
On multifield inflation, adiabaticity, and the speed of sound of the
curvature perturbations
Atal, V.

Citation
Atal, V. (2016, March 8). On multifield inflation, adiabaticity, and the speed of sound of the
curvature perturbations. Casimir PhD Series. Retrieved from
https://hdl.handle.net/1887/38478
 
Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/38478
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/38478


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/38478 holds various files of this Leiden University 
dissertation. 
 
Author: Atal, Vicente 
Title: On multifield inflation, adiabaticity and the speed of sound of the curvature 
perturbations 
Issue Date: 2016-03-08 
 
 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/38478
https://openaccess.leidenuniv.nl/handle/1887/1�


4

Slowly evolving speeds of sound

Having studied transient features in the speed of sound in the previous chapter, we study

now the other phenomenological regime, i.e. the situations in which the speed of sound is

slowly evolving. A slow evolution of the speed of sound greatly simplifies the calculation

for the primordial correlation functions: the power spectra will still be described by a

power law, with a slightly modified spectral index and tensor to scalar ratio, and its

non gaussian signal is described by a simple analytical function. It is then possible to

directly compare the predictions with the allowed (ns, r) bounds coming from Planck,

as shown in figure 1.3. We will show that a slowly evolving speed of sound can be easily

generated in slow-roll inflation, provided the two-field completion resembles a spiral in

field space.

This chapter is based on the following paper:

On the viability of m2φ2 and natural inflation, A. Achúcarro, V. Atal and Y. Welling,

JCAP 1507 (2015) 07, 008 [arXiv:1503.07486 [astro-ph.CO]].

4.1 Introduction

Precise observations of the cosmic microwave background and large scale structure al-

low today for a very accurate determination of the cosmological parameters [11]. This

requires the theoretical predictions to be precise and robust, so that there are no uncer-

tainties when interpreting the data, or, more realistically speaking, that any uncertainty

is well understood. In the particular case of inflation [13, 14], the fact that this period

might be driven by a single light scalar field, effectively uncoupled to any additional de-

gree of freedom (at least during the time when observable perturbations are generated)
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Chapter 4. Slowly evolving speeds of sound 86

is a very appealing scenario in terms of predictability1. Indeed, any given potential has

unique and precise predictions, with the only ambiguity coming from uncertainties on

which e-foldings correspond to the observable scales. The fact that many models of

inflation have been ruled out by measurements of the spectral tilt and bounds on the

amount of tensor perturbation, reaffirms this claim. In particular some of the simplest

large field models like m2φ2 [31] and natural inflation [32] are in tension with the data

[30]. In this chapter we show that a particular class of two-field embeddings, where

the additional field is super heavy, can bring these models back into consistency with

the data, by changing the value of the slow-roll parameters as well as by generating a

reduced speed of sound cs < 1 for the fluctuations. We emphasize that this deformation

is coming entirely from super massive degrees of freedom (masses much heavier than

the Hubble parameter), and is an example of how important heavy fields may be in

determining the low energy effective description.

In general, a heavy field may influence the low energy dynamics by either affecting the

background, the perturbations or a combination of both. We would like to stress that this

does not require any high energy excitations or particle production, and our discussion

in this chapter focuses on the regime in which they do not occur. First of all, changes in

the background may come when evaluating the action at the vacuum expectation value

(v.e.v.) of the heavy field. Provided the kinetic energy is dominated by the light field,

it is possible to write a Lagrangian in which we recover single-field inflation described

by some effective potential (see e.g. [167, 168]). Changing the background will result in

different values for the slow-roll parameters ε and η, and thus we call this the background

model. Secondly, for certain (derivative) couplings between the light and heavy field,

perturbations of the heavy field contribute to the low frequency mode and therefore to

the low energy - single field - effective field theory (EFT) for the perturbations2. The

effect of this coupling has been widely studied, both in the cases when it is small [95, 106],

and the cases in which it is large [41, 55, 73, 76, 78–80, 82, 83, 93, 101, 102, 169] (see

[170] for a comparative study of some of these works). In the latter case, integrating out

the heavy field results in a reduced speed of sound for the adiabatic fluctuations. This

is a purely quantum effect that arises when considering the full two-field evolution for

the perturbations.

