is reduced to a Machine Learning prob-
lem. Meta-features are often categorized as either simple (e.g., number of examples,
number of attributes), statistical (e.g., mean standard deviation of attributes, mean
skewness of attributes), information theoretic (e.g., class entropy, mean mutual in-
formation) or landmarkers [108] (performance evaluations of simple classifiers).
Many meta-learning studies follow this approach [125, 133, 144, 158, 163].

As argued in Chapter 3, meta-feature-based approaches have some intrinsic limita-
tions. First, it is hard to construct a meta-feature set that adequately characterizes the
problem space [86]. Second, the most successful meta-features, landmarkers, can be
computationally expensive, limiting the options [108]. Finally, because not all clas-
sifiers can model all datasets, or take prohibitively long to do so, the meta-dataset
usually contains many missing values, complicating the classification task.

In order to overcome these problems, Leite and Brazdil [86, 87] identify similar
datasets based on partial learning curves. In this particular method, a partial learn-
ing curve is computed, using small samples, to identify similar datasets and use per-
formance information from those datasets to extrapolate the learning curve. As such,
running classifiers on these samples is rather cheap. There is also a clear connection
with multi-armed bandit strategies [89], where results on a small sample determine
whether it is worthwhile to continue learning.

Alternatively, the Best on Sample method uses the performance estimates of clas-
sifiers on a small subset (sample) of the data, and recommends the classifiers which
perform best on this sample, in descending order [107]. The smaller this sample is,
the fewer time this method takes to execute. Prior work is inconclusive about its
performance. The authors of [107] suggest that this technique should be used as a
baseline method in meta-learning research. The authors of [52] show that this in-
formation is not useful as a landmarker. Indeed, it has been correctly observed that
learning curves sometimes cross, i.e., one classifier can outperform another on a small
data sample, but can be surpassed when trained on the whole dataset [86]. However,
this happens less often as the sample size increases, making this method quite reliable
when using the right sample size, as we will see in Chapter 6.4.

106 6.2. Related Work

These three methods all aim to recommend an algorithm with high accuracy. How-
ever, in a setting where multiple classifiers will be tried sequentially and the budget
is time, it might make sense to first try many fast algorithms, rather than a few slow
ones. This can be done by selecting classifiers based on a trade-off between accuracy
and run time. Brazdil et al. [21] proposes adjusted ratio of ratios (ARR), which is
defined as:

SR
SR
di _ a‘q
ARRG ,. = T (6.1
1+ AceD - log, (TTZ>

where SRZ; and SRg; are the predictive accuracy (success rate) of classifiers a, and
aq (respectively) on dataset d;. Likewise, T(;l;‘ and qui are the run times of classifiers
ap and a, (respectively) on dataset d;. Finally, AccD is a parameter controlled by the
user, influencing the relative importance of accuracy to run time.

As was pointed out by [1], there are some problems with this measure: it is not
monotonic, and even approaches infinity at some point. Therefore, the measure A3R
was introduced:

SR

d;
A3R% = _ Shay (6.2)

ap,Qq
d; d;
/T T

where, similar to ARR, SRZ; and SRZ; are the predictive accuracy (success rate) of
classifiers a, and a, (respectively) on dataset d;. Likewise, ng and T(fqi are the run
times of classifiers a, and a, (respectively) on dataset d,. Finally, r is a parameter
controlled by the user, influencing the relative importance of accuracy versus run
time.

Although both ARR and A3R are suitable for finding fast classifiers, these have
not been used as such before. Experimental evaluations have focused on recommend-
ing classifiers that work well on this criterion. This seems a bit arbitrary. Indeed, we
are still interested in finding the algorithm with the highest accuracy, however we
want to find it as fast as possible (i.e., with fewest number of cross-validation test or
time). In this respect our approach differs from earlier meta-learning approaches by
using this measure to build a ranking of classifiers that finds a reasonable classifier as
fast as possible.

Chapter 6. Combining Accuracy and Run Time 107

6.3 Methods

In this chapter we describe two methods that extend the work of [86, 87, 88] in
several ways. We consider a set A of classifiers, a,, (m = 1,2,3,...,M). We also
consider a set D of datasets, d,, (n = 1,2,3,..., N), on which we have information
on the performance of the classifiers in A (d,e, is not in D). The total amount of
trainings instances available for dataset d,, is denoted as |d,,|. Let P, » s and Py, ,
denote the performance of classifier a,, on dataset d,,, for a given evaluation meas-
ure (e.g., predictive accuracy), using a sample size of s. Furthermore, {2 denotes the
size of a dataset given by the context. Hence, P, o (equals P,, , 4,) denotes the

performance of classifier a,,, on the full dataset d,,.

6.3.1 Pairwise Curve Comparison

Various methods that are successful at recommending algorithms make use of so-
called learning curves. A learning curve is an ordered set of performance scores of
a classifier on data samples of increasing size [113]. The method proposed by [86]
builds a partial learning curve for a pair of algorithms, and finds among earlier seen
datasets (on which these algorithms were also run) the one that has the most similar
partial learning curves. Based on the performance of the algorithms on that full data-
set, it makes a recommendation. This idea is extended to multiple classifiers (rather
than a pair) in [87].

In this chapter, we propose a novel method that extends the method as defined
by [87] in three ways. First, it recommends a ranking of classifiers, rather than just a
single best classifier. Second, it can take arbitrary evaluation measures into account,
such as run time. Lastly, we introduce an optimization called Smaller Sample, that
improves performance when the sizes of datasets differ a lot.

Let S be the set of samples of dataset d of increasing size s; = 255705t with
t = (1,2,3,...,T7), and T being a parameter set by the user such that 1 < T <
2 - (|logy |dn|] — 5.5). This ensures that the biggest data sample never exceeds the
available amount of training data. The samples follow a geometric increase, as sug-
gested by [113]. When using a higher value for T, larger samples are calculated,
presumably yielding more accurate estimates at the expense of higher run times.

Figure 6.1 shows learning curves of all model types introduced in Chapter 2.4.
The z-axis is displayed on a logarithmic scale, to show the geometrical increase in
sample sizes. It shows some typical learning curve behaviour. First, when presented
with more data, the classifiers typically perform better. However, this is not always the
case. Sometimes a classifier handles a new batch of data not so well, and accuracy
decreases. Furthermore, there is also a trend of diminishing increases. At the begin-

108 6.3. Methods

B =}
09 a8 .
. <
o .
-
-
08 | = o B g
a / .
e P
07 | 0 e e |

06 | e E
) ,,"D' .
-

Decision Rules —+—
Decision Tree
Naive Bayes ---%---
k-NN 2| ,
Logistic Regression
Support Vector Machine (Polynomial kernel)
N?ural Nelwor‘k S

0.1 I I I I I I
64 128 256 512 1024 2048 4096 8192 16384 32768

Figure 6.1: Learning curves on the ‘letter’ dataset.

ning the accuracy gain of adding more data is considerable, whereas at some point it
flattens out. This is especially visible for models like Naive Bayes and Logistic Regres-
sion. Lastly, as already noted by [86], learning curves can cross. This also happens
quite often for small samples, but less often for bigger samples.

The distance between two datasets d; and d; can be determined using the follow-
ing function [86]:

T T

dist(d;, dj, ap,ag,T) = (Ppivs, = Ppjis)® + Y (Priss, — Pyjis,)’ (6.3)
t=1 t=1

This distance function is related to the Euclidean distance. It gives a measure of how

similar two datasets are, based on the learning curves of the two classifiers. Other

work proposes a distance function that measures the Manhattan distance between

learning curves, but experiments show that the difference in performance between

these variants is negligible [87].

Using either of these distance functions, & nearest datasets can be identified, and
from the performance of both classifiers on these datasets we can predict which of
the two will likely perform better on the new dataset. Controversially, it has been
remarked that as the number of used samples increases, the performance of this tech-
nique decreases [86]. The authors of [86] speculate that the learning curves on the

Chapter 6. Combining Accuracy and Run Time 109

nearest datasets are still not similar enough, and propose Curve Adaptation, a tech-
nique that can adapt retrieved curves to the learning curves on the new dataset. This
is done because some datasets are simply harder to model, hence the whole curve
will be higher or lower, and that is being corrected for. In order to adapt a learning
curve of classifier a,, on dataset d, to dataset d;, all points of the prior learning curve
are multiplied by a coefficient:

_ ZtT:l(vaiﬁt ~Pprys, - 51) (6.4)
St (Brs)? - 57)

The resulting coefficient f can be used to scale the performance of the retrieved
learning curve of dataset d,. to match the partial learning curve on dataset d;, making
the final points of d,. (that are not available in d;) more realistic.

A novel optimization that could potentially improve performance is the Smaller
Sample technique. As not all datasets are of the same size, it is possible that a retrieved
dataset has a bigger size than the new dataset, which might give an unfair advantage
to particular learners. Suppose that the retrieved dataset contains a high number of
observations, and from a certain sample size on the learning curve of one algorithm
outperforms all other algorithms. If the new dataset is much smaller than the retrieved
dataset, this information might be irrelevant and potentially obfuscates the prediction
for the new dataset. In that case it might be beneficial to use the performance of the
classifiers at a sample size close to the full size of the new dataset. More formally,
when reasoning over the performance of a given classifier a on dataset d,., based
on a retrieved dataset d,, if |dpew| < |dr|, it might be more informative to use the
performance of algorithm « on a subset of d,., rather than the full dataset d,..

Algorithm 6.1 shows the full method in detail. It requires the new dataset as input,
and values for parameters & (number of similar datasets to retrieve) and 7' (number
of samples available to build the partial learning curve), and boolean parameters
indicating whether to use the Curve Adaptation and Smaller Sample technique. The
while-loop starting on line 3 identifies the most promising classifier left in A (lines 4—
29), appends this classifier to the final ranking R (line 30) and removes it from the
pool of remaining classifiers to rank.

To find the most promising classifier, we set a5 first to an arbitrary classifier left
in A. We will compare it against all .o, (competing) classifiers left in A (for-loop on
line 5). On line 6 we retrieve a set D of datasets on which we have recorded perform-
ance results for both classifiers (recall that d,.,, is not amongst those). Line 9 uses
Equation 6.3 to retrieve the nearest dataset. Lines 12-15 show how Curve Adaptation
shifts the retrieved learning curve to the partial learning curve, using Equation 6.4.
Lines 16-18 show how the Smaller Sample option utilizes learning curves of a size
close to the size of the new dataset. The classifier that performed best on the retrieved

f(dlv d?”a anT)

110 6.3. Methods

Algorithm 6.1 Pairwise Curve Comparison (PCC)
Require: dc,, k € NT, T € N*, CurveAdaptation € {0,1}, SmallerSample € {0, 1}

1: Initialize A as a set of all classifiers
2: Initialize R as empty list
3: while |[A] > 0 do
4 apest < Arbitrary element from A
5 for all acomp € A : dcomp # Abest dO
6: Initialize D as the set of all datasets on which apes: and acomp Were ran
7 votesBest = votesComp = 0
8 while votesBest 4+ votesComp < k do
9 dsim al;lgemDin dist(dnew, diy Qbest, Gcomps T')
10: coeff pesi = Coeff comp =1
11: samp < Q)
12: if CurveAdaptation = 1 then
13: coeff post < f(dnew, dsim, Qvest, T')
14: c0eff comp = f(dnew; dsim; Gcomp, T)
15: end if
16: if SmallerSample = 1 and |dpew| < |dsim | then
17: samp < |dnew|
18: end if
19: if €06l st~ Phestitnyssamp > €O0fT comy Plomp ooy then
20: votesBest < votesBest + 1
21: else
22: votesComp < votesComp + 1
23: end if
24: D <+ D —dgm
25: end while
26: if votesBest < votesComp then
27: Apest < Geomp
28: end if
29: end for

300 R+ R+ apest

31: A<+ A— apest

32: end while

33: return R {Ranking of classifiers in decreasing order}

Chapter 6. Combining Accuracy and Run Time 111

dataset (line 19) gets a vote, and the dataset is removed from the pool of available
datasets. This is repeated k times, for the k nearest datasets. The classifier that has
most votes is marked as apst, and will be compared against the next competitor a.comyp
in the following loop iteration. Note that the algorithm potentially utilizes two differ-
ent evaluation scores, denoted by P and P’, but these can also be the same. The
scores of one evaluation measure are used for identifying similar datasets and Curve
Adaptation (i.e., the one denoted by P); the scores of the other evaluation measure
are used for selecting an appropriate classifier (i.e., the one denoted by P’). This is
useful because not all evaluation measures are suitable for both tasks. For example,
measures that trade-off accuracy and run time (e.g., ARR, A3R) are very suitable for
selecting appropriate algorithms, however learning curves that are built upon these
measures are typically neither informative nor stable.

Because we arbitrarily select the order in which classifiers are considered, the
ranking will not always be the same (the meta-algorithm is unstable). However, it
assumes that classifiers that perform consistently better on similar datasets will always
be ranked above their inferior competitors. Furthermore, the meta-algorithm has a
start up time, as it needs to build the partial learning curves. However, this is also
the case for conventional meta-learning techniques (e.g., when using landmarkers).
Therefore we will not consider these additional costs in the results.

6.3.2 Active Testing

Active Testing was introduced in [88]. It is an algorithm selection method that com-
bines grid search with meta-knowledge. It recommends a ranking of classifiers (the
order in which they should be cross-validated), but it also updates the ranking of the
not yet cross-validated classifiers after every test.

