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Abstract

In order to improve the production of the anticancer dimeric indole alkaloids in Catharanthuse roseus, much research has
been dedicated to culturing cell lines, hairy roots, and efforts to elucidate the regulation of the monoterpenoid indole
alkaloid (MIA) biosynthesis. In this study, the ORCA3 (Octadecanoid-derivative Responsive Catharanthus AP2-domain) gene
alone or integrated with the G10H (geraniol 10-hydroxylase) gene were first introduced into C. roseus plants. Transgenic
C. roseus plants overexpressing ORCA3 alone (OR lines), or co-overexpressing G10H and ORCA3 (GO lines) were obtained by
genetic modification. ORCA3 overexpression induced an increase of AS, TDC, STR and D4H transcripts but did not affect
CRMYC2 and G10H transcription. G10H transcripts showed a significant increase under G10H and ORCA3 co-overexpression.
ORCA3 and G10H overexpression significantly increased the accumulation of strictosidine, vindoline, catharanthine and
ajmalicine but had limited effects on anhydrovinblastine and vinblastine levels. NMR-based metabolomics confirmed the
higher accumulation of monomeric indole alkaloids in OR and GO lines. Multivariate data analysis of 1H NMR spectra
showed change of amino acid, organic acid, sugar and phenylpropanoid levels in both OR and GO lines compared to the
controls. The result indicated that enhancement of MIA biosynthesis by ORCA3 and G10H overexpression might affect other
metabolic pathways in the plant metabolism of C. roseus.
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Introduction

In the 1950s, the Canadian scientists Robert Noble and Charles

Beer first isolated and characterized the alkaloid vinblastine from

Catharanthus roseus leaves [1]. Currently, more than 130 mono-

terpenoid indole alkaloids (MIA) have been found in different parts

of C. roseus [2]. Of the MIAs, dimeric indole (bisindole) alkaloids

vincristine and vinblastine are being used clinically as anticancer

agents. Despite their importance, sources of the compounds are

still limited. C. roseus is the main source of MIAs but the low yields

have been an obstacle to production of the compounds. The high

medical value and extremely low yields from C. roseus [3] of

vinblastine and vincristine have motivated extensive studies to

elucidate MIA biosynthesis and regulation.

The biosynthesis of MIA begins with the coupling of a terpenoid

(the iridoid glycoside secologanin) and an indole moiety (trypt-

amine). The terpenoid part starts from geraniol produced by the

mevalonate-independent pathway (MEP). The indole part derives,

via anthranilate, from chorismate which is a major branching

point in the shikimate pathway. Chorismate is also the precursor of

a wide range of phenolic compounds [4], among others, via

prephenate. A series of genes encoding MIA biosynthetic enzymes

(anthranilate synthase alpha subunit, Asa; 1-deoxy-D-xylulose

synthase, DXS; tryptophan decarboxylase, TDC; strictosidine

synthase, STR; strictosidine beta-glucosidase, SGD; geraniol 10-

hydroxylase, G10H; desacetoxyvindoline 4-hydroxylase, DAT;

apoplastic peroxidase, CrPrx; secologanin synthase, SLS) have

been characterized, cloned and overexpressed alone or in

combination in cell cultures and hairy roots of C. roseus in the

past decade [5,6,7,8,9,10,11,12,13,14,15]. Transformation of

transcription factors (ORCA2 and ORCA3) [16], transporters

(ATP-binding cassette transporter, ABC) [17] and heterologous

genes (Bcl-2 Associated X protein, Bax) [18] were also performed

in C. roseus cells and hairy roos. Genetic modification is a good

approach to study the regulation of MIA biosynthesis and to

improve the production of targeted MIAs in C. roseus, thus lower

the production costs for these very expensive clinical medicines.

However, MIA production in in vitro cultures seems to be

limited by the complexity of metabolic regulation, which involves

intracellular compartmentation, different cell types and tissue

differentiation in C. roseus (Fig. 1). The MEP pathway which

produces iridoids is localized in plastids of the internal phloem

associated parenchyma (IPAP) of young developing aerial organs
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of C. roseus [19]. The products of the indole pathway and some of

the monomeric indole (monoindole) alkaloids accumulate in the

epidermis of C. roseus aerial organs [20,21,22]. The bisindole

alkaloids vinblastine and vincristine have been found to be

produced and stored in vacuoles [23]. Monoindole alkaloid

vindoline is one of the precursors of the dimers. Its last two

biosynthetic steps take place in the specialized laticifer and

idioblast cells of the green parts of plants [24]. Using cell

suspension cultures and hairy roots is successful for the pro-

duction of some of the monomers (ajmalicine and serpentine) but

not for the production of vindoline [25,26,27]. There is no report

about significant production of the bisindole alkaloids vinblastine

and vincristine in cell cultures or hairy roots. Apparently different

cell types in the leaf are needed for the biosynthesis of bisindole

alkaloid precursors (Fig. 1). Neither cell cultures nor hairy roots

covers all the leaf cell types. Therefore gene-transformation into

plants is a promising alternative to improving MIA production.

ORCA3, as a jasmonate-inducible AP2/ERF-domain tran-

scription factor, is a key regulator of several important genes in

MIA biosynthesis, such as DXS, AS, TDC, STR and D4H [28].

ORCA3 alone or combined with other genes has been transformed

into C. roseus cell cultures or hairy roots to understand the MIA

biosynthesis regulation [28,29,30,31]. However, promoter analysis

of STR, TDC, G10H and DAT complicated the regulatory

landscape of MIA synthesis [32,33,34,35]. Recently, a basic

helix-loop-helix (BHLH) transcription factor CrMYC2 was

reported as the major activator of JA-responsive ORCA gene

expression [36]. The current work also discusses the transcrip-

tional correlation between CRMYC2 and ORCA3 genes under

ORCA3 overexpression.