As we will explicitly show through examples, a proper description of the system demands

taking both effects into account. In order to do so, we embed inflation in a simple two-

field realization such that inflation takes place on a turning trajectory whose radius of

1At least if we ignore the issue of eternal inflation and the multiverse paradigm.
2The isocurvature modes are heavy and decay fast, they do not source the curvature perturbations

after horizon crossing. This situation is different from so-called multifield inflation, where there are
multiple light fields [66, 68], and quasi-single field inflation, where the mass of the heavy field is order
of the Hubble parameter [74].
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curvature is changing very slowly. In our embedding, the inflaton is the phase of a

complex field where the U(1) symmetry is mildly broken and the v.e.v. of the - massive

- radial field is approximately the radius of curvature of the inflationary trajectory (see

[171, 172] and [173] for realizations in field theory and supergravity respectively).

As already anticipated, we will show that within this framework quadratic inflation can

be consistent with the data, and that subplanckian values of the effective (instanta-

neous) decay constant are no longer disfavored in natural inflation. This will require

that the v.e.v. of the radial field takes subplanckian values. Different deformations of

standard natural and chaotic inflation were discussed in e.g. [174–177], and [177–183]

respectively. Unlike previous studies that included additional heavy fields to improve

agreement with the data due to a flattening of the potential, in all cases described here

the effective potential steepens. However the speed of sound effects dominate and move

the predictions downward in the (ns, r) plane, towards the best fit region. In addition,

in some cases the speed of sound slowly decreases along the trajectory, causing a shift

towards higher vaues of ns.

The outline of the Chapter is as follows. In section 4.2 we introduce a simple two-

field embedding of inflation with an additional heavy field. We explain how both the

background and the curvature perturbations are affected by the presence of the heavy

field. Furthermore we provide analytical expressions for the observables. In sections 4.3,

4.4 and 4.5 we study the predictions of the observables of quadratic, linear and natural

inflation embedded in this two-field scenario. We show explicitly how the predictions in

the (ns, r) plane move towards the 1σ allowed region of Planck. Finally in section 4.6

we discuss our findings and conclude.

4.2 General setup

4.2.1 Two-field embedding

We embed inflation in a simple two field realization, given by the following Lagrangian:

L =
1

2
∂νρ∂

νρ+
1

2
ρ2∂νθ∂

νθ −
m2
ρ

2
(ρ− ρ0)2 − V (θ). (4.1)

Here we assume the inflaton to be the phase of a complex field, and the U(1) symmetry

has been mildly broken by a potential V (θ). This model was already studied in [78]

(with a different kinetic term), and in [101], for the case of linear inflation (that we

discuss below). This is not the most general Lagrangian consistent with the symmetries

invoked. In fact we may also have different choices for the potential or the field space
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metric, but we choose this form as the simplest starting case. We also notice that since

the model becomes singular at ρ = 0, additional degrees of freedom should appear at

some higher energy scale. Additionally, these models will have monodromy; the potential

is not completely invariant after the phase θ has made a 2π cycle [184–187].

The standard logic (that we will show is inaccurate) is that, if the radial field is suffi-

ciently heavy, the field ρ will rapidly reach its minimum at ρ0, so that one may truncate

the model and consider the single field Lagrangian

L =
1

2
ρ2

0∂νθ∂
νθ − V (θ) , (4.2)

which by a field redefinition becomes:

L =
1

2
∂νφ∂

νφ− V (φ/ρ0) . (4.3)

We will show that truncating the model in this manner yields inaccurate predictions.

The reason is twofold. First, because of the kinetic coupling the radial field will have

a minimum at ρ̄ 6= ρ0. Plugging this solution back in the Lagrangian will result in

an EFT in which we recover single-field inflation described by an effective potential

[167, 168]. In general, this will result in different predictions for both ε and η (the

slow-roll parameters) at the observable scales. This single field description is possible

provided the kinetic energy is dominated by the angular field, or more specifically that

ρ̇2 + ρ2θ̇2 =
(

(dρ/dθ)2 + ρ2
)
θ̇2 ∼ ρ2θ̇2. From this condition we will demand that

dρ/dθ � ρ. Secondly, light and heavy field perturbations will be coupled through the

angular velocity, θ̇/H, which, if large, will give rise to a low energy EFT with a reduced

speed of sound cs for the adiabatic fluctuations [73, 81, 82, 101].