Active Testing iteratively chooses new promising algorithms; those that have a
good possibility to outperform a current best algorithm. For each candidate algorithm,
it finds the historic datasets on which the candidate algorithm outperforms the current
best. This is done by the notion of relative landmarkers, which are defined as:

RL(at, Gpest, dis P) = b(Pay,d,,0 > Payydi @) - (Pay,di0 — Payeyds) (6.5)

where P,, 4, o is the evaluation measure (obtained by cross-validation) of algorithm
ay (ar € {best,t}) on dataset d;, and b is an indicator function returning 1 if the
condition is true and 0 otherwise. Active Testing operates on the full dataset rather
than learning curves or sub-samples; the 2 subscript is maintained in the notation
for consistency. Basically, the relative landmakers measure the accuracy difference
between algorithms on datasets where the current best algorithm was outperformed,

112 6.3. Methods

Algorithm 6.2 Active Testing (AT)

Require: dpcw, Grest € A, P
1: Initialize A as a set of all classifiers except apest
2: Initialize R as list containing apes:
3: Pb/est,new,ﬂ = Cv(abest7 dnew)
4
5

: while |A| > 0do

Acomp = argmax Z RL(ah Qbest di: P) . Sim(dn,euu dz)
a; €A d;eD
A+ A— acomp

6
7 Plompnew.a = CV(acomp, dnew)
8 if Plopp new. > Phest new.o then
9 QApest = Qeomp

10: Pl:est,new,ﬂ = Pé
11: endif

12: R+ R+ acomp
13: end while

14: return ap.s; {Best classifier based on measure P’}

omp,new,2

and neglect the accuracy difference on datasets where the current best algorithm
was better. For each new cross-validation test, we are interested in the method that
obtained the highest relative landmarker score on datasets similar to the current one.
As such, we are optimizing:

Qcomp = Argmax Z RL(at, apest, di, P) - Sim(dnew, d;) (6.6)
a€A d.
;€D
where Sim(dyew,d;) is @ measure of similarity between dataset d,.,, and dataset d;.
Several similarity measures are proposed in [88]. The method Active Testing O na-
ively assumes that all datasets are equally similar, hence its corresponding similar-
ity function always returns 1. The method Active Testing 1 determines the similarity
based on only the last cross-validation test. If the last cross-validation test shows that

acomp 18 better than the best algorithm until that moment ayes; (i.e., Pa,,,, dww,0 >
Pay... dney.), then each dataset d; € D that satisfies P, 4,0 > Pa,.,.4,,0 is con-

sidered similar to dataset d,,¢,-

Algorithm 6.2 puts this all together. It requires the user to choose a measure P,
the evaluation measure that should be measured by the cross-validation test. Leite
et al. [88] considered only predictive accuracy, but it is clear that any measure can be
used for this, e.g., A3R. Note that although we are using the measure determined by
P to determine the order in which we search, we ultimately evaluate all algorithms
based on a measure P’, which is typically predictive accuracy or area under the ROC
curve. The two are not necessarily identical.

Chapter 6. Combining Accuracy and Run Time 113

Furthermore, this method requires an arbitrary classifier to be selected first, apes;.
In the work of [88], the top ranked algorithm from the global ranking was used. This
algorithm will be cross-validated first (line 3). Lines 4-13 show a while-loop, which
at each iteration removes an algorithm from A (line 6), cross-validates it (line 7) and
adds it to R (line 12). Which algorithm that is, is determined using Eq. 6.6 on line 5.
If that algorithm performed better than the best algorithm so far, it is considered
the new best algorithm (line 9-10). Finally, on line 14 the best algorithm found is
returned. Note that we do not need to return a ranking, as the algorithms are already
evaluated using a cross-validation test. We are guaranteed that the returned algorithm
is the best on the determined criterion.

6.3.3 Combining Accuracy and Run Time

Both Active Testing and Pairwise Curve Comparison select classifiers based on their
predictive accuracy on similar datasets. Both are designed such that instead of pre-
dictive accuracy any measure can be used for this selection. Because our experiments
focus on both accuracy and run time, we will experiment with A3R, which combines
predictive accuracy and run time [1]. A3R compares the run times and accuracy of
two classifiers on a dataset, so it could be used directly into methods that work based
on pairwise comparisons. However, in order to make it useful for methods that do
not compare classifiers pairwise, and allow a fair comparison in the experiments, we
define a slightly adapted version of the measure:

1d; - SR(LP
ABRIY =~ 6.7)

where SRi; is the predictive accuracy (success rate) of classifier a,, on dataset d;; T;l;
is the run time of classifier a, on dataset d;; finally, r is a parameter controlled by
the user, influencing the importance of time. Indeed, a lower value results in a higher
emphasize on time. The higher the A3R’ score, the more suitable the classifier is on
the combination of accuracy and run time.

Note that both Pairwise Curve Comparison and Active Testing can natively work
with A3R, as they work based on pairwise comparisons. However, as this does not
hold for some baseline methods, it is good to have the A3R’ as an alternative. It is
less complex and when comparing two classifiers it ranks these the same.

114 6.4. Experiments

18
16 1
14 + 1
g 12 F B
]
§
g 10]
St
5
R .
g
E]
Z 6 i
4
2
0 Il
6 7 8 9 0 11 12 13 14 15 16 17 18 19

Dataset size (number of samples)

Figure 6.2: Number of datasets with maximum number of learning curve samples.

6.4 Experiments

To evaluate the proposed algorithm selection strategies, we used 30 classifiers and 105
datasets from OpenML [154]. Table 6.1 shows all datasets used in this experiment.
The datasets have between 500 and 48,842 observations, and between 5 and 10,937
attributes.The size of the dataset is of importance to Pairwise Curve Comparison. In
order to construct a learning curve of a given number of such samples, the dataset
has to be sufficiently large (i.e., contain enough observations). In fact, to be able to
construct a learning curve of 7 samples, the training set of the dataset has to contain
at least 512 observations. Figure 6.2 shows the maximum number of samples that
a learning curve can contain per dataset. Note that because we use 10-fold cross-
validation in the experiments, a dataset actually needs 563 observations in order to
guarantee a trainings set of 512 observations.

The algorithms are all from Weka 3.7.13 [61], and include all model types from
Chapter 2 and all ensemble types from Chapter 3. The same algorithms are used as
those used in Figure 4.10 (page 61) and Figure 4.11 (page 62). All classifiers were
run on all datasets.

We will use two strong baseline methods to compare our method to. The Best on
Sample method runs all classifiers using a given sample size, and ranks the classifiers

Chapter 6. Combining Accuracy and Run Time 115

Table 6.1: Datasets used for the experiment.
name obs. atts. cls. name obs. atts. cls.
irish 500 6 2 100-plants-texture 1,599 65 100
autoUniv-au7-500 500 13 5 100-plants-margin 1,600 65 100
collins 500 24 15 100-plants-shape 1,600 65 100
ke2 522 22 2 car 1,728 7 4
climate-model-simulation 540 21 2 steel-plates-fault 1,941 34 2
cylinder-bands 540 40 2 mfeat-morphological 2,000 7 10
AP Breast_Ovary 542 10,937 2 mfeat-zernike 2,000 48 10
AP _Colon_Kidney 546 10,937 2 mfeat-karhunen 2,000 65 10
monks-problems-3 554 7 2 mfeat-fourier 2,000 7 10
monks-problems-1 556 7 2 mfeat-factors 2,000 217 10
ilpd 583 11 2 mfeat-pixel 2,000 241 10
synthetic_control 600 62 6 kel 2,109 22 2
monks-problems-2 601 7 2 cardiotocography 2,126 36 10
AP Breast_Kidney 604 10,937 2 segment 2,310 20 7
balance-scale 625 5 3] scene 2,407 300 2
AP _Breast_Colon 630 10,937 2 autoUniv-au4-2500 2,500 101 3
profb 672 10 2 ozone-level-8hr 2,534 73 2
soybean 683 36 19 cjs 2,796 35 6
Australian 690 15 2 splice 3,190 62 3
credit-a 690 16 2 kr-vs-kp 3,196 37 2
breast-w 699 10 2 Internet-Advertisements 3,279 1,559 2
autoUniv-au7-700 700 13 3 gina_agnostic 3,468 971 2
eucalyptus 736 20 5 Bioresponse 3,751 1,777 2
blood-transfusion-serv. 748 5 2 sick 3,772 30 2
autoUniv-au6-750 750 41 8 abalone 4,177 9 29
diabetes 768 9 2 ada-agnostic 4,562 49 2
analcatdata_dmft 797 5 6 spambase 4,601 58 2
analcatdata_authorship 841 71 4 wilt 4,839 6 2
vehicle 846 19 4 waveform-5000 5,000 41 3
anneal 898 39 6 phoneme 5,404 6 2
oh15.wc 913 3,101 10 wall-robot-navigation 5,456 25 4
oh5.wce 918 3,013 10 optdigits 5,620 65 10
vowel 990 13 11 first-order-theorem-proving 6,118 52 6
credit-g 1,000 21 2 satimage 6,430 37 6
autoUniv-aul-1000 1,000 21 2 musk 6,598 170 2
autoUniv-au6-1000 1,000 41 8 isolet 7,797 618 26
oh0.wc 1,003 3,183 10 mushroom 8,124 23 2
gsar-biodeg 1,055 42 2 Gest.Ph. Segmentation Proc. 9,873 33 5
MiceProtein 1,080 82 8 JapaneseVowels 9,961 15 9
autoUniv-au7-1100 1,100 13 5 jml 10,885 22 2
pcl 1,109 22 2 pendigits 10,992 17 10
banknote-authentication 1,372 5 2 PhishingWebsites 11,055 31 2
pc4 1,458 38 2 sylva_agnostic 14,395 217 2
cme 1,473 10 3 eeg-eye-state 14,980 15 2
OVA _Breast 1,545 10,937 2 mozilla4 15,545 6 2
OVA_Colon 1,545 10,937 2 MagicTelescope 19,020 12 2
OVA Kidney 1,545 10,937 2 letter 20,000 17 26
OVA_Lung 1,545 10,937 2 webdata-wXa 36,974 124 2
OVA_Omentum 1,545 10,937 2 Click_prediction_small 39,948 12 2
OVA_Ovary 1,545 10,937 2 electricity 45,312 9 2
OVA_Uterus 1,545 10,937 2 tamilnadu-electricity 45,781 4 20
pc3 1,563 38 2 adult 48,842 15 2
semeion 1,593 257 10

116 6.4. Experiments

in the order of performance on that sample [107]. The Average Ranking method ranks
the classifiers in the order of their average rank on previously seen datasets [19, 88].
The Average Ranking method represents the typical approach that human experts in
machine learning wield. For each dataset, a set of favourite algorithms is selected
and tried in a static order. Both baseline methods have proven to be quite accurate in
previous studies.

Chapter 6.4.1 describes an experiment that focuses solely on predicting the best
classifier; here we attempt to reproduce the results obtained by [87] using a larger
number of datasets and classifiers. In Chapter 6.4.2 we show how the meta-algorithms
perform when predicting a ranking of classifiers in Loss space. Chapter 6.4.3 shows
how the meta-algorithms perform in Loss Time space. Chapter 6.4.4 describes our
main contribution, empirically evaluated on both accuracy and run times. This method
yields significant improvements while trading of accuracy and run time.

6.4.1 Predicting the Best Classifier

In the first experiment we aim to establish how well the meta-algorithm performs
when the task is just to recommend the best available classifier. A recommendation is
considered correct if there was no statistically significant difference between the abso-
lute best classifier and the recommended classifier (similar to the evaluation by [87]).
It uses predictive accuracy as the evaluation measure to identify similar datasets and
select the best classifier (i.e., P = P’ = accuracy). Pairwise Curve Comparison has
several parameters. Most importantly, T (the number of samples used to construct
the learning curves) and & (the number of nearest datasets to be identified). Fur-
thermore, we explore the effect of Curve Adaptation (CA) and the Smaller Sample
technique (SS) by comparing meta-algorithms having these options enabled against
meta-algorithms having these options disabled.

Figure 6.3a shows the effect of varying the size of the learning curves. The z-
axis shows the value of T' (number of samples used); the y-axis shows how often a
given meta-learner predicted the best algorithm or an algorithm that was statistic-
ally equivalent to the best one. Note that not all the datasets allow for the construc-
tion of learning curves containing 7-12 samples, therefore sometimes predictions are
made based on a smaller learning curve than the setup actually allowed. It can be
seen that for most methods, using more samples results almost consistently in better
performance, as is expected. All methods outperform the Average Ranking baseline
already with a small number of samples, i.e., the sample-based techniques do not
need much computational effort to perform better than the Average Ranking. It is
clear that the Best on Sample and Pairwise Curve Comparison with Curve Adaptation
perform clearly better, even when using only a small learning curve. There are some

Chapter 6. Combining Accuracy and Run Time

117

Accuracy

Accuracy

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

o
93

o
o)
oy

0.6 -

0.55

Average Ranking
Best on Sample
PCC (CA, SS) -

PCC (CA,no SS) -
PCC (no CA, SS)
PCC (no CA, no SS)

R R O L I S e

Number of Samples

(a) Varied value T, fixed k = 17

1 P(I:C |(n0| Cé’ l’lIO SIS) 1

Average Ranking
Best on Sample --=-=-=- E
PCC (CA, SS) -
PCC (CA, no SS)
PCC (no CA, SS)

1 1 1
I R R RN R A A I R A R R P LR/ R OR S RN

Number of Nearest Datasets

(b) Varied value k, fixed T'=5

Figure 6.3: Performance of meta-algorithm on predicting the best classifier.

118 6.4. Experiments

drops in performance, which can probably be attributed to characteristics of the spe-
cific datasets used (e.g., dimensionality). When the number of attributes of a dataset
is in the same order or exceeds the number of observations, it becomes hard to learn
from it and some (base-)classifiers might exhibit unstable behaviour.

Figure 6.3b shows the effect of varying the number of nearest neighbours. In this
setting, the number of samples for the learning curve 7" was set to 5, as this seems
to be a reasonable small number. Hence, all predictions are made based on learning
curves containing 5 samples, with the largest sample consisting of 2°-°+0-55 = 256
observations. Results obtained with higher values for 7" are less interesting, as the
time required for running the classifier on the consecutive samples increases. Average
Ranking remains constant, as it does not use samples nor identifies the nearest data-
sets. Setting k around 17 seem very suitable in this case, but presumably this depends
on the size of the meta-dataset. Setting this value too low might lead to instable beha-
viour, whereas setting it too high might result in including many datasets which are
not similar enough.