The iridoid pathway is one of the precursor pathways for the

MIA biosynthesis and usually regarded as the limiting step in cell

and tissue cultures of C. roseus [37,38]. With the aim of improving

the MIA production of pharmacological interest, several points

remain to be elucidated in this highly complex pathway in C. roseus.

Figure 1. The location and brief biosynthesis pathway of indoles, iridoids and MIAs.
doi:10.1371/journal.pone.0043038.g001
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To the best knowledge, the starting point of the iridoid pathway is

the enzyme, G10H, a cytochrome P450 monooxygenase that

hydroxylates geraniol to form 10-hydroxy-geraniol. This step is

not regulated by ORCA3 when tested in cell suspension cultures

[28]. Previous reports indicate that overexpression of G10H in the

hairy roots improved production of several MIAs when combined

with the addition of precursors, hormones or under certain forms

of stress [13,35]. In the present work, G10H integrated with

ORCA3 was co-overexpressed in C. roseus plants to investigate

their effect on MIA biosynthesis without exogenous treatment.

NMR-based metabolomics is a powerful tool to uncover the

metabolic status of complex plant matrices with a broad spectrum

of both primary and secondary metabolites. NMR spectroscopy is

a non-targeted method to provide a comprehensive fingerprint

and profile of a wide range of metabolites based on signals

generated from all proton-containing chemicals. Mass spectrosco-

py and NMR-based metabolomics have been employed in

combination with multivariate data analysis to study plant

physiology [39,40], classification of different plants ecotypes and

genotypes [41,42,43], plant metabolic network and its correlation

with the genome (functional genomics). Moreover, NMR-based

metabolomics has been applied to distinguish transgenic plants

from non-transgenic plants and inspect the potential effect of

transgenic events on plant metabolism for bio-safety evaluation

[44,45,46,47].

In the current work, we successfully inserted ORCA3 and G10H

into C. roseus plants to improve MIA accumulation. The changes of

gene transcripts and alkaloid concentrations were analyzed to

better understand the regulation of monoindole and bisindole

alkaloid biosynthesis from a systemic view. NMR-based metabo-

lomics was performed on these transgenic plants to investigate the

effect of ORCA3 and G10H overexpression on the whole

metabolome of C. roseus plants.

Results

Generation of G10H and ORCA3 Overexpressing
Transgenic Catharanthus roseus Plants

The constructs of ORCA3 gene alone or integrated with G10H

gene were introduced into C. roseus plants by A. tumefaciens-

mediated transformation (Fig. S1). The hypocotyls from C. roseus

seedlings were cut and incubated with A. tumefaciens for gene

insertion. Callus was induced and selected by kanamycin. Shoots

were regenerated from the surviving callus and selected by

kanamycin continuously. After three rounds of kanamycin

(90 mg L21) selection, a total of 16 independent plantlets

transformed with the construct of ORCA3 (OR) and 39

independent plantlets transformed with the construct of G10H

and ORCA3 (GO) survived. Three OR lines and five GO lines

which showed a fast root growth in root initiation medium

containing 90 mg L21 kanamycin were chosen to transplant into

the field for next analysis. Their transgenic status was confirmed

by molecular analysis (PCR and Southern-blot) (Fig. 2 and Fig.

S2). Fifteen control plants were grown side by side. All the plants

were slender in the growth chamber but grew well after

transplanted into the field (Fig. S3A–S3D). The growth of

transgenic plants was not changed considerably compared to the

controls (Fig. S3E and S3F).

Transcription Level Analysis
To investigate the expression of the introduced genes and their

effect on the transcript profile of alkaloid biosynthesis, besides

ORCA3 and G10H, AS, TDC (indole pathway), DXS (MEP

pathway), STR (MIA pathway), D4H (vindoline biosynthetic

pathway) and CRMYC2 (JA signaling pathway) genes were also

analyzed by real time PCR.

ORCA3 transcripts showed a significant increase in all OR lines

and four GO lines compared with the controls (Fig. 3). Three GO

lines (GO68, GO84 and GO98) with highly enhanced ORCA3

transcripts also showed a significant increase of G10H transcripts.

These results confirmed that G10H and ORCA3 were over-

expressed in C. roseus plants. The variance of G10H and ORCA3

overexpression levels in different transgenic lines may result from

different gene copy number and position effects which are

common in Agrobacterium-transformed plants [48,49]. The tran-

scripts of G10H and ORCA3 are correlated to each other because

they are in the same T-DNA insertion. Nonetheless G10H

transcripts in OR lines as that in the controls was lower than that

in GO lines, which indicated that ORCA3 overexpression didn’t

induce G10H expression in OR lines.

The key indole genes AS and TDC transcripts were induced and

paralleled ORCA3 expression level in OR and GO lines (Fig. 3).

STR and D4H transcripts also responsed to ORCA3 over-

expression, but showed corresponded less with the increased levels

of ORCA3 transcripts, especially in GO lines. DXS transcripts

showed less of relationship with ORCA3 overexpression in both

OR and GO lines. The results implied that ORCA3 had an up-

regulation effect on the genes in the indole and MIA pathways in

C. roseus plant. The expression level of CRMYC2 showed no

significant difference among OR, GO and control lines.

Effect on the Monoterpenoid Indole Alkaloid Pathway in
Catharanthus roseus Plants

Investigation by HPLC was carried out to study the effect of

ORCA3 and G10H overexpression on the accumulation of

monoindole alkaloids (vindoline, catharanthine and ajmalicine)

and bisindole alkaloids (anhydrovinblastine and vinblastine) in

C. roseus leaves (Fig. S4).

All OR and GO lines showed higher levels of monoindole

alkaloids vindoline, catharanthine and ajmalicine than the control.

