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ABSTRACT 
 

Conventional high-grade osteosarcoma is the most common primary bone malignancy with 

relatively high incidence in young people. About 40% of the patients develop metastases and 

have a very poor prognosis. New insights into osteosarcoma growth and progression that 

may lead to new therapeutic strategies are needed. Expression and activity of the Src 

cytoplasmic tyrosine kinase has been correlated with clinical stage and survival. Here, we 

studied the effect of pharmacological inhibitors of Src activity, including dasatinib, bosutinib 

and saracatinib in MOS and U2OS human osteosarcoma cell lines in 2D and 3D. All inhibitors 

decreased viability with an IC50 in the micromolar range. Likewise, treatment with each of 

the inhibitors reduced the IC50 of doxorubicin. However, only dasatinib treatment triggered 

caspase3/7 activation pointing to apoptosis. The selective activity of dasatinib correlated 

with its capacity to reduce Src activity. Next, the effects of the inhibitors were studied in 

MOS and U2OS cultures in 3D extracellular matrix (ECM) scaffolds. Under these conditions, 
all three inhibitors reduced viability but formation of branched networks in 3D ECM was 

selectively inhibited by dasatinib in presence of doxorubicin. The activity of focal adhesion 

kinase (FAK), a Src substrate that is important for cell migration, was exclusively sensitive to 
dasatinib. Indeed, in 3D ECM-embedded spheroid cultures dasatinib blocked cell migration 

capacity whereas the other inhibitors had no or partial effects. Together, these findings 

point to the use of dasatinib as a candidate drug  to enhance apoptosis in response to 
chemotherapy and to reduce metastatic spread in patients with osteosarcoma.
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INTRODUCTION 

 
Osteosarcoma is the most common primary malignant bone tumor that arises from mesenchymal 

stem cells that are capable of producing osteoid[1]. It has an overall incidence of 3 cases per million 
annually occurring predominantly in children and adolescents, with a second peak in people above 

50 years of age[2]. At the moment of diagnosis, 10-20% of the patients present with metastasis, and 
about 30-40% of the patients with localized osteosarcoma will relapse mainly by presenting lung 

metastasis. Patients with relapsed disease have very poor prognosis with 23-33% 5-year overall 
survival[3].  

 
Src is a nonreceptor tyrosine kinase that belongs to a family of 11 members, and it is widely 

expressed in a most tissues. Src acts as signal transducer from cell membrane receptors to 

downstream substrates. Src activity regulates cell morphology, adhesion, and migration, as well as 
survival and proliferation through activation of PI3K-Akt, Ras-Raf-MEK-ERK, and Jak-Stat and a cell-
extracellular matrix (ECM) adhesion-signaling platform including the Src substrate focal adhesion 

kinase (FAK) [4,5]. Activation and expression of Src in colon cancer is associated with late tumor 
stage[6] and ability to metastasize[7]. Furthermore, Src activity and expression is also implicated in 

other malignancies such as breast cancer[8,9], ovarian cancer[10], lung cancer[11] and 
chondrosarcoma[12]. Notably, despite the fact that Src is overexpressed or constitutively active in 

many malignancies, mutations are rare in this gene. Therefore, in most cancers Src does not appear 
to drive tumor initiation or tumor formation, but may rather play a role in aspects of tumor 

progression[13,14].  
 
As mentioned above, Src transduces signal from cell receptors among which is IGFR. This 

receptor was reported to be highly expressed in high grade conventional osteosarcoma[15], and its 
inhibition with antibodies proofed to increase event free survival duration[16]. Additionally,, in 

osteosarcoma Src expression and activity has been shown to correlate with clinical stage and patient 
survival, making Src a potential aiding marker to determine prognosis in osteosarcoma[17]. All 
together, these findings leads us to investigate the inhibition of Src as potential treatment for 

patients with osteosarcoma. 
 