The Active Testing variants are not shown in both figures, as these are sequential
methods that solely focus on the ranking of classifiers. It is undefined which classifier
is advised first (see Algorithm 6.2). In our experiments, the classifier with the best
Average Ranking is selected, so the accuracy of the first prediction of Active Testing
would always be exactly the same as the Average Ranking method.

Both figures show similar trends. Best on Sample dominates the other techniques
in most of the cases, even though this method is rather simple. Furthermore, both
Pairwise Curve Comparison instances using Curve Adaptation (CA) outperform the
instances without Curve Adaptation. Smaller Sample (SS) also seems to improve
the prediction quality, although the difference is less prominent. In all, both Best
on Sample and Pairwise Curve Comparison obtain very reasonable performance, ad-
vising a (statistically) best or equally good classifier in more than 75% of the cases,
already when using a learning curve consisting of just 5 samples.

6.4.2 Ranking of Classifiers

Sometimes, recommencing the best base-classifier in 75 per cent of the cases is not
good enough, hence we need to use a different approach. When the recommended
base-classifier does not perform well enough, an alternative should be at hand. Rather
than recommending a single classifier, a ranking should be created, ordering the clas-
sifiers on their likelihood of performing well on the dataset. This way, the user can
make an informed decision about which models to try based on the available time and
resources. The standard approach to evaluate such a ranking is to compute the Spear-
man Correlation Coefficient [144]. However, it has a drawback: it penalizes every

Chapter 6. Combining Accuracy and Run Time 119

0.04 0.012

0.035 |
0.01

0.03 -
0.008
0.025 |

0.02 - 1 0.006

0.015 |
0.004 |-

0.01 -

0.002
0.005 Fuoonnnnnnni . LI 1
o . . . 0

1 2 4 8 16 32 1 2 4 8 16 32

(a) Anneal’ (b) ‘emc’

0.045 0.02

Average Ranking ———
Best on Sample

Pairwise Curves Comparison -+ 1

1 Active Testing AQ

0.016 - 1 Active Testing Al

0.04 0.018 -

0.035 |-

0.014 -
0.03 e

0.012
0.025 -
0.01 -
0.02 -

0.008 |-

0.015 |
0.006 |

0.01 - 0.004 -

0.005 - b 0.002 -

0 . . : o . =
1 2 4 8 16 1 2 4 8 16 32

(c) ‘Electricity’ (d) Average over all datasets

Figure 6.4: Loss Curves. The z-axis shows the number of tests, the y-axis shows the
loss.

wrongly ranked classifier equally, whereas we are mostly interested in classifiers at
the top of the ranking. Furthermore, we do not care at all about incorrect ranked
classifiers after the best one has been identified (although when applying the method
in practise, we will not know when we have found the best method).

An alternative approach is to use Loss Curves as done in, e.g., [88]. The authors
define loss to be the difference in accuracy between the current best classifier and
the global best classifier. In order to find the global best classifier on a dataset, we
evaluate all classifiers on this dataset in a certain order, for example by going down
the ranking. A Loss Curve plots the obtained loss against the number of classifiers that
have been tested. The goal is to find a classifier that has a low loss in relatively few
tests.

In the following experiments, Pairwise Curve Comparison was run with 7" = 5 and
k = 17. Likewise, Best on Sample was run with 7' = 5 (the sample on which base-

120 6.4. Experiments

0.12
Average Ranking
Best on Sample
Pairwise Curves Comparison ***
0.1 | Active Testing AO E
4 Active Testing Al
5
O L
2 0.08 i
— -
o
= .
o}
= 0.06 - E
=) .
<
e .
<
) 0.04 - i
1)
<
=
> .,
<
0.02 E
0 1 1 1 1 1 1 1 1 1 1
VS TN « > o 2> & 9 Qo 4 b

Number of Samples

Figure 6.5: Average Area Under the Loss Curves for various meta-algorithms.

classifiers were evaluated contained 256 observations). Figure 6.4 shows loss curves of
various strategies on some datasets. A loss curve is a visual evaluation measure show-
ing how well strategies work after evaluating a given number of algorithms (tests).
Similar to ROC Curves, for which commonly the Area Under the ROC Curve is calcu-
lated, we also can calculate the Area Under the Loss Curve, in which low values are
preferred over high values. Although this measure is less informative than the Loss
Curve itself, it can be used to objectively compare various meta-algorithms. Usually,
this is repeated over many datasets and an average Area Under the Loss Curve is re-
ported, as is done in [127]. Sometimes an area of interest is defined, and the Area
Under the Loss Curve for that interval is calculated [3]. This is useful when there is a
specific budget (expressed in number of tests) for the meta-algorithm.

Figure 6.5 plots the effect of the learning curve size on the Area Under the Loss
Curve. In order to not overload the figure, we omit the Pairwise Curve Comparison
instances without Curve Adaptation or the Smaller Sample option. Pairwise Curve
Comparison and Best on Sample techniques dominate the other techniques. Clearly,
these are the only techniques that benefit from increasing the learning curve size. The
other methods are by definition not influenced by this. Active Testing Al outperforms
the Average Ranking method. It can only compete with the sample-based methods
that use a very small learning curve.

Chapter 6. Combining Accuracy and Run Time 121

CD

Pairwise Curve Comparison —M8MM L——————— Active Testing A0
Best on Sample —M L Active Testing Al
Average Ranking

Figure 6.6: Results of Nemenyi test (o« = 0.05) on the Area Under the Loss Curve
scores. Classifiers are sorted by their Average Ranking (lower is better).

Although interesting for observing general trends, we should be careful with draw-
ing conclusions from the values from this plot: it can be dominated by outliers. There-
fore, we also rank the meta-algorithms by their Area Under the Loss Curve per task,
and calculate their average ranks over these. This shows which meta-algorithm per-
forms best on most datasets, and enables us to do a statistical test over it, such as the
Friedman test with post-hoc Nemenyi test. Figure 6.6 shows the result of the Nemenyi
test. Pairwise Curve Comparison and Best on Sample perform statistically equivalent.
The average ranks of these techniques are quite similar. Also Average Ranking, Act-
ive Testing AO and Active Testing Al perform statistically equivalent. Contrary to the
results depicted in the Average Loss Curve (Figure 6.4d), it can be seen that the dif-
ference between Active Testing Al and Active Testing AO is minuscule. Because of the
aforementioned reasons, conclusions based on the statistical test should have preced-
ence over conclusions based on the average loss curve.

6.4.3 Loss Time Space

Loss Curves assume that every test will take the same amount of time, which is not
realistic. For example, Multilayer Perceptrons take longer to train than Naive Bayes
classifiers. Therefore, it is better to use Loss Time Curves, which plot the average loss
against the time needed to obtain this loss. It describes how much time is needed on
average to converge to a certain loss (lower is better). The faster such curve goes to a
loss of zero, the better the technique is. They are commonly used in the Optimization
literature (see, e.g., [74]).

Figure 6.7 shows the Loss Time Curves of various strategies on some datasets. The
Loss Time Curves are drawn from the moment when the first cross-validation test
has finished. As can be seen by the Loss Time Curves from Figure 6.7d, also in Loss
Time space both Best on Sample and Pairwise Curve Comparison dominate the other
techniques.

122 6.4. Experiments

0.04 0.012
0.035
0.01
0.03
0.008 |-
0.025
002 F : 4 0.006 -
0.015
0.004 |-
001
| 0.002 |
0.005 | 1 . —
25 ~ - - &£, 2
ESERCIER S %e /”vi,;,(% TR Y % By B Y /G%Y &y
3 ’ 3 vl
(a) Anneal (b) ‘emc
0.045 — 1
Average Ranking
004 L i 09 Best on Sample

Pairwise Curves Comparison -+
Active Testing AQ
Active Testing Al

08

0.7 |

0.6
0.5

0.4

0015 o3 L
001 F R oa b
0.005 i 1 o1 |
0 L L L : 0
EC Y ‘ © S
% % "
(c) ‘Electricity’ (d) Average over all datasets

Figure 6.7: Loss Time Curves. The z-axis shows the time in milliseconds, the y-axis
shows the loss.

Similar to the Area Under the Loss Curve, we can calculate the Area Under the
Loss Time Curve. One important aspect to consider is what loss is defined before
the first cross-validation test has finished. In this work we use a loss of 1 (which is
the maximum possible loss), but also other values could be chosen. For example, [3]
uses default loss, which is defined as the difference between the default accuracy of a
dataset and the accuracy of the best performing algorithm on that dataset. Figure 6.8
plots the effect of the learning curve size on the Area Under the Loss Time Curve.
The legend is omitted for readability, but the meta-algorithms have the same colours
as in Figure 6.7. This again confirms the dominance of Pairwise Curve Comparison
and Best on Sample. However, opposed to Figure 6.5, there is no general trend that
Pairwise Curve Comparison and Best on Sample benefit from using more and big-
ger samples. One of the explanations for this is that although we are evaluating the
meta-algorithms based on accuracy and run time, internally the meta-algorithms are

Chapter 6. Combining Accuracy and Run Time 123

120000
110000

o

Z 100000 7

=

O

g 90000 |

=

2 80000 - 7

Q

—

g 70000 7

5 60000 |

=

=)

g 50000 |

<

g 40000 [, |

E "'.

;tg 30000 R T r
20000 F 0 e e 7
10000 - . , | | |

Number of Samples

Figure 6.8: Average Area under the Loss Time Curve scores for the various meta-
algorithms. The legend is omitted for readability.

Pairwise Curve Comparison ——— L—————— Active Testing Al
Best on Sample —— L——————— Active Testing A0
Average Ranking

Figure 6.9: Results of Nemenyi test (o« = 0.05) on the Area Under the Loss Time
Curves scores. Classifiers are sorted by their average rank (lower is better). Classifiers
that are connected by a horizontal line are statistically equivalent.

not aware of this and consider only accuracy. They build a ranking solely based on
accuracy, neglecting the run times, whereas high run times are punished by loss time
curves.

As done before, we can rank the meta-algorithms for each dataset based on Area
Under the Loss Time Curves. This enables us to do a statistical test on the performance
in Loss Time space. Figure 6.9 shows the result of the corresponding Friedman with
post-hoc Nemenyi test. The results seem similar to the results on the Area Under the

124 6.4. Experiments

Loss Curves: Pairwise Curve Comparison and Best on Sample perform statistically
equivalent, as well as Average Ranking, Active Testing AO and Active Testing Al.
However, much performance gain can still be obtained by making the meta-algorithms
also consider run times, as we will see next.

6.4.4 Optimizing on Accuracy and Run Time

Next, our aim is to involve run times in the classifier selection process and evaluate
whether this improves the performance of the meta-algorithm in Loss Time space.
In this experiment, we will trade-off accuracy and run time. Recall that the meta-
algorithms potentially use different evaluation measures to identify similar datasets
and select classifiers. We adjust the methods to compare and select classifiers based
on their A3R’ scores, as introduced in Chapter 6.3. Pairwise curve comparison still
builds learning curves based on accuracy, but selects the most promising algorithm
to test next based on a higher A3R’ score. Active Testing identifies similar datasets
based on accuracy, but selects the most promising algorithm to test next based on a
higher A3R’ score. Formally, evaluation measure P = accuracy, evaluation measure
P’ = A3R’'. This way, decent classifiers that require a low run time are preferred over
better classifier that require a high run time. The baseline methods can be adapted in
a similar way such that they select classifiers based on A3R’.

Figure 6.10 compares the Average Loss Time Curves obtained using A3R’ with
the Average Loss Time Curves based solely on accuracy. For example, in Figure 6.10a
the red dashed line is exactly the same as the red line depicted in Figure 6.7d. These
represent the ‘vanilla’ version of the Average Ranking method, that solely uses accur-
acy to build a ranking. In contrast, the solid red line is the version of the Average
Ranking method that considers both accuracy and run time, by means of A3R’. The
gain in performance is eminent. All methods using A3R’ converge to an acceptable
loss orders of magnitude faster than the ones based on solely accuracy. For example,
Pairwise Curve Comparison with A3R’ converges on average in 5 seconds to a loss
of less than 0.001, whereas vanilla Pairwise Curve Comparison takes on average 454
seconds for this. This can be very useful in practise, when data needs to be processed
at high speed.

Again, we do a Friedman with post-hoc Nemenyi test, based on the scores for
the Area Under the Loss Time Curves per task. Figure 6.11 shows the results. All
the meta-algorithms that rely on A3R’ to construct the ranking perform statistically
significant better than their vanilla counterparts. Furthermore, all meta-algorithms
that construct a ranking based on A3R’ perform better than the meta-algorithms that
just use accuracy. The average ranking method scores surprisingly well in practise,
which is confirmed by a similar study [3].

Chapter 6. Combining Accuracy and Run Time 125

6.5 Conclusion

This chapter addresses the problem of algorithm selection under a budget, where
multiple algorithms can be run on the full dataset until a given budget expires. This
budget can be expressed as the number of cross-validation tests; in that case the user
can only select a limited number of algorithms and parameter settings to evaluate.
The budget can also be expressed in time, where there is a certain amount of time
in which various algorithms with multiple parameter settings can be evaluated, after
which the best must be selected.

We have extended the method presented in [87] such that it generates a ranking
of classifiers, rather than just predicting the single best classifier. The ranking suggests
in which order the classifiers should be tested. Based on such ranking a loss curve can
be constructed, showing which meta-algorithms perform best after a given number of
tests. In order to objectively compare various meta-learning algorithms and to enable
statistical tests, the Area Under the Loss Curve can be calculated. Interestingly, a
simple and elegant baseline method called Best on Sample performs equally well
in our experiments, selecting a good classifier using only a few tests.