The vindoline accumulation ranged from 0.78–2.83 mg g21 DW

in OR lines and from 1.25–3.00 mg g21 DW in GO lines when

the average in control lines was 0.70 mg g21 DW. The

catharanthine accumulation was variable with the range of

3.65–5.79 mg g21 DW in OR lines and 3.78–5.36 mg g21 DW

in GO lines when the average in control lines was 1.99 mg g21

DW. Ajmalicine was accumulated with the range of 0.07–

0.10 mg g21 DW in OR lines and 0.14–0.49 mg g21 DW in

GO lines, while the average in control lines was 0.05 mg g21 DW.

However, only two OR lines and two GO lines showed an increase

of bisindole alkaloids anhydrovinblastine and vinblastine. The

change of vinblastine accumulation was inconsistent with that of

anhydrovinblastine accumlation. Line OR43 had the highest level

of anhydrovinblastine and vinblastine, at 10.25 mg g21 DW with

1.08-fold up and at 0.27 mg g21 DW with 10.19-fold up

compared with the controls, respectively. The results implied that

ORCA3 and G10H overexpression had a stronger influence on

the biosynthesis of monoindole alkaloids than that of bisindole

alkaloids. The accumulation of vinblastine was more predictable of

the level of anhydrovinblastine than that of their precursors

vindoline and catharanthine.

In order to analyse the functional effect between overexpression

of ORCA3 and ORCA3 with G10H co-overexpression on the

MIA parthway, a one-way analysis of variance (ANOVA) was

conducted to detect the difference of average levels of monoindole

and bisindole alkaloids among OR, GO and control lines (Fig. 4).

There was no significant difference of vindoline and catharanthine

contents between OR and GO lines, and both were significantly

Metabolic Effect of Gene Overexpressing on Plant
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higher compared to the controls. GO lines showed a significantly

higher level of ajmalicine than OR and control lines. The contents

of bisindole alkaloids anhydrovinblastine and vinblastine exhibited

no significant difference among OR, GO and control lines. These

results indicated that overexpression of ORCA3 combined with

a constitute gene G10H had a greater influence on the biosynthesis

of monoindole alkaloids than ORCA3 alone overexpression,

especially on ajmalicine accumulation. Both co-overexpression

and overexpression of only ORCA3 had limited effect on the

accumulation of bisindole alkaloids.

Effect of G10H and ORCA3 Overexpression on
Catharanthus roseus Plant Metabolism

Both OR and GO lines were used and studied by NMR-based

metabolomics for the potential influence of G10H and ORCA3

overexpression on C. roseus plant metabolism. Around 40 primary

and secondary metabolites were elucidated using a combination of

2D-NMR (J-resolved and COSY) and referred to the previous

literature NMR profiling data [39,43,50] and the in-house

database with more than 500 common metabolites (Table S1).

In 1H-NMR spectrum of both GO and control lines, signals in the

aliphatic area (d 0.4 to d 3.3) were assigned to a series of amino

acids and organic acids, such as threonine, alanine, arginine,

glutamic acid, glutamine, malic acid, citric acid and succinic acid.

Another organic acid fumaric acid showed its signal at d 6.56.

Glucose and sucrose were two major sugars found in the NMR

spectra (d 3.3 to d 5.5) of C. roseus plants. In the aromatic area

(d 6.0 to d 9.0), phenolic compounds (2,3-DHBA, phenylpropa-

noids and flavonoids), terpenoids (secologanin) and MIAs

(strictosidine, vindoline, catharanthine and serpentine) were

identified. Secologanin shows a signal at d 9.68 and vindoline

has a characteristic signal at d 0.52. There are two types of

caffeoylquinic acids detected and identified in C. roseus leaves:

chlorogenic acid (5-O-Caffeoyl quinic acid) and 4-O-Caffeoyl

quinic acid. Their signals of H-29, H-59, H-69, H-79 and H-89

always appear side by side and differ around 0.05 ppm from each

Figure 2. Representative PCR and Southern-blot analyses of independent transgenic C. roseus plants. A: PCR analysis for the presence of
ORCA3 in OR and GO plants; +: Positive control (pGO plasmid); W: wild type plant (negative control). B: PCR analysis for the presence of G10H in OR
and GO plants; +: Positive control; W: wild type plants (negative control). C: Southern-blot analysis of transgenic C. roseus plants; +: Positive control
(GO plasmid digested by SalI); WT: wild type plants.
doi:10.1371/journal.pone.0043038.g002
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other [39]. 1H-NMR spectra of OR and GO lines were not

observed any unpredictable signals compared with the controls,

but signals of some metabolites showed difference in the peak

integration (Fig. 5A).

Principal component analysis (PCA), an unsupervised clustering

method, and supervised partial least squares-discriminate analysis

(PLS-DA) were conducted to analyze the 1H-NMR data sets of all

samples. PCA score plot identified the difference between the

sample sets and showed a partial separation of GO and control

lines on PC1 and PC6 (Fig. S5A). PLS-DA score plot displayed

a clearer metabolic discrimination between GO and control lines

on PLS1 and PLS2, and determined the variables (i.e., metabolite

signals) responsible for the separation (Fig. 5B). The PLS-DA

model was validated by the permutation method through 20

applications (Fig. S5B). GO lines were located at the positive sides

of PLS1 and PLS2. The control plants were scattered in the rest of

the score plot and showed clear differences between individual

plants. Based on PLS-DA loading plot (Fig. 5C), signals of alanine,

glutamic acid, arginine, glucose, sucrose, 2,3-butanediol, querce-

tin-3-O-glucoside, strictosidine, vindoline and catharanthine were

present at higher levels in GO plants, while the controls showed

higher levels of threonine, secologanin, 2,3-DHBA, chlorogenic

acid, 4-O-Caffeoyl quinic acid, malic acid and fumaric acid.

