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3

Transient reductions in the speed

of sound

In this chapter we will study the observational consequences of a fast evolving speed of

sound for the curvature perturbations. This could correspond to inflating in a two-field

potential with a sharp turn, as in the left panel of figure 2.4. Transient phenomena

during inflation will imply that the predictions for the n-point correlation functions can

be modified with respect to the slow-roll predictions shown in Chapter 1. This will

demand adopting new techniques both for calculating the observables and for testing

the predictions against the CMB data.

First, we apply, compare and extend different techniques for calculating both the power

spectrum and bispectrum, based on applying perturbation theory to the Hamiltonian or

to the equations of motion. We further check for the possibility that some of the anoma-

lous features found in the Planck data have a common physical origin in a transient

reduction of the inflaton speed of sound. We do this by exploiting predicted correlations

between the power spectrum and bispectrum. Our results suggest that current data

might already be sensitive enough to detect transient reductions in the speed of sound

as mild as a few percent. Since this is a signature of interactions, it opens a new window

for the detection of extra degrees of freedom during inflation.

This chapter is based on the following two papers:

• Inflation with moderately sharp features in the speed of sound: Generalized slow

roll and in-in formalism for power spectrum and bispectrum,

A. Achucarro, V. Atal, B. Hu, P. Ortiz and J. Torrado, Phys. Rev. D 90 (2014) 2,

023511 [arXiv:1404.7522 [astro-ph.CO]].
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• “Localized correlated features in the CMB power spectrum and primordial bispec-

trum from a transient reduction in the speed of sound,”,

A. Achúcarro, V. Atal, P. Ortiz and J. Torrado, Phys. Rev. D 89 (2014) 10, 103006

[arXiv:1311.2552 [astro-ph.CO]].

We have also enlarged the discussion made in these papers in order to contrast our

results with the new data analysis of the Planck collaboration.

3.1 Introduction

As we have previously discussed, when an additional heavy field can be consistently

integrated out [80, 81, 92, 101–103] (see also [51]), inflation is described by an effective

single-field theory [34, 80, 81, 101, 104, 105] with a variable speed of sound. In particular,

changes in the speed of sound result from derivative couplings, or equivalently, turns in

field space [55, 73, 79, 81, 82, 92, 95, 101, 106]. The effect of a variable speed of sound has

been analyzed both in the power spectrum [55, 107, 108] (for sudden variations see [109–

113]) and bispectrum [108, 114, 115] (see [112, 113] for sudden variations). Transient

variations in the speed of sound will produce oscillatory and correlated features in the

correlation functions of the adiabatic curvature perturbation [34, 108, 109, 111, 113, 116–

119]. These effects are worth taking into account since an oscillatory component in the

correlation functions may improve the fits in comparison with a flat primordial spectra,

and because we expect correlations to be very good model selectors.

Apart from reduction in the speed of sound, several other mechanisms during inflation

also produce oscillatory features. As first noted in [44], a step in the inflaton potential

causes features in the spectra [47–49, 113, 120–126]. Different initial vacuum states (see

e.g. [127–130]) or multi-field dynamics [82, 117, 131, 132] may also cause oscillations in

the primordial spectra.

Whether an oscillatory primordial power spectrum is preferred in the data is a question

that has been asked by several authors. Searches in the CMB power spectrum data

have been performed for a variety of scenarios, such as transient slow-roll violations

[110, 124, 133–138], superimposed oscillations in the primordial power spectrum [139–

145] and more general parametric forms (see [30] and references therein). In addition,

the Planck collaboration searched for features in the CMB bispectrum for a number of

theoretically motivated templates [40]. In none of these cases the statistical significance

of the extended models has been found high enough to claim a detection. Still, it is

becoming clear that hints of new physics (if any) are most likely to be detected in the

correlation between different observables.
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The detection of transients poses some interesting challenges. In particular, the effects

of a feature in the potential or a localized change in the speed of sound depend on its

location (in time or e-folds), its amplitude and its sharpness (or inverse duration). If

transients are too sharp, they can excite higher frequency modes that make the single-

field interpretation inconsistent (as extensively discussed in Chapter 2). Notably, some

of the best fits found so far in the data for a step feature in the potential [136, 146, 147]

falls outside the weakly coupled regime that is implicitly required for its interpretation

as a step in the single field potential [97, 98]. On the other hand, if the features are

too broad, their signature usually becomes degenerate with cosmological parameters,

making their presence difficult to discern. There is however an interesting intermedi-

ate regime where the features are mild (small amplitude) and moderately sharp, which

makes them potentially detectable in the CMB/LSS data, while they also remain under

good theoretical control. This regime is particularly important if the inflaton field ex-

cursion is large and can reveal features in the inflationary potential and the presence of

other degrees of freedom. At the same time, if slow-roll is the result of a (mildly bro-

ken) symmetry that protects the background in the UV completion, the same symmetry

might presumably preclude very sharp transients.

In this chapter we first review and enlarge several methods to calculate correlation

functions when there are transient phenomena happening during inflaton. Finally, we

perform a search for transient reductions in the speed of sound in the CMB data. We

do this by exploiting a very simple correlation between power spectrum and bispectrum

noted in [108], valid in the mild and sharp regime defined above.