The prediction for the system can then be computed with the usual relations3 r = 16εcs

and ns = 1 − 2ε − η − s with ε ≡ −Ḣ/H2, η ≡ ε̇/Hε and s ≡ ċs/Hcs. From these

expressions it is clear that a reduced speed of sound, cs < 1, will contribute to moving

the predictions of the model towards smaller values of r (taking into account that in

general ε will also change while we go from cs = 1 to cs � 1). Additionally, ns will

also change making theories flow in the (ns, r) plane4. In the following, we show how to

exactly calculate these quantities.

3We actually use the more precise predictions for r as in [27], where the difference in freeze-out time
between the scalar and tensor perturbation is considered [26]. This effect becomes relevant when cs � 1.
We also compute the power spectrum, from which we derive ns, at second order in slow-roll, as in [27].

4In [188], the effect of cs and s in the (ns, r) plane for a phenomenological ansatz cs(N) was discussed.
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4.2.2 Analytical predictions

The possibility to make analytical predictions for ns and r depends on the ability to cal-

culate the radius ρ̄(θ) at which the radial field stabilizes, as a function of the parameters

of the two-field embedding. While it is not generically possible to solve the full two-field

model, there is a regime in which such analytical predictions are possible. This is the

regime in which the time derivatives of ρ can be neglected in the equations of motion

(e.o.m.). In order to show this explicitly, consider the e.o.m. for the system

ρ̈+ 3Hρ̇− ρθ̇2 + Vρ = 0 (4.4)

ρ2θ̈ + 2ρρ̇θ̇ + 3Hρ2θ̇ + Vθ = 0 (4.5)

together with the Friedmann equation (from here on we set the reduced Planck mass

mpl ≡ (8π)−1/2Mpl = 1)

3H2 =
1

2

(
ρ̇2 + ρ2θ̇2

)
+ V. (4.6)

where Vθ = ∂V/∂θ and Vρ = ∂V/∂ρ.

First, we assume that we can neglect the derivatives of ρ in the previous equations

(which is a good approximation in all of the cases studied here). We assume then

ρ̈, 3Hρ̇� ρθ̇2, Vρ and 2ρρ̇θ̇ � 3Hρ2θ̇, Vθ, ρ
2θ̈ . Let us note that the previous inequalities

demand that, at the same time, 1
ρ̄
dρ̄
dθ �

θ̇
3H and 1

ρ̄
dρ̄
dθ �

3H
2θ̇

. This directly implies that

1

ρ̄

dρ̄

dθ
� 1 (4.7)

which is the condition for writing a single field model for the background (i.e. that the

kinetic energy is dominated by the angular velocity). This condition does not mean that

the field ρ has to be exactly constant, but rather that its time evolution is slow.

Furthermore, as θ plays - mainly - the role of the inflaton, we also drop θ̈. This demands

θ̈ < 3Hθ̇. The simplified system then reads:

ρθ̇2 = Vρ (4.8)

3Hρ2θ̇ + Vθ = 0 (4.9)

and

3H2 = V. (4.10)

Importantly, let us note that there is no bound on θ̇/H (as long as θ̇ < mρ < Mpl). This

quantity plays an important role in determining both the coupling of the perturbations
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between the light and heavy field, and - as we will see below - the slow-roll parameters.

In principle with these equations we obtain ρ̄(θ), plug the solution in the potential and

find a canonical variable so that we have a single-field effective potential. However, in

situations in which the solution ρ̄(θ) is a complicated function of θ, it may be too difficult

to follow this procedure, the main reason being that we need to find a canonical variable

φ such that ρ̄θ̇ = φ̇. Nonetheless, the system can still be solved semi-analytically in a

single field approach. If the kinetic energy is dominated by θ, then ε is given by

ε =
1

2ρ̄2

(
Vθ
V

)2

. (4.11)

With this we can calculate η = ε̇/εH giving

η =
2

ρ̄2

(
Vθθ
V

)
+ 4ε− 2

˙̄ρ

ρ̄H
. (4.12)

Importantly, the last term cannot be neglected. Indeed

δ≡
˙̄ρ

ρ̄H
(4.13)

=
1

ρ̄

dρ̄

dθ

θ̇

H
=

1

ρ̄

dρ̄

dθ

√
2ε

ρ̄
. (4.14)