However, when tested in the more realistic setting where the budget is expressed
in time, rather than a number of tests, the performance of meta-algorithms becomes
unpredictable. This was reflected in Figure 6.8, where there was no general trend that
Pairwise Curve Comparison and Best on Sample benefit from using more and bigger
samples.

When evaluating in the time budget setting, the meta-algorithms should be aware
of the run time of the classifiers. A measure such as A3R’ (which trades off accuracy
and run time) can provide this, although other measures are also capable of doing so
as well (e.g., ARR). We evaluated all the meta-classifiers based on the Area Under
the Loss Time Curve. The meta-algorithms using A3R’ consistently outperformed the
meta-algorithms that did not use this measure. This suggests that A3R’ is very suitable
for algorithm selection applications with a limited time budget. Apparently, it is better
to try many reasonable (and fast) classifiers that a few potentially very good (but
expensive) classifiers.

These results are not unexpected; when using an evaluation measure that partly
considers run time (as the Area Under the Loss Time Curve does) the meta-algorithms
should be aware of the run time of the algorithm configurations. Using the novel
algorithm selection criterion, a reasonable performing classifier was typically selected
orders of magnitude faster than otherwise. Recall that Pairwise Curve Comparison
with A3R’ converges on average in 5 seconds to a loss of less than 0.001, whereas
vanilla Pairwise Curve Comparison takes on average 454 seconds for this; a speed-up
of almost factor 100.

126

6.5. Conclusion

vanilla - - - -
A3R’

/'07 d?"?}‘
N 3
% %
X, X,
% 0
|l —7———— - -
vanilla - - - -
- A3R’ i
— , - ,
% % ‘ D 9, Dy “q 25
% % ¥ Gp % RIS
0 % %
)4 X, X,
O@ 06 O)

(b) Best on Sample

Figure 6.10: Loss Time Curves. The z-axis shows the time in milliseconds, the y-axis

shows the loss.

Chapter 6. Combining Accuracy and Run Time 127

- vanilla - - - -
A3R’ ,

(c) PCC

vanilla
09 A3R’ i

0.7 | h

05 h

04 R

02 h

(d) Active Testing Al

Figure 6.10: Loss Time Curves. The z-axis shows the time in milliseconds, the y-axis
shows the loss (continued).

128 6.5. Conclusion

Average Ranking (A3R’) L—— ActiveTesting Al
Best on Sample (A3R’) L——— Active Testing AO
Pairwise Curve Comparison (A3R’) ——— Average Ranking
Active Testing A0 (ABR)) —MM8 L Best on Sample
ActiveTesting Al (A3R’) Pairwise Curve Comparison

Figure 6.11: Results of Nemenyi test (o« = 0.05) on the Area Under the Loss Time
Curve scores. Classifiers are sorted by their average rank (lower is better). Classifiers
that are connected by a horizontal line are statistically equivalent. The parameters
are fixedtot =5, k = 17.

Future work should focus on applying this technique on the full meta-dataset of
OpenML. Currently, OpenML already contains many datasets from various domains,
e.g., data streams, text mining datasets and QSAR datasets. In this work we carefully
selected a set of datasets to perform the meta-learning tasks on. However, by defini-
tion this approach embraces ‘the strong assumption of Machine Learning’ (as defined
by Giraud-Carrier and Provost [60]). The strong assumption of Machine Learning is
that the distribution of datasets that we will model is explicitly or implicitly known,
at least to a useful approximation (see also Chapter 3). To the best of our knowledge,
there is currently no work in Machine Learning that does not make this assumption.
However, Machine Learning and meta-learning do not require such strong assump-
tions. In other words, one very promising area of future work would be setting up a
meta-learning experiment that involves all datasets from OpenML. Such experiment
would face many challenges, as one would be dealing with data and classifiers from
various domains, but the rewards could be high. Trading off accuracy and run time
using A3R’ might be a key aspect to this. This would be the first research that con-
vincingly demonstrates the true power of meta-learning, without making any strong
assumptions.

Conclusions

7.1 Open Machine Learning

We have introduced OpenML, an online platform on which researchers can share
and reuse large amounts of collaboratively generated experimental data. OpenML
automatically stores and indexes important meta-data about the experiments for re-
producibility and further study. For datasets, data about the attributes and standard
meta-features are stored. Upon these datasets, well-defined scientific tasks can be cre-
ated. These provide a formal description about the given inputs and required outputs
for solving it. This makes the uploaded results objectively comparable.

For the uploaded algorithms, all parameters, their data types and default values
are registered. This way, it is possible to compare the performance of various al-
gorithms, but also various parameter settings of the same algorithm. Furthermore,
OpenML is integrated in popular Machine Learning workbenches and programming
languages, making it possible to share algorithms and experiments with a few lines
of code, or a single click of a button.

For all experiments, the exact algorithms, the inputs (such as parameter settings)
and the outputs (models, predictions on test set) are stored. This makes it possible to
reuse this information and learn from the past. The experimental data answers many
questions about the interplay between data and algorithms, for example

what is the best algorithm for a certain data set?

how does a given data property influence the performance of an algorithm?

what is the effect of a given parameter on the performance of an algorithm?

which parameters are influencing predictive performance the most?

130 7.2. Massively Collaborative Machine Learning

e which pairs of algorithms have a similar (or different) prediction behaviour?

Many of these research questions require the setup of time and computation-intensive
experiments, while these can be answered on the fly when adopting this collaborative
approach.

7.2 Massively Collaborative Machine Learning

We demonstrated the power of this collaborative approach by means of two large scale
studies. The first study covered the data stream setting, where classifiers are continu-
ously trained and evaluated on a stream of new observations. We ran a wide range of
classifiers over all data streams in OpenML, and built meta-models to predict for each
(window of) instances which classifier would work best on it. Indeed, dynamically
switching at various points in the stream between various heterogeneous classifiers
potentially results in a better accuracy than individual classifiers could achieve. This
technique (the Meta-Learning Ensemble) indeed outperformed all individual classi-
fiers and is competitive with state-of-the-art ensembles using many more models.
Quite surprisingly, an even simpler technique that measured which of the classifiers
performed best on a previous window (BLAST) outperformed all other approaches
based on this idea. We introduced two variants of measuring the performance of clas-
sifiers on previous data, one approach using a fixed window and one approach based
on fading factors. Furthermore, we built a clustering upon the instance-based predic-
tions of all data stream classifiers, gaining insight in which classifiers make similar
predictions (Figure 4.14 on page 69). We used OpenML to scale up data stream stud-
ies to cover 60 data streams, which is to the best of our knowledge the largest data
stream study so far.

The second study covered conventional batch data, and leveraged learning curve
information about algorithms. A learning curve is an ordered set of performance
scores of a classifier on data samples of increasing size. OpenML contains many of
these. The meta-algorithms leveraged learning curves up till a certain size, which is
usually much faster than running a set of algorithms on the full dataset. Based on the
performance of an algorithm on the first samples of a learning curve, assumptions
can be made about the performance on the whole dataset. Within a certain budget,
the most promising classifiers can be tested using a cross-validation procedure. The
budget can be expressed in either an amount of cross-validation tests, or run time. In
the latter case, it proved very fruitful to select classifiers based on a trade-off between
accuracy and run time. If one is willing to settle for an algorithm that is almost as
good as the absolute best algorithm for that dataset, the costs of finding an appropri-
ate algorithm can be decreased by orders of magnitude. In this study, OpenML was

Chapter 7. Conclusions 131

used as an experiment repository: the datasets and tasks that were used take many
resources (time and memory) to model, so the only way to comprehensively research
the proposed techniques is by reusing results that are collaboratively generated.

7.3 Community Adoption

More researchers have already adopted OpenML, as can be seen by the increasing
amount of uploaded experiments. We mention some noteworthy studies, which is just
a small selection of successful examples. The work of Feurer et al. [43] specializes
in algorithm selection for Machine Learning by means of Sequential Model-based
Bayesian Optimization. As mentioned in Chapter 3, the performance of Sequential
Model-based Bayesian Optimization depends on the quality of the initial evaluation
points. In order to find good initial evaluation points, the meta-knowledge in OpenML
is used.

The work of Olier et al. [99] focuses on automated drug discovery. Given a pro-
tein that is critical to a pathogen (e.g. a virus or parasite), chemists are interested to
know which molecules (drugs) can successfully inhibit that pathogen. This informa-
tion is stored in QSAR datasets, which link the structural properties of the drugs to
their activity against the protein. Machine Learning techniques can learn this rela-
tionship, but it is not clear which techniques will work best on a given QSAR dataset.
The authors investigated whether a meta-algorithm can learn which techniques work
well on any given QSAR dataset. All results (datasets and algorithm evaluations) are
available on OpenML.

The work of Post et al. [111] uses OpenML to make general claims about common
Machine Learning assumptions. In this work, the authors investigated which classi-
fiers benefit from feature selection. Quite surprisingly, feature selection seldom led
to a statistical significant improvement in performance. The authors speculate that
while this might be the case, the set of datasets might be biased. As all the datasets in
OpenML come from Machine Learning problems, chances are high that these already
experienced some form of pre-processing. Applying these techniques on more raw
data might show different results.

7.4 Future Work

With these and many other ongoing projects, there is much room for future work.
Machine Learning learning literature contains a lot of ‘folk knowledge’ and ‘folk wis-
dom’ [38], but in order to be scientifically correct we need proper theoretical or exper-
imental results to back these up. Much of this folklore can be confirmed or rejected

132 7.4. Future Work

by means of large scale experimentation. Investigating questions like “is data pre-
processing more important than proper algorithm selection?”, “are non-linear models
really better than linear models?” and “how much additional training effort do non-
linear models need to outperform their linear counterparts?” would spark interesting
discussions within the community.

Another obvious possibility is to do a large scale benchmark of Machine Learning
algorithms. Recently, a particular benchmark study attracted lots of attention [42],
but was also criticized for various reasons [160]. In order to do proper benchmark-
ing, the datasets, algorithms and performance space need to be properly defined.
Furthermore, the relevant algorithm parameters need to be properly tuned, using for
example Bayesian Optimization or Random Search. We believe that with OpenML, the
infrastructure for a proper benchmark study is available, making it possible to com-
pare algorithms across various Machine Learning toolboxes and making the results
interactively available.

To conclude, there is the issue of meta-learning and optimization. As was argued
in Chapter 3, there are basically two approaches to algorithm selection. The meta-
learning approach learns from prior experiments, and recommends a set of classifiers
based on these. The search approach experiments with intelligently trying out various
classifiers (and parameter settings), but neglects the vast amount of experimental
results already available. Earlier attempts to combine the two resulted in interesting
ideas and solid results [43, 88], however there has been little follow-up. One possible
explanation for this might be the fact that it combines two sources of knowledge
that are computationally expensive to acquire, and complex to understand. OpenML
partly abates both difficulties: knowledge of past experiments is available by querying
the database and will lead to more understanding of both techniques. Successfully
combining these two paradigms has the potential to convincingly push the state of
the art of both fields of research.

(1]

(2]

(3]

(4]

[5]

(6]

Bibliography

S. M. Abdulrahman and P. Brazdil. Measures for Combining Accuracy and
Time for Meta-learning. In Meta-Learning and Algorithm Selection Workshop at
ECAI 2014, pages 49-50, 2014.

S. M. Abdulrahman, P. Brazdil, J. N. van Rijn, and J. Vanschoren. Algorithm
selection via meta-learning and sample-based active testing. In J. Vanschoren,
P. Brazdil, C. Giraud-Carrier, and L. Kotthoff, editors, Proceedings of the 2015
International Workshop on Meta-Learning and Algorithm Selection (MetaSel),
number 1455 in CEUR Workshop Proceedings, pages 55-66, Aachen, 2015.

S. M. Abdulrahman, P. Brazdil, J. N. van Rijn, and J. Vanschoren. Speeding
up algorithm selection using average ranking and active testing by introdu-
cing runtime. Machine Learning, Special Issue on Metalearning and Algorithm
Selection, forthcoming, 2016.

D. W. Aha. Generalizing from case studies: a case study. In Proceedings of the
ninth international workshop on Machine learning, pages 1-10, San Francisco,
CA, USA, 1992. Morgan Kaufmann Publishers Inc.

E. L. Allwein, R. E. Schapire, and Y. Singer. Reducing multiclass to binary: A
unifying approach for margin classifiers. Journal of machine learning research,
1(Dec):113-141, 2000.

C. Apté and S. Weiss. Data mining with decision trees and decision rules.
Future generation computer systems, 13(2):197-210, 1997.

134

Bibliography

(7]

(81

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

M. Atzmueller. Subgroup discovery. Wiley Interdisciplinary Reviews: Data Min-
ing and Knowledge Discovery, 5(1):35-49, 2015.

J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization.
Journal of Machine Learning Research, 13(Feb):281-305, 2012.

J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-
parameter optimization. In Advances in Neural Information Processing Systems,
pages 2546-2554, 2011.

J. Beringer and E. Hiillermeier. Efficient instance-based learning on data
streams. Intelligent Data Analysis, 11(6):627-650, 2007.

A. Bifet and R. Gavalda. Learning from Time-Changing Data with Adaptive
Windowing. In SDM, volume 7, pages 139-148. SIAM, 2007.

A. Bifet and R. Gavalda. Adaptive learning from evolving data streams. In
Advances in Intelligent Data Analysis VIII, pages 249-260. Springer, 2009.

A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer. MOA: Massive Online Ana-
lysis. J. Mach. Learn. Res., 11:1601-1604, 2010.

A. Bifet, G. Holmes, and B. Pfahringer. Leveraging Bagging for Evolving Data
Streams. In Machine Learning and Knowledge Discovery in Databases, volume
6321 of Lecture Notes in Computer Science, pages 135-150. Springer, 2010.

A. Bifet, E. Frank, G. Holmes, and B. Pfahringer. Ensembles of restricted hoeff-
ding trees. ACM Transactions on Intelligent Systems and Technology (TIST), 3
(2):30, 2012.