3.2 Moderately sharp variations in the speed of sound:

primordial power spectrum and bispectrum

In order to compare any model with data, it is important to develop fast and accurate

techniques to compute the relevant observables of the theory, in this case, correlations

functions of the adiabatic curvature perturbation. The calculation of correlation func-

tions is often rather complicated and the use of approximate methods is needed. The

study of transients often involves deviations from slow-roll and may be analysed in the

generalized slow-roll (GSR) formalism [110, 113, 114, 119, 148–152]. This approach is

based on solving the equations of motion iteratively using Green’s functions method.

This formalism can cope with general situations with both slow-roll and speed of sound
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features, but one usually needs to impose extra hierarchies between the different param-

eters to obtain simple analytic solutions.

A notable exception that is theoretically well understood is a transient, mild, and mod-

erately sharp reduction in the speed of sound. They are better defined as those for

which the effects coming from a varying speed of sound are small enough to be treated

at linear order, but large enough to dominate over the slow-roll corrections. This car-

ries an implicit assumption of uninterrupted slow-roll1. We will show that this regime

ensures the validity of the effective single-field theory, even though our analysis is blind

to the underlying inflationary model. In this regime, an alternative approach is possi-

ble, that makes the correlation between power spectrum and bispectrum manifest [108].

This approach is based on applying perturbation theory at the level of the Hamiltonian

for both the power spectrum and bispectrum. The change in the power spectrum is

then simply given by the Fourier transform of the reduction in the speed of sound, and

the complete bispectrum can be calculated to leading order in slow-roll as a function of

the power spectrum. Hence we name this approximation Slow-Roll Fourier Transform

(SRFT). One of the aims of this chapter is to compare the GSR and SRFT approaches.

In order to do this, we develop simple expressions within the GSR approach and the

in-in formalism for computing the changes in the power spectrum and bispectrum due

to moderately sharp features in the speed of sound. These are new and extend the usual

GSR expressions for very sharp features.

Additionally, we compute the bispectrum. We compute it from the cubic action for the

curvature perturbation R(t,x) using an approximation for sharp features as in [113],

but including the next order correction and additional operators. We check that the

agreement with the SRFT result [108] is excellent. An important point we show is that

the contributions to the bispectrum arising from the terms proportional to (1 − c−2
s )

and s in in the cubic action are of the same order, independently of the sharpness of the

feature. We also eliminate the small discrepancy found in [113] between their bispectrum

and the one obtained with GSR [124] for step features in the scalar potential, due to a

missing term in the bispectrum.

Our starting point is the action for the adiabatic curvature perturbation R(t,x). In

the framework of the effective field theory (EFT) of inflation [34], this is directly linked

to the effective action for the Goldstone boson of time diffeomorphisms π(t,x), via the

1Here we mean that ε, η � 1. This is not however a necessary condition for making use of the
techniques we are presenting, as they can be generalized to the case in which both the speed of sound
and the slow roll parameters are subject to transient changes (and hence η > 1 is allowed) [91]
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linear relation2 R = −Hπ. Let us focus on a slow-roll regime and write the quadratic

and cubic actions for π (as written in Chapter 1):

S2 =

∫
d4x a3M2

PlεH
2

{
π̇2

c2
s

− 1

a2
(∇π)2

}
, (3.1)

S3 =

∫
d4x a3M2

PlεH
2

{
−2Hsc−2

s ππ̇2 −
(
1− c−2

s

)
π̇

[
π̇2 − 1

a2
(∇π)2

]}
, (3.2)

where ε = −Ḣ/H2 and we are neglecting higher order slow-roll corrections (∝ Ḧ). We

recall that s parametrizes changes in the speed of sound, s ≡ ċs/csH, and for convenience

we define a new variable u as

u ≡ 1− c−2
s . (3.3)

In this section we compare the different approaches to evaluating the power spectrum

and bispectrum of the adiabatic curvature perturbation from eqs. (3.1) and (3.2) with

a variable speed of sound, and show the excellent agreement between them.

3.2.1 Power spectrum and bispectrum with the Slow-Roll Fourier Trans-

form method

Corrections to the two-point function due to a transient reduction in the speed of sound

can be calculated using the in-in formalism [153, 154]. We can do it assuming an unin-

terrupted slow-roll regime, which, as we showed in the Chapter 2, is perfectly consistent

with turns along the inflationary trajectory. In order to calculate the power spectrum,

we separate the quadratic action (3.1) in a free part and a small perturbation:

S2 =

∫
d4x a3M2

PlεH
2

{
π̇2 − 1

a2
(∇π)2

}
−
∫
d4x a3M2

PlεH
2

{
π̇2
(
1− c−2

s

)}
, (3.4)

Then, using the in-in formalism, the change in the power spectrum due to a small

transient reduction in the speed of sound can be calculated to first order in u, and it is

found to be [108]
∆PR
PR,0

(k) = k

∫ 0

−∞
dτ u(τ) sin (2kτ) , (3.5)

where k ≡ |k|, PR,0 = H2/(8π2εM2
Pl) is the featureless power spectrum with cs = 1,

and τ is the conformal time. We made the implicit assumption that the speed of sound

approaches to one asymptotically, since we are perturbing around that value3. Here we

see that the change in the power spectrum is simply given by the Fourier transform of

2In this work, we do not need to consider non-linear correction terms, since we are in a slow-roll
regime. For further details on this, see [37].