In PCA score plot, OR and control lines were mainly separated

by PC1 (Fig. 6A). OR lines were all at the positive side of PC1 and

showed individual difference within the group. The controls were

mostly located at the negative side of PC1. Analyzed by the

column loading plot of PC1, signals of amino acids, sucrose, MIAs,

2,3-DHBA and 4-O-Caffeoyl quinic acid showed higher contents

while signals of organic acids, glucose, flavonoids and secologanine

showed lower contents in the OR lines than in the controls

(Fig. 6B).

Figure 3. ORCA3, G10H, tdc, str and crmyc2 transcripts in OR and GO plants. Error bars represent the standard deviation of triplicate runs for
Real Time PCR. *: significant difference (p,0.05 by ANOVA).
doi:10.1371/journal.pone.0043038.g003
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According to the loadings plot, the metabolites responsible for

the separation were selected to perform ANOVA to confirm their

contribution to metabolic discrimination between overexpression

lines and control plants (Table 1). The contents of alanine,

strictosidine, vindoline and catharanthine were present signifi-

cantly higher in both OR and GO lines than the controls. OR

lines also contained significantly higher levels of threonine,

arginine, glutamic acid, sucrose, 2,3-DHBA and 4-O-Caffeoyl

quinic acid while GO lines had significant increases of 2,3-

butanediol, glucose and quercetin-3-O-glucoside compared with

control lines. Besides, OR lines showed significant decreases in the

levels of malic acid and secologanine while GO lines showed slight

decreases of these two compounds.

Figure 4. The average levels of several important MIAs in OR, GO and control lines. The value of CK is the average of 15 control plants.
Different letters indicate significant difference (p,0.05 by ANOVA). The value of OR is the average of pooled samples from 3 OR lines; the value of GO
is the average of pooled samples from 5 GO lines.
doi:10.1371/journal.pone.0043038.g004
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Discussion

As a key transcription factor in the JA-induced MIA pathway,

ORCA3 overexpression resulted in the up-regulation of several

alkaloid-related biosynthetic genes (such as DXS, AS, TDC, STR

and D4H) in C. roseus cell cultures [28]. In this study, ORCA3 gene

was overexpressed in C. roseus plants and activiated the expression

of AS, TDC, STR and D4H but not DXS. When ORCA3 alone

or integrated with G10H was overexpressed in C. roseus hairy roots,

only STR and SLS expression were enhanced while there was no

changes in neither TDC nor CPR transcripts and a decrease in

SGD transcripts [29,30]. Accumulation of G10H transcript was

not enhanced in the OR lines, suggesting that ORCA3 over-

expression didn’t regulate G10H expression in C. roseus plants.

These results comfirmed the up-regulation role of ORCA3 in the

MIA pathway in C. roseus plants as in its cell cultures. CRMYC2

gene is an immediate-early jasmonate-responsive gene which

encodes the basic helix-loop-helix (bHLH) transcription factor

CrMYC2 to regulate ORCA gene expression [36]. CrMYC2

binds to the qualitative sequence in the ORCA3 jasmonate-

responsive element (JRE) in a transcriptional cascade to active the

biosynthesis genes expression. Our research suggests that ORCA3

alone overexpression has no feedback-effect on CRMYC2

transcripts.

ORCA3 overexpression induced increased levels of several key

genes transcripts in the MIA pathway, and consequently,

enhanced the production of MIAs. Overexpressing ORCA3 alone

or co-overexpressing ORCA3 and G10H in C. roseus plants

strongly stimulated the accumulation of monomeric alkaloids but

only slightly affected the accumulation of bisindole alkaloids

anhydrovinblastine and vinblastine. The bisindole alkaloids are

produced and stored in vacuoles of specific cells. Their monomeric

precursors catharanthine and vindoline are made in other cells

and cellular compartments [23]. When the increase of key genes

transcripts resulted in the enhanced productivity of monomeric

terpenoid indole alkaloids, the flux to bisindole alkaloids might be

limited by compartmentation and intercellular transport. Another

possibility is that the competition of monoindole alkaloids

Figure 5. 1H-NMR investigation and multivariate data analysis of GO and control lines. A: 1H-NMR spectra of GO (in green) and control
(in red) lines. B: Score plot of PLS-DA of GO (D) and control (&) lines. C: Loading plot of PLS-DA. The numbers represent metabolites following table 1.
doi:10.1371/journal.pone.0043038.g005
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biosynthesis limited the flux to the production of bisindole

alkaloids anhydrovinblastine and vinblastine. Anhydrovinblastine

is produced by the dimerization reaction of vindoline and

catharanthine in vacuoles, which is further converted into

vinblastine [51]. The results in this study reveal that the

accumulation of anhydrovinblastine was high and not affected

by ORCA3 and G10H overexpression. Despite the presence of

anhydrovinblastine, the production of vinblastine and vincristine

was low. This indicates that in C. roseus the major bisindole alkaloid

stored in vacuoles is anhydrovinblastine and there might be other

factors involved in regulating the biosynthesis of vinblastine and

vincristine.