Dasatinib and bosutinib are two Src/Bcr-Abl inhibitors approved by the FDA for chronic 

myelogenous leukemia resistant to prior therapy[18-21]. Saracatinib, is a Src inhibitor that is 
currently in clinical trial for patients with recurrent osteosarcoma localized to the lung 

(NCT00752206), other cancers including melanoma (NCT00669019), prostate cancer (NCT01267266), 
and Alzheimer’s disease (NCT01864655). The compounds have been tested as single agents in solid 

tumors with no evident clinical activity[22-26]. Here, we assessed the capacity of these inhibitors to 
attenuate human osteosarcoma cell survival and migration in 2D and 3D environments. The 

inhibitors were tested alone or in combination with the clinically relevant chemotherapeutic 
compound, doxorubicin.  
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MATERIALS AND METHODS 

Reagents and antibodies.  Doxorubicin was obtained from the Department of Clinical 

Pharmacology at LUMC, bosutinib, dasatinib and saracatinib were from SelleckChem 

(Huissen, Netherlands). Antibodies against ERK1/2(clone137F5), phospho-ERK(42/44) 

(#4695), AKT(9272), and phospho-AKT(Ser473) (#9271), were from Cell Signalling (Bioké, 
Leiden, The Netherlands). Antibodies against Src (clone GD11) and phospho-Src(Tyr418) 

(#44660G) were from Millipore (Amsterdam, The Netherlands) and Invitrogen (Bleiswijk, The 

Netherlands), respectively. Antibody against FAK (clone4.47) was from BioConnect (Huissen, 

The Netherlands). Antibodies against phospho-FAK(Tyr925) (#MBS8507066) and phospho-
FAK(Tyr861) (#MBS8507535) were from Biosourse (California, U.S.A.). Antibody against 

tubulin (T-9026) was from Sigma-Aldrich (Zwijndrecht, Netherlands).  

 
Cell culture. Human osteosarcoma cell lines MOS, U2OS were previously described[27,28]. 
Cells were grown in RPMI1640 medium supplemented with 10% fetal bovine serum and 25 

U/mL penicillin and 25 µg/mL of penicillin-streptomycin.  All cells were cultured in a 

humidified incubator at 37°C with 5% CO2.  

 
Western blotting. Cells were lysed with SDS protein buffer (125mM Tris/HCl pH 6.8, 20% 

glycerol, 4% SDS and 0.2% bromophenol blue). Proteins were resolved by SDS-PAGE and 

transferred to polyvinylidine difluoride membrane. Membranes were blocked in 5% BSA-

TBST (TRIS-0.05% Tween20), followed by overnight incubation with primary antibodies and 

45 minutes incubation with HRP-conjugated secondary antibodies. Chemoluminescence was 

detected with a bioimager, LAS400 (GE Healthcare). 

 
Measuring cell viability and apoptosis in 2D cultures. For cell viability, cells were processed 

using the ATPlite 1Step kit (Perkin Elmer) according to the manufacturer’s instructions, 

followed by luminescence measurement. Apoptosis was measured by assessing caspase3/7 

activity with CaspaseGlo 3/7 (Promega). The cells were exposed to the drug for 24 hours 

after which the reagent was added 1:1. Luminescence was measured in a Fluostar Optima 

plate reader. 

 

http://www.mybiosource.com/prods/Antibody/FAK/datasheet.php?products_id=8507066
http://www.mybiosource.com/prods/Antibody/FAK/datasheet.php?products_id=8507535
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3D collagen/matrigel culture assay. U2OS and MOS cells were cultured in 384-well plates 

(Greiner μclear) in a hydrogel containing Matrigel (Beckton Dickinson) and collagen I, 

supporting invasive growth of both cell lines. Cells in culture were trypsinized and directly 

added to the cooled gel solution. Using a robotic liquid handler (CyBio Selma 96/60), 14.5μL 

of gel-cell suspension was transferred to each well of a 384-well plate (2000 cells/well). After 

polymerization for 30 minutes at 37°C in an atmosphere of 5% CO2, growth medium was 

added on top of the gel. After three days, when the cells had formed a network structure, 

compounds were diluted and added in quadruplicate wells for a period of 72 hours. 