B. Bischl, M. Lang, L. Kotthoff, J. Schiffner, J. Richter, E. Studerus, G. Casalic-
chio, and Z. M. Jones. mlr: Machine Learning in R. Journal of Machine Learning
Research, 17(170):1-5, 2016.

A. L. Blum and R. L. Rivest. Training a 3-node neural network is np-complete.
Neural Networks, 5(1):117-127, 1992.

L. Bottou. Stochastic Learning. In Advanced lectures on machine learning, pages
146-168. Springer, 2004.

P. Brazdil and C. Soares. A Comparison of Ranking Methods for Classification
Algorithm Selection. In Machine Learning: ECML 2000, pages 63-75. Springer,
2000.

Bibliography 135

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

P. Brazdil, J. Gama, and B. Henery. Characterizing the applicability of classi-
fication algorithms using meta-level learning. In Machine Learning: ECML-94,
pages 83-102. Springer, 1994.

P. Brazdil, C. Soares, and J. P. Da Costa. Ranking learning algorithms: Using
IBL and meta-learning on accuracy and time results. Machine Learning, 50(3):
251-277, 2003.

P. Brazdil, C. Giraud-Carrier, C. Soares, and R. Vilalta. Metalearning: Applica-
tions to data mining. Springer Science & Business Media, 2009.

L. Breiman. Bagging Predictors. Machine learning, 24(2):123-140, 1996.
L. Breiman. Random Forests. Machine learning, 45(1):5-32, 2001.

L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and
regression trees. CRC press, 1984.

E. Brochu, V. M. Cora, and N. De Freitas. A tutorial on bayesian optimiza-
tion of expensive cost functions, with application to active user modeling and
hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599, 2010.

C. E. Brodley. Addressing the selective superiority problem: Automatic al-
gorithm/model class selection. In Proceedings of the Tenth International Con-
ference on Machine Learning, pages 17-24, 1993.

L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Nicu-
lae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly,
B. Holt, and G. Varoquaux. API design for machine learning software: exper-
iences from the scikit-learn project. In ECML PKDD Workshop: Languages for
Data Mining and Machine Learning, pages 108-122, 2013.

J. Carpenter. May the best analyst win. Science, 331(6018):698-699, 2011.

R. Caruana, A. Niculescu-Mizil, G. Crew, and A. Ksikes. Ensemble selection
from libraries of models. In Proceedings of the twenty-first international confer-
ence on Machine learning, page 18. ACM, 2004.

D. M. Chickering. Learning bayesian networks is np-complete. In Learning
from data, pages 121-130. Springer, 1996.

W. W. Cohen. Fast effective rule induction. In Proceedings of the twelfth inter-
national conference on machine learning, pages 115-123, 1995.

136

Bibliography

[33]

[34]

[35]

[36]

[37]

[38]

[391]

[40]

[41]

[42]

[43]

[44]

[45]

P. Compton, G. Edwards, B. Kang, L. Lazarus, R. Malor, P. Preston, and
A. Srinivasan. Ripple down rules: Turning knowledge acquisition into know-
ledge maintenance. Artif. Intell. Med., 4(6):463-475, Dec. 1992.

G. F. Cooper. The computational complexity of probabilistic inference using
bayesian belief networks. Artificial intelligence, 42(2-3):393-405, 1990.

T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE transactions
on information theory, 13(1):21-27, 1967.

J. Demsar. Statistical Comparisons of Classifiers over Multiple Data Sets. The
Journal of Machine Learning Research, 7:1-30, 2006.

T. G. Dietterich. Ensemble methods in machine learning. In International
workshop on multiple classifier systems, pages 1-15. Springer, 2000.

P. Domingos. A few useful things to know about machine learning. Commu-
nications of the ACM, 55(10):78-87, 2012.

P. Domingos and G. Hulten. Mining High-Speed Data Streams. In Proceedings
of the sixth ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 71-80, 2000.

P. Domingos and G. Hulten. A general framework for mining massive data
streams. Journal of Computational and Graphical Statistics, 12(4):945-949,
2003.

H. J. Escalante, M. Montes, and L. E. Sucar. Particle Swarm Model Selection.
The Journal of Machine Learning Research, 10:405-440, 2009.

M. Fernandez-Delgado, E. Cernadas, S. Barro, and D. Amorim. Do we need
hundreds of classifiers to solve real world classification problems? Journal of
Machine Learning Research, 15:3133-3181, 2014.

M. Feurer, J. T. Springenberg, and F. Hutter. Initializing bayesian hyperpara-
meter optimization via meta-learning. In AAAI, pages 1128-1135, 2015.

R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals
of eugenics, 7(2):179-188, 1936.

Y. Freund and R. E. Schapire. A desicion-theoretic generalization of on-line
learning and an application to boosting. In European conference on computa-
tional learning theory, pages 23-37. Springer, 1995.

Bibliography 137

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm.
In Proceedings of the Thirteenth International Conference on Machine Learning
(ICML 1996), pages 148-156. Morgan Kaufmann, 1996.

P. W. Frey and D. J. Slate. Letter recognition using holland-style adaptive
classifiers. Machine Learning, 6:161-182, 1991.

J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a stat-
istical view of boosting. Annals of Statistics, 28:2000, 1998.

J. H. Friedman. Multivariate adaptive regression splines. The annals of statist-
ics, pages 1-67, 1991.

J. H. Friedman. On Bias, Variance, 0/1-Loss, and the Curse-of-Dimensionality.
Data Mining and Knowledge Discovery, 1(1):55-77, 1997.

J. H. Friedman. Greedy function approximation: a gradient boosting machine.
Annals of statistics, pages 1189-1232, 2001.

J. Flirnkranz and J. Petrak. An Evaluation of Landmarking Variants. In Working
Notes of the ECML,/PKDD 2000 Workshop on Integrating Aspects of Data Mining,
Decision Support and Meta-Learning, pages 57-68, 2001.

J. Gama and P. Brazdil. Cascade Generalization. Machine Learning, 41(3):
315-343, 2000.

J. Gama and P. Kosina. Recurrent concepts in data streams classification. Know-
ledge and Information Systems, 40(3):489-507, 2014.

J. Gama, P. Medas, G. Castillo, and P. Rodrigues. Learning with Drift Detection.
In SBIA Brazilian Symposium on Artificial Intelligence, volume 3171 of Lecture
Notes in Computer Science, pages 286-295. Springer, 2004.

J. Gama, P. Medas, and R. Rocha. Forest Trees for On-line Data. In Proceedings
of the 2004 ACM symposium on Applied computing, pages 632-636. ACM, 2004.

J. Gama, R. Sebastido, and P. P. Rodrigues. Issues in Evaluation of Stream
Learning Algorithms. In Proceedings of the 15th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages 329-338. ACM, 2009.

J. Gama, R. Sebastido, and P. P. Rodrigues. On evaluating stream learning
algorithms. Machine Learning, 90(3):317-346, 2013.

C. Giraud-Carrier. Beyond predictive accuracy: What? Technical report, Uni-
versity of Bristol, Bristol, UK, UK, 1998.

138

Bibliography

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

C. Giraud-Carrier and F. Provost. Toward a justification of meta-learning: Is
the no free lunch theorem a show-stopper. In Proceedings of the ICML-2005
Workshop on Meta-learning, pages 12-19, 2005.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten.
The WEKA Data Mining Software: An Update. ACM SIGKDD explorations news-
letter, 11(1):10-18, 2009.

M. A. Hall. Correlation-based Feature Subset Selection for Machine Learning.
PhD thesis, University of Waikato, Hamilton, New Zealand, 1998.

D. Hand. Classifier technology and the illusion of progress. Statistical Science,
21(1):1-14, 2006.

L. Hansen and P. Salamon. Neural Network Ensembles. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 12(10):993-1001, 1990.

T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning,
2nd edition. Springer New York, 2009.

J. L. Hintze and R. D. Nelson. Violin plots: a box plot-density trace synergism.
The American Statistician, 52(2):181-184, 1998.

H. Hirsh. Data mining research: Current status and future opportunities. Stat-
istical Analysis and Data Mining, 1(2):104-107, 2008.

M. W. Hoffman, B. Shahriari, and N. de Freitas. Exploiting correlation and
budget constraints in bayesian multi-armed bandit optimization. arXiv preprint
arXiv:1303.6746, 2013.

R. C. Holte. Very simple classification rules perform well on most commonly
used datasets. Machine learning, 11(1):63-90, 1993.

H. J. Hoogeboom, W. A. Kosters, J. N. van Rijn, and J. K. Vis. Acyclic Constraint
Logic and Games. ICGA Journal, 37(1):3-16, 2014.

V. Hoste and W. Daelemans. Comparing learning approaches to coreference
resolution. There is more to it than bias. In Proceedings of the ICML’05 Work-
shop on Meta-learning, pages 20-27, 2005.

J. Hithn and E. Hiillermeier. Furia: an algorithm for unordered fuzzy rule
induction. Data Mining and Knowledge Discovery, 19(3):293-319, 2009.

G. Hulten, L. Spencer, and P. Domingos. Mining Time-changing Data Streams.
In Proceedings of the Seventh ACM SIGKDD International Conference on Know-
ledge Discovery and Data Mining, pages 97-106, 2001.

Bibliography 139

[74]

[75]

[76]

[77]

[78]

[79]
[80]

[81]

[82]

[83]

[84]

[85]

[86]

F. Hutter, H. H. Hoos, K. Leyton-Brown, and K. Murphy. Time-Bounded Se-
quential Parameter Optimization. In Learning and intelligent optimization,
pages 281-298. Springer, 2010.

F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimiza-
tion for general algorithm configuration. In International Conference on Learn-
ing and Intelligent Optimization, pages 507-523. Springer, 2011.

L. Hyafil and R. L. Rivest. Constructing optimal binary decision trees is np-
complete. Information Processing Letters, 5(1):15-17, 1976.

A. Jain and D. Zongker. Feature Selection: Evaluation, Application, and Small
Sample Performance. Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, 19(2):153-158, 1997.

G. H. John and P. Langley. Estimating continuous distributions in bayesian
classifiers. In Proceedings of the Eleventh conference on Uncertainty in artificial
intelligence, pages 338-345. Morgan Kaufmann Publishers Inc., 1995.

T. Kealey. Sex, science and profits. Random House, 2010.

E. Keogh and S. Kasetty. On the need for time series data mining benchmarks:
A survey and empirical demonstration. Data Mining and Knowledge Discovery,
7(4):349-371, 2003.

R. D. King, S. H. Muggleton, A. Srinivasan, and M. Sternberg. Structure-activity
relationships derived by machine learning: The use of atoms and their bond
connectivities to predict mutagenicity by inductive logic programming. Pro-
ceedings of the National Academy of Sciences, 93(1):438-442, 1996.

R. Kohavi, D. H. Wolpert, et al. Bias plus variance decomposition for zero-one
loss functions. In ICML, volume 96, pages 275-83, 1996.

K. K. Ladha. Condorcet’s jury theorem in light of de finetti’s theorem. Social
Choice and Welfare, 10(1):69-85, 1993.

N. Landwehr, M. Hall, and E. Frank. Logistic model trees. Machine Learning,
59(1-2):161-205, 2005.

J. W. Lee and C. Giraud-Carrier. A metric for unsupervised metalearning. In-
telligent Data Analysis, 15(6):827-841, 2011.

R. Leite and P. Brazdil. Predicting Relative Performance of Classifiers from
Samples. In Proceedings of the 22nd international conference on Machine learn-
ing, pages 497-503. ACM, 2005.

140

Bibliography

[87]

(88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

R. Leite and P. Brazdil. Active Testing Strategy to Predict the Best Classification
Algorithm via Sampling and Metalearning. In ECAI, pages 309-314, 2010.

R. Leite, P. Brazdil, and J. Vanschoren. Selecting Classification Algorithms with
Active Testing. In Machine Learning and Data Mining in Pattern Recognition,
pages 117-131. Springer, 2012.

L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Efficient hy-
perparameter optimization and infinitely many armed bandits. arXiv preprint
arXiv:1603.06560, 2016.

M. Lichman. UCI machine learning repository, 2013. URL http://archive.
ics.uci.edu/ml.

I. Manolescu and S. Manegold. Performance evaluation in database research:
principles and experience. Proceedings of the International Conference on Ex-
tending Database Technology (EDBT), page 1156, 2008.

M. Meeng and A. Knobbe. Flexible enrichment with cortana-software demo.
In Proceedings of BeneLearn, pages 117-119, 2011.

D. Michie, D. Spiegelhalter, and C. Taylor. Machine learning, neural and stat-
istical classification. Ellis Horwood, Upper Saddle River, NJ, USA, 1994. ISBN
0-13-106360-X.

H.-L. Nguyen, Y.-K. Woon, W.-K. Ng, and L. Wan. Heterogeneous Ensemble for
Feature Drifts in Data Streams. In Advances in Knowledge Discovery and Data
Mining, pages 1-12. Springer, 2012.

P. Nguyen, M. Hilario, and A. Kalousis. Using Meta-mining to Support Data
Mining Workflow Planning and Optimization. Journal of Artificial Intelligence
Research, 51:605-644, 2014.

M. Nielsen. The future of science: Building a better collective memory. APS
Physics, 17(10), 2008.

M. Nielsen. Reinventing discovery: the new era of networked science. Princeton
University Press, 2012.

W. S. Noble. What is a support vector machine? Nature biotechnology, 24(12):
1565-1567, 2006.

I. Olier, C. Grosan, N. Sadawi, L. Soldatova, and R. D. King. Meta-gsar: Learn-
ing how to learn gsars. In J. Vanschoren, P. Brazdil, C. Giraud-Carrier, and

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Bibliography 141

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

L. Kotthoff, editors, Proceedings of the 2015 International Workshop on Meta-
Learning and Algorithm Selection (MetaSel), number 1455 in CEUR Workshop
Proceedings, pages 104-105, Aachen, 2015.