While the reduced e.o.m. demands δ � 1, δ may be O(ε, η). Then, we can calculate all

of the relevant quantities for the background with the following relations5:

ε =
1

2ρ̄2

(
Vθ
V

)2

, η =
2

ρ̄2

(
Vθθ
V

)
+4ε−2δ , δ =

˙̄ρ

ρ̄H
, N =

∫
ρ̄2 V

Vθ
dθ, (4.15)

where ρ̄ is the solution to ρ3Vρ = V 2
θ /3V and N is the number of e-folds before the end

of inflation. From here it is clear that the time dependence of ρ̄ has to be explicitly

taken into account in order to make accurate predictions. This mean that while we can

neglect the derivatives of ρ in the e.o.m. its derivatives do play an important role in

determining the observables of the model.

As for the perturbations, in a regime in which the angular acceleration θ̈ is small in

comparison with the effective mass of the heavy field [92] (given here by m2
eff = m2

ρ− θ̇2

and demanding meff � H), the low energy EFT develops a speed of sound of the

5These expressions were derived assuming a separable potential. For non separable potentials they
remain approximately valid provided Vθρ(dρ̄/dθ)� Vθθ
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fluctuations which is given by6

c−2
s = 1 + 4

θ̇2

m2
eff

where m2
eff = m2

ρ − θ̇2. (4.16)

We refer to [101] for a more detailed discussion. Moreover, it is easy to show that s can

be written solely in terms of ε, η, δ and cs:

s =
(
ε− η

2
+ δ
) (

1− c2
s

)(3

4
+

1

4 c2
s

)
. (4.17)

With all these elements it is possible to compute all of the observables of the model, i.e.

r and ns, without having to solve any dynamical equation, as in the standard slow-roll

computation. As can be seen from eq. (4.16), in order to have a substantial reduction

in the speed of sound we will need large angular velocities, of the order of the effective

heavy mass. This is consistent with slow-roll whenever the radius of curvature is small

enough, and that is the reason why we will demand the condition ρ0 < 1 to be satisfied.

Before closing this section, two comments are in order. First, it is important to ensure

that the theory stays weakly coupled up to the scale where new physics cannot be further

integrated out. In models with a reduced speed of sound, this places a theoretical lower

bound on the speed of sound [79, 94]. Every case presented here is consistent with this

bound, provided a scale dependent speed of sound - like the one we have - is taken into

account.

Secondly, a reduction in the speed of sound unavoidably implies a cubic interaction for

the adiabatic perturbation [34], producing potentially observable non-gaussianity. In

particular, for the case of a nearly constant speed of sound we have [62][101]:

f
(eq)
NL =

125

108

ε

c2
s

+
5

81

c2
s

2

(
1− 1

c2
s

)2

+
35

108

(
1− 1

c2
s

)
. (4.18)

This means that in order to have a measurable non gaussianity |feqNL| > 5, we need

cs < 0.2 (which is still consistent with weak coupling [79, 94]). While it is interesting to

search for such values of cs, we will notice that much milder reductions in the speed of

sound can already leave big imprints in the power spectrum, and we are thus going to

focus mainly on mild reductions of cs.

6The speed of sound presented here is the k → 0 limit of the speed of sound obtained by integrating
out the heavy mode. The k-dependence is not extremely important to compute the observables of the
theory - at least for moderate reductions in cs - but it becomes important in order to assess the overall
consistency and predictivity of the theory [79, 94, 189]. Whenever needed, we use the full k-dependent
cs.
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4.3 Quadratic inflation

Our first example to show how a heavy field may influence the low energy dynamics is

a two-field embedding of the quadratic inflation model. The Lagrangian for the single

field model [31] is given by:

L =
1

2
∂νφ∂

νφ− 1

2
m2
φφ

2. (4.19)

We embed this model in the two field scenario (4.1), and consider the following La-

grangian:

L =
1

2
∂νρ∂

νρ+
1

2
ρ2∂νθ∂

νθ −
m2
ρ

2
(ρ− ρ0)2 − Λ4θ2. (4.20)

Assuming ρ = ρ0, and defining φ = ρ0θ, we recover the single field Lagrangian with the

mass mφ given by m2
φ = 2Λ4/ρ2

0. Thus, at the level of this truncation, both Lagrangians

(4.19) and (4.20) are equivalent. Going beyond this simplification demands solving the

full e.o.m. Fortunately we can rely on the reduced e.o.m. to find approximate solutions.

