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Poisson statistics predicts that the shot noise in a tunnel junction has a temperature independent third
cumulant e2 �II, determined solely by the mean current �II. Experimental data, however, show a puzzling
temperature dependence. We demonstrate theoretically that the third cumulant becomes strongly
temperature dependent and may even change sign as a result of feedback from the electromagnetic
environment. In the limit of a noninvasive (zero-impedance) measurement circuit in thermal equilib-
rium with the junction, we find that the third cumulant crosses over from e2 �II at low temperatures to
�e2 �II at high temperatures.
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FIG. 1. Two resistors in series with a voltage source. The

seen as a backaction of the electromagnetic environment fluctuating current and voltage are indicated.
Shot noise of the electrical current was studied a cen-
tury ago as a way to measure the fundamental unit of
charge [1]. Today shot noise is used for this purpose in a
wide range of contexts, including superconductivity and
the fractional quantum Hall effect [2]. Already in the
earliest work on vacuum tubes it was realized that ther-
mal fluctuations of the current can mask the fluctuations
due to the discreteness of the charge. In semiconductors,
in particular, accurate measurements of shot noise are
notoriously difficult because of the requirement to main-
tain a low temperature at a high applied voltage.

Until very recently, only the second cumulant of the
fluctuating current was ever measured. The distribution of
transferred charge is nearly Gaussian, because of the law
of large numbers, so it is quite nontrivial to extract
cumulants higher than the second. Much of the experi-
mental effort was motivated by the prediction of Levitov
and Reznikov [3] that odd cumulants of the current
through a tunnel junction should not be affected by the
thermal noise that contaminates the even cumulants.
This is a direct consequence of the Poisson statistics of
tunneling events. The third cumulant should thus have the
linear dependence on the applied voltage characteristic of
shot noise, regardless of the ratio of voltage and tempera-
ture. In contrast, the second cumulant levels off at the
thermal noise for low voltages.

The first experiments on the voltage dependence of the
third cumulant of tunnel noise have now been reported
[4]. The pictures are strikingly different from what was
expected theoretically. The slope varies by an order of
magnitude between low and high voltages, and for certain
samples even changes sign. Such a behavior is expected
for a diffusive conductor [5], but not for a tunnel junction.
Although the data are still preliminary, it seems clear that
an input of new physics is required for an understanding.
It is the purpose of this paper to provide such input.

We will show that the third cumulant of the measured
noise (unlike the second cumulant [6]) is affected by the
measurement circuit in a nonlinear way. The effect can be
0031-9007=03=90(17)=176802(4)$20.00 
[7]. We have found that the backaction persists even in the
limit of zero impedance, when the measurement is sup-
posed to be noninvasive. The temperature independent
result for the third cumulant of tunneling noise is recov-
ered only if the measurement circuit has both negligible
impedance and negligible temperature.

The circuit is shown schematically in Fig. 1. Two
resistors (impedances Z1, Z2 and temperatures T1, T2)
are connected in series to a voltage source (voltage V0).
We will specialize later to the case that resistor 1 is a
tunnel junction and that resistor 2 represents the macro-
scopic measurement circuit, but our main results hold for
any two resistors. We disregard possible Coulomb block-
ade effects on fluctuations [8–10], which is justified if the
impedances at frequencies of order eV= �h are small com-
pared to �h=e2 [11].

We have calculated the temperature dependence of the
third cumulant by two altogether different methods, the
Keldysh formalism [12] and the Langevin approach [13].
The equivalence of the two methods has already been
demonstrated for a single resistor in the absence of any
2003 The American Physical Society 176802-1
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measurement circuit [14]. Likewise, we have obtained
the same results in both calculations of the backaction
from the measurement.We choose to present the Langevin
approach in this Letter, because it can be explained
in elementary terms and provides an intuitive physical
insight.

The starting point of the Langevin approach is the
separation of the fluctuation �Ii of the current through
resistor i � 1; 2 into an intrinsic fluctuation 
Ii plus a
term induced by a fluctuation �Vi of the voltage over the
resistor: �Ii � 
Ii � �Vi=Zi. At low frequencies �I1 �
�I2 � �I and �V1 � ��V2 � �V. Upon substitution
we arrive at the two equations

Z�I � Z1
I1 � Z2
I2; Z�V � Z1Z2�
I2 � 
I1�;

(1)

where Z � Z1 � Z2 is the total impedance of the circuit.
For simplicity we assume that Zi is real and frequency

independent in the frequency range of the measurement.
All formulas have a straightforward generalization to
complex Zi�!�. We do not need to assume at this stage
that the current-voltage characteristic of the resistors is
linear. If it is not, then one should simply replace 1=Zi by
the differential conductance evaluated at the mean volt-
age Vi over the resistor.