For measuring cell viability in 3D, a solution of 7g/L WST-1 (Serva Electrophoresis) 

and 8mg/L phenazinium methylsulfate (PMS; Sigma Aldrich) in 1x PBS were mixed in a 1:1 

ratio and 5μL was added to each well. Plates were placed at 37°C for 5 hours, after which the 

absorbance at 450nm was measured using a FluoStar Optima late reader. Percentage 

viability was thereafter calculated by robust normalization (median) of the plates between 

positive control (no cells; 0% viability) and negative control (solvent; 100% viability) 
conditions. 

For imaging, cells were fixed using 3.7% Formaldehyde (Sigma-Aldrich), 

permeabilized with 0.1% Triton-X100 and stained for F-actin using 50nM Rhodamine-

Phalloidin (Sigma Aldrich) for 12 hours at 4˚C. Subsequently, the plates were washed in PBS 
for at least 24 hours at 4˚C. The plates were then imaged on a BD Pathway 855 inverted 

fluorescence microscope (BD Biosciences) using a 4x lens to capture Rhodamine-Phalloidin 

staining at focal planes spaced 50µm throughout the gel, capturing approximately 70% of a 
well. Subsequently, maximum intensity projections of the in-focus information of the Z-

stacks was made using OcellO (OcellO B.V., Leiden, The Netherlands) image analysis tools. 

 
3D collagen spheroid assay. Cell suspensions were injected into collagen scaffolds using 
automated injection as previously described[29,30]. 1 mg/ml rat tail collagen was prepared 

in complete growth medium supplemented with 1:5 dilution of 0.44M NaHCO3 and 1:10 

dilution of 1M Hepes pH 7.4. 60µL was added to each well of a 96-well μ-clear plate 
(Corning) and incubated for 1 hour at 37ºC to allow polymerization. Cells were collected in 

medium containing 2% PVP, transferred to a needle and droplets of ~8nL were injected into 

the collagen gels resulting in spheroids of ~300μm diameter, using injection robotics from 

Life Science Methods, Leiden NL (http://www.lifesciencemethods.com). For DIC imaging of 

spheroids, a Nikon confocal microscope was used. 

 
Statistical analysis. Dose response curve fitting and all statistical analyses were performed 

with GraphPad Prism 5.0 (GraphPad Software, La Jolla, CA). The unpaired two-tailed t-test 

http://www.lifesciencemethods.com/
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was used to compare between groups. Significant difference between groups in the 3D assay 

was calculated using 2way ANOVA with Bonferroni posttest. 

 
RESULTS 
 

Reduced human osteosarcoma cell viability in presence of bosutinib, dasatinib and 

saracatinib and selective Src kinase inactivation by dasatinib 

We determined the effect of dasatinib, bosutinib and saracatinib on cell viability in MOS and 

U2OS human osteosarcoma cells. Responses to these inhibitors were highly similar for MOS 

and U2OS cells but differed considerably between the different inhibitors  (Fig. 1A). Both cell 

lines showed no response to bosutinib concentrations <1 µM and a rapid decline in viability 

was observed as the bosutinib concentration increased from 1 to 5 µM. Instead, viability 

gradually decreased in response to 0.1-10 µM dasatinib and a similar trend, albeit less 

effective, was observed for saracatinib. IC50 for bosutinib and dasatinib was ~5 µM and IC50 

was >10 µM for saracatinib (Fig 1B). 
 

PI3K/AKT and Raf-MEK-ERK MAP kinase signaling pathways represent important drivers of 

survival and proliferation in many different cancer types. These two pathways are regulated 
by Src activity[31,32].  We tested if treatment of MOS and U2OS cells with the Src inhibitors 

affected these pathways. However, treatment with up to 2.5µM bosutinib, dasatinib, or 

saracatinib did not affect phosphorylation of ERK (Fig 1C). In fact, treatment with saracatinib 

increased the levels of ERK phosphorylation particularly in U2OS. On the other hand, 
dasatinib and saracatinib suppressed AKT phosphorylation at 2.5µM whereas bosutinib had 

no effect. Moreover, while 1µM dasatinib effectively attenuated Src phosphorylation at Y418 