Solving equations (4.8),(4.9) and (4.10), the minimum in the radial direction, ρ̄, is given

by the root of the following equation:

ρ̄3 (ρ̄− ρ0)− 4

3

Λ4

m2
ρ

= 0, (4.21)

while the angular velocity is given by

θ̇ = − 2√
3

Λ2

ρ̄2
. (4.22)

Here we have used V = V (θ), which, as we will remark below, is a very good approxima-

tion. With these solutions at hand we can then predict how the observables move in the

(ns, r) plane. In doing so we will split the effects on the background and perturbations.

Background model: All the relevant quantities for calculating the background can be

found in equation (4.15). First of all, because ρ̄ 6= ρ0, the potential V will have a con-

tribution of the form V0 =
m2
ρ

2 (ρ̄− ρ0)2. It is easy to show that this contribution is

negligible in comparison with V (θ) in the computation of the slow-roll parameters at

N = 50 − 607. Thus, we can use V ∼ V (θ). Under this simplification, and because

ρ̄ ∼ cte, the background model yields the same predictions as in the standard quadratic

inflation, i.e. ε = 1/2N and η = 1/N .

7This approximation breaks down towards the end of inflation. The numerical results confirm that
it does not affect the predictions at the observables scales.
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Figure 4.1: Left : The (ns, r) plane for m2φ2 inflation when embedded in the model
given by (4.20), with the mass of the heavy field given by m2

eff = 100H2. The predictions
are calculated using the EFT, which is an excellent description fo the full two-field
system. The blue regions are the 1-σ and 2-σ allowed regions from Planck [30]. Right :
Speed of sound of the adiabatic fluctuation, given by equation (4.16) for N = 50 −
60. The dotted line is computed using the numerical solution of the full two-field
system (4.20), and the solid line is computed with the semi-analytical approximation

of equation (4.15).

EFT for the perturbations: While the background does not change as we change ρ0, we

find that perturbations develop a constant speed of sound which is noticeably different

from 1 for values of ρ0 < 0.1, as can be seen in the right panel of figure 4.1.

Putting all these elements together we compute the prediction for (ns, r). Since ε and

η are unchanged, and s ∼ 0, only the tensor to scalar ratio is going to be modified, and

its modification will only be due to the change in cs. We test these predictions with

a numerical solution of the two-field system (partly done using the code from [190]),

choosing ρ0 ranging from 0.01 to 1 and mρ such that (meff/H)2 = 100 in the observable

scales. We fix Λ such that we have the right amplitude for the perturbations. Let us

note that we have fixed the effective mass of the heavy field (which is always smaller

than the bare mass mρ) such that it is much greater than the Hubble parameter. Our

results are summarized in figure 4.1, displayed together with the experimental bounds

from Planck8 [30]. First of all, there is very good agreement between the predictions

of the analytical single field EFT and the full two-field system, and more importantly,

there are sizeable effects in terms of where the predictions lie in the (ns, r) plane.

In particular, we see that when decreasing ρ0 the quadratic potential becomes more

consistent with Planck confidence regions. This is not a surprising result, since we know

that reduced speeds of sound lead to smaller values for the tensor to scalar ratio, but

8From the PLA-PR2-2015 official chains including TT,TE and low-l polarization data at http://

pla.esac.int/pla/.

http://pla.esac.int/pla/
http://pla.esac.int/pla/
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the fact that this can be achieved with the simple quadratic potential “UV completed”

with an additional very massive field is worth noting. Let us note that larger reductions

in the speed of sound can easily be attainable provided we consider smaller values for ρ0.

This will further increase the consistency with the data as well as generating potentially

observable non gaussianities (e.g for, ρ0 = 10−3 we find |feqNL| ∼ 5).

