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General introduction and outline of
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1. What is Osteosarcoma?

Osteosarcoma is the most frequent high-grade primary malignant
bone tumor that is thought to arise from mesenchymal stem cells
with the capacity to produce osteoid.”> The overall incidence is of
three cases per million annually. Osteosarcoma occurs
predominantly in children and adolescents, and in people over 50
years of age. It is located primarily in the metaphyseal region within

the medullary cavity of long bones of the extremities (Fig. 1),>3

specifically in the knee area.* Other locations are the pelvis, ribs

and spine, which are associated with worse outcome.>® Figure 1. Osteo-sarcoma
of the distal femur
Osteosarcoma is classified into various histological

subtypes: conventional, telangiectatic, small cell and other rare types. Conventional
osteosarcoma is the most frequent, which originates in the medullary cavity of the
metaphyseal region of long bones, and is mainly high grade. Telangiectatic represent less
than 4% of the osteosarcomas. It is similar to conventional osteosarcoma in terms of clinical
presentation, treatment and prognosis.” Small cell osteosarcoma is a rare entity with 1%-2%
prevalence, and it resembles morphologically an Ewing sarcoma. However, small cell
osteosarcoma has different genetic characteristics such as the absence of EWSR1 and FUS

gene rearrangements, and the production of osteoid.81°

Osteosarcoma diagnosis is only confirmed by the
presence of osteoid in the biopsy. However, these
malignant cells also have the capacity to produce cartilage
matrix or fibrous tissue, which divides osteosarcoma in
three categories: osteoblastic, chondroblastic and
fibroblastic. Usually, a tumor shows all three matrix types,

making it difficult to categorize it. The tumor will fall into

one of these categories when it presents more than 50% of

Figure 2. Primary osteosarcoma
one of the histological types.’ with osteoid (black arrow).

2. Etiology

2.1 Bone growth and turnover



Adolescent growth spurt coincides with the peak onset of osteosarcoma: girls show an
earlier peak than boys which could be caused by their earlier growth spurt.!’ Research

shows that there is higher incidence in boys (56%) compared to girls (42%).12714
2.2 Predispositions

Paget’s disease is characterized by a metabolic bone disorder leading to increased and
disorganized bone formation.”® It affects mainly people older than 50 years of age, and
people with this disease present a 2% probability of developing osteosarcoma. Other
predisposing factors are genetic disorders such as Li-Fraumeni syndrome, Rothmund-

Thomson syndrome and Beckman-Wiederman syndrome.!!

Li-Fraumeni syndrome is a hereditary disorder characterized by germline mutations
in the TP53 gene. This syndrome is characterized by the occurrence of sarcomas, among
other cancers, in persons under the age of 45 years old.'® These patients have a high risk of
developing osteosarcoma. In fact, mice with p53%172H/+ mutation showed 2 times increase in
number of osteosarcomas compared to p53* mice,’” and p53-null heterozygous mice

present high numbers of osteosarcomas.'®*°

Rothmund-Thomson syndrome is an autosomal recessive genodermatosis
characterized by poikiloderma, short stature, premature aging and skeletal abnormalities
among other features. Patients with this rare disease have a predisposition to develop
osteosarcoma.?®?! It was found that 60-65% of patients present mutations in the RECQL4

helicase gene suggesting a possible role of this gene in osteosarcoma development.?°

Retinoblastoma is a hereditary disease that causes eye tumors in children. It is
caused by mutations in RB1 gene. Osteosarcoma is the most common secondary tumor that

arises in these patients.?%23

Other rare genetic diseases such as Bloom, Werner, Rapadilino and Diamond

blackfan are known for development of osteosarcoma among other malignancies.??

Finally, osteosarcomas arise secondary to radiation affecting mainly older patients.
Studies show that sarcomas associated with radiation are uncommon. However,
osteosarcomas are the main secondary tumor and represent 2.7-5.5% of

osteosarcomas.22425



3. Prognostic factors

There are several clinical characteristics that are predictors of clinical outcome. The outcome
for patients that at the moment of diagnosis present with metastasis is still poor, and no
improvement was observed with chemotherapy.'%2627 Additionally, the most common sites
of recurrence are local and lung, presented in 20% and 62% of the cases respectively, and
metastasis is correlated with poor survival.?82° Another important prognostic factor is the
tumor site. Several studies report that tumors located in the axial skeleton have particularly
poor outcome.*®30 One of the requisites for a better control of the tumor is to achieve
surgical excision with clean margins, and this is difficult for most of the axial tumors.!!
Response to chemotherapy is another variable that affects the outcome of these patients.
Good responders are described as those with more than 90% of necrotic tissue after pre-
operative chemotherapy. Several studies show that there is a correlation between good
response to chemotherapy and prognosis.332 Furthermore, tumor size is also considered a
prognostic factor as indicated in a retrospective study of 331 osteosarcoma patients.333°
Finally, age is another prognostic factors. Older patients with osteosarcoma tend to have a

worse prognosis than younger patients.*36:37

4. Tumor Biology

Osteosarcoma cells are pleomorphic, anaplastic and hyperchromatic.3® They are also
characterized by complex karyotype as a result of chromosomal abnormalities that are
different from cell to cell and from tumor to tumor (Fig. 2).3%%° It was reported that copy
number gains range from 7 to 190 and loses from 7 to 170 per sample. Gains are mainly
located in chromosomes 6p, 8q/9p and 17p, and loses are in chromosomes 3q, 69, 8p/9p,
11p, 15g and 17q among other aberrations.***3 These studies also show that genomic
instability is correlated with poor prognosis and could be a cause of tumor initiation.** The
fact that there is abundant genetic instability in osteosarcoma, makes it difficult to pinpoint
genes involved in tumor progression, metastasis or response to chemotherapy. However, it
is well established that genetic alterations in the tumor suppressor genes Rb1 and TP53 are

consistent across osteosarcoma tumors.



Figure 3. COBRA-FISH karyotype. Left) Normal
human cell. Right) Osteosarcoma cell. Courtesy of
Dr. Karolv Szuhai.

More than 70% of osteosarcomas have loss of heterozygosity (LOH) of the TP53 gene,
20% present rearrangements, and 30% harbor mutations in TP53.4%444> The Rb1 gene was
found to harbor LOH and mutations in more than 35% of osteosarcomas.**%®4” The
establishment of a murine model with mutant or deleted p53 that leads to development of
osteosarcomas spontaneously in more than 50% of the mice, confirms the role of p53 in
osteosarcoma development.’® Furthermore, MDM2 and COPS3, which are negative
regulators of p53 that facilitate its proteasomal degradation, are amplified in 10% and 25%
of osteosarcomas respectively.*®*° The Rb protein binds to the E2F transcription factor, and
this complex represses the transcription of genes necessary for cell cycle transition from G1
to S-phase.”® The Rb protein is regulated by CDKN2A/p16 and CDK4/CDK6. CDK4/CDK6
phosphorylates Rb, thereby driving cell cycle progression, and CDKN2A/p16 inhibits the
activation CDK4/CDK6.>! It has been shown that in osteosarcoma CDK4 is amplified in 10% of
the tumors, and CDKN2A/p16 is deleted in tumors that lack Rb mutations.*”>>=>* Deletion of
CDKN2A/p16 is correlated with poor prognosis.! Furthermore, a genome-wide expression
study on a series of high-grade osteosarcomas compared to mesenchymal stem cells and
osteoblasts, revealed significantly altered pathways in osteosarcoma such as upregulation of

genes involved in mitosis and DNA replication.>>

c-Myc and c-Fos are two proto-oncogenes that are regulators of cell cycle
progression by modulating the cyclin-Cdk complex activity.”®>” Expression of the c-Myc and
c-Fos genes is increased in osteosarcoma.>® One of the frequent genomic gains found in 34%
of the cases is chromosome arm 8q, which contains the c-Myc proto-oncogene,?*>° and its
amplification is associated with poor overall survival and event-free survival.*’ In a genetic
mouse model, 100% of transgenic mice overexpressing c-Fos were found to develop

osteosarcoma.>®



Receptor Tyrosine kinases (RTKs) are transmembrane receptors that are activated
upon extracellular ligand binding such as growth factors, hormones and cytokines. They are
mediators of the these environmental signals that lead to normal cellular processes like
growth, proliferation, survival, differentiation and migration.?° If these receptors are
mutated or abnormally activated, they can be effective oncoproteins driving
tumorigenesis.®! The RTK family is composed of 58 members classified into 20 subfamilies®?
which include: epidermal growth factor receptors (EGFR), platelet-derived growth factor
receptors (PDGFR), fibroblast growth factor receptors (FGFR), hepatocyte growth factor

receptor (Met), insulin receptor (INSR), among others.®3

The EGFR family is composed of EGFR, ERBB2, ERBB3 and ERBB4.%2 The EGFR gene
was found to be amplified in 82% and expressed in 50% of osteosarcoma.®*®> However,
inhibition of EGFR in vitro had no effect on cell viability in vitro, and in osteosarcoma
patients high EGFR expression is correlated with good prognosis.®®®” There are contradicting
results with respect to ERBB2 expression and its correlation with osteosarcoma prognosis,
which could be due to study methodologies.®®7° Inhibition of ERBB3 expression in vitro and
in vivo reduces cell growth and invasiveness of osteosarcoma cells’?. Studies on ERBB4 in

osteosarcoma are limited but it was found to be paired with ERBB2 for its activation.”?

PDGFR family is composed of CSF1R, KIT, FLT3, PDGFRa and PDGFRP.®2 The KIT gene
was found to be amplified in 57% of osteosarcoma patients.”> PDGFRa/B were found to be
expressed in osteosarcoma cell lines,’* however, in osteosarcoma patients expression of
PDGFRa is not correlated with overall survival.”> No information is available on FLT3 and

CSF1R in osteosarcoma.

The FGFR family includes FGFR1/2/3/4.52 FGFR1 gene has been reported to be
amplified in 17% of the osteosarcoma cases, and it was significantly correlated with poor
response to chemotherapy.’® No studies have reported on the relation between FGFR2/3/4

expression and osteosarcoma.

Met is part of the Met family together with MST1R. Met is highly expressed in
osteosarcoma, and it has been implicated in osteosarcomagenesis by inhibiting the
differentiation of the osteo-progenitor cell population.”””® Additionally, Met expression was

associated with ostesarcoma progression and aggressiveness.”®

The INSR family groups the insulin receptor (IR) and the insulin-like growth factor 1
receptor (IGF-1R). IGF-1R is known to be expressed in osteosarcoma and its downstream
signaling pathway was found to be altered in osteosarcoma.8%8! However, IGF-1R expression

is not proven to be a predictive marker for response to therapy with IGF-1R inhibitors.8?



All these RTKs are activated by many different ligands, and to exert their effect they
must activate downstream signaling pathways converting ligand binding into gene
expression alterations. The pathway from cell surface to nucleus is mainly governed by: 1)
the Ras/Raf/MEK/ERK cascade, 2) the PI3K/AKT pathway and 3) the Jak/STAT pathway.%3

The Ras/Raf/MEK/ERK cascade is known to be involved in cell proliferation,
apoptosis, differentiation and development. Activated cell surface receptors lead to ERK
activation, which activates transcription factors such as c-Myc, c-Fos, Ets, and Elk-1.8* This
pathway is often deregulated in tumors caused by mutations or overexpression of upstream
signaling components. B-Raf and Ras are frequently mutated in melanoma, colorectal
cancer, ovarian cancer, lung cancer and pancreatic cancer among others.®2 |n
osteosarcoma, the ERK pathway was reported to be active in 67% of the cases analyzed, and
mutations in B-RAF were only found in 13% of the cohort.®” The PI3K pathway regulates
processes such as proliferation, metabolism, apoptosis and cytoskeletal rearrangements.2 In
osteosarcoma, genetic screens have identified this pathway to be upregulated.®-°! Recently,
AKT2 was found to be overexpressed in osteosarcoma samples compared to normal tissue,
and there was a positive correlation with shorter overall survival time.®?> Furthermore, it has
been reported that STAT3 is overexpressed and constitutively active in osteosarcoma, and
contributes to tumor progression.®>%* Upstream of these three pathways is Src, a non-
receptor tyrosine kinase that belongs to a family of 11 members.>> It was shown that in

osteosarcoma, Src expression and activity correlates with clinical stage and survival time.%®

Finally, another important pathway involved in osteosarcoma development is Wnt/B-
catenin. Active Wnt/B-catenin signaling stimulates osteogenic differentiation. This pathway

was found to be inactive in osteosarcoma, thus facilitating dedifferentiation.®”

5. Metastatic behavior

Osteosarcoma is a highly metastatic cancer. Approximately 20% of the patients present with
pulmonary metastasis at the moment of diagnosis and when patients present with
recurrence around 90% of the cases is in the lungs.’® Ras/Raf/MEK/ERK activation
downstream from IGF-1R has been shown to drive lung metastasis in an orthotopic mouse
model.”® The PI3K/AKT pathway is also involved in osteosarcoma metastasis. Several studies
showed that this pathway is active in cell lines capable of forming metastatic lesions in
micel® and that AKT activity is upregulated in anoikis-resistant cells.’%? As mentioned
before, Src kinase activity can stimulate these pathways. Src regulates a variety of cellular

processes such as cell morphology, migration, adhesion, survival and proliferation.®® In cell-
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matrix adhesions where integrin receptors connect the intracellular cytoskeleton to the
extracellular matrix; Src forms a complex with focal adhesion kinase (Fak). Src
phosphorylates Fak at multiple positions thereby creating a cell adhesion signaling platform
that regulates cell-matrix adhesion dynamics and downstream signaling.’°? Fak is
overexpressed in osteosarcoma, and it was shown to be involved in metastasis.'®> Another
cytoskeleton-associated protein that influences the metastatic behavior of osteosarcoma is
ezrin. Ezrin links the cytoskeleton to the plasma membrane allowing the cell to interact with
the environment. In osteosarcoma, ezrin is necessary for initial survival once the cells
metastasize, and this effect is dependent on ERK activity. Moreover, high expression of ezrin
is correlated with poor survival.!®* Lastly, increased expression of vascular endothelial
growth factor (VEGF), a factor that binds VEGF-R on endothelial cells and stimulates

angiogenesis, has been reported as a prognostic marker in osteosarcoma®.

6. Treatment options

Historically, osteosarcoma was treated with amputation of the limb, and the maximum 5-
year survival rate was 20%. However, the majority of the patients died 2 years after
diagnosis because of metastasis.'% As surgical techniques advanced, resection of the tumor
was possible with limb-salvage techniques, and it was proven to be as safe as amputation.1%’
After the introduction of chemotherapy the disease survival rate increased to >50% with
patients surviving more than 5 years.10819 Today, the treatment consists of preoperative
chemotherapy followed by resection of the tumor. The most effective systemic

108 and methotrexate.!! Despite extensive

chemotherapeutics are cisplatin,''® doxorubicin
studies aimed at finding optimal combined chemotherapeutic strategies, overall 5-year
survival rates have not increased above 70%. Furthermore, around 35-45% of the patients
have tumors that do not respond to chemotherapy.!*2711* The mechanisms underlying such
resistance are not well understood but may include p53 mutation as well as overexpression,
rewiring of signaling pathways including PI3K/AKT and Ras/MAPK, and expression of ABC

transporters.11>116

There is a clear need for alternatives to conventional chemotherapy or to drugs that
suppress the resistance to chemotherapy. Genome-wide RNA interference (RNAi) screening
to identify new drug targets and screening of chemical compound libraries hold the promise
of identifying new strategies for molecularly targeted therapy. RNAi screens in osteosarcoma
have identified the mTOR pathway (downstream from PI3K/AKT), CDK11, WEE1 as candidate



drug targets among others.®%117-119 Other studies have reported that inhibition of Aurora

A/B or polo-like kinase 1 sensitizes osteosarcoma cells to doxorubicin.12%12

Some of the candidate therapeutic targets have entered clinical testing in
osteosarcoma patients. Recently, a clinical trial studying the effect of Alisertib (Aurora A
inhibitor) was completed (NCT01154816). There are several ongoing clinical trials that are
studying the inhibition of VEGFR in solid tumors (NCT02389244, NCT02432274,
NCT02357810, NCT02243605). Others are studying the possibility of inhibiting Src with
saracatinib  (NCT00752206) and dasatinib in combination with chemotherapy
(NCT00788125). Besides inhibiting kinases, other trials are investigating the effect of
targeting the immune system (NCT02470091, NCT00743496, NCT00134030).

7. Aim and outline of this thesis

The aim of the studies described in this thesis was to discover new therapeutic options for
osteosarcoma patients. | focused on finding candidate targets and pharmaceutical inhibitors
for killing human osteosarcoma cells or for sensitizing osteosarcoma cells to the
chemotherapeutical, doxorubicin. Chapter 2 describes the role of Aven in cell cycle control in
osteosarcoma cells. It shows that silencing Aven causes cell cycle arrest through
downregulation of the checkpoint kinase, Chkl. It further explores the efficacy of small
molecules targeting Chk1 in combination with doxorubicin. In chapter 3, the role of Bcl2
family members in osteosarcoma cell survival is studied using an RNAi library targeting
members of this family. Identification of Bcl-xL and validation of this hit using small
molecules is described for a panel of human osteosarcoma cell lines. In Chapter 4
identification of MEK inhibitors in a chemical kinase inhibitor library screen is described.
Results are presented pointing to MEK inhibitors as a candidate therapeutic option for
osteosarcomas showing high MEK activity. Chapter 5, focuses on elucidating the effect of
three Src inhibitors on osteosarcoma viability and cell migration using 2D cultures and
validation in 3D culture systems. Lastly, chapter 6 provides overall conclusions of the studies

described in this thesis and describes future perspectives.
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ABSTRACT

Conventional high-grade osteosarcoma is the most common primary bone sarcoma with
relatively high incidence in young people. Here, we found that expression of Aven is
inversely correlated with metastasis-free survival in osteosarcoma patients and is increased
in metastases compared to primary tumours. Aven is an adaptor protein that has been
implicated in anti-apoptotic signaling and serves as an oncoprotein in acute lymphoblastic
leukemia. In tumour cells, silencing Aven triggered a G2 cell cycle arrest. Chk1 protein levels
were attenuated and ATR-Chkl DNA damage response signaling in response to
chemotherapy was abolished in Aven-depleted osteosarcoma cells while ATM, Chk2, and
p53 activation remained intact. Osteosarcoma is notoriously difficult to treat with standard
chemotherapy, and we examined whether pharmacological inhibition of the Aven-controlled
ATR-Chk1 response could sensitize osteosarcoma cells to genotoxic compounds. Indeed,
pharmacological inhibitors targeting Chk1/Chk2 or those selective for Chk1 synergized with
standard chemotherapy in 2D cultures. Likewise, in 3D extracellular matrix-embedded
cultures Chk1 inhibition led to effective sensitization to chemotherapy. Together, these
findings implicate Aven in ATR-Chk1 signaling and point towards Chk1 inhibition as a strategy

to sensitize human osteosarcomas to chemotherapy.
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INTRODUCTION

Osteosarcoma is the most common primary malignant bone tumor occurring predominantly
in children and adolescents, and a second peak at middle age. It is thought to arise from
mesenchymal stem cells that are capable of producing osteoid [1,2]. At the moment of
diagnosis, 10-20% of the patients present with metastasis. About 30-40% of the patients
with localized osteosarcoma will relapse mainly by presenting lung metastasis. Patients with

recurrence have very poor prognosis with 23-33% 5-year overall survival [3].