In previous studies, overexpression of G10H and ORCA3 in

C. roseus hairy roots improved catharanthine production but has

no effect on other alkaloids [35]. When ORCA3 alone was

overexpressed in the hairy roots, a decrease in several MIA

Figure 6. Multivariate data analysis of OR and control lines based on 1H-NMR spectra. A: PCA score plot of OR lines (OR) and control lines
(W); B: PCA column plot of PC1. The numbers represent metabolites following table 1.
doi:10.1371/journal.pone.0043038.g006
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(included catharanthine) was observed [13,31]. Although an

ORCA3-transformed C. roseus cell line can improve the accumu-

lation of total alkaloids, deficiency to biosynthesize vindoline

causes the failure to synthesize bisindole alkaloids in cultured cells

[12]. Apparently the biosynthesis of MIAs requires a high level of

tissue differentiation, multicellular organization, and compart-

mentation. Compared to cell and hairy root systems, a whole plant

is a complete intact biological system with a high level of

differentiation which contains many cell types and compartments

required for the MIA biosynthesis (Fig. 1). When ORCA3 and

G10H were introduced into C. roseus plants, overexpression had an

influence not only on the accumulation of catharanthine and

ajamalicine but also vindoline. Surprisingly, as revealed by NMR-

based metabolomics, secologanin did not significantly accumulate

in GO lines. In fact, its level in GO plants was lower than in the

controls. G10H is an endoplasmic-reticulum (ER)-anchored

enzyme starting the secoiridoid pathway by catalyzing the

hydroxylation of geraniol to 10-hydroxygeraniol [52,53]. It takes

at least 7 steps to biosynthesize secologanin from 10-hydroxyger-

aniol [51], which might limit the effect of G10H overexpression on

secologanin accumulation. In OR lines, the significant decrease of

secologanine might result from the enhancement of MIA bio-

synthesis.

Integrated investigation of the metabolome in OR, GO and

control lines indicated that both primary and secondary metab-

olism were modulated by G10H and ORCA3 overexpression

(Fig. 7). Bialaphos resistant (BAR) gene overexpressing Arabidopsis

plants also showed higher levels of alanine and threonine [47].

Transgenic tomato accumulates more glutamate and less sugar

than non-transgenic ones [54]. Changes in levels of amino acids

and sugars might be associated with the gene overexpression. As

a transcriptional factor, ORCA3 regulates not only secondary but

also primary metabolite biosynthetic genes involved in MIA

biosynthesis [28]. Increase of a series of amino acid levels and

decrease of organic acid levels in OR lines, as well as more

accumulation of glucose, alanine, 2,3-butanediol in GO lines,

indicated that primary metabolic fluxes might be affected by

ORCA3 overexpression in C. roseus plants. Compared with GO

lines, more changes of metabolite contents in OR lines implied

that overexpression of a regulator gene might have a greater

influence on plant metabolism than that of a structural gene.

Phenylpropanoids were also investigated in this study. Change

occurred to the levels of 2,3-DHBA (the isochorismic pathway),

Caffeoyl quinic acids (the phenylalanine pathway) and flavonoids

(general phenylpropanoid pathway) among OR, GO and control

lines. In OR lines, the levels of 2,3-DHBA and 4-O-Caffeoyl quinic

acid significantly increased and the levels of chlorogenic acid,

Table 1. ANOVA results for selected signals from OR, GO transgenic and wild type plants.

OR lines GO lines

No Metabolites
Relative intensity
ratio p value

Relative intensity
ratio p value

1 Threonine 4.69 0.000 1.21 0.352

2 Alanine 4.19 0.002 2.00 0.004

3 Arginine 4.80 0.001 1.23 0.210

4 Glutamic acid 2.49 0.012 1.19 0.259

5 2,3-butanediol 1.10 0.534 1.48 0.001

6 Glutamine – – – –

7 Ethanol 1.09 0.797 1.11 0.683

8 Succinic acid – – – –

9 malic acid 0.31 0.005 0.88 0.568

10 Quinic acid – – – –

11 Lactic acid – – – –

12 Glucose 0.40 0.055 1.83 0.017

13 Sucrose 2.11 0.001 1.38 0.081

14 Kaempferol 0.76 0.403 1.29 0.170

15 Quercetin-3-O-glucoside 0.69 0.262 1.57 0.022

16 Chlorogenic acid 0.74 0.172 0.97 0.577

17 4-O-Caffeoyl quinic acid 1.34 0.028 1.18 0.162

18 2,3-DHBA 1.60 0.048 0.96 0.781

19 Secologanin 0.23 0.008 0.70 0.146

20 Strictosidine 1.36 0.039 3.25 0.000

21 Vindoline 2.28 0.012 2.82 0.000

22 Catharanthine 1.63 0.003 1.46 0.003

23 Serpentine 1.06 0.276 2.00 0.553

24 Fumaric acid 0.33 0.344 0.87 0.808

*p value ,0.05: significant difference.
*–: overlapped signal, not quantitatively analyzed.
doi:10.1371/journal.pone.0043038.t001
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kaempferol and quercetin-3-O-glucoside slightly decreased. In GO

lines the content of quercetin-3-O-glucoside significantly increased,

4-O-Caffeoyl quinic acid and kaempferol showed increases in their

levels while chlorogenic acid and 2,3-DHBA showed slight

decreases in their levels (Fig. 7). Both phenylpropanoids and

MIAs derive from the intermediate chorismic acid in the shikimate

pathway [4]. Vacuoles accumulate both MIA and phenylpropa-

noids like flavonoids. Flavonoids and alkaloids also co-accumulate

in single epidermis cells of C. roseus leaves [21]. Previous study has

reported that ectopic overexpression of tryptophan feedback-

resistant anthranilate synthase holoenzyme (ASab) in C. roseus

hairy roots increased the accumulation of phenolic compounds,

especially flavonoids catechin [55]. Our results were inconsistent

with the previous study. ORCA3 overexpression, or with G10H

co-overexpression, in C. roseus plants constantly pushed the

metabolic flux towards the indole pathway (tryptophan and

tryptamine) via chorismate and had a feedback on the other

branches from chorismate pathway towards phenylpropanoids.

The corresponding change of phenylpropanoid levels suggested

that metabolic flux control of branch-point pathway might be well

coordinated among the branches from chorismate in the shikimate

pathway.