4.4 Linear inflation

We repeat the analysis, this time for the linear inflaton potential [184]. We consider the

following Lagrangian:

L =
1

2
∂νρ∂

νρ+
1

2
ρ2∂νθ∂

νθ −
m2
ρ

2
(ρ− ρ0)2 − αθ (4.23)

This embedding was already studied in [101], where very small values of ρ0 (ρ0 ∼ 10−4)

were considered in order to find large reductions in the speed of sound, as a working

example of how decoupling works in this setup. We complement those results with the

predictions for the values of ρ0 considered here, in order to show how the theory flows

from the vanilla linear potential to the new predictions. The v.e.v. of the radial field

can be found by solving the reduced e.o.m.. Again, we can set V = V (θ), so that we

have the following algebraic equation for the radial field ρ̄:

α

3ρ̄4θ
= mρr

2

(
1− ρ0

ρ̄

)
(4.24)

Here, the solution for ρ̄ will explicitly depend on both θ and ρ0. However, the dynamics

in ρ is such that its time derivatives are still negligible in the e.o.m. Because ρ̄(θ) is a

complicated function of θ, it is not easy to find an effective potential. Fortunately, we

can solve the system by considering the slow-roll parameters as given in (4.15). The

solution of this system is such that ε becomes bigger as we decrease ρ0. In principle this

is bad news since we would not like to move away from the 1σ contour of Planck data

(see figure 4.2).

Fortunately, as ρ0 decreases, cs decreases, which dominates over the increase in ε. This

means that the tensor to scalar ratio r decreases as ρ0 decreases. We show these effects

in fig. 4.2 where we plot the full EFT i.e. considering the combined effect of background

and perturbations, and the predictions considering only the effects on the background.

We also add the prediction for the parameters considered in [101] (ρ0 = 6.8 × 10−4,

m2
eff = 250H2).
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Figure 4.2: Left : The (ns, r) plane for inflation with linear potential when embedded
in the two-field model given by (4.23), with the mass of the heavy field given by m2

eff =
100H2. The points are calculated using the EFT, which we have checked is an excellent
approximation to the numerical two-field prediction. For comparison, we also plot the
predictions if we had only considered the effects on the background (red dotted line).
Right : Speed of sound of the adiabatic fluctuation equation (4.16) for N = 50 − 60.
The dotted line is computed using the full two-field numerical solution of (4.23), and

the solid line is the semi-analytical single-field approximation equation (4.15).

As for the quadratic potential, larger reductions in the speed of sound can easily be

attainable provided we consider smaller values for ρ0. This will also increase the consis-

tency with the data as well as generating potentially observable non gaussianities (e.g

for, ρ0 = 10−3 we find |feqNL| ∼ 5).

4.5 Natural inflation

Finally, we consider the case for natural inflation [32]. The total Lagrangian is given by

L =
1

2
∂νρ∂

νρ+
1

2
ρ2∂νθ∂

νθ −
m2
ρ

2
(ρ− ρ0)2 − Λ4 (1 + cos (mθ)) . (4.25)

This two-field completion is consistent with the original motivation of the inflaton being

a Nambu-Goldstone boson, as the additional field ρ respects the U(1) symmetry. If we

assumed that the field ρ acquires its v.e.v. at the minimum of the potential, and defining

the canonical field as φ = ρ0θ we would get the standard potential, given by:

L =
1

2
∂νφ∂

νφ− Λ4

(
1 + cos

(
φ

f0

))
. (4.26)

where f0 = ρ0/m would be the so-called decay constant. Again, we will show that in

general the dynamics of the radial field cannot be neglected - even at energies below the

spontaneous symmetry breaking scale - so that (4.26) is not a good description of (4.25).
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Figure 4.3: The (ns, r) plane for inflation with the natural potential, with the mass of
the heavy field given by m2

eff ∼ 100H2. The green line is the standard natural inflation
scenario given by (4.26). The blue line is the two-field model in (4.25), for different
values of the instantaneous decay constant f = ρ̄/m. The agreement between the
numerical and semi-analytical predictions is excellent. Although the potential steepens,
the predictions moves towards the best fit region because of cs. Left) m = 0.01 Right)

m = 0.002

While the natural - or axionic - potential is well motivated from the point of view of

generic extensions of the Standard Model, the fact that decay constants larger than

Mpl are needed in order to achieve successful inflation is a problem from the point of

view of the UV completion [191]. Attempts to construct effectively super planckian

decay constants by considering several axions coupled together were first considered in

[174, 175]. Here instead, we take a different route. We will show that the presence of a

heavy degree of freedom can improve the situation, in the sense that the overlap in the

(ns, r) plane between the predictions and the experimentally allowed region is greater.