3At the level of the power spectrum, the generalization to arbitrary initial and final values of the
speed of sound cs,0 is straightforward, provided they are sufficiently close to each other.



Chapter 3. Transient reductions in the speed of sound 58

the reduction in the speed of sound. Notice that the result above is independent of the

physical origin of such reduction.

For the three-point function, we take the cubic action (3.2), and calculate the bispectrum

at first order in u and s, which implies that we must have |u|max, |s|max � 1 4. We also

disregard the typical slow-roll contributions that one expects for a canonical featureless

single-field regime [37]. Therefore, for the terms proportional to u and s to give the

dominant contribution to the bispectrum, one must require that u and/or s are much

larger than the slow-roll parameters, i.e. max(u, s) � O(ε, η). Let us note that eq.

(3.5) can be inverted, so that we might write u (or, equivalently cs) as a function of

∆PR/PR,0. As the bispectrum is a function of cs as its derivative, we can write the

bispectrum as a function of ∆PR/PR,0. Using again the in-in formalism, one finds

[108]:

∆ BR(k1,k2,k3) =
(2π)4P2

R,0
(k1k2k3)2

{
−3

2

k1k2

k3

[
1

2k

(
1 +

k3

2k

)
∆PR
PR,0

− k3

4k2

d

d log k

(
∆PR
PR,0

)]

+2 perm +
1

4

k2
1 + k2

2 + k2
3

k1k2k3

[
1

2k

(
4k2 − k1k2 − k2k3 − k3k1 −

k1k2k3

2k

)
∆PR
PR,0

−k1k2 + k2k3 + k3k1

2k

d

d log k

(
∆PR
PR,0

)
+
k1k2k3

4k2

d2

d log k2

(
∆PR
PR,0

)]} ∣∣∣∣∣
k=

1
2
∑
i ki

, (3.6)

where ki ≡ |ki|, k ≡ (k1 +k2 +k3)/2, and ∆PR/PR,0 and its derivatives are evaluated at

k. From the result above it is clear how features in the power spectrum seed correlated

features in the bispectrum. Note that in the squeezed limit (k1 → 0, k2 = k3 = k) one

recovers the single-field consistency relation [37, 155].

In the following sections, we compute the power spectrum and bispectrum using alter-

native methods and compare the results.

3.2.2 Power spectrum in the GSR formalism

Instead of applying perturbation theory at the level of the Hamiltonian (as we do in

the in-in formalism), one can calculate the power spectrum by solving iteratively the

full equations of motion (first in [148, 149] and further developed in [107, 114, 119, 124,

150, 151]). The idea is to consider the Mukhanov-Sasaki equation of motion with a

4This is a conservative choice, values of s > 1 might be consistent with perturbativity, as discussed
in Chapter 2
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time-dependent speed of sound. We recall it from eq. (1.41), namely:

d2vk(τ)

dτ2
+

(
c2
sk

2 − 1

z

d2z

dτ2

)
vk(τ) = 0 , (3.7)

with v = zR, z2 = 2a2εc−2
s and

1

z

d2z

dτ2
= a2H2

[
2 + 2ε− 3η̃ − 3s+ 2ε(ε− 2η̃ − s) + s(2η̃ + 2s− t) + η̃ξ̃

]
, (3.8)

where we have used the following relations:

ε = − Ḣ

H2
, η̃ = ε− ε̇

2Hε
, s =

ċs
Hcs

, t =
c̈s
Hċs

, ξ̃ = ε+ η̃ −
˙̃η

Hη̃
, (3.9)

and here the dot denotes the derivative with respect to cosmic time. Defining a new

time variable dτc = csdτ and a rescaled field y =
√

2kcsv, the above equation can be

written in the form:
d2y

dτ2
c

+

(
k2 − 2

τ2
c

)
y =

g (ln τc)

τ2
c

y , (3.10)

where

g ≡ f ′′ − 3f ′

f
, f = 2πzc1/2

s τc , (3.11)

and ′ denotes derivatives with respect to ln τc. Throughout this section (and only in this

section), unless explicitly indicated, we will adopt the convention of positive conformal

time (τ, τc ≥ 0) in order to facilitate comparison with [107, 151]. Note that g encodes all

the information with respect to features in the background. In this sense, setting g to

zero represents solving the equation of motion for a perfect de Sitter universe, where the

solution to the mode function is well known. Considering the r.h.s. of equation (3.10)

as an external source, a solution to the mode function can be written in terms of the

homogeneous solution. In doing so, we need to expand the mode function in the r.h.s.

as the homogeneous solution plus deviations and then solve iteratively. To first order,

the contribution to the power spectrum is of the form [151]:

lnPR = lnPR,0 +

∫ ∞
−∞

d ln τcW (kτc)G
′ (τc) , (3.12)

where the logarithmic derivative of the source function G reads:

G′ = −2(ln f)′ +
2

3
(ln f)′′ , (3.13)
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and the window function W and its logarithmic derivative (used below) are given by