Aven is an adaptor protein that exerts anti-apoptotic activity by potentiating Bcl-xL
and by interfering with the self-association of Apaf-1, thereby preventing the activation of
caspase 9[4,5]. Aven has also been identified through bioinformatics analysis as a novel
potential BH3-domain containing protein[6]. Besides being involved in apoptosis, Aven was
reported to control the DNA damage response (DDR) by physically interacting with- and
supporting the activity of “ataxia-telangiectasia mutated” (ATM)[7].

The DDR is evolutionary conserved and essential to ensure the faithful maintenance
and replication of the genome. This elaborate integrated signaling cascade senses DNA
damage and triggers repair, cell cycle arrest and, in case of severe damage, cell death. The
serine/threonine protein kinases of the phosphatidylinositol 3-kinase-like family, ATM and
“ATM and Rad3-related” (ATR) are crucial players in the DDR [8,9]. After DNA damage, ATM
and ATR are activated and, in turn, they activate critical effectors, including components of
the DNA damage repair machinery and the checkpoint kinases, Chk1 and Chk2 to arrest the
cell cycle[10]. Combining cytotoxic chemotherapeutics with pharmacological Chk1/Chk2
inhibitors can prevent damaged cancer cells from arresting, causing increased tumor cell

killing and thus, improved therapeutic efficacy [11].

In the context of cancer, Aven has thus far been exclusively implicated in
hematopoietic malignancies. Aven mRNA levels have been associated with disease relapse
and poor prognosis of acute lymphoblastic leukemia and Aven has been shown to act as an
oncoprotein that drives proliferation and survival of leukemic cells [12-14]. Here, we analyze
Aven mRNA, protein expression, and function in osteosarcoma, the most common primary
bone malignancy that is very difficult to treat. We show that Aven expression is increased in
metastatic lesions and inversely correlated with metastasis-free survival in osteosarcoma
patients. We show that Aven is in fact dispensable for ATM-Chk2 (and p53) activation.

Instead, Aven is required for ATR-Chk1 signaling and Aven silencing leads to G2 cell cycle

24



arrest. Moreover, in the absence of Aven osteosarcoma cells fail to activate Chk1 (but not
Chk2) in response to DNA damaging chemotherapeutics. Finally, we show that targeting the
Aven-controlled ATR-Chk1 activity using clinically relevant pharmacological inhibitors

sensitizes osteosarcoma to chemotherapy.

MATERIALS AND METHODS

Reagents and antibodies. Doxorubicin was obtained from the Department of Clinical
Pharmacology at LUMC, AZD7762 Chk1/Chk2 inhibitor. Ly2603618 and CHIR-124 selective
Chk1 inhibitors were from SelleckChem (Huissen, Netherlands). Cisplatin and etoposide were
from Sigma-Aldrich (Zwijndrecht, The Netherlands). Hoechst 33342 was purchased from
Fischer Scientific (Bleiswijk, The Netherlands) and the pan-caspase inhibitor z-VAD-fmk was
obtained from Bachem (Weil am Rhein, Germany). The Aven antibody (HPA020563) used for
immunohistochemistry was from Sigma Aldrich (Zwijndrecht, The Netherlands) and the Aven
antibody (2300S) used for Western blot was from Cell Signalling (Bioké, Leiden, The
Netherlands). The antibody against phospho-ATR(Ser428) (2853) was from Cell Signaling
(Bioké, Leiden, Netherlands). The antibody against tubulin (T-9026) was from Sigma-Aldrich
(Zwijndrecht, Netherlands). Antibodies against phospho-H3(ser10) (9701), phospho-
CHK2(Thr68) (2661P), phospho-H2Ax(Ser139) (9718), phospho-ATM(Ser1981) (5883), and
CHK1 (2345) were from Cell Signaling (Bioké, Leiden, Netherlands). The antibody against
phospho-CHK1(Ser317) (A300-163A) was from Bethyl Laboratories (Uithoorn, The
Netherlands).

Microarray data analysis. Gene expression profiles were obtained from a previously
published microarray data set [15]. Kaplan Meier curves were created from the entry “Mixed

Osteosarcoma-Kuijer-127-vst-ilmnhwg6v2” in the web application R2 (http://r2.amc.nl).

Immunohistochemistry on tissue microarrays. Tissue microarrays used in this study were
previously constructed and published [16]. All specimens in this study were handled
according to the ethical guidelines described in ‘Code for Proper Secondary Use of Human
Tissue in The Netherlands’ of the Dutch Federation of Medical Scientific Societies. The slide
was deparaffinized, rehydrated and blocked of endogenouse peroxidase. Subsequently,
antigen retrieval was performed with citrate pH 6.0. Incubation with antibody was overnight
at 4°C at a 1:1000 dilution. As a second step we used Immunologic Poly-HRP-GAM/R/R IgG
(DVPO110HRP) and Dako liquid DAB+ Substrate Chromogen System (K3468), after which it
was counterstained with hematoxiline. Testis tissue was used as control. Slides were scored

independently by two observers (JVMGB and ZB). Staining intensity (0 = absent, 1 = weak, 2
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= moderate, 3 = strong) and extent of the staining (0 = 0%, 1 = 1-24%, 2 = 25-49%, 3 = 50-
74% and 4 = 75-100%) were assessed. The two values were added to obtain the score sum.

Cores where the tissue was lost were excluded from the analysis.

Cell culture. Human osteosarcoma cell lines MOS, U20S, 143B, ZK58 and KPD used were
previously described [17,18]. Cells were grown in RPMI1640 medium supplemented with
10% fetal bovine serum and 25 U/mL penicillin and 25 pg/mL of penicillin-streptomycin. All

cells were cultured in a humidified incubator at 37°C with 5% CO..

siRNA transfection. Transient knockdown of individual genes was achieved using siGenome
SMARTpool siRNAs from Dharmacon, Thermofisher Scientific (Landsmeer, Netherlands). The
end concentration of siRNA was 20nM and it was delivered to the cells by INTERFERin siRNA
transfection reagent according to the manufacturer’s procedures (Polyplus transfection,
Leusden, Netherlands). Medium was refreshed 24 hours post transfection and transfected
cells were used in experiments 48 hours post transfection. The sequences of siRNA are
GAUUAGGGAUGCAGUUAAA, GAACAGGGAAAUUAUUCUA, UAACUGGGAUCGAUAUCAA and
GUUAUUGGUUCGAGCccUU.

Cell cycle analysis. Cell cycle analysis was performed using the Click-iT* Edu Flow Cytometry
Assay Kit from Invitrogen (Oregon, USA). Cells were exposed to 10uM 5-ethynyl-2-
deoxyuridine (Edu) for 1 hour followed by fixation, permeabilization, and staining. RNAase
was added to each sample to a final concentration of 20mg/mL. Edu was probed with Pacific
Blue azide and DNA was stained with FxCycle™ Far Red Stain with a final concentration of
200nM.

Immunoblotting. Cells were lysed with SDS protein buffer (125mM Tris/HCl pH 6.8, 20%
glycerol, 4% SDS and 0.2% bromophenol blue). Proteins were resolved by SDS-PAGE and
transferred to polyvinylidine difluoride membrane. Membranes were blocked in 5% BSA-
TBST (TRIS-0.05% Tween20), followed by overnight incubation with primary antibodies and
45 minutes incubation with HRP-conjugated secondary antibodies. Chemoluminescence was

detected with a Typhoon 9400 imager (GE Healthcare).

Cell number, cell viability, and real time growth assays. Control or siRNA-transfected cells
were treated with compounds for the indicated time points in black 96-well p-clear plates
(Greiner). To determine cell numbers, cells were fixed in 4% paraformaldehyde for 15

minutes and nuclei were stained with Hoechst 33342 for 15 minutes. Plates were imaged
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using a BD Pathway 855 imager (Becton Dickinson). Images were processed using an Image-
Pro Analyzer 7.0 algorithm, yielding the number of nuclei in each well. For cell viability, cells
were processed using the ATPlite 1Step kit (Perkin Elmer) according to the manufacturer’s
instructions, followed by luminescence measurement on a plate reader. For real time cell
growth analysis the RTCA xCELLigence system (Roche Applied Sciences, Almere, The
Netherlands) was used. In this system cells are plated on a surface covered with electrodes
that measures cell impedance displayed as cell index. Cell index is a quantitative measure of
the number of cells present in the well. For the assay, the cells were seeded in an E-View 96
well plate and loaded into the RTCA station immediately. The cells were exposed to
compounds 16 hours later, and further monitored for 72 hours. Measurements were taken

every 15 minutes.

Real time gqPCR. RNA was isolated from control or siRNA-transfected cells using RNeasy
(Qiagen). cDNA was generated from 500 ng total RNA using RNeasy Plus Kit from Qiagen.
Real time gPCR was performed in triplicate using the SYBRGreen PCRMasterMix (Applied
Biosystems) on a 7900HT fast real-time PCRsystem (Applied Biosystems). Primer sequence
for CHK1 employed were: forward TGGTATTGGAATAACTCACAGGGA and reverse
TGTTCAACAAACGCTCACGA. Data were collected and analyzed using SDS2.3 software
(Applied Biosystems). Relative mRNA levels after correction for GAPDH control mRNA were

expressed using 2”(-AACt) method.

3D culture assay. U20S and MOS cells were cultured in 384-well plates (Greiner pclear) in a
hydrogel containing Matrigel (Beckton Dickinson) and collagen I, supporting invasive growth
of both cell lines. Cells in culture were trypsinized and directly added to the cooled gel
solution. Using a robotic liquid handler (CyBio Selma 96/60), 14.5uL of gel-cell suspension
was transferred to each well of a 384-well plate (2000 cells/well). After polymerization for 30
minutes at 37°C in an atmosphere of 5% CO,, growth medium was added on top of the gel.
After three days, when the cells had formed a network structure, compounds were diluted
and added in quadruplicate wells for a period of 72 hours. For measuring cell viability in 3D,
a solution of 7g/L WST-1 (Serva Electrophoresis) and 8mg/L phenazinium methylsulfate
(PMS; Sigma Aldrich) in 1x PBS were mixed in a 1:1 ratio and 5uL was added to each well.
Plates were placed at 37°C for 5 hours, after which the absorbance at 450nm was measured
using a FluoStar plate reader. Percentage viability was thereafter calculated by robust
normalization (median) of the plates between positive control (no cells; 0% viability) and

negative control (solvent; 100% viability) conditions. Results are presented as means + SD.
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For imaging, cells were fixed using 3.7% Formaldehyde (Sigma-Aldrich), permeabilized with
0.1% Triton-X100 and stained for F-actin using 50nM Rhodamine-Phalloidin (Sigma Aldrich)
for 12 hours at 4°C . Subsequently, the plates were washed in PBS for at least 24 hours at
4°C. The plates were then imaged on a BD Pathway 855 inverted fluorescence microscope
(BD Biosciences) using a 4x lens to capture Rhodamine-Phalloidin staining at focal planes
spaced 50um throughout the gel, capturing approximately 70% of a well. Subsequently,
maximum intensity projections of the in-focus information of the Z-stacks was made using

OcellO (OcellO B.V., Leiden, The Netherlands) image analysis tools.

Synergy assessment. To assess synergy, we used the Bliss independence model, which
defines that the effect of a drug at certain concentration is independent of the presence of
the other drug.[19] This model predicts the combined response C for two single compounds
with effects Aand B: C=A + B—AeB [20].

Statistical analysis. Dose response curve fitting and all statistical analyses were performed
with GraphPad Prism 5.0 (GraphPad Software, La Jolla, CA). The unpaired two-tailed t-test
was used to compare between groups. Significant difference between groups in the 3D assay

was calculated using 2way ANOVA with Bonferroni posttest.

RESULTS

Aven expression in human osteosarcoma samples

We used a previously published microarray data set[21] with available follow-up data to
search for mRNAs whose expression correlated with metastasis-free survival in
osteosarcoma patients. We used 53 osteosarcoma samples for which associated survival
data were available. These were arranged by Aven mRNA expression level, and the median
was used to divide the set in cases with high and low expression. The cutoff set by R2 was
218.6 with a raw p-value of 0.03. Using this approach, high expression of Aven significantly
correlated with a lower metastasis-free survival probability (Fig 1A). Next, we assessed Aven
protein expression by immunohistochemistry in 31 human primary osteosarcomas and 8
osteosarcoma lung metastases by immunohistochemistry. Aven protein was detected in
most samples and expression was significantly higher in metastases as compared to primary

osteosarcoma biopsies (Fig 1B,C).
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Figure 1. Aven expression in osteosarcoma biopsies. A) Kaplan Meier curve showing relation
between Aven mRNA expression and metastasis-free survival. Expression of Aven mRNA was
analyzed in 53 samples with survival data, and arranged by expression. The cohort was divided into
high and low expression at the median. The curve was made using http://r2.amc.nl. p values were
determined by Bonferroni testing. B) Sum score of Aven expression in all tumors included in the
tissue microarrays. Average is shown in red; p values were determined by two-tailed t test. C)
Representative images of Aven expression in primary biopsy and metastasis. Images made with 40x
Lens.
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Aven silencing attenuates growth of human osteosarcoma cells

To determine Aven’s role in osteosarcoma cell viability and growth we silenced the AVEN
gene in two human osteosarcoma cell lines: MOS and U20S. We used a Smartpool of 4
siRNAs that led to a near complete loss of Aven protein at 48 hours after transfection in both
cell lines (Fig 2A). In U20S cells, transfection with this Smartpool or with any of the four
individual siRNAs led to a 60-80% reduction in cell numbers as compared to control, GAPDH-
silenced cells (Fig 2B). Likewise, MOS cells transfected with siAven showed a 60% reduction
in cell numbers compared to controls (Fig 2C). Aven has been reported to suppress apoptosis
in other cell types [4,5,22]. To test if increased apoptosis was responsible for the reduced
cell numbers, MOS cells transfected with siAven were treated with the pan-caspase
inhibitor, z-VAD-fmk. This led to a slight increase in cell numbers but did not restore growth
to that of cells transfected with control siRNAs (Fig 2C). The same results were obtained with
U20S: treatment with z-VAD-fmk did not restore growth of Aven-silenced cells (Fig 2D).

Aven silencing in human osteosarcoma cells triggers G2 cell cycle arrest

We next made use of the RTCA XCelligence system for real time analysis of the effect of
Aven silencing on human osteosarcoma cell populations. MOS cells that were MOCK (no
siRNA) or siGAPDH transfected, expanded over approximately 24 hours followed by a
plateau phase after reaching confluence, whereas siAven-transfected MOS cells stopped
expanding at ~18 hours post transfection (Fig 3A). Similarly, a prolonged gradual increase in
cell index that was observed for U20S cells was terminated after 18 hours in response to
Aven silencing. This indicated that Aven might be required for effective proliferation of
osteosarcoma cells. Indeed, phosphorylation of Histone H3 Ser10 that is associated with
mitosis was attenuated in siAven-transfected MOS and U20S cells, indicating that Aven
supported cell cycle progression (Fig 3B). Furthermore, FACS analysis of MOS and U20S cells
pulsed with Edu for 1 hour showed a reduction of cells in S-phase (t-test, p<0.05) and a

concomitant increase in G2 (t-test, p<0.05) in response to Aven silencing (Fig 3C,D).
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Figure 2. Effect of Aven silencing. A) Western blot analysis of Aven protein abundance and tubulin
loading control in MOS and U20S cells transfected for 48 hours with indicated siRNA Smartpools. B)
Relative cell numbers based on Hoechst staining, 72 hours post transfection in U20S cells transfected
with GAPDH or Aven siRNA Smartpools or with Aven single siRNAs. Mean +/- SD for experiment
performed in quadruplicate is shown. C,D) Relative cell numbers based on Hoechst staining for MOS
and U20S cell lines, 72 hours post-transfection with indicated siRNA Smartpools. Cells were treated
with or without z-VAD-fmk during the last 24 hours (starting at 48 hours post transfection. Mean +/-
SEM is shown for three independent experiments done in triplicate. *, p<0.05; **, p<0.01; ***,
p<0.005.
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Figure 3. Aven silencing leads to cell cycle arrest. A) Subconfluent cultures of MOS and U20S cells
untransfected (MOCK, green) or transfected with control siGAPDH (black) or siAVEN (red) were
monitored for 60 hours with RTCA Xcelligence System. Medium was refreshed at 18 hours post-
transfection. Representative experiment of two biological replicates, performed in quadruplicate is
shown. B) Western blot analysis of total and phospho(Ser10) histone H3 and tubulin loading control
for MOS and U20S cells transfected with siAVEN or siGAPDH for 48 hours. C) Flow cytometry analysis
of DNA content (x-axis) and Edu incorporation (Y-axis) in MOS and U20S cells transfected with
SIAVEN or control siGAPDH pulsed for 1 hour with 10uM Edu after 48 hours. Representative
experiment from three biological replicates is shown. D) Quantification of data from C. Mean and
SEM of three independent experiments is shown.