in both cell lines, indicating attenuated Src kinase activity, bosutinib and saracatinib failed to 
do so even at 2.5µM. 
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Figure 1. Effect of dasatinib, bosutinib and saracatinib in human osteosarcoma cells. 
A) Dose response curves for dasatinib, bosutinib and saracatinib in two human osteosarcoma cell 
lines. Error bars represent the standard deviation of three experiments performed in triplicate. Cells 
were exposed for 72 hours. B) Table with IC50 values of bosutinib, dasatinib and saracatinib in MOAS 
and U2OS cells. C) Western blot analysis of phospho-ERK(p44/42), total ERK, phospho-AKT(Ser473), 
total AKT, phospho-Src(Tyr418), total Src, and tubulin loading control in MOS and U2OS cells under 
control (DMSO) conditions or after 48 hours treatment with 1 or 2.5µM of the indicated inhibitors. 
 

Sensitization to doxorubicin in presence of bosutinib, dasatinib and saracatinib and 

selective induction of apoptosis by dasatinib 
Src kinase activity may not be a bona fide cancer driver and mono therapy using either of 

these inhibitors may be ineffective. However, as Src stimulates pro-survival and proliferation  
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Figure 2. Effect of dasatinib, bosutinib and saracatinib in human osteosarcoma cells in the context 
of doxorubicin. A). Dose response curves for doxorubicin in two human osteosarcoma cell lines in 
absence (black) or presence of 1µM of dasatinib (red), bosutinib (green) or saracatinib (blue). Cells 
were exposed for 72 hours. Error bars represent mean ± SEM of three experiments B). Table with 
IC50 values for doxorubicin alone (DMSO) or in combination with 1µM bosutinib, dasatinib or 
saracatinib in MOS and U2OS cells. C) Caspase 3/7 activity in two human osteosarcoma cell lines 
under control conditions (white bars) or upon exposure for 24 hours to 0.1µM doxorubicin (black 
bars) in the presence of DMSO or 1µM dasatinib, bosutinib and saracatinib as indicated. Mean ± S.D 
is shown for one representative experiment of 3 performed in triplicate.  
 

signaling pathways[13,14]. Its inhibition may render tumor cells more sensitive to 

chemotherapy. To investigate this, MOS and U2OS cells were exposed to 1µM of the 

inhibitor together with a dose range of doxorubicin for 72 hours. Indeed, both cell lines 
showed a reduction in viability already at lower doses of doxorubicin in presence of 
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dasatinib, bosutinib, or saracatinib, as compared to the response to doxorubicin alone (Fig. 

2A). For MOS cells, the IC50 for doxorubicin was reduced by 30-50%, and for U2OS cells a 

reduction of 50-80% was observed (Fig 2B). In order to assess whether decreased viability 

was related to apoptosis, we determined caspse3/7 activity. Interestingly, only treatment 

with dasatinib led to apoptosis either alone (not shown) or in combination with doxorubicin 

(Fig. 2C). 

 

Reduced human osteosarcoma cell viability in 3D cultures in presence of bosutinib, 

dasatinib and saracatinib and selective morphological effects induced by dasatinib. 

Next, we analyzed the effect of the panel of Src inhibitors in a 3D in vitro culture model. 

MOS and U2OS cells were suspended in a collagen-matrigel mixture and allowed to form a 

multicellular network for 72 hours. Subsequently cells were exposed to 1µM of dasatinib, 

bosutinib, or saracatinib alone or combined with a concentration range of doxorubicin. 

Inhibition of cell viability by the inhibitors alone as measured biochemically, was more 
pronounced compared to effects measured in 2D. All three inhibitors by themselves caused 

a reduction in viability of 40-50% (Fig 3A). Additional treatment with doxorubicin further 

decreased viability but no synergy was observed between doxorubicin and any of the 

inhibitors.  
Next we used imaging and image analysis algorithms to measure “branch length” and 

“solidity” or roundness of the multicellular structures; parameters correlated cell migration 

[33]. Low concentrations of doxorubicin up to 0.1µM did not affect these parameters (Fig 
3B).  Exposure to 1µM of the Src inhibitors alone led to decreased branch length and 

increased solidity. However, in the presence of dasatinib MOS and U2OS cells were 

selectively responsive to low concentrations of doxorubicin; showing a decrease in branch 
length and a concomitant increase in solidity of the multicellular structures (Fig. 3B-D). 