W (x) =
3 sin (2x)

2x3
− 3 cos (2x)

x2
− 3 sin (2x)

2x
, (3.14)

W ′(x)≡ dW (x)

d lnx
=

(
−3 +

9

x2

)
cos(2x) +

(
15

2x
− 9

2x3

)
sin(2x) . (3.15)

If we consider moderately sharp features in the speed of sound, such that ε, η̃ � s, t, the

leading contribution to the function G′ is the following:

G′ = −2

3
s+

2

3

(
aHτc
cs
− 1

)2

+
2

3

(
aHτc
cs
− 1

)
(4− s) +

1

3

(
aHτc
cs

)2

s (−3 + 2s− t) ,

(3.16)

where t is defined in (3.9). Moreover, when |s| � 1 but t & O(1), the logarithmic

derivative of G is approximately given by:

G′ ' s− ṡ

3H
, (3.17)

where we have used that aHτc/cs ' 1 + s. This result agrees with the results of [107]

in the mentioned limits. In this approximation, the leading contribution to the power

spectrum is:

lnPR ' lnPR,0 +

∫ ∞
−∞

d ln τc

[
W (kτc)s (τc)−

1

3
W (kτc)

ds

d ln τc

]
. (3.18)

Integrating by parts the term proportional to the derivative of s we obtain:

lnPR ' lnPR,0 +

∫ ∞
−∞

d ln τc

[
W (kτc) +

1

3
W ′ (kτc)

]
s (τc)

= lnPR,0 +

∫ ∞
−∞

d ln τc

[
sin(2kτc)

kτc
− cos(2kτc)

]
s (τc) . (3.19)

This is the result that we will later on compare with the SRFT result given in equation

(3.5). Let us recall that the regime in which this expression has been derived is for

moderately sharp reductions such that O(ε, η) � s � 1 and t & O(1). We would

like to point out that the s term in the source function (3.17) provides the dominant

contribution to the power spectrum on large scales. This can be seen by comparing W

and W ′ in eqs. (3.19), which carry the contribution of s and ṡ, respectively. We will

later show that when including this term, the power spectrum at large scales matches

the numerical solution considerably better (see figure 3.3).

In the following, we will: (i) derive an analytic expression for the power spectrum as

in (3.19) solely in terms of cs in order to connect with the SRFT approach. (ii) Find
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an analytic approximation for arbitrary functional forms of the speed of sound in the

moderately sharp regime specified above.

(i) For the first point, one can integrate by parts (3.19) in order to get a formula than

only involves the speed of sound. Doing so, we obtain:

lnPR = lnPR,0 −
∫ ∞
−∞

d ln τc

[
2 cos(2kτc)−

sin(2kτc)

kτc
+ 2kτc sin(2kτc)

]
ln cs (τc) ,

(3.20)

where we have used that s ' d ln cs/d ln τc and that the asymptotic value of the speed of

sound is one, otherwise the boundary term would not vanish. Therefore, the expression

above is only valid for functional forms of the speed of sound that satisfy cs(τ = 0) =

cs(τ = ∞) = 1. Let us restrict our attention to mild reductions of the speed of sound

|u| = |1 − c−2
s | � 1, in which the SRFT approach is operative. In that case, for mild

and moderately sharp reductions, the time τc is very well approximated by τc ' τ .

Furthermore, the logarithmic term of the speed of sound can be expanded as follows:

ln cs(τ) ' 1

2

(
1− c−2

s (τ)
)

+O(u2) . (3.21)

Using the expansion above and the fact that ln(PR/PR,0) = ln(1 + ∆PR/PR,0) '
∆PR/PR,0, we can write:

∆PR
PR,0

' k
∫ 0

−∞
dτ
(
1− c−2

s

) [
sin(2kτ) +

1

kτ
cos(2kτ)− 1

2k2τ2
sin(2kτ)

]
(3.22)

'


∆PR
PR,0

∣∣∣
SRFT

+O
[
(kτ)2

]
, kτ � 1

∆PR
PR,0

∣∣∣
SRFT

+O
[
(kτ)−1

]
, kτ � 1

where we have already returned to negative conformal time. Notice that when kτ � 1

we retrieve the SRFT expression (3.5) with a subleading correction O(kτ) inside the

integral, and that for kτ � 1 we also retrieve the SRFT result. The regime kτ ∼ 1 will

generally involve large scales, where the change in the power spectrum is small, as can

be seen in figure 3.3.

(ii) In what follows we derive an analytic approximation to the power spectrum (3.19) for

generic forms of the speed of sound, provided they are moderately sharp, i.e. O(ε, η)�
s � 1 and t & O(1). As in (i), in this regime we can safely consider τc ' cs,0τ . Let

us drop the rest of assumptions made in point (i), which were only made to establish

connection with the SRFT approach. We define the function X(kτc) ≡ −W ′(kτc) −
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3W (kτc), which in general can be decomposed as follows:

X(kcs,0τ) = pc(kcs,0τ) cos(2kcs,0τ) + ps(kcs,0τ) sin(2kcs,0τ) , (3.23)

where pc and ps denote the polynomials multiplying the cosine and sine, respectively.