Aven silencing attenuates ATR-Chk1 DDR signaling in human osteosarcoma cells

The role of Aven in DDR signaling has been attributed to its interaction with ATM [7]. ATM
senses double-strand breaks, becomes activated, and subsequently phosphorylates
downstream substrates, including Chk2 and p53 [23]. We analyzed ATM activation in U20S
and MOS cells treated for 4 hours with 1 uM doxorubicin. Surprisingly, silencing Aven led to

enhanced doxorubicin-induced ATM activation as measured by ATM auto-phosphorylation
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at Ser1981 in MOS and U20S cells (Fig 4A). Chk2 levels increased in response to Aven
depletion in these cells (Fig 4B,C). Chk2 phosphorylation at the Thr68 ATM target site was
not evident in U20S cells and in MOS cells doxorubicin triggered ATM Thr68 phosphorylation
irrespective of the absence or presence of Aven siRNAs (Fig 4B,C). Likewise, in MOS as well
as U20S cells doxorubicin treatment caused a strong phosphorylation of p53 at the

ATM/ATR target site, Serl5 and this response was not affected by Aven silencing (Fig 4B,C).

ATR is activated in response to persistent single-stranded DNA, which is exposed at
stalled replication forks and as an intermediate in several DNA damage repair pathways [23].
Doxorubicin treatment caused increased ATR phosphorylation at Ser428 in MOS and U20S
cells, a response that was abolished by Aven silencing (Fig 4A). Moreover, phosphorylation
of Chk1l at the ATR target site Ser317 after exposure to doxorubicin was also prevented in
Aven-depleted MOS and U20S cells (Fig 4B,C). This was accompanied by a loss of Chkl
protein accumulation in response to doxorubicin. The role of Aven in the accumulation and
phosphorylation of Chkl was not restricted to doxorubicin but Aven was similarly required
for this response in the context of treatment with 5uM cisplatin or 5uM etoposide (Fig 4D).
gPCR analysis showed that changes in Chkl protein abundance were not due to changes in
mRNA (Fig S1). Notably, this also excluded a reduction of Chk1 levels through off-target Aven
siRNA effects.

Together, these findings indicated that Aven supports ATR-Chk1, but not ATM-Chk2
DDR signaling in osteosarcoma cells. In contrast to ATM-Chk2 signaling, which is particularly
important for the response to double strand breaks, ATR-Chk1 signaling is also required for
mitotic progression in unperturbed cells [24]. We examined whether the slightly reduced
levels of Chk1 (Fig 4B-D) could underlie the cell cycle arrest in Aven-depleted cells. In support
of this, silencing Chkl, but not Chk2, impaired MOS cell growth to a similar extent as
observed with Aven siRNAs (Fig 2C; S2).

Pharmacological inhibition of Chk1 sensitizes osteosarcoma cells to doxorubicin

Our findings thus far, suggested that Aven-controlled Chkl signaling might represent an
attractive target to sensitize osteosarcoma cells to chemotherapy. Aven inhibitors are not
available, but novel Chk1/2 inhibitors that have already been tested in clinical trials are.
Therefore, MOS and U20S cells were treated with a concentration range of the Chk1/2
inhibitor, AZD7762, in combination with a concentration range of doxorubicin. Ranges were
based on dose response curves determined for each drug individually (Fig S3,4). Treatment
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Figure 4. Aven silencing causes shift from ATR-Chk1 to ATM-Chk2 DDR signaling. A) Western blot
analysis of total and phospho(Ser1981) ATM, total and phospho(Ser428) ATR, and tubulin loading
control for MOS (top) and U20S cells (bottom) transfected 48 hours with siGAPDH or siAVEN and
subsequently treated with 1uM doxorubicin for 4 hours. One representative experiment of 3 is
shown. B,C) Western blot analysis of total and phospho(Thr68) Chk2, total and phospho(Ser317)
CHK1, total and phospho(ser15) p53, and tubulin loading control for MOS (B) and U20S cells (C)
transfected 48 hours with siGAPDH or siAVEN and subsequently treated with 1uM doxorubicin for 4
hours. One representative experiment of 3 is shown. D) Western blot analysis of total and
phospho(Thr68) Chk2, total and phospho(Ser317) CHK1, and tubulin loading control for MOS cells
transfected 48 hours with siGAPDH or siAVEN and subsequently treated with PBS, SuM cisplatin (CP),
or 5uM etoposide for 4 hours.

of MOS with 25-100 nM AZD7762 by itself did not affect cell viability but it led to a strong
sensitization to low (50-100 nM) concentrations of doxorubicin (Fig 5A). Calculation of the
deviation from additivity as predicted by Bliss independence [19], indicated synergy between
AZD7762 and doxorubicin (Fig 5B). The same synergistic relationship between these two
compounds was observed for U20S cells (Fig 5C,D). We further explored the AZD7762-

doxorubicin combination using three other human osteosarcoma cell lines, ZK58, KPD, and
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143B. Again, 50 nM AZD7762 slightly increased the effect of doxorubicin on ZK58 and
strongly sensitized KPD and 143B cells to doxorubicin treatment (Fig 5E).

We also examined the interaction of two clinically relevant selective CHK1 inhibitors,
CHIR-124 and LY2603618 with doxorubicin in osteosarcoma cells. CHIR-124 by itself already
affected viability at concentrations above 25 nM, especially in U20S cells (Fig 5F,G). At 25
nM, CHIR-124 sensitized MOS and to a lesser extent, U20S to doxorubicin (Fig 5F,G; S5). Up
to 0.25 uM LY2603618 by itself did not affect either cell line but at this concentration
LY2603618 strongly augmented the effect of low concentrations of doxorubicin in U20S and,
especially in MOS cells (Fig 5H,1; S5).

2D and 3D osteosarcoma cultures are chemosensitized by Chk1 inhibition

We confirmed chemosensitization by Chk inhibition by monitoring the cells over a period of
96 hours using the xCELLigence system. Growth of U20S cells exposed to 0.1 uM doxorubicin
was similar to growth under control conditions whereas treatment with 0.5 uM doxorubicin
caused a loss of cells (Fig 6A). Again, exposure to 50 nM AZD7762 had no effect by itself but
effectively sensitized U20S cells to 0.1 uM doxorubicin (Fig 6A).

We further validated the possibility of chemosensitization by Chkl inhibition using 3D
osteosarcoma cell cultures. MOS and U20S cells were suspended in a mixture of collagen
and matrigel and allowed to grow for three days. Subsequently, cultures were exposed to a
dose rage of doxorubicin in the absence or presence of 50 nM AZD7762, 25nM CHIR-124, or
0,125uM LY2603618 for 72 hours and viability was determined using a biochemical assay.
Similar to the results in 2D cultures, MOS and to a lesser extent U20S were sensitized in 3D
to low doses of doxorubicin when Chk1/2 was inhibited using AZD7762 (Fig 6B,C).

Likewise, 3D cultures of U20S and especially MOS were effectively sensitized to
doxorubicin by the two selective Chkl inhibitors CHIR-124 and LY2603618 (Fig 6B,C).
Moreover, image-based analysis at the same time as biochemical viability assessment
showed that combined exposure to 50nM AZD7762 and 0.05uM doxorubicin caused
disruption of the multicellular network, which was not seen when either of these drugs was

used alone (Fig 6D).
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Figure 5. Treatment with Chk1 inhibitor sensitizes osteosarcoma cells to doxorubicin.
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A,C) Combined effect of doxorubicin and AZD7762 dose ranges in MOS (A) and U20S cell (C). Mean
of triplicates is shown. Each graph shows one representative of three independent experiments. B,D)
Needle graphs showing deviation from Bliss-predicted additivity based on data shown in A,C. Mean
of triplicates is shown. Each graph shows one representative of three independent experiments. E)
Doxorubicin dose response curves for three human osteosarcoma cell lines as indicated in absence or
presence of 50nM of AZD7762. Cells were exposed for 72 hours. Each graph represents mean + SEM.
F,G) Combined effect of doxorubicin and CHIR-124 dose ranges in MOS (F) and U20S (G) cells. Mean
of triplicates is shown. Each graph shows one representative of three independent experiments. H,I)
Combined effect of doxorubicin and LY2603618 dose ranges in MOS (H) and U20S (I) cells. Mean of
triplicates is shown. Each graph shows one representative of three independent experiments.

DISCUSSION

Our data point to a role for Aven in growth and therapy resistance of osteosarcomas. High
expression of Aven mRNA correlates with low metastasis-free survival in conventional
osteosarcoma patients and Aven protein expression is high in metastasis as compared to
primary biopsies of osteosarcoma. Aven has been shown to suppress apoptosis through its
ability to enhance the anti-apoptotic effect of BCL-x| and to interfere with Apaf-1-mediated
apoptosome formation in leukemic and breast cancer cells [4,5,14]. In human osteosarcoma
cells we find that depletion of Aven does not trigger cell death through apoptosis. Rather, it
leads to a G2 cell cycle arrest and ultimately to loss of viability by a mechanism that is not
caspase-dependent. Instead, our findings indicate that this is due to impaired checkpoint

kinase signaling.

Checkpoint kinases Chk1 and Chk2 coordinate progression through the cell cycle[23,25] and
Chk1 is expressed in S through M phase of the cell cycle [26]. Aven-depleted osteosarcoma
cells have reduced phospho-Chk1(Ser317) and total Chk1 protein levels. Thus, Aven supports
Chk1 protein synthesis or stability. As Ser317-phosphorylated Chkl is required for DNA
replication and mitotic progression [24], the important role we identify for Aven in
osteosarcoma cell proliferation can be explained by its support of Chkl abundance and

phosphorylation.
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Figure 6. Osteosarcoma cells are sensitized to doxorubicin by Chk1 inhibition in a 2D and 3D
environment. A) Subconfluent U20S cultures were monitored for 90 hours with RTCA Xcelligence
System. Cells were exposed 16 hours after seeding to vehicle (black line), 50nM AZD7762 (green
line), 0.1uM doxorubicin (blue line), 0.5 UM doxorubicin (orange line), or 0.1uM doxorubicin in
combination with 50nM AZD7762 (red line). One experiment of two independent experiments done
in quadruplicate is shown. B,C) Cell viability measured by WST assay in 3D extracellular matrix-
embedded MOS (B) and U20S cultures (C) grown for 3 days and subsequently exposed to indicated
compound concentrations for 72 hours. Mean + SD of triplicates (MOS cells) or quadruplicates (U20S
cells) are shown. D) Representative images of 3D cultures of MOS cells exposed to DMSO, 50nM
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AZD7762, 0.05uM doxorubicin, or the combination of the two drugs. Images are compressed z-stacks
of actin cytoskeletal staining (Rhodamine-Phalloidin).

The anti-apoptotic role of Aven is especially prominent in the response to genotoxic
therapy. Overexpression of Aven in leukemic and breast cancer cells promotes resistance to
y irradiation and DNA damaging agents such as UV, SN-38 and cisplatin [4,5]. In addition to
its role in BCL-xI function and interference with Apaf-1-mediated apoptosome formation as
discussed above, this may be related to its role in DDR signaling. Aven has been shown to
support ATM activation in cycling Xenopus eggs and in Hela cells treated with
neocarzinostatin [7]. Remarkably, our findings demonstrate that ATM activation in response
to doxorubicin is fully intact or even potentiated in Aven-silenced osteosarcoma cells.
Instead, we show that ATR activation in response to genotoxic stress is abrogated in the

absence of Aven.

ATM is mainly activated by double strand breaks, subsequently activating Chk2 to
induce cell cycle arrest or apoptosis when the damage is extensive [9]. ATR is an essential
regulator of genome integrity, responding to various types of DNA damage and it activates
Chk1 [8]. However, crosstalk between ATM and ATR occurs and Chk1 activation by ATR in
the context of double strand breaks is dependent on ATM [27,28]. Our data implicate Aven
in ATR-Chk1 activation under conditions of genotoxic stress whereas baseline ATR Ser428
phosphorylation appears unaffected by Aven silencing. This suggests that Aven may facilitate
the interaction between ATM and ATR, driving ATR signaling in response to double strand

breaks.

We show that in osteosarcoma cells, the absence of Aven shifts the DDR from ATR-
Chkl to ATM-Chk2 signaling. This does not affect the activation of p53 in response to
genotoxic stress. In U20S cells expressing wild type p53 as well as in MOS cells expressing a
mutant p53, silencing Aven does not affect phosphorylation of p53 at the ATM/ATR target
site Serl5 in response to doxorubicin. Under these conditions, ATM, either directly or

through Chk2 likely phosphorylates p53 at Ser15 in response to DNA damage [29].

As a potential scaffold protein without enzymatic activity, Aven is unlikely to
represent a candidate drug target. However, our data show that Aven-controlled Chk1l
signaling may well be an interesting drug target in osteosarcoma. Depletion of Chk1, but not
Chk2, to some extent phenocopies the effect of Aven silencing and pharmacological

inhibition of Chk1 at higher compound concentrations has the same effect. The use of Chkl
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inhibitors for osteosarcoma appears most promising in a combination strategy. Chkl
inhibition is already used as a therapeutic approach to potentiate the efficacy of genotoxic

chemotherapeutics in other cancer types [30].

The Chk1/Chk2 inhibitor, AZD7762, is known to potentiate the effect of cisplatin in
ovarian clear cell carcinoma [31] as well as in multiple myeloma cells [32]. It was also
reported to sensitize pancreatic tumor cells to radiation and to interfere with DNA repair in
these cells [33]. However, recently it was reported that this drug would not be continued in
clinical trials due to cardiac toxicity [34]. We have tested two selective Chk1 inhibitors, CHIR-
124 and LY2603618. The latter drug was tested in a phase | dose-escalation study, and
acceptable safety and pharmacokinetic profiles were reported [35,36]. Here, in 2D as well as
3D cultures of human osteosarcoma cells, low concentrations of Chkl inhibitors cause
effective sensitization to low concentrations of doxorubicin. Doxorubicin is routinely used in
the treatment of osteosarcoma patients but resistance is a major obstacle [37]. Our findings
indicate that abrogation of Chk1 signaling using clinically relevant drugs may be combined

with chemotherapy to more effectively treat osteosarcoma.
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Figure S1) gPCR analysis showing Chkl mRNA levels in U20S cells transfected 48 hours with the

indicated siRNAs. Mean +/- SEM of 3 independent experiments done in triplicate is shown.
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Figure S2) MOS cells were transfected with siGAPDH, siChk1, siChk2 for 72 hours and cell numbers
were determined by HOECHST staining and nuclei counting.

Figure S3) Dose response curve of Doxorubicin in MOS and U20S cells; 72 hours exposure. Mean +/-
S.D of one experiment done in triplicate.

Figure S4) Dose response curve of AZD7762 in MOS (black line) and U20S cells (blue line); 72 hours
exposure. Mean +/- SEM of 3 independent experiments done in triplicate is shown.

Figure S5) Needle graphs showing deviation from Bliss-predicted additivity in MOS (top) and U20S
cells (bottom) exposed to doxorubicin and CHIR-124 dose ranges (left) or doxorubicin and LY2603618
dose ranges (right). Each graph shows one representative of three independent experiments
performed in triplicate.
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ABSTRACT

High-grade conventional osteosarcoma is the most common primary bone sarcoma.
Prognosis for osteosarcoma patients is poor and resistance to chemotherapy is common. We
performed an siRNA screen targeting members of the Bcl-2 family in human osteosarcoma
cell lines to identify critical regulators of osteosarcoma cell survival. Silencing the anti-
apoptotic family member Bcl-xL but also the pro-apoptotic member Bak using a SMARTpool
of siRNAs as well as 4/4 individual siRNAs caused loss of viability. Loss of Bak impaired cell
cycle progression and triggered autophagy. Instead, silencing Bcl-xL induced apoptotic cell
death. Bcl-xL was expressed in clinical osteosarcoma samples but mRNA or protein levels did
not significantly correlate with therapy response or survival. Nevertheless, pharmacological
inhibition of a range of Bcl-2 family members showed that inhibitors targeting Bcl-xL
synergistically enhanced the response to the chemotherapeutic agent, doxorubicin. Indeed,
in osteosarcoma cells strongly expressing Bcl-xL, the Bcl-xL-selective BH3 mimetic, WEHI-539
potently enhanced apoptosis in the presence of low doses of doxorubicin. Our results
identify Bcl-xL as a candidate drug target for sensitization to chemotherapy in patients with

osteosarcoma.
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INTRODUCTION

Osteosarcoma is the most common primary malignant bone tumor occurring predominantly
in the second decade of life, and a second peak at middle age. It is thought to arise from
mesenchymal stem cells that can produce osteoid [1-3]. About 30-40% of the patients with
localized osteosarcoma will relapse mainly by presenting with lung metastasis.
Approximately 10-20% of the patients present with metastasis at the moment of diagnosis.
Since the introduction of chemotherapy patients with local disease have 50-60% long-term
survival rate. There has been no significant further improvement over the past three
decades [4]. Following disease relapse, prognosis is very poor with 23-33% 5-year overall

survival despite repeated metastasectomies when feasible [5].

Apoptosis is a form of programmed cell death, which requires caspase-mediated
proteolysis, and is governed by the Bcl-2 family. It is essential for development and tissue
homeostasis, and can mediate cell death upon exposure to pathogens, cytotoxic agents, or
oncogenic stress[6]. The Bcl-2 family includes BH3-only proteins (Bim, Puma, Bad, Noxa, Bik,
Hrk, Bmf and tBid), pro-survival proteins (Bcl-2, Bcl-xL, Bcl-w, Mcl-1, Bfl-1, and Bcl-B) and
pro-apoptosis proteins (Bax, Bak and Bok). Bok is primarily localized to ER and Golgi
membranes where it was found to be important for a proper ER stress response. Its
overexpression induces apoptosis in a manner that is dependent on Bax and Bak[7]. Bak is
localized to mitochondria and Bax resides in the cytosol. Once Bak and Bax are activated,
they undergo conformational changes and Bax localizes to the mitochondria. In the
mitochondria, Bak and Bax form hetero and oligomers which lead to mitochondrial outer
membrane permeabilization and cytochrome-c release, which is necessary for caspase
activation[8]. Under normal conditions, the pro-survival Bcl-2 members form heterodimers
with Bax or Bak inhibiting their activation. However, under cytotoxic stress the activated
BH3-only proteins displace these proteins allowing Bax and Bak to cause cytochrome-c

release from the mitochondria, caspase cascade activation, and ultimately cell death [8,9].