The current work demonstrates that overexpression of a regu-

latory gene (ORCA3) and a structural gene (G10H) in the MIA

pathway results in increases of monoterpenoid indole alkaloids

(strictosidine, vindoline, catharanthine and ajmalicine) accumula-

tion in C. roseus plants, and also has a feedback on phenylpropa-

noid biosynthesis. The result suggests that ORCA gene might thus

have a broader effect on the cellular differentiation towards

a phenotype of epidermal cells. Since ORCA3 overexpression did

not have a strongly positive effect on the accumulation of bisindole

alkaloids, the study points to a separation of regulation for this last

step in the biosynthesis of these alkaloids, which does not occur in

the epidermis but might occur in specialized idioblasts deep in C.

roseus leaves. Regulating MIA biosynthesis to improve production

requires a more rational engineering on the complex biosynthetic

pathways involving different cell types.

Materials and Methods

Construction of Plasmid Containing ORCA3 and G10H
The 612 bp CDS of ORCA3 and 1479 bp CDS of G10H were

cloned from C. roseus plant (Pacifica Cherry Red, Pan American

Seed Co, IL, USA) by RT-PCR using RNA extracted from leaves

of C. roseus seedlings with Plant Total RNA Isolation Kit (Watson

Biotechnologies, Inc, Shanghai, China). In RT-PCR, ORCA3-F1

(59-ACTAGTATGTCCGAAGAAATCAT-39), ORCA3-R1 (59-

GGTCACCTTAATATCGTCTCTTCT-39), G10H-F1 (59-AC-

TAGTATGGATTACCTTACCAT-39) and G10H-R1 (59-

GGTCACCAAGGGTGCTTGGTACAGC-39) were used as the

forward and reverse primers. The parameters for the standard

PCR were as follows: 94uC, 2 min; 35 cycles: 94uC, 30 s; 54uC,

30 s, 72uC, 90 s; 72uC, 10 min. The two fragments were first

ligated into plasmid pGEM-T easy for sequence confirmation, and

then excised and cloned into a modified pMD18 EXP vector

through SpeI and BstEII sites, respectively, which resembled the

genes with a cauliflower mosaic virus 35S (CaMV 35S) promoter

and Agrobacterium tumefaciens nos terminator. Finally, two expression

cassettes (p35s-ORCA3-nos and p35s-G10H-nos) were inserted

into the SalI and SmaI sites of the expression vector pCAM-

Figure 7. Schematic effects of ORCA3, or with G10H, overexpression on the metabolism of C. roseus plants. Orange box is for ORCA3
overexpression (the OR lines) and blue box is for G10H and ORCA3 co-overexpression (the GO lines). The up arrow in the box represents the increase
of metabolite content. The down arrow in the box represents the decrease of metabolite content. Arrows with star in the box represent significant
difference (p,0.05 by ANOVA) of metabolite content compared with the controls.
doi:10.1371/journal.pone.0043038.g007
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BIA2300 (p2300) to get the single gene-containing vector pOR

(pCAMBIA2300::p35s-ORCA3-nos) and pG (pCAM-

BIA2300::p35s-G10H-nos). The expression cassette (p35s-OR-

CA3-nos) was inserted into pCAMBIA2300::p35s-G10H-nos to

generate double gene-containing vector pGO (pCAM-

BIA2300::p35s-G10H-nos::p35s-ORCA3-nos). The vector p2300

contains a selection marker gene NPTII (neomycin phosphotrans-

ferase gene conferring resistance to kanamycin). The pCAM-

BIA2300::p35s-ORCA3-nos and pCAMBIA2300::p35s-G10H-

nos::p35s-ORCA3-nos were then transferred into Agrobacterium

tumefaciens strain EHA105 by a conventional freezing-and-melting

method, and the resulting strains were used in the transformation

of C. roseus.

Transformation, Regeneration and Cultivation of
Catharanthus roseus Plants

Seeds of C. roseus (Pacific Cherry Red cultivar) were purchased

from PanAmerican Seed Company (U.S.A.). Seed surfaces were

sterilized in 75% (v/v) ethanol for 2 min and 5% (v/v) NaClO for

another 5 min, and then washed five times with sterile distilled

water. Seeds were germinated on Petri plates containing MS

(Murashige and Skoog 1962) basal medium. Cultures were grown

under a 16 h light and 8 h dark photoperiod at 2562uC. When

seedlings reached 1–1.5 cm in length (5-day old), the hypocotyls,

about 5 mm, were excised from the germinated seedlings and used

as the explants in A. tumefaciens-mediated transformation. The

explants were immerged in liquid MS medium with 100 mM

acetosyringone in a steriled glass tissue culture tube. The tube was

sonicated for 10 min (40 Hz, 80 W) with an ultrasonicator DL-

60D (Shanghaihengxin, Shanghai, China). After sonication

explants were added to pre-sterilized flasks containing bacterial

suspension and flasks were shaken gently at 25 rpm for 30 min at

room temperature. Explants were then blot-dried with sterile

paper towels and transferred onto Petri dishes containing 1/2 MS

medium with 100 mM acetosyringone. The co-cultivation period

was 1–3 days in the dark at 28uC.

The bacterial suspension was prepared from a single colony of

A. tumefaciens strain EHA105 with pCAMBIA2300::p35s-G10H-

nos::p35s-ORCA3-nos or pCAMBIA2300::p35s-ORCA3-nos, as

well as pCAMBIA2300. Bacteria were incubated in liquid Luria

Bertani (LB) medium containing 100 mg L21 kanamycin and

100 mg L21 rifampicin (Sigma, St Louis, MO, U.S.A.) and grown

at 28uC for 36 h with shaking (150 rpm). The initial culture was

diluted 1:1000 with liquid LB medium and grown on a shaker

(250 rpm) until the OD600 reached 0.8. Then the cells were

centrifuged (2,0006g, 10 min) and the supernatant was removed.