Following [113], we will parametrize c2
s in terms of the height σ∗ and the sharpness βs

of the feature, and a function F describing the shape of the variation of the speed of

sound:

c2
s(τ) = c2

s,0

[
1− σ∗F

(
−βs ln τ

τf

)]
, (3.24)

where τf is the characteristic time of the feature and we take σ∗ � 1 to focus on small

variations. The rate of change in the speed of sound can be written at first order in σ∗

as follows:

s(τ) = −1

2
σ∗βsF

′
(
−βs ln τ

τf

)
+O

(
σ2
∗
)
, (3.25)

where ′ denotes the derivative with respect to the argument. Since we are considering

sharp features happening around the time τf , the functions involved in the integral of

equation (3.19) will only contribute for values in the neighborhood of τf . Note that for

polynomials with negative powers of kτ , the approximation of evaluating them at kτf

fails for small values of kτ , since in that region they vary very rapidly. This may cause

infrared divergences in the spectrum which, as we will see, can be cured by approximating

the polynomials to first order around kτf .

First, we define the variable y ≡ −βs ln (τ/τf ), and we expand the functions around

τ = τf , which is equivalent to y/βs � 1. Then, at first order, the expansion of X in

(3.23) reads:

X(kcs,0τ) '

[
pc (kcs,0τf )− y

kτf
βs

dpc
d(kτ)

∣∣∣∣
τf

]
cos
[
2kcs,0τf

(
1− y

βs

)]

+

[
ps (kcs,0τf )− y

kτf
βs

dps
d(kτ)

∣∣∣∣
τf

]
sin
[
2kcs,0τf

(
1− y

βs

)]
. (3.26)
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Substituting in (3.19) the above expansion and the definition of s (3.25), the change in

the power spectrum is given by:

∆PR
PR,0

=
σ∗
6

{[
pc cos (2kcs,0τf ) + ps sin (2kcs,0τf )

] ∫ ∞
−∞

dy cos

(
2kcs,0τf
βs

y

)
F ′ (y)

+
[
pc sin (2kcs,0τf )− ps cos (2kcs,0τf )

] ∫ ∞
−∞

dy sin

(
2kcs,0τf
βs

y

)
F ′ (y)

−
kτf
βs

[
dps
d(kτ)

∣∣∣∣
τf

sin (2kcs,0τf ) +
dpc
d(kτ)

∣∣∣∣
τf

cos (2kcs,0τf )

]∫ ∞
−∞

dy cos

(
2kcs,0τf
βs

y

)
y F ′ (y)

+
kτf
βs

[
dps
d(kτ)

∣∣∣∣
τf

cos (2kcs,0τf )− dpc
d(kτ)

∣∣∣∣
τf

sin (2kcs,0τf )

]∫ ∞
−∞

dy sin

(
2kcs,0τf
βs

y

)
y F ′ (y)

}
.

Note that the integrals above are the Fourier transforms of the symmetric and antisym-

metric parts of the derivative of the shape function F = F (y). We define the envelope

functions resulting from these integrals as follows:∫
dy cos

(
2kcs,0τf
βs

y

)
F ′ ≡ 1

2
DA,

∫
dy y F ′ cos

(
2kcs,0τf
βs

y

)
=

βs
4cs,0τf

d

dk
DS (3.27)

∫
dy sin

(
2kcs,0τf
βs

y

)
F ′ ≡ 1

2
DS ,

∫
dy y F ′ sin

(
2kcs,0τf
βs

y

)
= − βs

4cs,0τf

d

dk
DA , (3.28)

where DS and DA are the envelope functions corresponding to the symmetric and anti-

symmetric parts of F , respectively. Finally, the change in the power spectrum can be

written as:

∆PR
PR,0

=
σ∗
12

{[
pc cos (2kcs,0τf ) + ps sin (2kcs,0τf )

]
DA +

[
pc sin (2kcs,0τf )− ps cos (2kcs,0τf )

]
DS

}

− σ∗
24cs,0

{[
dps
d(kτ)

∣∣∣∣
τf

sin (2kcs,0τf ) +
dpc
d(kτ)

∣∣∣∣
τf

cos (2kcs,0τf )

]
k
d

dk
DS

+

[
dps
d(kτ)

∣∣∣∣
τf

cos (2kcs,0τf )− dpc
d(kτ)

∣∣∣∣
τf

sin (2kcs,0τf )

]
k
d

dk
DA

}
(3.29)

Let us stress that the contributions from the second and third lines are comparable to

the ones in the first line. The infrared limit of the symmetric part is finite and tends

to zero, which would not have been the case if we had only considered the zeroth order

terms (first line). We will now substitute the values of the polynomials for the particular

regime we are analyzing, pc = 1/3 and ps = −1/(3kcs,0τ). In this case, the change in
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Figure 3.1: Speed of sound as defined in (3.31) for three different values of the pa-
rameters. We show the power spectra calculated with the full integral (3.19) (dot-
ted line) and with the approximation (3.29) (solid line). The parameters, for the
blue, olive and red figures, are respectively given by: A = [−0.021,−0.0215,−0.0043],
B = [−0.043,−0.0086,−0.043], α2 = [exp(6.3), exp(6.3), exp(7)], β2

s =
[exp(6.3), exp(6.3), exp(7)], τ0g

= [− exp(5.6),− exp(5.55),− exp(5.55)], τ0t
=

[− exp(5.4),− exp(5.55),− exp(5.55)]. For the first set of parameters the symmetric
and antisymmetric parts have comparable magnitude, while for the second (third) set
of parameters the antisymmetric (symmetric) part dominates. As can be seen by the
very good agreement between the full integral and the approximation, the chosen pa-

rameters are all of them in the sharp feature regime.