Impaired apoptosis is one of the hallmarks of cancer [10]. It allows cancer cells to
tolerate oncogenic stress and survive in hostile environments such as hypoxic conditions.
Furthermore, defects in apoptosis in cancer cells can hamper the response to chemotherapy
[11]. In this study we used RNA interference and pharmacological inhibition to identify
members of the Bcl-2 family that control osteosarcoma cell survival and resistance to

chemotherapy.
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MATERIALS AND METHODS

Reagents and antibodies. Doxorubicin was obtained from the Pharmacy at the Leiden
University Academic Hospital, ABT-737, UMI-77 and HA14-1 were from SelleckChem
(Huissen, Netherlands). WEHI-539 was from ApexBio (Texas, U.S.A.). The pan-caspase
inhibitor z-VAD-fmk was obtained from Bachem (Weil am Rhein, Germany). The Bcl-xL
antibody (clone 54H6) used for immunohistochemistry ,the Bcl-xL antibody (2762s) used for
Western blot and Bak antibody were from Cell Signaling (Bioké, Leiden, The Netherlands).
LC3 antibody was from Novus Biologics (Cambridge, England) and Ki67 was from Abcam
(Cambridge, England). Chloroquine was bought from Sigma Aldrich (Zwijndrecht, The
Netherlands). Hoechst 33342 was purchased from Fischer Scientific (Bleiswijk, The
Netherlands).

Immunohistochemistry on tissue microarrays. Two tissue microarrays used in this study
were previously constructed with one was previously published[3]. The second tissue
microarray consisted of 73 FFPE biopsies, resections and metastases mainly from high grade
conventional osteosarcomas. All specimens in this study were handled according to the
ethical guidelines described in ‘Code for Proper Secondary Use of Human Tissue in The
Netherlands’ of the Dutch Federation of Medical Scientific Societies. The slide was
deparaffinized, rehydrated and blocked of endogenouse peroxidase. Subsequently, antigen
retrieval was performed with citrate pH 6.0. Incubation with antibody was overnight at 4°C
at a 1:1000 dilution. As a second step we used Immunologic Poly-HRP-GAM/R/R IgG
(DVPO110HRP) and Dako liquid DAB+ Substrate Chromogen System (K3468), followed by
counterstaining with hematoxylin. Testis tissue was used as control. Slides were scored
independently by two observers (JVMGB and YJ). Staining intensity (0 = absent, 1 = weak, 2 =
moderate, 3 = strong) and extent of the staining (0 = 0%, 1 = 1-24%, 2 = 25-49%, 3 = 50-74%
and 4 = 75-100%) were assessed. The two values were added to obtain sum scores. Cores
where the tissue was lost were excluded from the analysis. To assess response to
chemotherapy, patients were divided among good and poor responders. The histological
response was assessed by determining the amount of necrotic tissue in the resection
specimen obtained after chemotherapy. Response was considered good when a patient
presented more than 90% necrotic tissue in the tumor, and bad responders were those with

less than 90% necrosis[51].

Cell culture. Human osteosarcoma cell lines MOS, U20S, 143B, ZK58,KPD, MNNG, MG-63

and Saos-2 were previously described[52,53]. Cells were grown in RPMI1640 medium

51



supplemented with 10% fetal bovine serum and 25 U/mL penicillin and 25 pg/mL of
penicillin-streptomycin. All cells were cultured in a humidified incubator at 37°C with 5%
CO..

siRNA screen. Transient knockdown of individual genes in U20S cells was achieved using
siRNAs from Dharmacon, GE (Landsmeer, Netherlands). The end concentration of siRNA was
20nM and it was delivered to the cells with INTERFERin siRNA transfection reagent by
reverse transfection according to the manufacturer’s procedures (Polyplus transfection,
Leusden, Netherlands). The transfection was performed in u-clear 96-well plates from
Corning. Nineteen Bcl-2 family members were targeted with a SMARTpool comprised of 4
different siRNAs and with each single siRNA individually. After 24 hours of transfection the
medium was refreshed and the cells were further incubated for 72 hours. Alamar Blue was
acquired from Thermo Fisher Scientific (Bleiswijk, The Netherlands) and used to assess
viability as specified by the manufacturer. Fluorescence was measured with a FluoStar

Optima plate reader.

Microarray data analysis. Gene expression profiles were obtained from a previously
published microarray data set[54]. Using the Bioconductor lumi package, data was
transformed with the variance stabilizing transformation algorithm and normalized with the
robust spline normalization algorithm. Probe_ID identifiers from the Illumina Annotation for
lllumina human-6 v2.0 expression beadchip were used as reporters (Bcl-xL reporter =
ILMN_1654118). Kaplan Meier curves were created from the entry “Mixed Osteosarcoma-

Kuijer-127-vst-ilmnhwg6v2” in the web application R2 (http://r2.amc.nl).

Immunoblotting. Cells were lysed with SDS protein buffer (125mM Tris/HCl pH 6.8, 20%
glycerol, 4% SDS and 0.2% bromophenol blue). Proteins were resolved by SDS-PAGE and
transferred to polyvinylidine difluoride membrane. Membranes were blocked in 5% BSA-
TBST (TRIS-0.05% Tween20), followed by overnight incubation with primary antibodies and
45 minutes incubation with HRP-conjugated secondary antibodies. Chemoluminescence was
detected with the bioimager LAS400 (GE Healthcare).

Immunostaining. MOS and U20S cells were transfected with siRNA as previously described.
The cells were fixed 48 hours after transfection with ice cold methanol for 15 minutes, and
were subsequently rinsed 3 times for 5 minutes with PBS. Afterwards, the cells were
incubated with blocking solution [10% normal goat serum, 0.3%Triton100 in PBS] for 1 hour,

rinsed 3 times for 5 minutes with PBS, and then incubated 1 hour with second
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antibody(1:300). Nuclei stainig with Hoechst 33342 was performed as a final step together
with the rinsing steps. The antibodies were diluted in antibody staining solution [1%BSA,
0.3%Triton100 in PBS]. The cells probed mitochondria, were exposed to 75nM of
MitoTracker® Red CMX Ros (from Cell Signaling) for 45 minutes previous to fixation. All

images were taken with confocal microscope Eclipse Ti-E from Nikon.

Cell viability, and real time apoptosis assays. For cell viability assays (excluding the siRNA
screen), cells were processed using the ATPlite 1Step kit (Perkin Elmer) according to the
manufacturer’s instructions, followed by luminescence measurement in a Fluostar Optima
plate reader. Apoptosis was assessed by Annexin V staining and Caspase Glo3/7 (Promega).
For real time Annexin V binding assays, cells were co-exposed to drugs and Annexin V in a u-
clear 96-well plate, and imaged every hour, for 66 hours. Images were obtained using a BD
Pathway 855, then converted to videos, and Annexin V staining was quantified by an in-
house macro for Image-Pro Analyzer 7.0 as previously described[20]. For caspase 3/7
activity measurements, cells were exposed to the drug for 24 hours after which the reagent

was added 1:1. Luminescence was measured in a Fluostar Optima plate reader.

Synergy assessment. To assess synergy, we used the Bliss independence model, which
defines to what extent the effect of a drug at a certain concentration is independent of the
presence of the other drug at a certain concentration[55]. This model predicts the combined

response C for two single compounds with effects A and B: C = A+B — A*B[56].

Statistical analysis. Dose response curve fitting and all statistical analyses were performed
with GraphPad Prism 5.0 (GraphPad Software, La Jolla, CA). The unpaired and paired two-
tailed t-test used to compare groups in Figure 3B and 3D was performed with IBM SPSS
statistics 20. Event free survival was computed from the date of diagnosis until first
recurrence, either local or metastatic. Tumors were divided into two groups, having low
(mean sum score <3) or high Bcl-xL expression (mean sum score >3). Event free survival in
both groups was compared using the Kaplan-Meier method and the Log-rank test with IBM
SPSS statistics 20.

RESULTS

Identification of Bcl-xL as a critical pro-survival factor in osteosarcoma cells
An siRNA screen was performed in U20S cells to identify Bcl-2 family members required for

osteosarcoma cell viability (See Fig. S1 for screen layout and results). The screen was
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performed in duplicate with two negative controls, siGapdh and MOCK (only transfection
reagent), and siKifl11 as positive control (all controls were present in triplicate in each plate).
Each value was normalized to siGapdh, which was set as 100% viability. MOCK transfected
cells showed the same viability as siGapdh. To select hits causing loss of viability we
calculated the standard deviation across each plate, and determined that a gene was a hit if
the SMARTpool (comprised of 4 single siRNAs targeting the same gene) and the 4 single
siRNAs tested individually, each were two standard deviations separated from siGapdh.
Using this criteria 7 genes were selected, which included Bcl-B, Bak, Bid, Bfl-1, Mcl-1, Bok
and Bcl-xL (Fig. 1A and B). To assess whether loss of viability was due to apoptosis, a caspase
3/7 assay was performed. Caspase 3 and 7 are effector caspases that once activated, lead to
cell death by cleaving important structural proteins, and causing DNA fragmentation and
membrane blebbing[12]. Bcl-xL knockdown caused the highest caspase3/7 activity after 48
hours of transfection indicating that it effectively triggered apoptosis (Fig. 1C).
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Figure 1. Identification of Bcl-xL as a candidate target for sensitization to doxorubicin.
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A) Average U20S viability in wells transfected with siRNA SMARTpools targeting the indicated genes
relative to siGapdh. Mean and standard deviation is shown. Horizontal line marks 2 SD threshold
(<48.4% viability), hits are indicated in black, positive and negative controls in grey. B) Validated hits
where all 4 single siRNAs mimic the SMARTpool and are below the threshold. Black bars represent
the SMARTpool and grey patterned bars represent the single siRNAs. C) Caspase3/7 activity in U20S
cells transfected with SMARTpool siRNAs targeting the indicated genes. Values were normalized to
control siGapdh. One representative experiment of two performed in quadruplicate is shown. Error
bars represent standard deviation.

Silencing Bak leads to autophagy in osteosarcoma cells

Surprisingly, the screen also identified pro-apoptotic Bcl-2 family members, including Bak,
Bid and Bok (Fig 1A-B). A caspase activity assay indicated that the loss of cell viability caused
by siRNAs targeting these genes was not due to apoptosis (Fig 1C). It has been described that
failure to activate apoptosis in Bak/Bax double knockout cells is accompanied by increased
autophagy[13,14]. Autophagy is a recycling process that provides building blocks and energy
during cell stress while unlimited autophagy leads to cell death[15].. We first assessed the
knockdown efficiency of Bak in U20S cells and confirmed a ~100% efficacy (Fig. 2A). Since
there was no caspase 3/7 activation in response to Bak knockdown, we next determined if
the observed loss of cells was due to slower proliferation. Phospho(ser10)-HistoneH3, a
marker for cells in mitosis and Ki67, a marker for proliferating cells were analyzed in cell
lysates and by immunocytochemistry, respectively. Silencing Bak in U20S or MOS cells
caused a reduction in phospho(serl0)-HistoneH3 levels (Fig. 2B) and attenuated

proliferation was confirmed by reduced Ki67 staining in si-Bak treated cells (Fig. 2C).

To assess if Bak depletion triggered autophagy as shown in other systems[11,12], we
determined the conjugation of the LC3 protein to phosphatidylethanolamine. This
conjugation represents a critical step in the formation of the autophagosome, a double-
membrane organelle that engulfs cellular components during autophagy and subsequently
fuse with the lysosome[16]. Silencing Bak in U20S and in MOS cells led to accumulation of
the conjugated form of LC3, termed LC3-ll (Fig 2D). Moreover, treatment of U20S cells in
which Bak was silenced with 10uM chloroquine for 4 hours (chloroquine acidifies the
phagosome inhibiting its fusion with the Ilysosome leading to autophagosome
accumulation[17]) led to further accumulation of LC3 Il (Fig 2E). In addition,
immunocytochemistry showed that mitochondria no longer distributed throughout the
cytoplasm but clustered perinuclearly in Bak-depleted cells where they colocalized with LC3-

marked autophagosomes (Fig. 2F). Together, these findings indicate that depletion of Bak in
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osteosarcoma cells induces altered mitochondrial distribution, decreased proliferation, and
autophagy.
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siBak SMARTpool and treated with or without 10uM chloroquine for 4 hours. F) Control MOS cells
(MOCK) or MOS cells transiently transfected with siBak for 48 hours, exposed to MitoTracker® (red)
for 45 min, fixed and stained with anti-LC3 (green), and Hoechst 33342 (blue). i, MitoTracker only; ii,
merge of all three channels.

Bcl-xL is expressed in osteosarcoma lung metastasis

As Bcl-xL silencing caused severe loss of viability and led to the strongest induction of
caspase 3/7 activity, we decided to further study its role in osteosarcoma. Others have
reported that high Bcl-xL mRNA expression in osteosarcoma patients is correlated with lower
overall survival rate [18]. We analyzed Bcl-xL mRNA expression using a previously published
microarray data set of a cohort of 88 osteosarcoma patients but did not observe significant
association with overall survival (Fig 3A). We next analyzed the expression of Bcl-xL by
immunohistochemistry in 60 human primary osteosarcomas and 23 osteosarcoma lung
metastases. Expression of Bcl-xL was detected in the majority of osteosarcoma samples and
expression was higher in metastases compared to primary tumors (Fig. 3B,C). However,
contrary to our expectations, high Bcl-xL protein expression levels (SUM score of intensity
and % positive cells) in primary biopsies correlated with good response to therapy in this
study (>90% necrosis post-chemotherapy) (Fig. 3D). Furthermore, event-free survival rates
did not significantly differ between patients with high and low Bcl-xL expression in diagnostic
biopsies (Fig. 3E). These results indicate that Bcl-xL is expressed in advanced osteosarcomas,

but its expression is not correlated with poor therapy response or survival.

Pharmacological inhibition of Bcl-xL sensitizes osteosarcoma cells to chemotherapy

Although we could not confirm earlier observations correlating Bcl-xL expression to patient
survival, our siRNA screen indicated that Bcl-xL inhibition might enhance tumor killing in
cases where it is expressed. Therefore, we assessed whether Bcl-xL represents a relevant
target for osteosarcoma alone or in the context of conventional chemotherapy. First, four
human osteosarcoma cell lines were treated with ABT-737, a BH3 mimetic that inhibits Bcl-
w, Bcl-xL and Bcl-2; of which only Bcl-xL was identified in the siRNA screen (Fig 1A). In
addition, HA14-1, a selective Bcl-2 inhibitor was tested. All the cell lines showed loss of cell
viability in the 10uM range for ABT-737 and at higher concentrations for HA14-1 (Fig. 4A and
B). Subsequently, we asked if these inhibitors, when used at lower concentrations, could
sensitize osteosarcoma cells to chemotherapy. The four osteosarcoma cell lines were co-
treated with a suboptimal concentration of ABT-737 and a dose range of doxorubicin for 72
hours. At a concentration of 2.5 uM of ABT-737, viability of the cells was close to 100%.
MOQOS, U20S and to a lesser extent KPD and ZK58 showed increased sensitivity to treatment
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with 50-500 nM doxorubicin under these conditions (Fig. 4C). By contrast, treatment with up

to 10 uM of the Bcl-2 selective inhibitor, HA14-1 did not affect sensitivity to doxorubicin.

Indeed, calculation of the deviation from additivity as predicted by Bliss independence

model[19] indicated synergy between ABT-737 and doxorubicin (Fig. 4D).
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B) Sum score (% plus intensity of staining) of Bcl-xL expression in all tumors included in the tissue
microarray; average is shown in red. Biopsies and metastases from the same patient are indicated in
green (n=12); p-value determined by paired t-test. Unpaired biopsies (n=59) and metastases (n=7)
are indicated in black; p-value determined by unpaired t-test. C) Representative images of Bcl-xL
expression in primary osteosarcoma biopsy and metastasis. Images made with 40x Lens. D) Bcl-xL
expression in biopsies of poor and good responders to chemotherapy. P-value determined by
unpaired two-tailed t-test. E) Event free survival related to Bcl-xL expression in tissue microarray.
Tumors were divided according to low (mean sum score <3; blue line (n=40)) or high Bcl-xL
expression (mean sum score >3; green line (n=29)). p-value determined by Log-rank test.

We next determined if synergy was due to enhanced apoptosis in the presence of the
combination of ABT-737 and doxorubicin. For this purpose, real time imaging was used to
detect labeled Annexin V binding to phosphatidylserine, a phospholipid that translocates to
the outer lipid layer of the membrane when cells enter apoptosis [20]. In agreement with
the viability assays (Fig 4C), ZK58 cells showed significant Annexin V labeling already in
response to 2.5uM ABT-737 alone (Fig 5). However, in U20S and KPD cells exposed to 2.5uM
ABT-737 or 0.1uM doxorubicin alone, Annexin V labeling was absent or appeared at late
time points after exposure whereas the combination of 2.5uM ABT-737 and 0.1pM
doxorubicin caused rapid, strong Annexin V labeling. Moreover, this enhanced response to
the combination of ABT-737 and chemotherapy was abolished in the presence of the pan-
caspase inhibitor z-VAD-fmk (Fig. 5). These results indicate that ABT-737, but not the Bcl-2
selective inhibitor HA 14-1 can sensitize human osteosarcoma cells to chemotherapy leading

to enhanced apoptosis.

Inhibition of Bcl-xL with WEHI-539 sensitizes osteosarcoma to doxorubicin
To further pinpoint the sensitization to chemotherapy to inhibition of Bcl-xL, we made use of
a recently developed Bcl-xL-selective BH3 mimetic, WEHI-539[21]. Exposing U20S and MQOS
cells to this compound caused loss of viability at concentrations between 1-10uM and a

similar response was seen in KPD and ZK58 cells at concentrations >10 uM (Fig 6A).
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Moreover, a suboptimal dose of 1uM WEHI-539 effectively enhanced the response to low
doses of doxorubicin in U20S and MOS cells but showed no effect in KPD,ZK58, MNNG, MG-
63 and Saos-2. (Fig 6B). This difference could be attributed to differences in Bcl-xL
expression: Bcl-xL protein levels were high in U20S and MOS as compared to the other cell
lines. (Fig 6C). Lastly, we investigated whether sensitization to doxorubicin in the presence of
WEHI-539 was due to enhanced apoptosis. Indeed, MOS and U20S cells exposed to 1uM
WEHI-539 showed 2-3-fold higher induction of caspase 3/7 activity in response to 0.1uM
doxorubicin, which by itself had little or no effect (Fig 6D). In agreement with the absence of
synergy observed in KPD and ZK58 (Fig 6B), WEHI-539 failed to increase caspase activation in
response to doxorubicin in these cells (Fig. 6D). Altogether, these findings demonstrate that
osteosarcoma cells expressing Bcl-xL can be sensitized to chemotherapy through

pharmacological Bcl-xL inhibition.