E. Ostrom. Collective action and the evolution of social norms. The Journal of
Economic Perspectives, pages 137-158, 2000.

N. C. Oza. Online Bagging and Boosting. In Systems, man and cybernetics, 2005
IEEE international conference on, volume 3, pages 2340-2345. IEEE, 2005.

T. Pedersen. Empiricism is not a matter of faith. Computational Linguistics, 34:
465-470, 2008.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Research, 12:2825-
2830, 2011.

Y. Peng, P. Flach, C. Soares, and P. Brazdil. Improved dataset characterisation
for meta-learning. Lecture Notes in Computer Science, 2534:141-152, Jan 2002.

C. Perlich, F. Provost, and J. Simonoff. Tree induction vs. logistic regression:
A learning-curve analysis. Journal of Machine Learning Research, 4:211-255,
2003.

A. H. Peterson and T. Martinez. Estimating The Potential for Combining Learn-
ing Models. In In Proc. of the ICML Workshop on Meta-Learning, pages 68-75,
2005.

J. Petrak. Fast Subsampling Performance Estimates for Classification Algorithm
Selection. In Proceedings of the ECML-00 Workshop on Meta-Learning: Building
Automatic Advice Strategies for Model Selection and Method Combination, pages
3-14, 2000.

B. Pfahringer, H. Bensusan, and C. Giraud-Carrier. Tell me who can learn you
and I can tell you who you are: Landmarking Various Learning Algorithms.
In Proceedings of the 17th international conference on machine learning, pages
743-750, 2000.

B. Pfahringer, G. Holmes, and R. Kirkby. New Options for Hoeffding Trees. In
Al 2007: Advances in Artificial Intelligence, pages 90-99. Springer, 2007.

142 Bibliography

[110] F. Pinto, C. Soares, and J. Mendes-Moreira. Towards automatic generation
of metafeatures. In Pacific-Asia Conference on Knowledge Discovery and Data
Mining, pages 215-226. Springer, 2016.

[111] M. J. Post, P. van der Putten, and J. N. van Rijn. Does Feature Selection Improve
Classification? A Large Scale Experiment in OpenML. In Advances in Intelligent
Data Analysis XV, pages 158-170. Springer, 2016.

[112] J. Priem, P. Groth, and D. Taraborelli. The Altmetrics Collection. PLoS ONE,
11(7):e48753, 2012.

[113] F. Provost, D. Jensen, and T. Oates. Efficient Progressive Sampling. In Proceed-
ings of the fifth ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 23-32. ACM, 1999.

[114] P.van der Putten and M. van Someren. A bias-variance analysis of a real world
learning problem: The coil challenge 2000. Machine Learning, 57(1):177-195,
2004.

[115] J. R. Quinlan. Induction of decision trees. Machine learning, 1(1):81-106,
1986.

[116] J. R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1993.

[117] M. Radovanovi¢, A. Nanopoulos, and M. Ivanovi¢. Hubs in space: Popular
nearest neighbors in high-dimensional data. JMLR, 11:2487-2531, 2010.

[118] J. Read, A. Bifet, B. Pfahringer, and G. Holmes. Batch-Incremental versus
Instance-Incremental Learning in Dynamic and Evolving Data. In Advances
in Intelligent Data Analysis XI, pages 313-323. Springer, 2012.

[119] J.R.Rice. The Algorithm Selection Problem. Advances in Computers, 15:65118,
1976.

[120] J. N. van Rijn. Playing Games: The complexity of Klondike, Mahjong, Nono-
grams and Animal Chess. Master’s thesis, Leiden University, 2012.

[121] J. N. van Rijn and J. Vanschoren. Sharing RapidMiner Workflows and Ex-

periments with OpenML. In J. Vanschoren, P. Brazdil, C. Giraud-Carrier, and
L. Kotthoff, editors, Proceedings of the 2015 International Workshop on Meta-
Learning and Algorithm Selection (MetaSel), number 1455 in CEUR Workshop
Proceedings, pages 93-103, Aachen, 2015.

Bibliography 143

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

J. N. van Rijn and J. K. Vis. Complexity and retrograde analysis of the game
dou shou qi. In BNAIC 2013: Proceedings of the 25th Benelux Conference on
Artificial Intelligence, 8 pages, 2013.

J. N. van Rijn and J. K. Vis. Endgame Analysis of Dou Shou Qi. ICGA Journal,
37(2):120-124, 2014.

J. N. van Rijn, B. Bischl, L. Torgo, B. Gao, V. Umaashankar, S. Fischer, P. Winter,
B. Wiswedel, M. R. Berthold, and J. Vanschoren. OpenML: A Collaborative
Science Platform. In Machine Learning and Knowledge Discovery in Databases,
pages 645-649. Springer, 2013.

J. N. van Rijn, G. Holmes, B. Pfahringer, and J. Vanschoren. Algorithm Selec-
tion on Data Streams. In Discovery Science, volume 8777 of Lecture Notes in
Computer Science, pages 325-336. Springer, 2014.

J. N. van Rijn, G. Holmes, B. Pfahringer, and J. Vanschoren. Towards Meta-
learning over Data Streams. In J. Vanschoren, P. Brazdil, C. Soares, and L. Kot-
thoff, editors, Proceedings of the 2014 International Workshop on Meta-learning
and Algorithm Selection (MetaSel), number 1201 in CEUR Workshop Proceed-
ings, pages 37-38, Aachen, 2014.

J. N. van Rijn, S. M. Abdulrahman, P. Brazdil, and J. Vanschoren. Fast Al-
gorithm Selection using Learning Curves. In Advances in Intelligent Data Ana-
lysis XIV, pages 298-309. Springer, 2015.

J. N. van Rijn, G. Holmes, B. Pfahringer, and J. Vanschoren. Having a Blast:
Meta-Learning and Heterogeneous Ensembles for Data Streams. In Data Min-
ing (ICDM), 2015 IEEE International Conference on, pages 1003-1008. IEEE,
2015.

J. N. van Rijn, G. Holmes, B. Pfahringer, and J. Vanschoren. Case Study on
Bagging Stable Classifiers for Data Streams. In Proceedings of the 24th Belgian-
Dutch Conference on Machine Learning (BeNeLearn 2015), 6 pages, 2015.

J. N. van Rijn, F. W. Takes, and J. K. Vis. The complexity of rummikub prob-
lems. In Proceedings of the 27th Benelux Conference on Artificial Intelligence
(BNAIC 2015), 8 pages, 2015.

J. N. van Rijn, S. M. Abdulrahman, P. Brazdil, and J. Vanschoren. On the
Evaluation of Algorithm Selection Problems. In Proceedings of the 25th Belgian-
Dutch Conference on Machine Learning (BeNeLearn 2016), 2 pages, 2016.

144

Bibliography

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

L. Rokach and O. Maimon. Clustering methods. In Data mining and knowledge
discovery handbook, pages 321-352. Springer, 2005.

A. L. D. Rossi, A. C. P. de Leon Ferreira, C. Soares, and B. F. De Souza.
MetaStream: A meta-learning based method for periodic algorithm selection
in time-changing data. Neurocomputing, 127:52-64, 2014.

C. Schaffer. A conservation law for generalization performance. In Proceedings
of the 11th international conference on machine learning, pages 259-265, 1994.

R. E. Schapire. The Strength of Weak Learnability. Machine learning, 5(2):
197-227, 1990.

J. C. Schlimmer. Concept Acquisition Through Representational Adjustment. PhD
thesis, University of California, Irvine, 1987.

J. C. Schlimmer and R. H. Granger Jr. Incremental learning from noisy data.
Machine learning, 1(3):317-354, 1986.

A. Shaker and E. Hiillermeier. Recovery analysis for adaptive learning from
non-stationary data streams: Experimental design and case study. Neurocom-
puting, 150:250-264, 2015.

S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos: primal estim-
ated sub-gradient solver for SVM. Mathematical Programming, 127(1):3-30,
2011.

M. R. Smith, T. Martinez, and C. Giraud-Carrier. An instance level analysis of
data complexity. Machine learning, 95(2):225-256, 2014.

K. A. Smith-Miles. Cross-disciplinary Perspectives on Meta-Learning for Al-
gorithm Selection. ACM Computing Surveys (CSUR), 41(1):6, 2008.

S. Sonnenburg, M. Braun, C. Ong, S. Bengio, L. Bottou, G. Holmes, Y. LeCun,
K. Muller, F. Pereira, C. Rasmussen, G. Ratsch, B. Scholkopf, A. Smola, P. Vin-
cent, J. Weston, and R. Williamson. The need for open source software in
machine learning. Journal of Machine Learning Research, 8:2443-2466, 2007.

W. N. Street and Y. Kim. A streaming ensemble algorithm (sea) for large-
scale classification. In Proceedings of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 377-382, 2001.

Q. Sun and B. Pfahringer. Pairwise meta-rules for better meta-learning-based
algorithm ranking. Machine learning, 93(1):141-161, 2013.

Bibliography 145

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

Q. Sun, B. Pfahringer, and M. Mayo. Towards a Framework for Designing
Full Model Selection and Optimization Systems. In Multiple Classifier Systems,
pages 259-270. Springer, 2013.

A. S. Szalay, J. Gray, A. R. Thakar, P. Z. Kunszt, T. Malik, J. Raddick,
C. Stoughton, and J. vandenBerg. The sdss skyserver: public access to the
sloan digital sky server data. In Proceedings of the 2002 ACM SIGMOD interna-
tional conference on Management of data, pages 570-581. ACM, 2002.

C. Thornton, F. Hutter, H. Hoos, and K. Leyton-Brown. Auto-WEKA: Combined
selection and Hyperparameter Optimization of Classification Algorithms. In
Proceedings of the 19th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 847-855. ACM, 2013.

L. Torgo. Data Mining with R: Learning with Case Studies. Chapman &
Hall/CRC, 1st edition, 2010. ISBN 1439810184, 9781439810187.

L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):
1134-1142, 1984.

J. N. Van Rijn and J. Vanschoren. OpenML: An Open Science Platform for Ma-
chine Learning. In Proceedings of the 22th Belgian-Dutch Conference on Machine
Learning (BeNeLearn 2013), 1 page, 2013.

J. N. Van Rijn, V. Umaashankar, S. Fischer, B. Bischl, .. Torgo, B. Gao, P. Winter,
B. Wiswedel, M. R. Berthold, and J. Vanschoren. A RapidMiner extension for
Open Machine Learning. In RapidMiner Community Meeting and Conference,
pages 59-70, 2013.

J. Vanschoren and H. Blockeel. Towards understanding learning behavior. In
Proceedings of the annual machine learning conference of Belgium and the Neth-
erlands, pages 89-96, 2006.

J. Vanschoren, H. Blockeel, B. Pfahringer, and G. Holmes. Experiment data-
bases. A new way to share, organize and learn from experiments. Machine
Learning, 87(2):127-158, 2012.

J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo. OpenML: networked
science in machine learning. ACM SIGKDD Explorations Newsletter, 15(2):49-
60, 2014.

J. Vanschoren, J. N. van Rijn, and B. Bischl. Taking machine learning research
online with OpenML. In Proceedings of the 4th International Workshop on Big

146

Bibliography

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]
[164]

[165]

Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Program-
ming Models and Applications, pages 1-4. JLMR.org, 2015.

J. Vanschoren, J. N. van Rijn, B. Bischl, G. Casalicchio, M. Lang, and M. Feurer.
OpenML: a Networked Science Platform for Machine Learning. In ICML 2015
MLOSS Workshop, 3 pages, 2015.

V. Vidulin, M. Bohanec, and M. Gams. Combining human analysis and machine
data mining to obtain credible data relations. Information Sciences, 288:254—
278, 2014.

R. Vilalta and Y. Drissi. A perspective view and survey of meta-learning. Arti-
ficial Intelligence Review, 18(2):77-95, 2002.

R. Vilalta, C. Giraud-Carrier, and P. Brazdil. Meta-Learning, pages 731-748.
Springer US, Boston, MA, 2005.

M. Wainberg, B. Alipanahi, and B. J. Frey. Are random forests truly the best
classifiers? Journal of Machine Learning Research, 17(110):1-5, 2016.

H. Wang, W. Fan, P. S. Yu, and J. Han. Mining Concept-Drifting Data Streams
using Ensemble Classifiers. In KDD, pages 226-235, 2003.

M. Wojnarski, S. Stawicki, and P. Wojnarowski. Tunedit.org: System for auto-
mated evaluation of algorithms in repeatable experiments. Lecture Notes in
Computer Science, 6086:20-29, 2010.

D. H. Wolpert. Stacked generalization. Neural networks, 5(2):241-259, 1992.

M. N. Zarmehri and C. Soares. Using Metalearning for Prediction of Taxi Trip
Duration Using Different Granularity Levels. In Advances in Intelligent Data
Analysis XIV, pages 205-216. Springer, 2015.

P. Zhang, B. J. Gao, X. Zhu, and L. Guo. Enabling Fast Lazy Learning for Data
Streams. In Data Mining (ICDM), 2011 IEEE 11th International Conference on,
pages 932-941. IEEE, 2011.

Dutch Summary

Veel wetenschap is gericht op het bouwen van modellen. Modellen zijn schemat-
ische (vaak versimpelde) weergaven van de werkelijkheid. Deze modellen zijn ge-
baseerd op waargenomen data uit het verleden, en maken vaak voorspellingen voor
de toekomst (nog niet waargenomen data). De mens werkt onbewust met model-
len; vrijwel alle informatie die wij tot ons nemen verwerken wij tot een model. Een
klassiek Nederlands voorbeeld hiervan is het weer. Wanneer we ’s ochtends uit het
raam kijken en er hangen donkere wolken, zouden we geneigd zijn te denken dat het
een regenachtige dag wordt. Andersom, wanneer de lucht helder blauw is, zouden
we wellicht denken dat het een mooie dag gaat worden. Het model dat wij gebruiken
stelt dus: “Als het bewolkt is, is er een grote kans op regen; en als de lucht helder is,
is er een grote kans op een mooie dag.” Op een of andere manier hebben mensen de
capaciteit om ervaringen uit het verleden om te zetten in zulke modellen, en daarmee
voorspellingen te maken voor de toekomst. Dit noemen we ook wel ‘leren’.