Bacteria were resuspended in liquid MS medium contain-

ing100 mM acetosyringone and the OD600 was adjusted to 0.5.

Finally, the bacteria were shaken (100 rpm) for another 2 h at

room temperature.

After co-cultivation, the explants were transferred to callus

induction medium containing 1.0 mg L21 2,4-Dichlorophenox-

yacetic acid (2, 4-D), 1.0 mg L21 1-Naphthaleneacetic acid

(NAA), 0.1 mg L21 zeatin, 250 mg L21 carbenicillin and

40 mg L21 kanamycin for 10 days. Then the explants were

transferred to the medium supplemented with 5.0 mg L21 6-

benzylaminoputine (BA), 0.5 mg L21 NAA, 250 mg L21 carbe-

nicillin and 70 mg L21 kanamycin, which was effective on shoot

initiation for 10 days. The resulting explants were transferred to

shoot elongation medium supplemented with 1.75 mg L21 BA,

0.55 mg L21 Indole-3-acetic acid (IAA), 250 mg L21 carbenicillin

and 90 mg L21 kanamycin, and subcultured every week. After

three weeks, the elongated shoots were separated and transferred

to root initiation medium (1/2 MS) containing 500 mg L21

carbenicillin and 90 mg L21 kanamycin for one month. Rooted

plantlets were placed into sterile pot mixtures in a mist chamber

for one month before transferred to normal greenhouse. The

culture conditions were performed as described above for the plant

seeding. All medium used in the study for C. roseus regeneration

was based on Murashige and Skoog (MS) medium supplemented

with 150 mg L21 casein hydrolysate, 250 mg L21 L-proline,

30 g L21 sucrose, and 3 g L21 gelrite. The pH of the medium

was adjusted to 5.8 before autoclaving at 121uC for 22 min. Wild

type plants were transformed with EHA105 containing pCAM-

BIA2300 and regenerated as the controls.

PCR Analysis, Southern Hybridization and Real Time PCR
Genomic DNA was isolated from the young leaves of

regenerated plants using CTAB method (Murray and Thompson

1980). Regenerated plantlets were screened by PCR using the

forward primer 35s-F1 (59-CGCACAATCCCACTATCCTT-39),

reverse primer ORCA3-R2 (59-GCCCTTATACCGGTTC-

CAAT-39) and G10H-R2 (59-TGAATTCCTTGGCA-

GAATCC-39) to detect the presence of target genes in the host.

Positive plants were subjected to Southern blot analysis and real

time PCR.

The integration of the ORCA3 and G10H gene in the

transgenic C. roseus was investigated by Southern hybridization.

Approxmately 80 mg of genomic DNA per sample was digested

with HindIII and BglI, which were unique sites in the plasmid. The

digested DNA was fractionated by 1.0%-agarose-gel electropho-

resis, transferred on to a positively charged Hybond-N+ nylon

membrane (GE Healthcare, USA) and hybridized with an

alkaline-phosphatase-labeled partial DNA sequence of p35s as

the probe. The probe (402 bp) was generated by PCR with

primers 35s-F1 (59-CGCACAATCCCACTATCCTT-39) and

ORCA3-R2 (59-GCCCTTATACCGGTTCCAAT-39). Hybrid-

ization and signal detection were performed using Amersham

AlkPhos Direct Labeling Reagents (GE Healthcare, USA) and

CDP-Star Detection Module following the manufacturer’s in-

structions. The hybridized signals were visualized by exposure to

FujiX-ray film at room temperature (22uC for 12 h).

For real time PCR, total RNA was isolated from the leaves

stored at 220uC. DNA contamination was removed using DNase

I following the protocol provided by the manufacturer (TaKaRa,

Japan). The cDNAs were synthesized from the RNA samples using

Prime ScriptTM Reverse Transcriptase Reagent according to the

manufacturer’s instructions, using oligo (dT) as the primer. The

qRT-PCR analysis was performed in a Peltier Thermal Cycler

PTC200 (Bio-Rad), using the cDNAs as a template and gene-

specific primers for analysis. The primers for these genes (ORCA3,

AS, DXS, STR, TDC, G10H, D4H, CRMYC2 and RSP9) are listed in

Table S2 (from ExPlant Technologies B.V.). Ribosomal protein

subunit 9 (Rsp9) was used as an internal control to evaluate all

C. roseus plants. SYBR Green (SYBR Premix Ex Taq; TaKaRa)

was used in the PCR reactions to quantify the amount of dsDNA.

The relative Ct (threshold cycle value) method (User Bulletin 2,

ABIPRISM700 Sequence Detection System, update 2001; Perki-

nElmer/Applied Biosystems) was used to estimate the initial

amount of template present in the reactions.

HPLC Analysis
Samples were prepared following the previously reported

method [56]. Thirty mg dried leaves were used for each sample.

The chromatography was carried out using an Agilent Eclipse

XDB-C18 column (5 mm, 4.66250 mm) (Phenomenex, Torrence,

CA, USA). The chromatographic system was an Agilent

Technologies 1200 series consisting of a G1322A Vacuum
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Degasser, a G1310A Iso Pump, a G1329A AutoSampler,

a G1316A Thermostated Column Compartment and a G1315D

Diode Array Detector.

The chromatographic method was developed for the qualitative

and quantitative analysis of a variety of MIA and precursors. The

mobile phase consisted of a mixture of 5 mM Na2HPO4 (pH

adjusted to 6 with HCL) (solvent A) and methanol (solvent B) at

a flow rate of 1.5 mL per min. The eluent profile (volume of

solvent A/volume of solvent B) was: 0–2 min, linear gradient from

86:14 to 14:86; 26–30 min, isocratic elution with 14:86 (v/v); 30–

35 min, linear gradient from 14:86 to 86:14; 35–37 min, isocratic

elution with 86:14(v/v). The injected volume was 30 mL. De-

tection was with UV at 210–400 nm.