DISCUSSION

Patients with metastatic or recurrent osteosarcoma present low probability of survival
mainly due to resistance to standard chemotherapy [22,23]. Bcl-2 family proteins play a
crucial role in regulating cell survival/cell death pathways, and aberrations in their
expression or function mediates tumor development and progression [24]. Our siRNA screen
identifies anti-apoptosis genes such as Bcl-xL, Mcl-1 and Bfl-1, but interestingly, it also
identified pro-apoptosis genes such as Bak, Bok and Bid. Autophagy was reported to be

enhanced in Bak/Bax double
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knockout cells in response to death stimuli such as radiation and cytotoxic drugs [25,26].
Others have associated cell cycle arrest with Bak/Bax double knockout conditions [27,28].
We identify both aspects in Bak-silenced osteosarcoma cells: the cells proliferate slower and
autophagy is activated. We also notice a recruitment of mitochondria to the perinuclear area

where they colocalize with autophagosomes, which may point to mitoautophagy.
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Alternatively, this may reflect the recent demonstration that mitochondria can in fact

contribute to the formation of the autophagosome membrane [29].

Bcl-xL expression has been associated with poor prognosis for patients with
colorectal cancer[30] and hepatocellular carcinoma [31]. In colorectal cancer, high
expression of Bcl-xL correlates with lymph node metastasis and poorer survival [32]. In
melanoma the expression of Bcl-xL is correlated with tumor thickness and disease free
survival [33], and in follicular lymphoma it is correlated with overall survival [34]. Bcl-xL
expression has also been associated with resistance to cytotoxic agents in ovarian cancer
[35]. Furthermore, the correlation between Bcl-xL expression and chemoresistance has been

demonstrated in the NCI panel of 60 cell lines to be independent of p53 status [36].

In osteosarcoma, patients with high Bcl-xL mRNA levels have been reported to have a
lower probability of 5-year overall survival [18]. We were not able to reproduce such a
correlation in our dataset. Moreover, although in our study Bcl-xL protein was expressed in
osteosarcoma biopsies and levels were higher in metastases, no correlation with poor
response to chemotherapy was observed. The reason for this difference between our own
observation and that of others[18] is currently unknown. Nevertheless, in line with the
common role of anti-apoptotic Bcl-2 family members in cancer resistance to cytotoxic
therapy [37,38] we find that Bcl-xL inhibition can sensitize osteosarcoma cells to low dose

chemotherapy.

ABT-737, a small molecule inhibitor of Bcl-xL, Bcl-2 and Bcl-w, was discovered in 2005
and found to enhance the cytotoxic effect of chemotherapy and radiation [39]. Studies in
myeloma cells [40], myeloid leukemias[41], neck-squamous cell carcinomal[42],
gastrointestinal stromal tumor cells[43], and chondrosarcoma[38] indicated that ABT-737
treatment sensitizes to chemotherapy and other cytotoxic agents [44]. We show that a
similar strategy may be relevant in the context of human osteosarcoma. However, a major
limitation for translation to the clinic is the fact that ABT-737 is not orally bioavailable, which
limits flexibility of dosing regimens. ABT-263 is an analogue of ABT-737 with oral
bioavailability, which also potently inhibits Bcl-xL, Bcl-2 and Bcl-w [45]. It has been
demonstrated to have little activity as a single agent in a phase Il clinical trial[46] but to
enhance the effect of other cytotoxic agents [47-49]. The Bcl-xL-selective BH3 mimetic,
WEHI-539 used in our current study has shown in vivo toxicity that hinders further clinical
studies. Recently, a related Bcl-xL-selective inhibitor, A-1155463, has been synthesized

lacking the toxic moiety [50]. Based on our current study, it will be of particular interest to
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assess how such a pharmacological inhibitor affects the sensitivity of chemoresistant
osteosarcomas. High Bcl-xL protein expression as detected by IHC may serve as a biomarker
for treatment with Bcl-xL inhibitors alone or in the presence of chemotherapy. Such a
strategy, would potentially allow reduced dosage of doxorubicin, thereby decreasing
toxicity. Follow up preclinical studies, for instance using xenograft models, will have to
determine efficacy and toxicity associated with different concentrations of Bcl-xL inhibitors,
doxorubicin, and combinations. Our findings suggest that such studies are warranted to

open the possibility for further clinical studies in patients with osteosarcoma.
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Supplementary Figure

Figure S1: siRNA screen layout and results
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Figure S1. Characterization of the siRNA screen. Raw values and plate layouts for siRNA screen using
SMARTpool (sp) and single siRNAs (_1, 2, 3, 4)are shown. Mean and SD for positive (si-Kif11) and
negative controls (siGapdh) are shown on the right and these values were used to calculate the

indicated Z’ factors according to: Z’= 1- 3*(0, + Gn) / | Mo — Hn].
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ABSTRACT

Background: Conventional high-grade osteosarcoma is the most common primary bone
sarcoma with relatively high incidence in young people. Recurrent and metastatic tumors are
difficult to treat. Methods: We performed a kinase inhibitor screen in two osteosarcoma cell
lines, which identified MEK1/2 inhibitors. These inhibitors were further validated in a panel
of six osteosarcoma cell lines. Western blot analysis was performed to assess ERK activity
and efficacy of MEK inhibition. A 3D culture system was used to validate results from 2D
monolayer cultures. Gene expression analysis was performed to identify differentially
expressed gene signatures in sensitive and resistant cell lines. Activation of the AKT signaling
network was explored using Western blot and pharmacological inhibition.

Results: In the screen, Trametinib, AZD8330 and TAK-733 decreased cell viability by more
than 50%. Validation in six osteosarcoma cell lines identified three cell lines as resistant and
three as sensitive to the inhibitors. Western blot analysis of ERK activity revealed that
sensitive lines had high constitutive ERK activity. Treatment with the three MEK inhibitors in
a 3D culture system validated efficacy in inhibition of osteosarcoma viability.

Conclusions: MEK1/2 inhibition represents a candidate treatment strategy for

osteosarcomas displaying high MEK activity as determined by ERK phosphorylation status.
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INTRODUCTION

Osteosarcoma is the most common primary malignant bone tumor occurring predominantly
in children and adolescents, as well as in people older than 40 years of age. It is thought to
arise from mesenchymal stem cells that are capable of producing osteoid(Anninga et al,
2011; Rosenberg et al, 2013). At the moment of diagnosis, 10-20% of the patients present
with metastasis. About 30-40% of the patients with localized osteosarcoma will present with
relapse mainly as lung metastasis. Patients with recurrence have very poor prognosis with
23-33% 5-year overall survival(Buddingh et al, 2010). Therefore, new effective therapies are
urgently needed to improve the prognosis of osteosarcoma patients.

Screening a kinase inhibitor library of pre-clinical or clinically approved drugs provides the
possibility of identifying novel candidate treatments for osteosarcoma that can be translated
to the clinic. In this study, we performed a kinase inhibitor screen in two osteosarcoma cell
lines, and identified MEK inhibitors as possible therapeutic targets in cells with constitutive

ERK activation.

MATERIALS AND METHODS

Reagents and antibodies. The kinase inhibitor library (L1200), Trametinib, AZD8330 and
TAK-733 inhibitors were purchased from SelleckChem (Huissen, Netherlands). The ERK
(9102), phospho(44/42)-ERK (137F5), phospho(Ser2448)-mTOR (D9C2), phospho(Ser473)-
AKT (#9271) and AKT (#9272) antibodies were from Cell Signaling (Bioké, Leiden,
Netherlands). The antibody against tubulin (T-9026) was from Sigma Aldrich (Zwijndrecht,
The Netherlands).

Cell culture. Human osteosarcoma cell lines MOS, U20S, 143B, ZK58, KPD and Saos-2 were
previously described(Mohseny et al, 2011; Ottaviano et al, 2010). Cells were grown in
RPMI1640 medium supplemented with 10% fetal bovine serum and 25 U/mL penicillin and
25 pg/mL of penicillin-streptomycin. All cells were cultured in a humidified incubator at 37°C
with 5% CO,.

Immunoblotting. Cells were lysed with SDS protein buffer (125mM Tris/HCI pH 6.8, 20%
glycerol, 4% SDS and 0.2% bromophenol blue). Proteins were resolved by SDS-PAGE and
transferred to polyvinylidine difluoride membrane. Membranes were blocked in 5% BSA-
TBST (TRIS-0.05% Tween20), followed by overnight incubation with primary antibodies and
45 minutes incubation with HRP-conjugated secondary antibodies. Chemiluminescence was
detected with a Typhoon 9400 imager (GE Healthcare).
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Cell viability and caspase3/7 activity. Cells were processed using the ATPlite 1Step kit
(Perkin Elmer) according to the manufacturer’s instructions, followed by luminescence
measurement on a plate reader. Caspase 3/7 activity was assessed with Caspase-Glo® 3/7
from Promega (Leiden, The Netherlands) according to manufacturer’s protocol, and

luminescence measurement on a plate reader.

3D culture assay. MOS and U20S cells were cultured in 384-well plates (Greiner pclear) in a
hydrogel containing Matrigel (Beckton Dickinson) and collagen |, supporting invasive growth
of both cell lines. Cells in culture were trypsinized and directly added to the cooled gel
solution. Using a robotic liquid handler (CyBio Selma 96/60), 14.5uL of gel-cell suspension
was transferred to each well of a 384-well plate (2000 cells/well). After polymerization for 30
minutes at 37°C in an atmosphere of 5% CO,, growth medium was added on top of the gel.
After 24 hours, the cells were exposed to the compounds in quadruplicate for a period of 72
hours. For measuring cell viability in 3D, ATPlite was used as indicated by the manufacturer
and luminescence was measured using a FluoroStar plate reader. Percentage viability was
thereafter calculated by normalization of all conditions to DMSO. Results are presented as

means * SD. Images of 3D cultures were taken with a BD Pathway 855 (BD Biosciences).

Pathway analysis. We used a previously published data of mRNA expression of 19
osteosarcoma cell lines[Namlos et al PLoSOne 7, e48086, 2012] and performed a LIMMA
analysis(Smyth, 2004) of sensitive (MOS, U20S and 143b) versus resistant (KPD, ZK58 and
Saos-2) cell lines(Kuijjer et al, 2012). We then ran a pre-ranked gene set enrichment
analysis(Subramanian et al, 2005) using MSigDb v5.0 BioCarta (www.biocarta.com)
signatures on the Benjamini and Hochberg False Discovery Rate corrected p-values obtained

from LIMMA. Statistically significant signatures were defined as signatures with FDR<0.25.

Statistical analysis. Dose response curve fitting and statistical analyses were performed with
GraphPad Prism 5.0 (GraphPad Software, La Jolla, CA).
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RESULTS

Kinase inhibitor screen for inhibition of osteosarcoma cell viability identifies MEK
inhibitors

A library composed of 273

A
. e L MOS U20s
kinase inhibitors was used to & 0 20
L £ 15 : 9 _15
screen for inhibitors that, as a So, %%10 s
o x 3 T %
single agent, decreased viability 87 s B 3% S5
ol R‘=0.8501 ol R=0.7981
of osteosarcoma cells. MOS and 0 5 0, 15 0 3 T, 15
Duplicate 1(x 104) Duplicate 1{x 104)
U20S were exposed to a
concentration of 1uM for 72 B
hours and viability = was 150, MOS 150, U20s
. . = 1254 1254
determined by measuring ATP 2100] Z100]
production. Each screen was 3 751 8 75
> 504 % = 50 \
performed in duplicate with a 25 N g5l \
. 0 0 5
goodness of fit (R?) of 0.8501 for Kinase inhibitor (KI) Kinase inhibitor (KI)

the screen in MOS and 0.7981 in . . L. .
Figure 1. Kinase inhibitor screen in two human

U20S (Fig. 1A). All values were osteosarcoma cell lines. A) The screen was performed in
normalized to DMSO condition, MOS and U20S cell lines in duplicate. The graphs
represent the goodness of fit of the screens. B) All results
were normalized to DMSO and hits are defined by <50%
less than 50% viability were viability (red).

considered a hit (Fig. 1B). Under

this criterium, we identified 16 inhibitors in common for MOS and U20S of which, six
targeted the PI3K/mTOR pathway (BEZ235, GSK2126458, AZD8055, Torin 2, INK-128, PIK-75),
six targeted the cell cycle (AT9283, BI2536, SNS-032, CHIR-124, dinaciclib and flavopiridol
HCI), one targted Src (KX-391), one targeted Syk and FIt (R406 free base), and two were
MEK1/2 inhibitors (Fig. 2A,B). The PI3K/mTOR pathway has been implicated in osteosarcoma

and the candidates that exhibited

cell survival and proliferation in vivo(Gobin et al, 2014). Dinaciclib and flavoripirol were
previously reported to induce apoptosis in osteosarcoma cells(Fu et al, 2011; Li et al, 2007).
PlIk1 inhibition has been shown to cause cell death in osteosarcoma cells and its expression
correlates with overall survival in osteosarcoma patients(Duan et al, 2010; Morales et al,
2011; Yamaguchi et al, 2009). Here we focused on three MEK1/2 inhibitors: Trametinib and
AZD8330, which were common in MOS and U20S, and TAK-733, which was a hit in U20S (in
MOS treatment with TAK-733 showed 71% remaining viability).
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MEK1/2 inhibition leads to apoptosis in cells with constitutive ERK activation

The activity of these three inhibitors was tested using concentration ranges in six
osteosarcoma cell lines: MQOS, U20S, KPD, ZK58, 143b and Saos-2 (Fig. 3A). All three
inhibitors decreased viability of MOS and U20S and strongly affected 143b. By contrast,
viability of KPD, ZK58 and Saos-2 was not affected by any of the three inhibitors. A capase3/7
activity assay confirmed that exposure to 0.5uM of each of the drugs induced apoptosis in
MOS and U20S, but not in KPD and ZK58 cells (Fig. 3B).

Next, we asked if the observed differences in the response to MEK inhibition was related to
the status of MEK activity, as measured by phosphorylation of the MEK target, ERK. Indeed,
143b, which was the most sensitive cell line, is Ki-ras+ transformed (Sero et al, 2014) and
showed the most prominent ERK phosphorylation, followed by the other two sensitive cell
lines, MOS and U20S (Fig. 4A). The resistant cell lines KPD, ZK58 and Saos-2 showed no
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constitutive ERK activation. Exposing MOS, U2
Trametinib, AZD8330 or TAK-733 for 6 hours,
effective MEK inhibition (Fig. 4B).
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Figure 3. Validation of three MEK inhibitors in 6 osteosarcoma cell lines. A) Dose response curves

for Trametinib, AZD8330 and TAK-733 in 6 osteosa

for 72 hours. Each graph represents meanzs.e.m.

rcoma cell lines as indicated. Cells were exposed
of three replicates. B) Caspase 3/7 activity in

presence of indicated inhibitors relative to DMSO in 4 osteosarcoma cell lines. The graph is a
representative experiment of 3 independent experiments, each performed in triplicate. Meanits.d. is

shown.
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Figure 4. Western blot analysis of ERK phosphorylation in 6 osteosarcoma cell lines and effect of
MEK inhibition. A) Western blot analysis of total ERK and phospho-ERK in 6 osteosarcoma cell lines.
B) Western blot analysis of total ERK and phospho-ERK in MOS, U20S and 143b osteosarcoma cell
lines after 6 hours treatment with DMSO or 0.5uM of the indicated MEK inhibitors.

Validation of MEK inhibition in a 3D cell culture system

We made use of 3D cultures of identified sensitive and resistant cell lines to further validate
the effect of Trametinib, AZD8330 and TAK-733. MOS, U20S, KPD, and ZK58 were suspended
in a collagen-matrigel mixture, and exposed 24 hours later to 0.5uM of each inhibitor for a
period of 72 hours. As observed in 2D cultures, MOS and U20S cells died in the presence of
each of the three inhibitors whereas KPD and ZK58 were not affected (Fig. 5A,B).

Potential mechanisms of resistance in cell lines not sensitive to MEK inhibition Our data
indicated that MEK1/2 inhibition could be used to treat osteosarcomas that present with
constitutive ERK activation but not in cases where MEK activity is low. Ras/Raf mutations are
strong predictors for sensitivity to MEK inhibition(Jing et al, 2012; Solit et al, 2006) explaining
sensitivity of 143b. We searched for mutations in exons or splice sites in the genes MEK1,
MEK2, A-Raf, B-Raf, C-Raf, EGFR, FGFR, IGFR1, K-Ras, H-Ras and N-Ras in all cell lines used,
employing a previously published method(van Eijk et al, 2011) but could not identify
mutations that may explain high constitutive ERK phosphorylation in MOS or U20S (data not

shown).

Next, we performed a pathway analysis on gene expression differences in sensitive (MOS,
U20S and 143b) versus resistant (KPD, ZK58 and Saos-2) cell lines(Kuijjer et al, 2012). This
analysis revealed 7 signatures with enrichment of differentially expressed genes (Fig 6A).

One of the signatures was the AKT pathway, which had positive fold change for 15/22 genes
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Figure 5. Validation of sensitivity to MEK inhibitors in a 3D culture system. A) MOS, U20S, KPD and
ZK58 cells were re-suspended in a collagen-matrigel mix and 3D cultures were subsequently exposed
to 0.5uM of the MEK inhibitors for 72 hours. Graphs are a representative experiment of two
replicates, each performed in quadruplicate. Meanzs.d is shown. B) Representative images of 3D
MOS cultures in absence or presence of Trametinib.

upregulated in the resistant cell lines (Fig. 6B). However, Western blot analysis of phospho-
AKT(Ser473) showed active AKT in all cell lines except ZK58 (Fig. 6B). Similarly, mTOR, a
downstream target of AKT signaling, was not differentially activated between sensitive and
resistant cell lines (Fig. 6C). In agreement, all cell lines responded similarly to inhibition of
AKT signaling using A674563 (inhibits AKT1 selectively) or AT7867 (inhibits AKT1/2/3) and
were highly sensitive to a dual PI3K/mTOR inhibitor, BEZ235 (Fig. 6D). These data indicate
that other differentially activated signaling pathways, rather than the predicted difference in

AKT activity underlie differential sensitivity of the osteosarcoma cell lines to MEK inhibition.
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Figure 6. Analysis of AKT pathway and its pharmacological inhibition. A) Plot representing the 7
signatures that were significantly enriched (FDR< 0.25) in the cell lines resistant to MEK inhibition
based on gene expression data. Pink/red represents the enrichment score (red>pink), and size
represents the gene set size of the signature. B) Schematic representation of similarity between the 7
signatures. Pink/red represents the enrichment score (red>pink), and the line width represents the
number of genes shared between signatures. C) Western blot analysis of total AKT, phosho(Ser473)-
AKT and phospho-(Ser2448)-mTOR in the indicated osteosarcoma cell lines. D) Dose response curves
for the indicated AKT-mTOR inhibitors in the indicated osteosarcoma cell lines. Meanzts.d for
experiment performed in triplicate is shown.