the power spectrum reads:

∆PR
PR,0

=
σ∗
36

{[
cos (2kcs,0τf )−

sin (2kcs,0τf )

kcs,0τf

]
DA +

[
sin (2kcs,0τf ) +

cos (2kcs,0τf )

kcs,0τf

]
DS

}

−σ∗
72

{[
sin (2kcs,0τf )

(kcs,0τf )2

]
k
d

dk
DS +

[
cos (2kcs,0τf )

(kcs,0τf )2

]
k
d

dk
DA

}
. (3.30)
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Figure 3.2: Here we test when the approximation (3.29) starts to break down. The
full integral (3.19) is represented by dashed lines while the approximation (3.29) is
given by solid lines. We take A = 0, B = −0.043, τ0g

= − exp(5.55) for the three
profiles of the speed of sound, and βg = [exp(1), exp(3), exp(11/2)] for the blue, red
and olive figures respectively. We see that the approximation starts to fail for features

with ∆N & 1.

3.2.2.1 Test for generic variations in the speed of sound

In this section we will test the sharp feature approximation (3.29) in comparison with the

full integral (3.19). We explicitly decompose c2
s into its symmetric and antisymmetric

parts. We choose the following functional form for cs

c2
s = 1 +A

[
1− tanh

(
α ln τ

τ0t

)]
+B exp

[
−β2

s

(
ln τ

τ0g

)2
]

=

{
1 +A+B exp

[
−β2

s

(
ln τ

τ0g

)2
]}

S

+

{
−A tanh

(
α ln τ

τ0t

)}
A

. (3.31)

From the definitions given in eqs. (3.24) and (3.27), the envelope functions are given by

DA = −4πA

σ∗

kτ0t

α

1

sinh(πkτ0t/α)
, DS =

4
√
πB

σ∗

kτ0g

βs
exp

(
−
k2τ2

0g

β2
s

)
. (3.32)

Since the symmetric and antisymmetric parts do not necessarily peak at the same time,

the integrands involved in each part take values around τ0g and τ0t , respectively. We test

our approximation for different values of the parameters above, and show our results in

figure 3.1. We can see that the approximation is indeed very good, and that it allows

to reproduce highly non-trivial power spectra. By allowing βs and/or α to be small,

we can see where the approximation starts to fail. We show these results in figure 3.2,

where one can see that for features with ∆N & 1 the approximation breaks down.

3.2.3 Comparison of power spectra

In this section we apply both SRFT and GSR methods for moderately sharp reductions

to calculate the change in the power spectrum, and compare them with the power
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Figure 3.3: Change in the power spectrum due to a reduced speed of sound given by
(3.33), with the following choice of parameters: B = −0.043, βs = 23.34, ln(τf ) = 5.55,
corresponding to one of our best fits to the Planck CMB power spectrum [156]. LEFT:
different methods to compute the primordial power spectrum: GSR in the sharp feature
approach (blue), SRFT (red), and a solution obtained from the numerical solution to
the mode equation (3.7) (black dotted). RIGHT: differences of the GSR sharp feature
method (solid blue) and SRFT (red) against the numerical solution. The dashed blue
line is the GSR sharp feature approach if we had not taken into account the term
proportional to s in the source function (3.17). The numerical solution is calculated
choosing ε ' 1.25× 10−4 and η̃ ' −0.02. Higher values of ε need a proper accounting

for the slow-roll corrections.

spectrum calculated from the numerical solution to the mode equation (3.7). We will

test a reduction in the speed of sound purely symmetric in the variable y = −βs ln(τ/τf ):

u = 1− c−2
s = B e−β

2
s (N−Nf )2

= B e
−β2

s

(
ln τ
τf

)2

. (3.33)

In figure 3.3 we show the comparison between the power spectrum coming from the GSR

result (3.29) with the one coming form the SRFT method (3.5), and with a numerical

solution. In general terms, both methods are in good agreement with the numerical

solution. We also note that at large scales the SRFT method reproduces the numerical

results better than the GSR method. This is partly due to the fact that in the GSR

approximation we have only taken a subset of the terms in the source function. The

agreement would have been much worse if we had not taken into account the term

proportional to s, as the dashed line in the right plot of figure 3.3 indicates. Note that

kτf ∼ 1 corresponds to the first peak in the left plot of figure 3.3, precisely the regime

where we expect a discrepancy, as anticipated in eq. (3.23).

This shows that, in the regime of moderately sharp variations of the speed of sound, the

simple SRFT formula (3.5) is capable of reproducing the effect of all the terms in the

equation of motion, and that there is no need to impose any further hierarchy between
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the different terms of the equation of motion in order to have a simple expression, as

long as slow-roll is uninterrupted.