The mean voltages are given by V1 � �Z1=Z�V0 � V
and V2 � V0 � V. The intrinsic current fluctuations 
Ii
are driven by the fluctuating voltage Vi � Vi � �Vi, and
therefore depend in a nonlinear way on �V. The non-
linearity has the effect of mixing in lower order cumu-
lants of 
Ii in the calculation of the pth cumulant of �I,
starting from p � 3.

Before addressing the case p � 3 we first consider
p � 2, when all averages h� � �iV can be performed at the
mean voltage. At low frequencies one has

h
Ii�!�
Ii�!0�iV � 2

�!�!0�C�2�
i �Vi�: (2)

The noise power C�2�
i depends on the model for the

resistor. We give two examples. In a macroscopic resistor
the shot noise is suppressed by electron-phonon scattering
and only thermal noise remains:

C �2�
i � 2kTi=Zi (3)

at temperature Ti, independent of the voltage. (The noise
power is a factor of 2 larger if positive and negative
frequencies are identified.) In a tunnel junction both ther-
mal noise and shot noise coexist, according to [2]

C �2�
i �Vi� � �eVi=Zi� coth�eVi=2kTi�: (4)

From Eq. (1) we compute the correlator

h�X�!��Y�!0�iV � 2

�!�!0�SXY�V�; (5)

where X and Y can represent I or V. The result is
176802-2
SII � Z�2�Z2
1C

�2�
1 �V� � Z2

2C
�2�
2 �V0 � V��; (6a)

SVV � Z�2�Z1Z2�
2�C�2�

1 �V� � C�2�
2 �V0 � V��; (6b)

SIV � Z�2Z1Z2�Z2C
�2�
2 �V0 � V� � Z1C

�2�
1 �V��: (6c)

Equation (5) applies to a time independent mean volt-
age V. For a time dependent perturbation v�t� one has, to
linear order,

h�X�!��Y�!0�iV�v � h�X�!��Y�!0�iV

� v�!�!0�
d

dV
SXY�V�: (7)

We will use this equation, with v � �V, to describe the
effect of a fluctuating voltage over the resistors. This
assumes a separation of time scales between �V and
the intrinsic current fluctuations 
Ii, so that we can first
average over 
Ii for given �V and then average over �V.

Turning now to the third cumulant, we first note that at
fixed voltage the intrinsic current fluctuations 
I1 and 
I2
are uncorrelated, with third moment

h
Ii�!1�
Ii�!2�
Ii�!3�iV � 2

�!1 �!2 �!3�


 C�3�
i �Vi�: (8)

The spectral density C�3�
i vanishes for a macroscopic

resistor. For a tunnel junction it has the temperature
independent value [3]

C �3�
i �Vi� � e2Vi=Zi � e2 �II; (9)

with �II the mean current.
We introduce the nonlinear feedback from the voltage

fluctuations through the relation

h�X1�X2�X3i � h�X1�X2�X3iV

�
X
cyclic

h�Xj�V�!k �!l�iV
d

dV


 SXkXl
�V�: (10)

The variable Xj stands for I�!j� or V�!j� and the sum is
over the three cyclic permutations j; k; l of the indices
1; 2; 3. These three terms account for the fact that the
same voltage fluctuation �V that affects SXkXl

also corre-
lates with Xj, resulting in a cross correlation.

Equation (10) has the same form as the ‘‘cascaded
average’’ through which Nagaev introduced a nonlinear
feedback into the Langevin equation [13]. In that work
the nonlinearity appears because the Langevin source
depends on the electron density, which is itself a fluctuat-
ing quantity—but on a slower time scale, so the averages
can be carried out separately, or ‘‘cascaded.’’ In our case
the voltage drop �Vi over the resistors is the slow vari-
able, relative to the intrinsic current fluctuations 
Ii.