DISCUSSION

To identify new candidate avenues for therapeutic intervention for osteosarcoma we
performed a kinase inhibitor screen in two human osteosarcoma cells lines. Our screen

confirms previously reported findings (e.g. PI3K-AKT-mTOR inhibition), thereby validating
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our screen. It also identifies new drugs in the context of osteosarcoma that are in the clinic

for other malignancies and hence may be candidates for repurposing.

PI3K-Akt-mTOR pathway is a network that controls many cellular processes such as
cell proliferation, survival, metabolism and genomic integrity(Fruman & Rommel, 2014). It
has been shown that osteosarcoma strongly depends on this pathway for cell survival and
proliferation and pathway inhibition triggers cell death(Gupte et al, 2015; Perry et al, 2014).
The expression of mTOR is correlated with event-free survival and cancer progression in
osteosarcoma(Zhou et al, 2010). Our screen confirms mTOR signaling as a potential target to

treat osteosarcoma.

The main characteristic of tumor cells is uncontrolled cell proliferation and cell cycle
regulators are key players in cancer growth. Our screen identifies several inhibitors targeting
this hallmark of cancer, including inhibitors of cyclin-dependent kinases and spindle
checkpoints. Cyclin-dependent kinases 2,4 and 6 are altered in 80-90% of tumors(Malumbres
& Barbacid, 2001). In osteosarcoma, the Rb/p16/CDK4 axis is often deregulated with
mutations or deletions in these genes(Mohseny et al, 2010; Wei et al, 1999). Aurora and
polo-like kinases are critical regulators of the mitotic spindle and have been implicated in
various cancers(Fu et al, 2007). Several studies have shown that inhibition of Aurora kinases
leads to cell death in osteosarcoma(Jiang et al, 2014; Tavanti et al, 2013). The Aurora kinase
A inhibitor Alisertib (not present in our library) is undergoing testing in a phase Il clinical trial
of refractory solid tumors (NCT01154816). Inhibition of polo like kinase (Plk) 1 causes growth
inhibition in various cancers(Bu et al, 2008; Reagan-Shaw & Ahmad, 2005). In osteosarcoma,
Plk1 show higher expression in tumor samples compared to normal tissue, and its inhibition
with NMS-P397 (not present in our library) leads to growth arrest and apoptosis(Sero et al,
2014).

The Ras-Raf-MEK-ERK mitogen activated protein kinase cascade is known to be
involved in cell proliferation, apoptosis, differentiation and development. It integrates
signals from cell surface receptors to activate ERK, which in turn enters the nucleus and
activates transcription factors such as c-Myc, c-Fos, Ets, and Elk-1(Zhang & Liu, 2002). This
pathway is often deregulated in tumors due to mutations or overexpression of upstream
signaling components. B-Raf and Ras are frequently mutated in melanoma, colorectal
cancer, ovarian cancer, lung cancer and pancreatic cancer among others (McCubrey et al,
2007; Roberts & Der, 2007). In osteosarcoma, ERK pathway activity was reported to occur in

67% of the cases analyzed, and mutations in B-RAF were only found in 13% of the
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cohort(Pignochino et al, 2009). We identify three MEK inhibitors in the osteosarcoma cell
viability screen: Trametinib is a selective allosteric inhibitor of MEK1/2 designed to treat
tumor with overactive MEK-ERK pathway, which is found in tumors with B-Raf
mutations(Abe et al, 2011). It was approved for melanoma, and it has also been tested in
patients with pancreatic cancer, colorectal cancer and other solid tumors with B-Raf
mutations(Wright & McCormack, 2013). AZD8330 and TAK-733 are two selective allosteric
MEK1/2 inhibitors(Cohen et al, 2013; Dong et al, 2011). TAK-733 has shown good antitumor
activity in melanoma cells(von Euw et al, 2012) as well as in human lung cancer(Ishino et al,
2015).

Our findings imply that MEK1/2 inhibition is a candidate approach to treat
osteosarcomas harboring high ERK activity. Strikingly, while ERK phosphorylation status
predicts sensitivity to MEK inhibition, mutation analysis of upstream components of this
pathway does not identify candidate predictive mutations. Hence, ERK phosphorylation in
tumor tissue as identified by immunohistochemistry may be a more accurate biomarker
predicting sensitivity to MEK1/2 inhibitors than genomic analyses. We have not identified an
alternative pathway selectively driving viability/growth of cell lines that are resistant to MEK
inhibition. An enriched set of genes in the lines points to differential activation of the AKT
pathway but based on AKT and mTOR phosphorylation status this pathway is active in all
lines and, in agreement, all cell lines are similarly sensitive to AKT-mTOR inhibition.
Interestingly, this indicates that three independent cell lines showing strong activity of MEK
as well as AKT depend on the activity of both pathways. l.e., inhibition of either pathway is

sufficient to cause loss of viability rather than these pathways compensating for each other.

To our knowledge, we are the first to describe the efficacy of MEK inhibition in
osteosarcoma cells with high ERK phosphorylation. Recently, a Phase | clinical trial
(NCT02124772) started enrolling patients with solid tumors, including osteosarcoma, to
study the efficacy of trametinib in combination with dabrafenib. In this setting, such
association between ERK phosphorylation status and response to trametinib may be

investigated.
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ABSTRACT

Conventional high-grade osteosarcoma is the most common primary bone malignancy with
relatively high incidence in young people. About 40% of the patients develop metastases and
have a very poor prognosis. New insights into osteosarcoma growth and progression that
may lead to new therapeutic strategies are needed. Expression and activity of the Src
cytoplasmic tyrosine kinase has been correlated with clinical stage and survival. Here, we
studied the effect of pharmacological inhibitors of Src activity, including dasatinib, bosutinib
and saracatinib in MOS and U20S human osteosarcoma cell lines in 2D and 3D. All inhibitors
decreased viability with an IC50 in the micromolar range. Likewise, treatment with each of
the inhibitors reduced the IC50 of doxorubicin. However, only dasatinib treatment triggered
caspase3/7 activation pointing to apoptosis. The selective activity of dasatinib correlated
with its capacity to reduce Src activity. Next, the effects of the inhibitors were studied in
MOS and U20S cultures in 3D extracellular matrix (ECM) scaffolds. Under these conditions,
all three inhibitors reduced viability but formation of branched networks in 3D ECM was
selectively inhibited by dasatinib in presence of doxorubicin. The activity of focal adhesion
kinase (FAK), a Src substrate that is important for cell migration, was exclusively sensitive to
dasatinib. Indeed, in 3D ECM-embedded spheroid cultures dasatinib blocked cell migration
capacity whereas the other inhibitors had no or partial effects. Together, these findings
point to the use of dasatinib as a candidate drug to enhance apoptosis in response to

chemotherapy and to reduce metastatic spread in patients with osteosarcoma.
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INTRODUCTION

Osteosarcoma is the most common primary malignant bone tumor that arises from mesenchymal
stem cells that are capable of producing osteoid[1]. It has an overall incidence of 3 cases per million
annually occurring predominantly in children and adolescents, with a second peak in people above
50 years of age[2]. At the moment of diagnosis, 10-20% of the patients present with metastasis, and
about 30-40% of the patients with localized osteosarcoma will relapse mainly by presenting lung
metastasis. Patients with relapsed disease have very poor prognosis with 23-33% 5-year overall

survival[3].

Src is a nonreceptor tyrosine kinase that belongs to a family of 11 members, and it is widely
expressed in a most tissues. Src acts as signal transducer from cell membrane receptors to
downstream substrates. Src activity regulates cell morphology, adhesion, and migration, as well as
survival and proliferation through activation of PI3K-Akt, Ras-Raf-MEK-ERK, and Jak-Stat and a cell-
extracellular matrix (ECM) adhesion-signaling platform including the Src substrate focal adhesion
kinase (FAK) [4,5]. Activation and expression of Src in colon cancer is associated with late tumor
stage[6] and ability to metastasize[7]. Furthermore, Src activity and expression is also implicated in
other malignancies such as breast cancer[8,9], ovarian cancer[10], lung cancer[11] and
chondrosarcoma[12]. Notably, despite the fact that Src is overexpressed or constitutively active in
many malignancies, mutations are rare in this gene. Therefore, in most cancers Src does not appear
to drive tumor initiation or tumor formation, but may rather play a role in aspects of tumor

progression[13,14].

As mentioned above, Src transduces signal from cell receptors among which is IGFR. This
receptor was reported to be highly expressed in high grade conventional osteosarcoma[15], and its
inhibition with antibodies proofed to increase event free survival duration[16]. Additionally,, in
osteosarcoma Src expression and activity has been shown to correlate with clinical stage and patient
survival, making Src a potential aiding marker to determine prognosis in osteosarcoma[17]. All
together, these findings leads us to investigate the inhibition of Src as potential treatment for

patients with osteosarcoma.

Dasatinib and bosutinib are two Src/Bcr-Abl inhibitors approved by the FDA for chronic
myelogenous leukemia resistant to prior therapy[18-21]. Saracatinib, is a Src inhibitor that is
currently in clinical trial for patients with recurrent osteosarcoma localized to the lung
(NCT00752206), other cancers including melanoma (NCT00669019), prostate cancer (NCT01267266),
and Alzheimer’s disease (NCT01864655). The compounds have been tested as single agents in solid
tumors with no evident clinical activity[22-26]. Here, we assessed the capacity of these inhibitors to
attenuate human osteosarcoma cell survival and migration in 2D and 3D environments. The
inhibitors were tested alone or in combination with the clinically relevant chemotherapeutic

compound, doxorubicin.
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MATERIALS AND METHODS

Reagents and antibodies. Doxorubicin was obtained from the Department of Clinical
Pharmacology at LUMC, bosutinib, dasatinib and saracatinib were from SelleckChem
(Huissen, Netherlands). Antibodies against ERK1/2(clonel37F5), phospho-ERK(42/44)
(#4695), AKT(9272), and phospho-AKT(Serd73) (#9271), were from Cell Signalling (Bioké,
Leiden, The Netherlands). Antibodies against Src (clone GD11) and phospho-Src(Tyr418)
(#44660G) were from Millipore (Amsterdam, The Netherlands) and Invitrogen (Bleiswijk, The
Netherlands), respectively. Antibody against FAK (clone4.47) was from BioConnect (Huissen,
The Netherlands). Antibodies against phospho-FAK(Tyr925) (#MBS8507066) and phospho-
FAK(Tyr861) (#MBS8507535) were from Biosourse (California, U.S.A.). Antibody against
tubulin (T-9026) was from Sigma-Aldrich (Zwijndrecht, Netherlands).

Cell culture. Human osteosarcoma cell lines MQOS, U20S were previously described[27,28].
Cells were grown in RPMI11640 medium supplemented with 10% fetal bovine serum and 25
U/mL penicillin and 25 pg/mL of penicillin-streptomycin.  All cells were cultured in a
humidified incubator at 37°C with 5% CO..

Western blotting. Cells were lysed with SDS protein buffer (125mM Tris/HCI pH 6.8, 20%
glycerol, 4% SDS and 0.2% bromophenol blue). Proteins were resolved by SDS-PAGE and
transferred to polyvinylidine difluoride membrane. Membranes were blocked in 5% BSA-
TBST (TRIS-0.05% Tween?20), followed by overnight incubation with primary antibodies and
45 minutes incubation with HRP-conjugated secondary antibodies. Chemoluminescence was
detected with a bioimager, LAS400 (GE Healthcare).

Measuring cell viability and apoptosis in 2D cultures. For cell viability, cells were processed
using the ATPlite 1Step kit (Perkin Elmer) according to the manufacturer’s instructions,
followed by luminescence measurement. Apoptosis was measured by assessing caspase3/7
activity with CaspaseGlo 3/7 (Promega). The cells were exposed to the drug for 24 hours
after which the reagent was added 1:1. Luminescence was measured in a Fluostar Optima

plate reader.
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3D collagen/matrigel culture assay. U20S and MOS cells were cultured in 384-well plates
(Greiner pclear) in a hydrogel containing Matrigel (Beckton Dickinson) and collagen |,
supporting invasive growth of both cell lines. Cells in culture were trypsinized and directly
added to the cooled gel solution. Using a robotic liquid handler (CyBio Selma 96/60), 14.5uL
of gel-cell suspension was transferred to each well of a 384-well plate (2000 cells/well). After
polymerization for 30 minutes at 37°C in an atmosphere of 5% CO,, growth medium was
added on top of the gel. After three days, when the cells had formed a network structure,
compounds were diluted and added in quadruplicate wells for a period of 72 hours.

For measuring cell viability in 3D, a solution of 7g/L WST-1 (Serva Electrophoresis)
and 8mg/L phenazinium methylsulfate (PMS; Sigma Aldrich) in 1x PBS were mixed in a 1:1
ratio and 5uL was added to each well. Plates were placed at 37°C for 5 hours, after which the
absorbance at 450nm was measured using a FluoStar Optima late reader. Percentage
viability was thereafter calculated by robust normalization (median) of the plates between
positive control (no cells; 0% viability) and negative control (solvent; 100% viability)
conditions.

For imaging, cells were fixed using 3.7% Formaldehyde (Sigma-Aldrich),
permeabilized with 0.1% Triton-X100 and stained for F-actin using 50nM Rhodamine-
Phalloidin (Sigma Aldrich) for 12 hours at 4°C. Subsequently, the plates were washed in PBS
for at least 24 hours at 4°C. The plates were then imaged on a BD Pathway 855 inverted
fluorescence microscope (BD Biosciences) using a 4x lens to capture Rhodamine-Phalloidin
staining at focal planes spaced 50um throughout the gel, capturing approximately 70% of a
well. Subsequently, maximum intensity projections of the in-focus information of the Z-

stacks was made using OcellO (OcellO B.V., Leiden, The Netherlands) image analysis tools.

3D collagen spheroid assay. Cell suspensions were injected into collagen scaffolds using
automated injection as previously described[29,30]. 1 mg/ml rat tail collagen was prepared
in complete growth medium supplemented with 1:5 dilution of 0.44M NaHCOs and 1:10
dilution of 1M Hepes pH 7.4. 60uL was added to each well of a 96-well p-clear plate
(Corning) and incubated for 1 hour at 372C to allow polymerization. Cells were collected in
medium containing 2% PVP, transferred to a needle and droplets of ~8nL were injected into
the collagen gels resulting in spheroids of ~300um diameter, using injection robotics from

Life Science Methods, Leiden NL (http://www.lifesciencemethods.com). For DIC imaging of

spheroids, a Nikon confocal microscope was used.

Statistical analysis. Dose response curve fitting and all statistical analyses were performed
with GraphPad Prism 5.0 (GraphPad Software, La Jolla, CA). The unpaired two-tailed t-test

94


http://www.lifesciencemethods.com/

was used to compare between groups. Significant difference between groups in the 3D assay

was calculated using 2way ANOVA with Bonferroni posttest.

RESULTS

Reduced human osteosarcoma cell viability in presence of bosutinib, dasatinib and
saracatinib and selective Src kinase inactivation by dasatinib

We determined the effect of dasatinib, bosutinib and saracatinib on cell viability in MOS and
U20S human osteosarcoma cells. Responses to these inhibitors were highly similar for MOS
and U20S cells but differed considerably between the different inhibitors (Fig. 1A). Both cell
lines showed no response to bosutinib concentrations <1 uM and a rapid decline in viability
was observed as the bosutinib concentration increased from 1 to 5 uM. Instead, viability
gradually decreased in response to 0.1-10 uM dasatinib and a similar trend, albeit less
effective, was observed for saracatinib. IC50 for bosutinib and dasatinib was ~5 uM and IC50

was >10 uM for saracatinib (Fig 1B).

PI3K/AKT and Raf-MEK-ERK MAP kinase signaling pathways represent important drivers of
survival and proliferation in many different cancer types. These two pathways are regulated
by Src activity[31,32]. We tested if treatment of MOS and U20S cells with the Src inhibitors
affected these pathways. However, treatment with up to 2.5uM bosutinib, dasatinib, or
saracatinib did not affect phosphorylation of ERK (Fig 1C). In fact, treatment with saracatinib
increased the levels of ERK phosphorylation particularly in U20S. On the other hand,
dasatinib and saracatinib suppressed AKT phosphorylation at 2.5uM whereas bosutinib had
no effect. Moreover, while 1uM dasatinib effectively attenuated Src phosphorylation at Y418
in both cell lines, indicating attenuated Src kinase activity, bosutinib and saracatinib failed to

do so even at 2.5uM.
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Figure 1. Effect of dasatinib, bosutinib and saracatinib in

human osteosarcoma cells.

A) Dose response curves for dasatinib, bosutinib and saracatinib in two human osteosarcoma cell
lines. Error bars represent the standard deviation of three experiments performed in triplicate. Cells
were exposed for 72 hours. B) Table with IC50 values of bosutinib, dasatinib and saracatinib in MOAS
and U20S cells. C) Western blot analysis of phospho-ERK(p44/42), total ERK, phospho-AKT(Ser473),
total AKT, phospho-Src(Tyr418), total Src, and tubulin loading control in MOS and U20S cells under
control (DMSO) conditions or after 48 hours treatment with 1 or 2.5uM of the indicated inhibitors.