3.2.4 Bispectrum for moderately sharp reductions

In this section we will compute the change in the bispectrum due to moderately sharp

reductions in the speed of sound using the in-in formalism. Instead of the SRFT method

reviewed in section 3.2.1, we will compute the bispectrum using an approximation based

on sharp features [113], as for the power spectrum. Our starting point is the cubic

action in the effective field theory of inflation, where we will only take into account the

contribution from variations in the speed of sound at first order:

S3 =

∫
d4x a3M2

Pl

ε

H

{
2Hsc−2

s RṘ2 +
(
1− c−2

s

)
Ṙ
[
Ṙ2 − 1

a2
(∇R)2

]}
, (3.34)

with R = −πH. For sharp features (βs � 1) and given the parametrization in (3.24)

and (3.25), one is tempted to think that the contribution of s will dominate over the

contribution of (1 − c−2
s ). However, we will show that the contributions arising from

both terms are of the same order, independently of the sharpness βs. As dictated by the

in-in formalism, the three-point correlation function reads:

〈Rk1Rk2Rk3〉=
〈

Re

{
2iRk1(0)Rk2(0)Rk3(0)

∫ 0

−∞
dτ

∫
d3x a4M2

Pl

ε

H

[
2Hsc−2

s RṘ2

+
(
1− c−2

s

)
Ṙ3 −H2τ2

(
1− c−2

s

)
Ṙ(∇R)2

]}〉
Expressing the functionsR(τ,x) in Fourier space and using the Wick theorem, we obtain

〈Rk1Rk2Rk3〉 = Re

{
2i u0

k1
u0
k2
u0
k3

∫ 0

−∞

dτ

τ2

εM2
Pl

H2
(2π)3

∫
d3q1

∫
d3q2

∫
d3q3 δ(q1 + q2 + q3) (3.35)

×
[
4sc−2

s u∗q1
(τ)u∗′q2

(τ)u∗′q3
(τ)
(
δ(k1 − q1)δ(k2 − q2)δ(k3 − q3) + {k1 ↔ k2}+ {k1 ↔ k3}

)

−6τ
(
1− c−2

s

)
u∗′q1

(τ)u∗′q2
(τ)u∗′q3

(τ)δ(k1 − q1)δ(k2 − q2)δ(k3 − q3)

−2τ
(
1− c−2

s

)
(q2 · q3)u∗′q1

(τ)u∗q2
(τ)u∗q3

(τ)
(
δ(k1 − q1)δ(k2 − q2)δ(k3 − q3) (3.36)

+{k1 ↔ k2}+ {k1 ↔ k3}
)]}

,
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where u0
k1
≡ uk1(0). For the leading order contribution, it suffices to use the zeroth-order

mode function

uk(τ) =
iH√

4εcs,0k3
(1 + ikcs,0τ) e−ikcs,0τ , (3.37)

and the three-point correlation function is then:

〈Rk1Rk2Rk3〉 =
P2
R,0(2π)7M6

Pl

8k3
1k

3
2k

3
3

δ(k1 + k2 + k3)

∫ 0

−∞
dτ

{
cos (Kcs,0τ)

×
[
4sc−2

s c3
s,0τk1k2k3(k1k2 + 2 perm)− 2τcs,0

(
1− c−2

s

) [
k2

1(k2 + k3)(k2 · k3) + 2 perm
]]

− sin (Kcs,0τ)
[
4sc−2

s c2
s,0(k2

1k
2
2 + 2 perm)− 6τ2c4

s,0

(
1− c−2

s

)
k2

1k
2
2k

2
3 − 2

(
1− c−2

s

)
×
[
k2

1(k2 · k3) + 2 perm
]

+ 2τ2c2
s,0

(
1− c−2

s

)
k1k2k3

[
k1(k2 · k3) + 2 perm

]]}
, (3.38)

where K ≡ k1 + k2 + k3 and PR,0 = H2/(8π2εM2
Plcs,0). Before we proceed, some

comments are in order:

• For steps in the potential, one also has to calculate the contribution to the three-

point function coming from similar cubic operators. It is easy to track the poly-

nomials in ki arising from the different operators if one pays attention to the form

of the mode functions (3.37). This way, we noticed that the result for steps in the

potential in [113, eq. 3.32] is missing a term, so it should display as follows:

G
k1k2k3

=
1

4
εstepD

(
Kτf
2β

)[(
k2

1 + k2
2 + k2

3

k1k2k3τf
−Kτf

)
Kτf cos(Kτf ) (3.39)

−

(
k2

1 + k2
2 + k2

3

k1k2k3τf
−
∑

i 6=j k
2
i kj

k1k2k3
Kτ +Kτ

)
sin(Kτf )

]

This is indeed good news, since the missing term (+Kτ) above was the source of

a small discrepancy found by the authors of [113] with respect to previous results

[124], of order 10 − 15% on large scales. We have checked that this discrepancy

vanishes when the extra term is introduced.

• We consider sharp features (βs � 1) peaking in τf and define the new variable

y through τ = τf e
−y/βs , as we did for the power spectrum. There are two kinds

of functions appearing in equation (3.38): polynomials and oscillating functions.