Equation (10) determines the current and voltage cor-
relators
176802-2
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h�X�!1��Y�!2��Z�!3�i � 2

�!1 �!2 �!3�CXYZ�V�: (11)

We find

CIII � Z�3�Z3
1C

�3�
1 �V� � Z3

2C
�3�
2 �V0 � V�� � 3SIV

d

dV
SII; (12a)

CVVV � Z�3�Z1Z2�
3�C�3�

2 �V0 � V� � C�3�
1 �V�� � 3SVV

d

dV
SVV; (12b)

CVVI � Z�3�Z1Z2�
2�Z1C

�3�
1 �V� � Z2C

�3�
2 �V0 � V�� � 2SVV

d

dV
SIV � SIV

d

dV
SVV; (12c)

CIIV � Z�3Z1Z2�Z2
2C

�3�
2 �V0 � V� � Z2

1C
�3�
1 �V�� � 2SIV

d

dV
SIV � SVV

d

dV
SII: (12d)

We apply the general result (12) to a tunnel barrier � �
FIG. 2. Voltage dependence of the third cumulants CI and
CV of current and voltage for a tunnel junction (resistance Z1)
in series with a macroscopic resistor Z2. The two solid curves
are for Z2=Z1 ! 0 and the dashed curves for Z2=Z1 � 1. The
curves are computed from Eq. (13) for T1 � T2 � T. The high
voltage slopes are the same for CI and CV , while the low
voltage slopes have the opposite sign.
(resistor number 1) in series with a macroscopic resistor
(number 2). The spectral densities C�2�

1 and C�3�
1 are given

by Eqs. (4) and (9), respectively. For C�2�
2 we use Eq. (3),

while C�3�
2 � 0. From this point on we assume linear

current-voltage characteristics, so V-independent Zi’s.
We compare CI � CIII with CV � �CVVV=Z

3
2. The

choice of CV is motivated by the typical experimental
situation in which one measures the current fluctuations
indirectly through the voltage over a macroscopic series
resistor. From Eq. (12) we find

Cx �
e2 �II

�1� Z2=Z1�
3




�
1�

3�sinhu coshu� u�

�1� Z1=Z2�sinh
2u

�
T2

T1

gx
u
� cothu

��
; (13)

with gI � 1, gV � �Z1=Z2, and u � eV=2kT1.
In the shot noise limit (eV � kT1) we recover the third

cumulant obtained in Ref. [7] by the Keldysh technique:

CI � CV � e2 �II
1� 2Z2=Z1

�1� Z2=Z1�
4 : (14)

In the opposite limit of small voltages (eV � kT1) we
obtain

CI � e2 �II
1� �Z2=Z1��2T2=T1 � 1�

�1� Z2=Z1�
4 ; (15)

CV � e2 �II
1� Z2=Z1 � 2T2=T1

�1� Z2=Z1�
4 : (16)

We conclude that there is a change in the slope dCx=d �II
from low to high voltages. If the entire system is in
thermal equilibrium (T2 � T1), then the change in slope
is a factor ��Z1 � 2Z2��Z1 � Z2�

�1, where the � sign is
for CI and the � sign for CV . In Fig. 2 we plot the entire
voltage dependence of the third cumulants.

The limit Z2=Z1 ! 0 of a noninvasive measurement is
of particular interest. Then CI � e2 �II has the expected
result for an isolated tunnel junction [3], but CV remains
affected by the measurement circuit:
176802-3
lim
Z2=Z1!0

CV � e2 �II 1�
T2

T1

3�sinhu coshu� u�

usinh2u
: (17)

This limit is also plotted in Fig. 2, for the case T2 � T1 �
T of thermal equilibrium between the tunnel junction and
the macroscopic series resistor. The slope then changes
from dCV=d �II � �e2 at low voltages to dCV=d �II � e2 at
high voltages. The minimum CV � �1:7 ekT=Z1 �
�0:6 e2 �II is reached at eV � 2:7 kT.

In conclusion, we have demonstrated that feedback
from the measurement circuit introduces a temperature
dependence of the third cumulant of tunneling noise. The
176802-3
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temperature independent result e2 �II of an isolated tunnel
junction [3] acquires a striking temperature dependence
in an electromagnetic environment, to the extent that the
third cumulant may even change its sign. Precise predic-
tions have been made for the dependence of the noise on
the environmental impedance and temperature, which
can be tested in ongoing experiments [4].

We gratefully acknowledge discussions with B. Reulet,
which motivated us to write this Letter. Our research is
supported by the Dutch Science Foundation NWO/FOM.

Note added.—For a comparison of our theory with
experimental data, see Reulet, Senzier, and Prober [15].
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