 

Selective inhibition of FAK activity and 3D osteosarcoma cell migration by dasatinib  

To further investigate morphological effects caused by these inhibitors that may impact on 

osteosarcoma progression we made use of a 3D spheroid model. MOS and U2OS cells were 

injected as nL droplets into collagen gels as described before[29,30], and resulting spheroids  
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Figure 3. Effect of dasatinib, bosutinib and saracatinib in human osteosarcoma cells in the context 
of doxorubicin in 3D cultures. A,B) Doxorubicin dose response curve for human osteosarcoma cells 
grown in collagen/matrigel mixture under control conditions (DMSO; black line) or in presence of 
1µM dasatinib (red), bosutinib (green), or saracatinib (blue). Cells were exposed for 72 hours. A) 
Viability was assessed using WST/PMS absorbance. Error bars represent mean ± SEM of three 
experiments. Values were normalized to median of DMSO. B) Image analysis was used to assess 
average branch length (top graphs) and solidity (bottom graphs). Error bars represent mean±s.d of 
one representative experiment done in quadruplicate. C) Representative images such as those used 
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Figure 4. Dasatinib 
inhibits Fak activation 
and stops collagen 
invasion in 
osteosarcoma. A) 
U2OS and MOS cell-
derived collagen-
embedded spheroids 
directly after cell-
injection (0 hours) and 
after 72 hours 
incubation under 
control conditions 
(DMSO) or in presence 
of 1µM of the indicated 
inhibitors. Images were 
obtained using a Nikon 
confocal microscope. 
B) Western blot 
analysis of total FAK 
and phospho-
Fak(Tyr397), (Tyr861), 
(Tyr925), and tubulin 
loading control for 
U2OS and MOS cells 
maintained for 48 
hours under control 
conditions (DMSO) or 
in presence of 1µM of 
the indicated 
inhibitors. 
 

for graphs in B. Each image is a compression of 11stacks of the 3D culture. D) Zoom-in of selected 
areas from images in C, showing marked effect of doxorubicin/dasatinib combination. 
 

 

 
 
 

were exposed to DMSO or 1µM bosutinib, dasatinib and saracatinib for 72hours. Saracatinib 

did not affect spheroid outgrowth or 3D cell migration and bosutinib had an intermediate 

effect while dasatinib treatment completely blocked outgrowth and collagen invasion of 

MOS and U2OS cells in this model (Fig 4A). 
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Src promotes invasion and metastasis and plays a key role as a regulator of cell-ECM 

adhesions containing the Src substrate FAK. The Src/FAK complex integrates signals from the 

extracellular environment and controls and coordinates adhesion dynamics and cell 

migration[34,35]. FAK is autophosphorylated at Tyr397 upon integrin-mediated adhesion 

creating a binding site for Src, which subsequently phosphorylates FAK at Tyr407, 576, 577, 

861 and 925[34,36]. We analyzed FAK phosphorylation after 48hour treatment with 1µM 

dasatinib, bosutinib or saracatinib. The FAK autophosphorylation site was not affected by 

any of the inhibitors. However, in agreement with its selective inhibition of cell migration 

through 3D ECM scaffolds, phosphorylation of FAK at Src substrates Tyr861 and Tyr925 was 

selectively inhibited by dasatinib. Whereas Saracatinib and bosutinib had no apparent effect 

(Fig 4B).   