Sensitization to doxorubicin in presence of bosutinib, dasatinib and saracatinib and

selective induction of apoptosis by dasatinib

Src kinase activity may not be a bona fide cancer driver and mono therapy using either of

these inhibitors may be ineffective. However, as Src stimulates pro-survival and proliferation
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Figure 2. Effect of dasatinib, bosutinib and saracatinib in human osteosarcoma cells in the context
of doxorubicin. A). Dose response curves for doxorubicin in two human osteosarcoma cell lines in
absence (black) or presence of 1uM of dasatinib (red), bosutinib (green) or saracatinib (blue). Cells
were exposed for 72 hours. Error bars represent mean + SEM of three experiments B). Table with
IC50 values for doxorubicin alone (DMSO) or in combination with 1uM bosutinib, dasatinib or
saracatinib in MOS and U20S cells. C) Caspase 3/7 activity in two human osteosarcoma cell lines
under control conditions (white bars) or upon exposure for 24 hours to 0.1uM doxorubicin (black
bars) in the presence of DMSO or 1uM dasatinib, bosutinib and saracatinib as indicated. Mean * S.D
is shown for one representative experiment of 3 performed in triplicate.

signaling pathways[13,14]. Its inhibition may render tumor cells more sensitive to
chemotherapy. To investigate this, MOS and U20S cells were exposed to 1uM of the
inhibitor together with a dose range of doxorubicin for 72 hours. Indeed, both cell lines

showed a reduction in viability already at lower doses of doxorubicin in presence of
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dasatinib, bosutinib, or saracatinib, as compared to the response to doxorubicin alone (Fig.
2A). For MOS cells, the IC50 for doxorubicin was reduced by 30-50%, and for U20S cells a
reduction of 50-80% was observed (Fig 2B). In order to assess whether decreased viability
was related to apoptosis, we determined caspse3/7 activity. Interestingly, only treatment
with dasatinib led to apoptosis either alone (not shown) or in combination with doxorubicin
(Fig. 2C).

Reduced human osteosarcoma cell viability in 3D cultures in presence of bosutinib,
dasatinib and saracatinib and selective morphological effects induced by dasatinib.

Next, we analyzed the effect of the panel of Src inhibitors in a 3D in vitro culture model.
MOS and U20S cells were suspended in a collagen-matrigel mixture and allowed to form a
multicellular network for 72 hours. Subsequently cells were exposed to 1uM of dasatinib,
bosutinib, or saracatinib alone or combined with a concentration range of doxorubicin.
Inhibition of cell viability by the inhibitors alone as measured biochemically, was more
pronounced compared to effects measured in 2D. All three inhibitors by themselves caused
a reduction in viability of 40-50% (Fig 3A). Additional treatment with doxorubicin further
decreased viability but no synergy was observed between doxorubicin and any of the
inhibitors.

Next we used imaging and image analysis algorithms to measure “branch length” and
“solidity” or roundness of the multicellular structures; parameters correlated cell migration
[33]. Low concentrations of doxorubicin up to 0.1uM did not affect these parameters (Fig
3B). Exposure to 1uM of the Src inhibitors alone led to decreased branch length and
increased solidity. However, in the presence of dasatinib MOS and U20S cells were
selectively responsive to low concentrations of doxorubicin; showing a decrease in branch

length and a concomitant increase in solidity of the multicellular structures (Fig. 3B-D).

Selective inhibition of FAK activity and 3D osteosarcoma cell migration by dasatinib
To further investigate morphological effects caused by these inhibitors that may impact on
osteosarcoma progression we made use of a 3D spheroid model. MOS and U20S cells were

injected as nL droplets into collagen gels as described before[29,30], and resulting spheroids
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Figure 3. Effect of dasatinib, bosutinib and saracatinib in human osteosarcoma cells in the context
of doxorubicin in 3D cultures. A,B) Doxorubicin dose response curve for human osteosarcoma cells
grown in collagen/matrigel mixture under control conditions (DMSO; black line) or in presence of
1uM dasatinib (red), bosutinib (green), or saracatinib (blue). Cells were exposed for 72 hours. A)
Viability was assessed using WST/PMS absorbance. Error bars represent mean * SEM of three
experiments. Values were normalized to median of DMSO. B) Image analysis was used to assess
average branch length (top graphs) and solidity (bottom graphs). Error bars represent meanzs.d of
one representative experiment done in quadruplicate. C) Representative images such as those used
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for graphs in B. Each image is a compression of 11stacks of the 3D culture. D) Zoom-in of selected
areas from images in C, showing marked effect of doxorubicin/dasatinib combination.
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invasion in
osteosarcoma. A)
U20S and MOS cell-
derived collagen-

embedded spheroids
directly after cell-
injection (0 hours) and
after 72 hours
incubation under
control conditions
(DMSO) or in presence
of 1uM of the indicated
inhibitors. Images were
obtained using a Nikon
confocal microscope.
B) Western blot
analysis of total FAK
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Fak(Tyr397), (Tyr861),
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were exposed to DMSO or 1uM bosutinib, dasatinib and saracatinib for 72hours. Saracatinib
did not affect spheroid outgrowth or 3D cell migration and bosutinib had an intermediate
effect while dasatinib treatment completely blocked outgrowth and collagen invasion of
MOS and U20S cells in this model (Fig 4A).
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Src promotes invasion and metastasis and plays a key role as a regulator of cell-ECM
adhesions containing the Src substrate FAK. The Src/FAK complex integrates signals from the
extracellular environment and controls and coordinates adhesion dynamics and cell
migration[34,35]. FAK is autophosphorylated at Tyr397 upon integrin-mediated adhesion
creating a binding site for Src, which subsequently phosphorylates FAK at Tyr407, 576, 577,
861 and 925[34,36]. We analyzed FAK phosphorylation after 48hour treatment with 1uM
dasatinib, bosutinib or saracatinib. The FAK autophosphorylation site was not affected by
any of the inhibitors. However, in agreement with its selective inhibition of cell migration
through 3D ECM scaffolds, phosphorylation of FAK at Src substrates Tyr861 and Tyr925 was
selectively inhibited by dasatinib. Whereas Saracatinib and bosutinib had no apparent effect
(Fig 4B).

DISCUSSION

It this study we investigated the effect of Src inhibitors dasatinib, bosutinib, and saracatinib
in two human osteosarcoma cell lines. Impacts on cell viability and migration were tested as
single agent as well as in combination with the chemotherapeutic compound doxorubicin,
which is used in the clinic for treatment of osteosarcoma. Src activity regulates the PI3K-Akt,
Ras-Raf-ERK, Jak-Stat and FAK-Paxillin pathways. In osteosarcoma, none of the inhibitors
interfered with ERK and AKT phosphorylation, and only dasatinib inhibited Src and Fak
activation in MOS and U20S cell lines. Notably, the inhibitors have other targets such as
other members of the Src family, Bcr-Abl, MAPK kinases, Eph receptors, cKit, STK6, PDGFR
and TEC family kinases[37,38]. An interesting study that mapped the target profile of
bosutinib in chronic myeloid leukemia cells identified new targets and to what extent targets
were inhibited[39]. The MAPK family was found to be a major target, but MEK1 and MEK2
were not significantly inhibited[39,40]. These results may explain why ERK activation was not
inhibited by any of the inhibitors in our study. Furthermore, the fact these inhibitors do not
completely inhibit the activity of a kinase, can explain why saracatinib and bosutinib did not
show appreciable inhibition of Fak phosphorylation, and failed to affect cell migration. The
autophosphorylation site (Tyr397) of Fak causes a conformational change allowing Src
binding and further Fak phosphorylation in Tyr576/577, Tyr861 and Tyr925. The
phosphorylation of these sites is important for the interaction with integrins and E-
cadherin[34]. While bosutinib has been reported to inhibit Fak-(Y925) phosphorylation in
breast cancer cells, in the two osteosarcoma cell lines used only dasatinib inhibited Src-
mediated phosphorylation of Fak Tyr861 and Tyr925[41].
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To study the effect of dasatinib, bosutinib or saracatinib on the migratory behavior of
osteosarcoma cells, we used 3D cell culture systems. 3D cultures may better reflect the
tumor microenvironment as compared to 2D cultures and cell matrix adhesions and
migratory behavior are closer to the in vivo situation [42-45]. In the two 3D systems we
used, including mixture of cells in collagen/matrigel and microinjection of cells to examine
migration from spheroids in collagen gels, collagen type | is the major ECM component and
this is also the main component (90%) of the ECM of bones[46]. Our finding that dasatinib
selectively blocks osteosarcoma cell migration in this environment correlates its selective
inhibition of Src-mediated Fak phosphorylation. Thus, dasatinib treatment likely interferes
with the Src/Fak signaling platform to prevent cell migration and may thus interfere with

metastatic capacity.

In addition, dasatinib selectively triggers apoptosis and causes morphological
alterations in 3D cultures in the presence of doxorubicin. It was previously reported that
dasatinib has the capacity to sensitize chondrosarcoma cells to doxorubicin (jolieke refe).
Furthermore, a new Src inhibitor, A-770041, was shown to increase sensitivity to
doxorubicin in osteosarcoma cells (refDuan et al. BMC Cancer 2014, 14:681). Notably, a
decrease in the IC50 of doxorubicin is observed when combined with each the inhibitors
indicating that dasatinib selectively affects some, but not all aspects of these inhibitors.
Several studies have hown that these three inhibitors do not have an effect as single agents
in solid tumors. For example, dasatinib inhibits activation of Src and Fak in vitro and in vivo,
but it does not induce apoptosis or prevent tumor metastasis to the lungs in a xenograft
osteosarcoma mice[47]. However, others showed that for biliary tract carcinomas
saracatinib was effective in a preclinical model, and both dasatinib and saracatinib are
effective in leukemia[48-51] indicating that the therapeutic effect of these inhibitors is
cancer type-dependent. Despite the lack of activity as a single agent, the combination of
dasatinib, bosutinib or saracatinib with doxorubicin in breast cancer or pancreatic cancer

cells did lead to a synergistic effect in vitro and in vivo[52-54].

Altogether, we find that dasatinib selectively inhibits activity of the Src/Fak signaling
complex in osteosarcoma cells and, most likely as a consequence of this, migration in
collagen scaffolds. Furthermore, while all three inhibitors decreased the IC50 of doxorubicin,
dasatinib selectively triggers apoptosis and morphological changes in the context of
doxorubicin. Our findings point to the combination of dasatinib and doxorubicin as a

potential therapy for osteosarcoma to prevent or minimize metastasis.
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Osteosarcoma is the most common primary malignant bone sarcoma occurring
predominantly in children and adolescents, and a second peak at middle age. It is
characterized for being highly metastatic and resistant to chemotherapy, which gives these

patients very poor prognosis.>?

Before the introduction of chemotherapy, patients with osteosarcoma had a low
chance of surviving this tumor. Once it was introduced, their prognosis increased
dramatically, however, it has reached plateau. To address this challenge, there have been
many clinical trials with the goal to find the best combination of chemotherapeutic agents
that can increase the overall survival rate.3* However, until now, there has been no further
improvement. New efforts are being made to find new drug targets such as kinases or
signaling pathways of the immune system. Many clinical trials testing these new molecules

have shown that single agent therapies are not effective.

The aim of this thesis was to find new strategies to reduce osteosarcoma viability or
that could potentiate the effect of doxorubicin. These findings, if translated to the clinic,
would allow the use of lower doses of doxorubicin and avoid serious side effects that
compromise the patient’s life. | used a variety of techniques including high-throughput
screening using siRNA and inhibitor libraries, which led to the discovery of new potential

treatments.

Cell lines

Cancer cell lines derived from tumors are the most common tumor used in cancer research,
and it has been of tremendous value in the field. There are doubts about how representative
they are of the tumors they came from, and many research groups have made efforts to
identify cell lines which are most represent the type of tumor they come from.>”” However,
it has been also been shown for 127 cancer cell lines, that when injected in nude mice, they
all formed a tumor which resembled histologically the cancer type.® Additionally, cancer cell
lines retain the genotype of the original tumor such as mutations and expression of a

characteristic gene.’

In this thesis | used osteosarcoma cell lines that have fully characterized by Mohseny
A, et al. All of the cell lines had the capacity to differentiate in vitro into at least one of the
three histological subtypes of osteosarcoma. However, not all of them had the capacity to
form tumor in nude mice.'° The cell lines employed in these studies, were chosen based on
the genetic profile of p53 and CDKN2A, which are two of the well-known altered genes in

osteosarcoma.!! Additionally, the identity of cell lines was confirmed using the Cell ID
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GenePrint 10 system (Promega Benelux BV, Leiden, The Netherlands) before and after

completion of the experiments, and mycoplasma tests were performed on a regular basis.

Targeting the cell cycle

The DNA Damage Response (DDR) is evolutionary conserved and essential to ensure the
faithful maintenance and replication of the genome. This signaling cascade senses DNA
damage and triggers repair, cell cycle arrest and, in case of severe damage, cell death.'?
Chemotherapeutic drugs such as doxorubicin cause DNA double strand breaks, DNA
alkylation, topoisomerase inhibition Il among many other mechanisms.'® This type of DNA
lesions activate the DDR which lead to cell cycle arrest allowing the tumor cells to repair the
damage and continue dividing. In Chapter 2, | proposed Aven to be a new regulator of DNA
damage response showing that it is a key regulator of ATR-Chk1l axis. Subsequently, |
investigated the effect of CHK1 inhibition in combination with doxorubicin. For the first time
in osteosarcoma, these findings indicate that abrogation of Chkl signaling using clinically
relevant drugs may be combined with chemotherapy to treat osteosarcoma more
effectively. Cancer cell cycle deregulation is often caused by altered CDK activity.!*
Furthermore, osteosarcoma is characterized by alterations in Rb protein and CDK4, which
leads to uncontrolled cell cycle progression. In Chapter 3 a screen of kinase inhibitors
revealed that osteosarcoma cells are sensitive to inhibitors targeting kinases that regulate
the cell cycle among others. Overall, | show that osteosarcoma is highly dependent on the

cell cycle kinases to proliferate, and this signaling network is a potential therapeutic target.

3D cultures

Tumors are a complex disease that is governed by many intracellular signals such as gain of
function of oncogenes, loss of function of tumor suppressors and mutations in key proteins.
However, tumor cells are also influenced by the extracellular environment such as cell-
matrix and cell-cell interactions. 2D mono-layer cultures have been a powerful tool but it
was shown that the cells divide abnormally, change shape and physiological behavior.'>¢ 3D
culture models provide a platform in which the tumor cells can behave more like the real
tumor, and can be used to study cell viability and metastatic behavior after treatment with

inhibitors.

Throughout the whole thesis | set out to find approved or preclinical inhibitors, which

were effective alone or in combination with doxorubicin. In Chapter 2,4,5 | assessed viability
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of the treated cells in 2D monolayer cultures, and validated these results in 3D culture

models.

Importance of inhibiting migration

Ostesarcoma is a highly metastatic tumor and at the moment of diagnosis, 10-20% of the
patients already present with metastasis. About 30-40% of the patients with localized
osteosarcoma will relapse mainly by presenting lung metastasis. Patients with recurrence

have very poor prognosis with 23-33% 5-year overall survival.l”:18

Tumor cell migration to distant locations has already occurred in patients with
metastases implicating that cell migration is not a therapeutically relevant aspect of tumor
progression. However, it has been shown that short range-migration (dispersal) to adjacent
sites affects tumor topology and growth rates. This is the case in primary tumors and
metastatic tumors. Although the tumor origin is genetically homogeneous, clonal variations
arise that change the fate of these cells leading to resistance to treatment, and regrowth of
the tumor after months of the treatments. Recent modeling approaches have shown that
short-range dispersal contributes to cell mixing inside the tumor and targeting cell migration
could in fact considerably suppress tumor growth.?® In Chapter 5 | used two 3D models to
study the inhibition of migration using dasatinib, saracatnib and bosutinib. Using the
spheroid collagen injection model, dasatinib was the only inhibitor capable of containing the
cells in the spheroid; it inhibited migration completely. In the other 3D model employed
here, the cells were re-suspended as single cells in a collagen-matrigel mix allowing me to
study their morphology under treatment conditions. In this case | exposed these cells to
doxorubicin in combination with the inhibitors mentioned above. Strikingly, only the
combination of dasatinib and doxorubicin induced the retraction of branches and a round
shape morphology. These two experiments confirm each other, and indicate that dasatinib
in combination with doxorubicin is an effective targeted therapy that may avoid recurrence.

Doxorubicin together with dasatinib is a potential candidate for further clinical studies.

Signaling pathways involved in osteosarcoma cell survival

PI3K-Akt-mTOR pathway is a network that controls many cellular processes such as cell
proliferation, survival, metabolism and genomic integrity.?’ The expression of mTOR is

correlated with event-free survival and cancer progression in osteosarcoma?l. A kinase
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inhibitor screen described in chapter 4 indicated PI3K/mTOR pathway as crucial: 37% of the
hits were inhibitors that targeted this pathway. Another relevant signaling network for
osteosarcoma is the cell cycle with 37% of the hits inhibiting kinases in this pathway, such as
aurora kinases, Chk1, CDKs and Plk1.

The Ras-Raf-MEK-ERK mitogen activated protein kinase cascade is known to be
involved in cell proliferation, survival, differentiation and development. It integrates signals
from cell surface receptors that activate MEK, which will activate ERK. Once ERK is activated,
it enters the nucleus and activates transcription factors such as c-Myc, c-Fos, Ets, and Elk-1.22
In osteosarcoma, ERK pathway activity was reported to occur in 67% of the cases analyzed.??
In chapter 4, | identified three MEK inhibitors in a screen, which led me to further investigate
this pathway. Although no genomic or transcriptomic changes in the MEK pathway
discriminated sensitive from insensitive cell lines, | could show that MEK inhibitors are only
effective in cells where relatively high ERK activity can be detected. Thus, active,
phosphorylated ERK (that may be detected by immunohistochemistry in clinical samples)

may serve as a biomarker for treatment with MEK inhibitors.

In Chapter 3 | investigated the anti-apoptotic protein Bcl-xL. The expression of Bcl-xL
did not correlate with survival, but in osteosarcoma cells the inhibition of Bcl-xL did
potentiate the effect of doxorubicin. Furthermore, it has been shown that Bcl-xL expression
is dependent on ERK activity.?*#?> Strikingly, the osteosarcoma cell lines sensitive to MEK
inhibition were also the ones with highest Bcl-xL expression and more sensitive to Bcl-xL
inhibition. These results suggest that ERK expression could also be used as a marker for this

strategy, pointing to a more personalized treatment.