Tegenwoordig zijn er veel technieken waardoor computers ook kunnen leren. Dit
vakgebied heet Machine Learning, en wordt in het dagelijks leven op veel plekken
toegepast. Voorbeelden hiervan zijn:

e sociale media: de computer bepaalt welke advertenties er aan een specifieke
gebruiker getoond moeten worden

e aandelenmarkt: de computer bepaalt welke aandelen gekocht of verkocht mo-
eten worden

e spamfilters: de computer bepaalt voor inkomende berichten of het spam of geen
spam is

Aangezien veel van deze onderwerpen ‘hot topics’ zijn, is er veel onderzoek gestoken
in het ontwikkelen van computer programma’s die zulke modellen kunnen bouwen

148 Dutch Summary

(algoritmes). Er bestaan bijzonder veel van zulke algoritmes, en vaak hebben deze
algoritmes ook nog verschillende opties die de werking subtiel beinvloeden (para-
meters). Daarnaast is er sluitend wiskundig bewijs dat er niet één algoritme bestaat
dat goed werkt op alle datasets. Dat maakt het voor eindgebruikers die deze algorit-
mes op hun data willen toepassen niet makkelijk om het juiste algoritme te kiezen.

Het vakgebied van ‘meta-learning’ heeft als doel orde in deze chaos te scheppen.
Het houdt zich bezig met het in kaart brengen van welke algoritmes het goed doen
op wat voor soort data. Dit wordt veelal op experimentele basis gedaan. Een veel
gebruikte methodologie is om zo veel mogelijk algoritmes op zo veel mogelijk datasets
uit te proberen, en op basis van de resultaten een model te leren welke op welke data-
sets bepaalde algoritmes goed werken (vandaar de naam: meta-learning). Hoewel dit
in de praktijk goed werkt is de tijd een limiterende factor. Vaak nemen deze experi-
menten veel tijd in beslag, waardoor het onderzoek noodgedwongen kleinschaliger is
dan wenselijk.

Om dit probleem op te lossen hebben we OpenML ontwikkeld. Dit is een online
database waarop onderzoekers hun experimentele data met elkaar kunnen delen,
om op die manier grootschaliger meta-learning onderzoek te kunnen doen. Wanneer
eerdere experimentele resultaten opgeslagen en vrij toegankelijk beschikbaar zijn, is
het niet langer nodig om deze tijdrovende experimenten op te zetten, maar kunnen
vragen over de werking van algoritmes direct grondig worden beantwoord.

In dit proefschrift wordt beschreven hoe fundamentele meta-learning problemen
als ‘welk algoritme heeft de voorkeur op een bepaald soort data?’, ‘wat is het effect
van een bepaalde parameter op de prestaties van een algoritme?’ en ‘hoe werkt een
zojuist nieuw ontwikkeld algoritme ten opzichte van alle bestaande algoritmes?’ met
behulp van OpenML met relatief weinig moeite kunnen worden beantwoord.

English Summary

Many scientists are focussed on building models. Models are a schematical represent-
ation of a concept (often simplified). These models are based on observed data from
the past, and make predictions about the future (yet unseen data). Subconsciously, we
work with many models. We nearly process all information to a model. The weather
is a classic Dutch example. When we observe dark clouds in the morning, we are in-
clined to think that it will be a rainy day. Conversely, when there is a clear blue sky,
we will expect a sunny day. In this case, the model that we are using is: “If there are
clouds, chances are that it is going to rain; if there is a clear sky, we might have a nice
day.” Somehow, we are capable of turning our experiences from the past into such
models, and use these to make predictions about the future. This is called ‘learning’.

There are many techniques that enable computers to learn as well. The field of
research that develops such techniques is called Machine Learning. We encounter
Machine Learning on a daily basis; some examples are:

e social media: the computer decides which advertisements should be shown to a
specific user

e the stock market: the computer decides which stocks should be bought or sold
e spam filters: the computer determines whether an incoming message is spam

Many of these subjects are considered hot topics, hence many research is devoted
to develop computer programs capable of building models (algorithms). Many of
such algorithms exist, and these often consist of various options that subtly influence
performance (parameters). Furthermore, there is mathematical proof that there exists
no single algorithm that works well on every dataset. This complicates the task of
selecting the right algorithm for a given task.

150 English Summary

The field of meta-learning aims to resolve these problems. The purpose is to de-
termine what kind of algorithms work well on which datasets. This is often done
experimentally. A common approach is to execute many algorithms on many data-
sets, and based on the results learn which combinations work well (hence the name:
meta-learning). Although this works well in practise, time is a limiting factor. Many
of these experiments are very time-consuming, which unintentionally limits the scale
of many studies.

In order to solve this problem, we have developed OpenML. This is an online data-
base on which researches can share experimental results amongst each other, poten-
tially scaling up the size of meta-learning studies. Having earlier experimental results
freely accessible and reusable for others, it is no longer required to conduct time ex-
pensive experiments. Rather, researchers can answer such experimental questions by
a simple database look-up.

This thesis addresses how OpenML can be used to answer fundamental meta-
learning questions such as ‘which algorithm should be preferred on a certain kind
of data?’, ‘what is the effect of a given parameter on the performance of an al-
gorithm?’ and ‘how does a newly developed algorithm perform compared to existing
algorithms?’

Curriculum Vitae

Jan van Rijn was born on Wednesday 24 June 1987 in Katwijk. From 1999 until
2004 he was a student at Andreas College (location Pieter Groen) in Katwijk. In 2008
he obtained his Bachelor of Informatics at Leiden University of Applied Sciences,
after which he obtained his master Computer Science in 2012 at Leiden University
(thesis: ‘Playing Games: The complexity of Klondike, Mahjong, Nonograms and An-
imal Chess’ [120]).

During his studies he participated in various Algorithm Programming Contests,
among which the North Western European Regional Contest in 2010 in Bremen, Ger-
many. He was as student-assistant actively involved in various courses of the Inform-
atics program at Leiden University. Furthermore, during his studies he was also active
as Software Developer for a small business in Amsterdam.

From 2012 until 2016 he conducted his doctoral research under the supervision
of Dr. Joaquin Vanschoren, Dr. Arno J. Knobbe and Prof. Dr. Joost N. Kok at Leiden In-
stitute of Advanced Computer Science (LIACS). During this period he played a major
role in the development and maintenance of OpenML. Furthermore, he was actively
involved in teaching; he assisted at various Bachelor courses and gave several guest
lectures about his research.

During his time as PhD student, he made several academic visits to foreign univer-
sities. He visited the University of Waikato three times for a period of several months,
as invited by Prof. Dr. Bernhard Pfahringer and Prof. Dr. Geoffrey Holmes. He also vis-
ited the University of Porto for several weeks, as invited by Prof. Dr. Pavel Brazdil. Fur-
thermore, Jan was also a member of the Institute Council, an advisory organ within
the institute, and the Social Committee, for organizing social staff events.

Currently, Jan is working as researcher at the University of Freiburg. After obtain-
ing his PhD he wants to pursue a career in academic.

Acknowledgements

This journey started in the spring of 2012, when I was in the process of finishing my
Master’s Thesis. My supervisors back then, Dr. Walter Kosters and Dr. Hendrik Jan
Hoogeboom, encouraged me to have an informal chat with my current advisor, Prof.
Dr. Joost Kok, about the open PhD positions. It was their guidance that made me
enthusiastic about scientific research and led me towards my first academic position.

Many thanks towards the active OpenML community, that made the biannual
workshops something to look forward to. In particular, I would like to thank the
various people that I met at several locations around the world: Bernd Bischl, Paula
Branco, Giuseppe Casalicchio, Matthias Feurer, Frank Hutter, Dominik Kirckhoff, Lars
Kotthoff, Michel Lang, Rafael Mantovani, Luis Torgo and Joaquin Vanschoren.

I have been very lucky to work in the inspiring presence of many friends and col-
leagues from LIACS (and the Snellius building): Frans Birrer, Hendrik Blockeel, Ben-
jamin van der Burgh, Ricardo Cachucho, André Deutz, Wouter Duivesteijn, Kleanthi
Georgala, Vian Govers, Arno Knobbe, Rob Konijn, Michiel Kosters, Irene Martorelli,
Marving Meeng, Annette Mense, Shengfa Miao, Siegfried Nijssen, Peter van der Putten,
Kristian Rietveld, Jurriaan Rot, Claudio S4, Marijn Schraagen, Hanna Schraffenberg,
Marijn Swenne, Mima Stanojkovski, Anna Stawska, Frank Takes, Ugo Vespier, Jonathan
Vis and Rudy van Vliet.

I would like to thank Prof. Dr. Bernhard Pfahringer and Prof. Dr. Geoffrey Holmes
for hosting me multiple times at the University of Waikato. It has been a great pleasure
to work together in such a prestigious and friendly environment. I also would like to
thank several others from the Department of Computer Science, who made my visits
both instructive and interesting: Christopher Beckham, Felipe Bravo-Marquez, Bob
Durant, Dale Fletcher, Eibe Frank, Henry Gouk, Brian Hardyment, Simon Laing, Tim
Leathart, Michael Mayo, Peter Reutemann, Sam Sarjant and Quan Sun. Our time in
the lab was silver, but our time in the Tea Room was golden.

154 Acknowledgements

Furthermore, I would like to thank prof. dr. Pavel Brazdil and dr. Carlos Soares
for inviting me to visit the University of Porto. It was a great experience to spend
such cold months in the warm environment of LIAAD. Also many thanks to Salisu
Abdulrahman, for the great collaborations prior, during and after my stay in Portugal.

Finally, I would like to mention my family and friends across the world. In partic-
ular, Nico, Leuntje, Niels, Annelies, Bas and Leoni van Rijn, for providing the warm
and stable environment that I always could rely on. This thesis is dedicated to you.

Publication List

Below is a chronological list of publications by the author up to October 2016.

e S. M. Abdulrahman, P. Brazdil, J. N. van Rijn, and J. Vanschoren. Speeding
up algorithm selection using average ranking and active testing by introducing
runtime. Machine Learning, Special Issue on Metalearning and Algorithm Selec-
tion, forthcoming, 2016

e M. J. Post, P. van der Putten, and J. N. van Rijn. Does Feature Selection Improve
Classification? A Large Scale Experiment in OpenML. In Advances in Intelligent
Data Analysis XV, pages 158-170. Springer, 2016

e J. N. van Rijn, S. M. Abdulrahman, P. Brazdil, and J. Vanschoren. On the Evalu-
ation of Algorithm Selection Problems. In Proceedings of the 25th Belgian-Dutch
Conference on Machine Learning (BeNeLearn 2016), 2 pages, 2016

e J. N. van Rijn, G. Holmes, B. Pfahringer, and J. Vanschoren. Having a Blast:
Meta-Learning and Heterogeneous Ensembles for Data Streams. In Data Mining
(ICDM), 2015 IEEE International Conference on, pages 1003-1008. IEEE, 2015

e J. N. van Rijn, F. W. Takes, and J. K. Vis. The complexity of rummikub problems.
In Proceedings of the 27th Benelux Conference on Artificial Intelligence (BNAIC
2015), 8 pages, 2015

e J. N. van Rijn, G. Holmes, B. Pfahringer, and J. Vanschoren. Case Study on
Bagging Stable Classifiers for Data Streams. In Proceedings of the 24th Belgian-
Dutch Conference on Machine Learning (BeNeLearn 2015), 6 pages, 2015

e J. N. van Rijn and J. Vanschoren. Sharing RapidMiner Workflows and Experi-
ments with OpenML. In J. Vanschoren, P. Brazdil, C. Giraud-Carrier, and L. Kot-
thoff, editors, Proceedings of the 2015 International Workshop on Meta-Learning

156

Publication List

and Algorithm Selection (MetaSel), number 1455 in CEUR Workshop Proceed-
ings, pages 93-103, Aachen, 2015

S. M. Abdulrahman, P. Brazdil, J. N. van Rijn, and J. Vanschoren. Algorithm
selection via meta-learning and sample-based active testing. In J. Vanschoren,
P. Brazdil, C. Giraud-Carrier, and L. Kotthoff, editors, Proceedings of the 2015 In-
ternational Workshop on Meta-Learning and Algorithm Selection (MetaSel), num-
ber 1455 in CEUR Workshop Proceedings, pages 55-66, Aachen, 2015

J. Vanschoren, J. N. van Rijn, B. Bischl, G. Casalicchio, M. Lang, and M. Feurer.
OpenML: a Networked Science Platform for Machine Learning. In ICML 2015
MLOSS Workshop, 3 pages, 2015

J. Vanschoren, J. N. van Rijn, and B. Bischl. Taking machine learning research
online with OpenML. In Proceedings of the 4th International Workshop on Big
Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Program-
ming Models and Applications, pages 1-4. JLMR.org, 2015

J. N. van Rijn, S. M. Abdulrahman, P. Brazdil, and J. Vanschoren. Fast Algorithm
Selection using Learning Curves. In Advances in Intelligent Data Analysis XIV,
pages 298-309. Springer, 2015

J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo. OpenML: networked
science in machine learning. ACM SIGKDD Explorations Newsletter, 15(2):49—
60, 2014

J. N. van Rijn and J. K. Vis. Endgame Analysis of Dou Shou Qi. ICGA Journal,
37(2):120-124, 2014

J. N. van Rijn, G. Holmes, B. Pfahringer, and J. Vanschoren. Towards Meta-
learning over Data Streams. In J. Vanschoren, P. Brazdil, C. Soares, and L. Kot-
thoff, editors, Proceedings of the 2014 International Workshop on Meta-learning
and Algorithm Selection (MetaSel), number 1201 in CEUR Workshop Proceed-
ings, pages 37-38, Aachen, 2014