A mixture of reference standards of MIA and precursors

(strictosidine and secologanin were from Phytoconsult, Leiden,

The Netherlands; loganic acid, loganin, tabersonine, and vindoline

were bought from PhytoLab, Vestenbergsgreuth, Germany;

tryptamine was purchased from Aldrich Chemical, Milwaukee,

WIS, USA; tryptophan and ajmalicine were purchased from

Sigma-Aldrich, St. Louis, MO, USA; serpentine was purchased

from Roth, Karlsruhe, Germany; catharanthine, anhydrovinblas-

tine, vinblastine, and vincristine were kind gifts from Pierre Fabre,

Gaillac, France) were detected and identified (Fig. S6 and Fig. S7)

based on UV analysis of absorbance chromatograms [57].

Samples were applied in triplicate for quantification using

calibration curves of the standards.

NMR Analysis
After the GO and control plants were transplanted into the field

for 6 months, their fresh leaves were harvested and grinded into

powder with liquid N2, and then dried by frozen drier for two

days. 50 mg of dried leaves was transferred to a 2 mL eppendorf

tube to which 1.5 mL of CD3OD (750 mL) and D2O (750 mL)

(KH2PO4 buffer, pH 6.0), containing 0.01% TSP, were added.

The mixture was vortexed for 1 min, ultrasonicated for 30 min,

and centrifuged for 20 min at 13000 rpm at room temperature.

800 mL of the supernatant from the mixture was transferred to

a new eppendorf tube for a second centrifugation at 13,000 rpm

for 5 minutes. 700 mL of the supernatant was transferred to

a 5 mm NMR tube and used for the 1H-NMR analysis. Both

CD3OD and D2O were purchased from Cambridge Isotope

Laboratories, Inc., Andover, MA, USA.

All spectra were recorded at 25uC on a 500 MHz Bruker

DMX-600 spectrometer (Bruker, Karlsruhe, Germany) operating

at a proton NMR frequency of 500 MHz. For each sample, 128

scans were recorded with the following parameters: 0.126 Hz/

point, pulse width (PW)30u (4.0 ms), and relaxation delay

(RD)1.5 s. Free induction decays (FIDs) were Fourier transformed

with line broadening factor = 0.3 Hz. The resulting spectra were

manually phased and baseline corrected, and calibrated to TMSP

at 0.0 ppm, using Topspin (version 2.1, Bruker).

The 1H-NMR spectra from direct extraction were automatically

reduced to ASCII files by AMIX (version 3.7, Bruker). Spectral

intensities were scaled to an internal standard and reduced to

integrated regions of equal width (0.04) corresponding to the

region of d 0.0–10.0. The regions of d 4.64–4.96 and d 3.32 were

excluded from the analysis because of the residual signal of D2O

and CD3OD, respectively. Principal component analysis (PCA)

and partial least squares discriminant analysis (PLS-DA) were

performed with the SIMCA-P software (version 11.0, Umetrics,

Umeå, Sweden). For scaling, the Pareto and unit variance

methods were used for PCA and PLS-DA, respectively.

Data Statistical Analysis
All experiments were conducted with three replicates. Statistical

analysis was performed using one way analysis of variance

(ANOVA) followed by Duncan’s Multiple Range (DMRT) test.

The values are mean6SD for three samples in each group. p

values #0.05 were considered as significant. The ANOVA for all

the data was performed by SPSS (version 14.0, Chicago, IL, USA).

Supporting Information

Figure S1 Scheme of construct of vectors with restriction sites.

A: vector of pCAMBIA2300:: p35s-ORCA3-nos was constructed

to overexpress ORCA3; B: vector of pCAMBIA2300::p35s-

G10H-nos::p35s-ORCA3-nos was constructed to co-overexpress

ORCA3 and G10H.

(TIF)

Figure S2 Southern blot of OR43 and GO84 plants. The

fragment of p35s was used as the probe. +: pGO plasmid as the

positive control; M: l-HindIII Marker.

(TIF)

Figure S3 Regeneration and transformation of C. roseus. A:

Callus induced from hypocotyls; B: plantlets with shoots and roots;

C: Shoot initiation from callus; D: Transgenic plantlets in soil; E:

Transgenic and control plants in soil before flowering, six plants at

right side were transgenic lines, six at left side were control plants;

F: Transgenic and control plants in soil after flowering, three

plants at right side were transgenic lines, three at left side were

control plants.

(TIF)

Figure S4 The levels of several important TIA in OR plants,

GO plants and wild type C. roseus plants (the value of CK is the

average of 15 wild type plants). ‘‘*’’: significant increase (p,0.05

by ANOVA)

(TIF)

Figure S5 PCA score plot (A) and validate model of PLS-DA (B)

for GO and control lines.

(TIF)

Figure S6 A: HPLC spectrum of the mixture of reference

compounds; B: HPLC spectrum of one transgenic sample. 1:

vindoline; 2: vincristine; 3: catharanthine; 4: vinblastine; 5:

ajmalicine; 6: anhydrovinblastine; 7: tabersonine.

(TIF)

Figure S7 UV absorbance chromatograms of vindoline, cath-

aranthine, ajmalicine, anhydrovinblastine and vinblastine.

(TIF)

Table S1 1H NMR chemical shifts (d) and coupling constants

(Hz) of identified metabolites based on 1H-NMR, J-resolve,

COSY, HSQC and references

(DOC)

Table S2 Primers list for Real Time PCR.

(DOC)
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