Since we cannot write an effective potential of the form (4.26), it is not completely fair

to talk about a decay constant in our model. However, if we consider an instantaneous

decay constant i.e. f = ρ̄/m (which is changing adiabatically as ḟ/Hf = ˙̄ρ/Hρ̄ � 1),

we will show that indeed subplanckian values of f could be consistent with the data.

As in the case of the linear potential, it is a difficult task to find an effective potential,

but we can compute the single field predictions by using the expressions for ε, η and ∆N

as in eqs. (4.15) and cs and s in eqs. (4.16) and (4.17). We compare these predictions

with the two-field model, in this case by considering two values for m, m = {0.01, 0.002},
and find an excellent agreement. The results are shown in figures 4.3 and 4.4.

Interestingly, as in the case of the linear and quadratic potential, the predictions move

towards the best fit region. While the potential steepens due to the presence of the heavy

field (so one might think the two-field model is disfavored with respect to the single field

model), the reduced speed of sound and its variations causes the predictions to move

towards the allowed experimental region. We also notice that 0.8Mpl < f < 1Mpl is
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Figure 4.4: Speed of sound of the adiabatic fluctuations in the natural inflation
model as a function of the instantaneous decay constant f = ρ̄/m, for two values of m,
m = 0.01 and m = 0.002. Each data point is double, representing the values for cs at
N=50 (lower) and N=60 (upper). The dots are computed using the full two-field model

while the crosses are obtained using the semi-analytical single field approximation.

consistent with Planck data for the case m = 0.002. In the region where sub-planckian

decay constants overlap with Planck contours, |feqNL| ∼ 1. Larger values of |feqNL| can be

achieved by considering smaller values of m. Whether the Lagrangian (4.25) arises in

some UV completion remains however an open question.

4.6 Conclusion

Natural inflation and quadratic inflation are theoretically appealing scenarios but their

single field realizations are in tension with the data. In general, one expects the single

field description to be an EFT in which the effects of massive fields have been integrated

out. Crucially, while in some cases truncating the heavy field is a good approximation

to construct the EFT, there is a regime in which the inflationary predictions can be

very different from those of the single field truncated theory. This can happen even if

the additional fields have masses much greater than the Hubble parameter. Considering

that the heavy field tracks its instantaneous, adiabatic, ground state along the inflation-

ary trajectory (which, on a turning trajectory, is displaced from the minimum of the

potential) leads to modifications of the background evolution, as well as reducing the

speed of sound of the light mode fluctuations. As we have shown, both effects are crucial

in obtaining the correct predictions for where a model lies in the (ns, r) plane, as well

as the expected level of non gaussianities.

In this chapter we have illustrated this idea in a very simple two-field embedding of

various large field inflation models, in which the inflaton is approximately the phase of

a complex field where a U(1) symmetry is mildly broken. We find that this embedding
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can, in a weakly coupled regime, make models that are in tension with the data, viable.

In particular, the quadratic potential and the natural potential with subplanckian values

of the decay constant are no longer disfavored. Although the effective potential steepens

in these examples, the effect of the speed of sound on the perturbations dominates: while

ε increases, the tensor to scalar ratio goes down due to the reduced speed of sound, cs.

Furthermore, adiabatic changes in cs along the trajectory can also modify of the spectral

index. We have presented an analytic approximation which enables us to easily calculate

all the relevant observables

Finally, we should add that this phenomenology is not restricted to the particular embed-

ding studied here i.e. a flat field-space metric and a separable potential. The essential

characteristic is that inflation happens on a curved trajectory (with respect to the field-

space metric) with a large, sustained mass hierarchy. The same approximate symmetry

that protects the inflaton mass and slow-roll parameters also keeps the radius of curva-

ture and the mass of the heavy orthogonal direction approximately constant (for a recent

discussion on adiabaticity and the slow-roll conditions see [101] and references therein).

In this regime the radial field can be integrated out, and the isocurvature perturbations

decay quickly outside the horizon. The resulting effective theory for the perturbations

has a reduced speed of sound that changes slowly along the trajectory. As shown here,

the effects of this reduction can be very important in obtaining the correct predictions

for inflationary observables.