 
DISCUSSION 
 

It this study we investigated the effect of Src inhibitors dasatinib, bosutinib, and saracatinib 
in two human osteosarcoma cell lines. Impacts on cell viability and migration were tested as 

single agent as well as in combination with the chemotherapeutic compound doxorubicin, 

which is used in the clinic for treatment of osteosarcoma. Src activity regulates the PI3K-Akt, 
Ras-Raf-ERK, Jak-Stat and FAK-Paxillin pathways. In osteosarcoma, none of the inhibitors 

interfered with ERK and AKT phosphorylation, and only dasatinib inhibited Src and Fak 

activation in MOS and U2OS cell lines. Notably, the inhibitors have other targets such as 

other members of the Src family, Bcr-Abl, MAPK kinases, Eph receptors, cKit, STK6, PDGFR 
and TEC family kinases[37,38]. An interesting study that mapped the target profile of 

bosutinib in chronic myeloid leukemia cells identified new targets and to what extent targets 

were inhibited[39]. The MAPK family was found to be a major target, but MEK1 and MEK2 
were not significantly inhibited[39,40]. These results may explain why ERK activation was not 

inhibited by any of the inhibitors in our study. Furthermore, the fact these inhibitors do not 

completely inhibit the activity of a kinase, can explain why saracatinib and bosutinib did not 
show appreciable inhibition of Fak phosphorylation, and failed to affect cell migration. The 

autophosphorylation site (Tyr397) of Fak causes a conformational change allowing Src 

binding and further Fak phosphorylation in Tyr576/577, Tyr861 and Tyr925. The 
phosphorylation of these sites is important for the interaction with integrins and E-

cadherin[34]. While bosutinib has been reported to inhibit Fak-(Y925) phosphorylation in 

breast cancer cells, in the two osteosarcoma cell lines used only dasatinib inhibited Src-

mediated phosphorylation of Fak Tyr861 and Tyr925[41]. 

 



102 
 

To study the effect of dasatinib, bosutinib or saracatinib on the migratory behavior of 

osteosarcoma cells, we used 3D cell culture systems. 3D cultures may better reflect the 

tumor microenvironment as compared to 2D cultures and cell matrix adhesions and 

migratory behavior are closer to the in vivo situation [42-45]. In the two 3D systems we 

used, including mixture of cells in collagen/matrigel and microinjection of cells to examine 

migration from spheroids in collagen gels, collagen type I is the major ECM component and 

this is also the main component (90%) of the ECM of bones[46]. Our finding that dasatinib 

selectively blocks osteosarcoma cell migration in this environment correlates its selective 

inhibition of Src-mediated Fak phosphorylation. Thus, dasatinib treatment likely interferes 

with the Src/Fak signaling platform to prevent cell migration and may thus interfere with 

metastatic capacity. 

 

In addition, dasatinib selectively triggers apoptosis and causes morphological 

alterations in 3D cultures in the presence of doxorubicin. It was previously reported that 
dasatinib has the capacity to sensitize chondrosarcoma cells to doxorubicin (jolieke refe). 

Furthermore, a new Src inhibitor, A-770041, was shown to increase sensitivity to 

doxorubicin in osteosarcoma cells (refDuan et al. BMC Cancer 2014, 14:681). Notably, a 

decrease in the IC50 of doxorubicin is observed when combined with each the inhibitors 
indicating that dasatinib selectively affects some, but not all aspects of these inhibitors. 

Several studies have hown that these three inhibitors do not have an effect as single agents 

in solid tumors. For example, dasatinib inhibits activation of Src and Fak in vitro and in vivo, 
but it does not induce apoptosis or prevent tumor metastasis to the lungs in a xenograft 

osteosarcoma mice[47]. However, others showed that for biliary tract carcinomas 

saracatinib was effective in a preclinical model, and both dasatinib and saracatinib are 
effective in leukemia[48-51] indicating that the therapeutic effect of these inhibitors is 

cancer type-dependent. Despite the lack of activity as a single agent, the combination of 

dasatinib, bosutinib or saracatinib with doxorubicin in breast cancer or pancreatic cancer 

cells did lead to a synergistic effect in vitro and in vivo[52-54]. 

 

Altogether, we find that dasatinib selectively inhibits activity of the Src/Fak signaling 
complex in osteosarcoma cells and, most likely as a consequence of this, migration in 

collagen scaffolds. Furthermore, while all three inhibitors decreased the IC50 of doxorubicin, 

dasatinib selectively triggers apoptosis and morphological changes in the context of 

doxorubicin. Our findings point to the combination of dasatinib and doxorubicin as a 

potential therapy for osteosarcoma to prevent or minimize metastasis. 
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