J. N. van Rijn, G. Holmes, B. Pfahringer, and J. Vanschoren. Algorithm Selection
on Data Streams. In Discovery Science, volume 8777 of Lecture Notes in Computer
Science, pages 325-336. Springer, 2014

H. J. Hoogeboom, W. A. Kosters, J. N. van Rijn, and J. K. Vis. Acyclic Constraint
Logic and Games. ICGA Journal, 37(1):3-16, 2014

Publication List 157

e J. N. van Rijn and J. K. Vis. Complexity and retrograde analysis of the game dou
shou qi. In BNAIC 2013: Proceedings of the 25th Benelux Conference on Artificial
Intelligence, 8 pages, 2013

e J. N. Van Rijn, V. Umaashankar, S. Fischer, B. Bischl, L. Torgo, B. Gao, P. Winter,
B. Wiswedel, M. R. Berthold, and J. Vanschoren. A RapidMiner extension for
Open Machine Learning. In RapidMiner Community Meeting and Conference,
pages 59-70, 2013

e J. N. van Rijn, B. Bischl, L. Torgo, B. Gao, V. Umaashankar, S. Fischer, P. Winter,
B. Wiswedel, M. R. Berthold, and J. Vanschoren. OpenML: A Collaborative
Science Platform. In Machine Learning and Knowledge Discovery in Databases,
pages 645-649. Springer, 2013

e J. N. Van Rijn and J. Vanschoren. OpenML: An Open Science Platform for Ma-
chine Learning. In Proceedings of the 22th Belgian-Dutch Conference on Machine
Learning (BeNeLearn 2013), 1 page, 2013

Titles in the IPA Dissertation Series

H. Beohar. Refinement of Communic-
ation and States in Models of Embed-
ded Systems. Faculty of Mathematics and
Computer Science, TU/e. 2013-01

G. Igna. Performance Analysis of Real-
Time Task Systems using Timed Auto-
mata. Faculty of Science, Mathematics
and Computer Science, RU. 2013-02

E. Zambon. Abstract Graph Transform-
ation — Theory and Practice. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2013-03

B. Lijnse. TOP to the Rescue — Task-
Oriented Programming for Incident Re-
sponse Applications. Faculty of Science,
Mathematics and Computer Science,
RU. 2013-04

G.T. de Koning Gans. Outsmart-
ing Smart Cards. Faculty of Science,
Mathematics and Computer Science,

RU. 2013-05

M.S. Greiler. Test Suite Comprehen-
sion for Modular and Dynamic Sys-

since 2013

tems. Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2013-06

L.E. Mamane. Interactive mathematical
documents: creation and presentation.
Faculty of Science, Mathematics and
Computer Science, RU. 2013-07

M.M.H.P. van den Heuvel. Compos-
ition and synchronization of real-time
components upon one processor. Faculty
of Mathematics and Computer Science,
TU/e. 2013-08

J. Businge. Co-evolution of the Eclipse
Framework and its Third-party Plug-ins.
Faculty of Mathematics and Computer
Science, TU/e. 2013-09

S. van der Burg. A Reference Archi-
tecture for Distributed Software Deploy-
ment. Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2013-10

J.J.A. Keiren. Advanced Reduction Tech-
niques for Model Checking. Faculty of

160

IPA Dissertation Series since 2013

Mathematics and Computer Science,
TU/e. 2013-11

D.H.P. Gerrits. Pushing and Pulling:
Computing push plans for disk-shaped ro-
bots, and dynamic labelings for moving
points. Faculty of Mathematics and Com-
puter Science, TU/e. 2013-12

M. Timmer. Efficient Modelling, Gen-
eration and Analysis of Markov Auto-
mata. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2013-13

M.J.M. Roeloffzen. Kinetic Data Struc-
tures in the Black-Box Model. Faculty
of Mathematics and Computer Science,
TU/e. 2013-14

L. Lensink. Applying Formal Methods
in Software Development. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2013-15

C. Tankink. Documentation and Formal
Mathematics — Web Technology meets
Proof Assistants. Faculty of Science,
Mathematics and Computer Science,
RU. 2013-16

C. de Gouw. Combining Monitoring
with Run-time Assertion Checking. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2013-17

J. van den Bos. Gathering Evidence:
Model-Driven Software Engineering in
Automated Digital Forensics. Faculty of
Science, UVA. 2014-01

D. Hadziosmanovic. The Process Mat-
ters: Cyber Security in Industrial Control

Systems. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2014-02

A.J.P. Jeckmans. Cryptographically-
Enhanced Privacy for Recommender Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,

UT. 2014-03

C.-P. Bezemer. Performance Optimiz-
ation of Multi-Tenant Software Sys-
tems. Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2014-04

T.M. Ngo. Qualitative and Quantitat-
ive Information Flow Analysis for Multi-
threaded Programs. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2014-05

AW. Laarman. Scalable Multi-Core
Model Checking. Faculty of Electrical En-
gineering, Mathematics & Computer Sci-
ence, UT. 2014-06

J. Winter. Coalgebraic Characterizations
of Automata-Theoretic Classes. Faculty
of Science, Mathematics and Computer
Science, RU. 2014-07

W. Meulemans. Similarity Measures and
Algorithms for Cartographic Schematiza-
tion. Faculty of Mathematics and Com-
puter Science, TU/e. 2014-08

AF.E. Belinfante. JTorX: Exploring
Model-Based Testing. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2014-09

A.P. van der Meer. Domain Specific Lan-
guages and their Type Systems. Faculty

IPA Dissertation Series since 2013

161

of Mathematics and Computer Science,
TU/e. 2014-10

B.N. Vasilescu. Social Aspects of Collab-
oration in Online Software Communities.
Faculty of Mathematics and Computer
Science, TU/e. 2014-11

F.D. Aarts. Tomte: Bridging the Gap
between Active Learning and Real-World
Systems. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2014-12

N. Noroozi. Improving Input-Output
Conformance Testing Theories. Faculty
of Mathematics and Computer Science,
TU/e. 2014-13

M. Helvensteijn. Abstract Delta Model-
ing: Software Product Lines and Beyond.
Faculty of Mathematics and Natural Sci-
ences, UL. 2014-14

P. Vullers. Efficient Implementations of
Attribute-based Credentials on Smart
Cards. Faculty of Science, Mathematics
and Computer Science, RU. 2014-15

F.W. Takes. Algorithms for Analyzing
and Mining Real-World Graphs. Faculty
of Mathematics and Natural Sciences,
UL. 2014-16

M.P. Schraagen. Aspects of Record Link-
age. Faculty of Mathematics and Natural
Sciences, UL. 2014-17

G. Alpar. Attribute-Based Identity Man-
agement: Bridging the Cryptographic
Design of ABCs with the Real World. Fac-
ulty of Science, Mathematics and Com-
puter Science, RU. 2015-01

A.J. van der Ploeg. Efficient Abstractions
for Visualization and Interaction. Faculty
of Science, UVA. 2015-02

R.J.M. Theunissen. Supervisory Control
in Health Care Systems. Faculty of Mech-
anical Engineering, TU/e. 2015-03

T.V. Bui. A Software Architecture for Body
Area Sensor Networks: Flexibility and
Trustworthiness. Faculty of Mathematics
and Computer Science, TU/e. 2015-04

A. Guzzi. Supporting Developers’ Team-
work from within the IDE. Faculty
of Electrical Engineering, Mathematics,
and Computer Science, TUD. 2015-05

T. Espinha. Web Service Growing Pains:
Understanding Services and Their Cli-
ents. Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2015-06

S. Dietzel. Resilient In-network Aggreg-
ation for Vehicular Networks. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2015-07

E. Costante. Privacy throughout the Data
Cycle. Faculty of Mathematics and Com-
puter Science, TU/e. 2015-08

S. Cranen. Getting the point — Obtain-
ing and understanding fixpoints in model
checking. Faculty of Mathematics and
Computer Science, TU/e. 2015-09

R. Verdult. The (in)security of propri-
etary cryptography. Faculty of Science,
Mathematics and Computer Science,
RU. 2015-10

J.E.J. de Ruiter. Lessons learned in the
analysis of the EMV and TLS security pro-

162

IPA Dissertation Series since 2013

tocols. Faculty of Science, Mathematics
and Computer Science, RU. 2015-11

Y. Dajsuren. On the Design of an Ar-
chitecture Framework and Quality Eval-
uation for Automotive Software Systems.
Faculty of Mathematics and Computer
Science, TU/e. 2015-12

J. Bransen. On the Incremental Eval-
uation of Higher-Order Attribute Gram-
mars. Faculty of Science, UU. 2015-13

S. Picek. Applications of Evolutionary
Computation to Cryptology. Faculty of
Science, Mathematics and Computer
Science, RU. 2015-14

C. Chen. Automated Fault Localiza-
tion for Service-Oriented Software Sys-
tems. Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2015-15

S. te Brinke. Developing Energy-Aware
Software. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2015-16

R.W.J. Kersten. Software Analysis Meth-
ods for Resource-Sensitive Systems. Fac-
ulty of Science, Mathematics and Com-
puter Science, RU. 2015-17

J.C. Rot. Enhanced coinduction. Faculty
of Mathematics and Natural Sciences,
UL. 2015-18

M. Stolikj. Building Blocks for the In-
ternet of Things. Faculty of Mathematics
and Computer Science, TU/e. 2015-19

D. Gebler. Robust SOS Specifications of
Probabilistic Processes. Faculty of Sci-

ences, Department of Computer Science,
VUA. 2015-20

M. Zaharieva-Stojanovski. Closer to Re-
liable Software: Verifying functional be-
haviour of concurrent programs. Faculty
of Electrical Engineering, Mathematics
& Computer Science, UT. 2015-21

R.J. Krebbers. The C standard form-
alized in Coq. Faculty of Science,
Mathematics and Computer Science,
RU. 2015-22

R. van Vliet. DNA Expressions — A Formal
Notation for DNA. Faculty of Mathemat-
ics and Natural Sciences, UL. 2015-23

S.-S.T.Q. Jongmans.
Theoretic Protocol Programming. Faculty
of Mathematics and Natural Sciences,
UL. 2016-01

Automata-

S.J.C. Joosten. Verification of Intercon-
nects. Faculty of Mathematics and Com-
puter Science, TU/e. 2016-02

M.W. Gazda. Fixpoint Logic, Games,
and Relations of Consequence. Faculty
of Mathematics and Computer Science,
TU/e. 2016-03

S. Keshishzadeh. Formal Analysis and
Verification of Embedded Systems for
Healthcare. Faculty of Mathematics and
Computer Science, TU/e. 2016-04

P.M. Heck. Quality of Just-in-Time Re-
quirements: Just-Enough and Just-in-
Time. Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2016-05

Y. Luo. From Conceptual Models to Safety
Assurance — Applying Model-Based Tech-

IPA Dissertation Series since 2013

163

niques to Support Safety Assurance. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2016-06

B. Ege. Physical Security Analysis of
Embedded Devices. Faculty of Science,
Mathematics and Computer Science,
RU. 2016-07

Al van Goethem. Algorithms for
Curved Schematization. Faculty of
Mathematics and Computer Science,

TU/e. 2016-08

T. van Dijk. Sylvan: Multi-core Decision
Diagrams. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2016-09

I. David. Run-time resource manage-
ment for component-based systems. Fac-

ulty of Mathematics and Computer Sci-
ence, TU/e. 2016-10

A.C. van Hulst. Control Synthesis using
Modal Logic and Partial Bisimilarity — A
Treatise Supported by Computer Verified
Proofs. Faculty of Mechanical Engineer-
ing, TU/e. 2016-11

A. Zawedde. Modeling the Dynamics of
Requirements Process Improvement. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2016-12

F.M.J. van den Broek. Mobile Com-
munication Security. Faculty of Science,

Mathematics and Computer Science,
RU. 2016-13

J.N. van Rijn. Massively Collaborative
Machine Learning. Faculty of Mathemat-
ics and Natural Sciences, UL. 2016-14

	Introduction
	Introduction
	Publications

	Machine Learning
	Introduction
	Data
	Iris
	Mushroom

	Tasks
	Models
	Decision rules
	Decision trees
	Probabilistic reasoning
	Nearest Neighbour models
	Logistic Regression
	Support Vector Machines
	Neural Networks

	Evaluation
	Discussion

	Meta-Learning
	Introduction
	Learning Approach
	Feature space
	Performance space

	Search Approach
	Combining Search and Learning

	Ensembles
	Conservation for Generalization Performance
	Model Characteristics
	Bias Variance Profile
	Discussion

	Experiment Databases
	Introduction
	Networked science
	Designing networked science

	Machine learning
	Reusability and reproducibility
	Prior work

	OpenML
	Datasets
	Task types
	Tasks
	Flows
	Setups
	Runs
	Studies
	Plug-ins

	Learning from the past
	Model-level analysis
	Data-level analysis
	Method-level analysis

	Conclusions

	Data Streams
	Introduction
	Related Work
	Methods
	Online Performance Estimation
	Ensemble Composition
	BLAST
	Meta-Feature Ensemble

	Experimental Setup
	Data Streams
	Parameter Settings
	Baselines

	Results
	Ensemble Performance
	Effect of Parameters

	Designed Serendipity
	Conclusions

	Combining Accuracy and Run Time
	Introduction
	Related Work
	Methods
	Pairwise Curve Comparison
	Active Testing
	Combining Accuracy and Run Time

	Experiments
	Predicting the Best Classifier
	Ranking of Classifiers
	Loss Time Space
	Optimizing on Accuracy and Run Time

	Conclusion

	Conclusions
	Open Machine Learning
	Massively Collaborative Machine Learning
	Community Adoption
	Future Work

	Bibliography
	Dutch Summary
	English Summary
	Curriculum Vitae
	Acknowledgements
	Publication List
	Titles in the IPA Dissertation Series since 2013