Future perspectives

In this thesis | described several possible therapies to treat patients with osteosarcoma.
These results come from in vitro studies, and must be tested in osteosarcoma animal models
to be translated to the clinic. Mouse models are commonly used because of the close
genetic and physiological resemblance to that of humans, and the ease with which they can
be genetically modified to facilitate tumor formation.?6?” Genetically engineered mouse
models with p53 and Rb deletions in the osteoblasts effectively induce osteosarcoma
formation that resembles human osteosarcomas.?® Another possible mouse model involves
overexpression of c-fos and c-jun proto-oncogenes, which induces the formation of

osteosarcoma.?® This model allows the spontaneous formation of osteosarcomas that can be
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used to validate novel treatments. Alternatives to genetic mouse models for further
investigation of drugs and drug combinations used in this thesis include mouse or zebrafish
xenografts with patient materials or patient-derived osteosarcomas cultured in a 3D collagen

matrix. Such strategies allow testing of treatment options for specifically for a given patient.

113



REFERENCES

10.

11.

12.

13.

14.

114

Luetke, A., Meyers, P. A., Lewis, |. & Juergens, H. Osteosarcoma treatment - where do
we stand? A state of the art review. Cancer Treat. Rev. 40, 523—-32 (2014).

Rosenberg, A. . et al. in WHO Classification of Tumours of Soft Tissue and Bone (eds.
Fletcher, C. D. M., Bridge, J. A., Hogendoorn, P. C. W. & Mertens, F.) 282-288 (2013).

Whelan, J. S. et al. EURAMOS-1, an international randomised study for osteosarcoma:
results from pre-randomisation treatment. Ann. Oncol. 26, 407-14 (2015).

Isakoff, M. S., Bielack, S. S., Meltzer, P. & Gorlick, R. Osteosarcoma: Current Treatment
and a Collaborative Pathway to Success. J. Clin. Oncol. 33, 3029-35 (2015).

Sandberg, R. & Ernberg, I. The molecular portrait of in vitro growth by meta-analysis
of gene-expression profiles. Genome Biol. 6, R65 (2005).

Ross, D. T. et al. Systematic variation in gene expression patterns in human cancer cell
lines. Nat. Genet. 24, 227-35 (2000).

Sinha, R., Schultz, N. & Sander, C. Comparing cancer cell lines and tumor samples by
genomic profiles. bioRxiv (Cold Spring Harbor Labs Journals, 2015).
doi:10.1101/028159

Fogh, J., Fogh, J. M. & Orfeo, T. One hundred and twenty-seven cultured human
tumor cell lines producing tumors in nude mice. J. Natl. Cancer Inst. 59, 2216 (1977).

Masters, J. R. Human cancer cell lines: fact and fantasy. Nat. Rev. Mol. Cell Biol. 1,
233-6 (2000).

Mohseny, A. B. et al. Functional characterization of osteosarcoma cell lines provides
representative models to study the human disease. Lab. Invest. 91, 1195-205 (2011).

Ottaviano, L. et al. Molecular characterization of commonly used cell lines for bone
tumor research: a trans-European EuroBoNet effort. Genes. Chromosomes Cancer 49,
40-51 (2010).

Kurz, E. U. & Lees-Miller, S. P. DNA damage-induced activation of ATM and ATM-
dependent signaling pathways. DNA Repair (Amst). 3, 889-900

Gewirtz, D. A. A critical evaluation of the mechanisms of action proposed for the
antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin.
Biochem. Pharmacol. 57, 727-41 (1999).

Malumbres, M. & Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm. Nat.
Rev. Cancer 9, 153—66 (2009).



15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Baker, B. M. & Chen, C. S. Deconstructing the third dimension: how 3D culture
microenvironments alter cellular cues. J. Cell Sci. 125, 3015-24 (2012).

Thoma, C. R., Zimmermann, M., Agarkova, |., Kelm, J. M. & Krek, W. 3D cell culture
systems modeling tumor growth determinants in cancer target discovery. Adv. Drug
Deliv. Rev. 69-70, 29—-41 (2014).

Buddingh, E. P. et al. Prognostic factors in pulmonary metastasized high-grade
osteosarcoma. Pediatr. Blood Cancer 54, 216—-21 (2010).

Gelderblom, H. et al. Survival after recurrent osteosarcoma: data from 3 European
Osteosarcoma Intergroup (EOI) randomized controlled trials. Eur. J. Cancer 47, 895—
902 (2011).

Waclaw, B. et al. A spatial model predicts that dispersal and cell turnover limit
intratumour heterogeneity. Nature 525, 261-4 (2015).

Perry, J. A. et al. Complementary genomic approaches highlight the PI3K/mTOR
pathway as a common vulnerability in osteosarcoma. Proc. Natl. Acad. Sci. U. S. A.
111, E5564-73 (2014).

Zhou, Q. et al. mTOR/p70S6K signal transduction pathway contributes to
osteosarcoma progression and patients’ prognosis. Med. Oncol. 27, 1239-45 (2010).

Zhang, W. & Liu, H. T. MAPK signal pathways in the regulation of cell proliferation in
mammalian cells. Cell Res. 12, 9—-18 (2002).

Pignochino, Y. et al. Sorafenib blocks tumour growth, angiogenesis and metastatic
potential in preclinical models of osteosarcoma through a mechanism potentially
involving the inhibition of ERK1/2, MCL-1 and ezrin pathways. Mol. Cancer 8, 118
(2009).

Boucher, M. J. et al. MEK/ERK signaling pathway regulates the expression of Bcl-2, Bcl-
X(L), and Mcl-1 and promotes survival of human pancreatic cancer cells. J. Cell.
Biochem. 79, 355—-69 (2000).

Iwasawa, M. et al. The antiapoptotic protein Bcl-xL negatively regulates the bone-
resorbing activity of osteoclasts in mice. J. Clin. Invest. 119, 3149-59 (2009).

Waterston, R. H. et al. Initial sequencing and comparative analysis of the mouse
genome. Nature 420, 520-62 (2002).

Emes, R. D., Goodstadt, L., Winter, E. E. & Ponting, C. P. Comparison of the genomes

of human and mouse lays the foundation of genome zoology. Hum. Mol. Genet. 12,
701-9 (2003).

115



28.

29.

116

Walkley, C. R. et al. Conditional mouse osteosarcoma, dependent on p53 loss and
potentiated by loss of Rb, mimics the human disease. Genes Dev. 22, 1662—76 (2008).

Wang, Z. Q., Liang, J., Schellander, K., Wagner, E. F. & Grigoriadis, A. E. c-fos-induced
osteosarcoma formation in transgenic mice: cooperativity with c-jun and the role of
endogenous c-fos. Cancer Res. 55, 6244-51 (1995).



SUMMARY

Osteosarcoma: searching for new treatment options

Osteosarcoma is the most frequent high-grade primary malignant bone tumor that is
thought to arise from mesenchymal stem cells with the capacity to produce osteoid. The
overall incidence is of three cases per million annually, and it occurs predominantly in
children and adolescents as well as in people over 50 years of age.

Currently, the treatment consists of preoperative chemotherapy followed by
resection of the tumor. The most effective systemic chemotherapeutics are cisplatin,
doxorubicin and methotrexate. Despite extensive studies aimed at finding optimal combined
chemotherapeutic strategies, overall 5-year survival rates have not increased above 70%,
and around 35-45% of the patients have tumors that do not respond to chemotherapy.

The aim of this thesis was to discover new therapeutic options for osteosarcoma
patients. | focused on finding candidate targets and pharmaceutical inhibitors for killing
human osteosarcoma cells or for sensitizing osteosarcoma cells to doxorubicin. In Chapter 2
| studied Aven, an adaptor protein that has been implicated in anti-apoptotic signaling and in
DNA damage response signaling. The expression of Aven is inversely correlated with
metastasis-free survival in osteosarcoma patients, and is increased in metastases compared
to primary tumours. In tumour cells, silencing Aven triggered a G2 cell cycle arrest. Chkl
protein levels were attenuated and ATR-Chk1l DNA damage response signaling in response to
chemotherapy was abolished in Aven-depleted osteosarcoma cells while ATM, Chk2, and
p53 activation remained intact. It is not possible to target Aven, therefore | examined
whether pharmacological inhibition of the Aven-controlled ATR-Chkl response could
sensitize osteosarcoma cells to doxorubicin. For this purpose, | tested pharmacological
inhibitors targeting Chk1/Chk2 or selectively Chk1 in 2D and 3D cultures. Co-treatments in
both culture systems led to effective sensitization to chemotherapy. Together, these findings
implicate Aven in ATR-Chk1 signaling and point towards Chkl inhibition as a strategy to
sensitize human osteosarcomas to chemotherapy.

An siRNA screen targeting members of the Bcl-2 family in human osteosarcoma cell
lines to identify critical regulators of osteosarcoma cell survival was performed in chapter 3.
Silencing the anti-apoptotic family member Bcl-xL but also the pro-apoptotic member Bak
caused loss of viability. Loss of Bak impaired cell cycle progression and triggered autophagy.
Instead, silencing Bcl-xL induced apoptotic cell death. Clinical osteosarcoma samples showed
expression of Bcl-xL, but mRNA or protein levels did not significantly correlate with therapy

response or survival. Nevertheless, pharmacological inhibition of Bcl-xL synergistically
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enhanced the response to the chemotherapeutic agent, doxorubicin. Indeed, in
osteosarcoma cells strongly expressing Bcl-xL, the Bcl-xL-selective BH3 mimetic, WEHI-539
potently enhanced apoptosis in the presence of low doses of doxorubicin. Our results
identify Bcl-xL as a candidate drug target for sensitization to chemotherapy in patients with
osteosarcoma.

In Chapter 4 | performed a kinase inhibitor screen in two osteosarcoma cell lines,
which identified MEK1/2 inhibitors: Trametinib, AZD8330 and TAK-733. These inhibitors
were further validated in a panel of six osteosarcoma cell lines of which three were sensitive
and three resistant to these inhibitors. Western blot analysis revealed that sensitive lines
had high constitutive ERK activity. Furthermore, experiments in which the cell lines were
cultured in a 3D culture system and exposed to the inhibitors, validated the effect seen in 2D
monolayer cultures. A gene expression analysis was performed to identify differentially
expressed gene signatures in sensitive and resistant cell lines, and indicated an activation of
the AKT signaling network in the resistant cell lines. In conclusion, MEK1/2 inhibition
represents a candidate treatment strategy for osteosarcomas displaying high MEK activity as
determined by ERK phosphorylation status.

Chapter 5, focuses on elucidating the effect of three Src inhibitors, dasatinib,
bosutinib and saracatinib, on osteosarcoma viability and cell migration using 2D cultures and
validation in 3D culture systems. Expression and activity of the Src cytoplasmic tyrosine
kinase has been correlated with clinical stage and survival. All inhibitors were tested in
combination with doxorubicin showing a reduction of the IC50 of this chemotherapeutic.
However, only dasatinib treatment triggered caspase3/7 activation, and decreased Src
activity. The effects of the inhibitors were studied in 3D extracellular matrix (ECM) scaffolds.
Under these conditions, all three inhibitors reduced viability but formation of branched
networks in 3D cultures was selectively inhibited by dasatinib in presence of doxorubicin.
The activity of focal adhesion kinase (FAK), a Src substrate that is important for cell
migration, was exclusively sensitive to dasatinib. Additionally, in 3D ECM-embedded
spheroid cultures dasatinib blocked cell migration capacity whereas the other inhibitors had
no or partial effects. Together, these findings point to the use of dasatinib as a candidate
drug to enhance apoptosis in response to chemotherapy and to reduce metastatic spread in

patients with osteosarcoma.

In summary, the work presented in this thesis provides four new candidate
treatment options for osteosarcoma. These studies provide the basis to continue this

research in animal models, which may then be translated to the clinic.
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SAMENVATTING

Osteosarcoom: de zoektocht naar nieuwe behandelingen

Osteosarcoom is de meest voorkomende hooggradige primaire kwaardaardige bot tumor.
De tumor ontstaat waarschijnlijk uit mesenchymale stamcellen die de mogelijkheid hebben
tot vorming van botweefsel. De incidentie is jaarlijks drie gevallen op één miljoen mensen,
voornamelijk kinderen, adolescenten en mensen ouder dan 50 jaar.

Op dit moment bestaat de behandeling uit pre-operatieve chemotherapie gevolgd door
chirurgische verwijdering van de tumor. De meest effectieve chemotherapeutica die
systemisch werken zijn cisplatine, doxorubicine en methotrexaat. Ondanks intensieve
studies naar de optimale strategie om chemotherapeutica te combineren, zijn de algemene
vijfjaarsoverlevingskansen niet boven de 70% gestegen. Daarbij hebben 30-45% van de
patiénten tumoren die niet reageren op chemotherapie.

Het doel van deze thesis was om nieuwe therapeutische opties voor osteosarcoom
patienten te ontdekken. Ik heb me daarbij gericht op het vinden van mogelijke genen en
farmaceutische remmers die humane osteosarcoom cellen kunnen doden of gevoeliger
maken voor doxorubicine.

In Hoofdstuk 2 heb ik Aven bestudeerd, een adapter eiwit waarvan gedacht wordt
dat het een rol speelt in anti-apoptotische signalering en DNA schade respons. De expressie
van Aven is omgekeerd gecorreleerd met metastasevrije overleving in osteosarcoom
patiénten, en is verhoogd in metastases vergeleken met primaire tumoren. In tumorcellen
induceert het uitschakelen van Aven een G2 celcyclus arrest. De hoeveelheid Chkl eiwit is
verlaagd en na chemotherapie en het uitschakelen van Aven was de ATR-Chk1 DNA schade
respons volledig verdwenen. Dit terwijl de activering van ATM, Chk2 en p53 intact bleef.
Omdat het niet mogelijk is om de functie van Aven te remmen, heb ik onderzocht of
farmacologische remming van de Aven-gecontroleerde ATR-Chkl respons osteosarcoom
cellen gevoeliger kon maken voor doxorubicine. Om dit te bereiken heb ik in 2D en 3D
kweeksystemen farmacologische remmers getest die zich richten op de functie van
Chk1/Chk2 of selectief zijn voor Chkl. Gelijktijdige behandeling in beide kweeksystemen
leidde tot effectieve sensitivering voor chemotherapie. Gezamenlijk impliceren deze
vindingen dat Aven een rol speelt in ATR-Chk1 signalering en wijzen naar inhibitie van Chk1l
functie als een strategie om humane osteosarcomen gevoeliger te maken voor

chemotherapie.
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Om essentiéle regulatoren van cel overleving te identificeren heb ik een siRNA screen
uitgevoerd, die zich richtte op de Bcl2 eiwitfamilie, in Hoofdstuk 3. Het uitschakelen van het
anti-apoptotische eiwit Bcl-xL, maar ook het uitschakelen van het pro-apoptotische eiwit Bak
zorgde voor minder levensvatbaarheid van de cellen. Het uitschakelen van Bak blokkeerde
het proces van de celcyclus en induceerde autofagie. Daarentegen induceerde het
uitschakelen van Bcl-xL apoptotische celdood. Klinische osteosarcoom samples lieten
expressie van Bcl-xL zien, maar de hoeveelheid mRNA of eiwit correleerde niet significant
met de respons op therapie of overlevingskans. Desalniettemin, farmaceutische inhibitie van
Bcl-xL verhoogt op een synergistische manier de respons op doxorubicine. Inderdaad, in
osteosarcoma cellen met sterke expressie van Bcl-xL, verhoogde een selective Bcl-xL BH3
mimetic (WEHI-539) in combinatie met lage doses doxorubicine apoptose sterk. Deze
resultaten identificeren Bcl-xL als kandidaat target gen voor nieuwe medicijnen, die in
combinatietherapie de osteosarcoom in patienten gevoeliger zou kunnen maken voor de
chemotherapie.

In hoofdstuk 4 heb ik een kinase remmer screen in twee osteosarcoom cellijnen
uitgevoerd waaruit drie MEK1/2 remmers (Trametinib, AZD8330 & TAK-733) interessant
bleken te zijn. Deze remmers werden verder gevalideerd door gebruik te maken van zes
osteosarcoom cellijnen, waaronder drie gevoelige cellijnen en drie ongevoelige cellijnen.
Western Blot analyse liet zien dat met name in de gevoelige cellijnen ERK-activering
verhoogd was. Bovendien bevestigden experimenten waarin de cellijnen in een 3D system
werden gekweekt en vervolgens blootgesteld werden aan de remmers het effect dat
aanvankelijk in 2D celkweek systemen werd gezien. Om verschillen in genexpressie tussen
gevoelige en ongevoelige cellijnen te identificeren, werd een genexpressie analyse
uitgevoerd. Daaruit bleek dat activering van de AKT signaalcascade vooral bij ongevoelige
cellijnen voorkwam. Ten slotte, het remmen van MEK1/2 vormt een mogelijk
behandelingstrategie bij osteosarcomen die een hoog niveau van MEK activatie hebben, wat
bepaald kan worden door de fosforyleringsstatus van ERK.

Hoofdstuk 5 richt zich op de effecten van drie Src-remmers (Dasatinib, Bosutinib &
Saracatinib) op de levensvatbaarheid en migratie van osteosarcomen in 2D, en voor validatie
ookin 3D kweeksystemen. De expressie en activiteit van de cytoplasmatische kinase Src is
gecorreleerd met klinische fase en overlevingskans. Alle remmers werden in combinatie met
doxorubicine getest, wat tot een vermindering van de IC50 voor doxorubicine leidde.
Desalniettemin, alleen behandeling met dasatinib leidde tot activatie van caspase3/7 en
verminderde activering van Src. In 3D extracellulaire matrix (ECM) kweeksystemen
verhinderden alledrie de remmers levensvatbaarheid, maar het vormen van netwerken van

vertakkingen werd uitsluitend geremd door dasatinib in combinatie met doxorubicine. De
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activiteit van focal adhesion kinase (FAK), een substraat van Src dat belangrijk is voor
celmigratie, toonde uitsluitend gevoeligheid voor dasatinib. Daarbovenop werd celmigratie
in 3D ECM-ingebedde sferoide kweeksystemen alleen geremd door dasatinib terwijl de
andere remmers er geen of alleen gedeeltelijk effect op hadden. Als geheel wijzen deze
resultaten erop dat dasatinib ertoe in staat is om apoptose in combinatie met
chemotherapie te verhogen en wellicht metastatische verspreiding in osteosarcoom

patiénten te verhinderen.

Samengevat, het hier beschreven onderzoek heeft vier potentiele mogelijkheden
voor de behandeling van osteosarcoom opgeleverd. Deze studies vormen de basis voor
eventuele dierproeven, die uiteindelijk naar een klinisch relevante oplossing kunnen worden

vertaald.
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