For the latter, we substitute τ ' τf (1− y/βs) and do not expand further, in order
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to keep the Fourier transforms. For the former, the zeroth order approximation

τ ' τf (as in [113]) provides excellent results5, although we take the next order

and evaluate them at τ ' τf (1 − y/βs) to test for not-so-sharp features. We will

therefore calculate the first order correction to previous results. Furthermore we

consider, apart from the operatorRṘ2 ( proportional to s), two extra contributions

Ṙ3 and Ṙ(∇R)2 (proportional to u) and show that they all contribute at the

same order, independently of the sharpness βs. This is because, although s is

proportional to the sharpness βs, it is also proportional to the derivative of the

shape function, F ′, defined in eq. (3.25). On the other hand, u is proportional to

the shape function, but the Fourier transform of F introduces an additional factor

βs relative to the Fourier transform of F ′, cf. eqs. (3.27),(3.28) and (3.41)–(3.43).

• The integrals in (3.38) contain Fourier transforms of the shape function F and

its derivative, given the definitions in eqs. (3.24) and (3.25). The symmetric and

antisymmetric envelope functions arising from the Fourier transform of F ′ were

already defined in equations (3.27) and (3.28). For completeness, we will give the

complementary definitions obtained when integrating by parts:∫ ∞
−∞

dy F (y) cos

(
Kcs,0τf
βs

y

)
= − βs

2Kcs,0τf
DS , (3.40)

∫ ∞
−∞

dy F (y) sin

(
Kcs,0τf
βs

y

)
=

βs
2Kcs,0τf

DA , (3.41)

∫ ∞
−∞

dy y F (y) cos

(
Kcs,0τf
βs

y

)
=

1

2

(
βs

Kcs,0τf

)2(
K
dDA
dK

−DA
)
, (3.42)

∫ ∞
−∞

dy y F (y) sin

(
Kcs,0τf
βs

y

)
=

1

2

(
βs

Kcs,0τf

)2(
K
dDS
dK
−DS

)
, (3.43)

where the slight change of notation between these definitions and those in equations

(3.27) and (3.28) is given by K ↔ 2k. We also imposed that F asymptotically

vanishes when integrating by parts, which will be the case in this calculation.

Taking into account the comments above, we calculate the bispectrum to leading order

for the particular case in which cs,0 = 1, so that we can compare to the SRFT method.

We will express the bispectrum in terms of the normalized scale-dependent function

5As opposed to the power spectrum, in this case we only have polynomials with positive powers of
kτ , and therefore evaluating them at kτf is already a good approximation for sufficiently sharp features.
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fNL(k1,k2,k3) defined by:

〈Rk1Rk2Rk3〉= (2π)3δ(k1 + k2 + k3)∆BR

= (2π)7δ(k1 + k2 + k3)
3

10
fNL(k1,k2,k3)P2

R,0
k3

1 + k3
2 + k3

3

k3
1k

3
2k

3
3

,(3.44)

and we will use the following identities for a triangle of vectors {k1,k2,k3}:

k1(k2 · k3) + 2 perm =
1

2

[
k3

1 + k3
2 + k3

3 −K(k1k2 + 2 perm) + 3k1k2k3

]
,

k2
1(k2 · k3) + 2 perm =

1

2

[
k4

1 + k4
2 + k4

3 − 2(k2
1k

2
2 + 2 perm)

]
,

k2
1(k2 + k3)(k2 · k3) + 2 perm =

1

2

[
K(k4

1 + k4
2 + k4

3)− (k5
1 + k5

2 + k5
3)−K(k2

1k
2
2 + 2 perm)

−k1k2k3(k1k2 + 2 perm)] .

Finally, the bispectrum contribution due to variations in the speed of sound as considered

in the cubic action (3.34), to first order in the size of the feature σ∗, and to first order

in the polynomial expansion τ ' τf (1− y/βs) reads:

fNL(k1,k2,k3) =
5

24

σ∗
k3

1 + k3
2 + k3

3

×

{
cos (Kτf )

{
τ2
f

k1k2k3

K

[
(k3

1 + k3
2 + k3

3)

+K(k1k2 + 2 perm)− 3k1k2k3

]
DA +

τf
K

[
K(k4

1 + k4
2 + k4

3)− (k5
1 + k5

2 + k5
3)

+K(k2
1k

2
2 + 2 perm)− 4k1k2k3(k1k2 + 2 perm) + 3

k1k2k3

K
(k3

1 + k3
2 + k3

3)− 9
k2

1k
2
2k

2
3

K

]
DS

−3τf
k1k2k3

K

[
(k3

1 + k3
2 + k3

3) +
1

3
K(k1k2 + 2 perm)− 3k1k2k3

]dDS
dK

− 1

K2

[
3K(k4

1 + k4
2 + k4

3)− 2(k5
1 + k5

2 + k5
3)− 4K(k2

1k
2
2 + 2 perm)

−2k1k2k3(k1k2 + 2perm)
]
DA +

1

K

[
2K(k4

1 + k4
2 + k4

3)− 2(k5
1 + k5

2 + k5
3)

−2k1k2k3(k1k2 + 2perm)
]dDA
dK

− 1

τfK2

[
(k4

1 + k4
2 + k4

3)− 2(k2
1k

2
2 + 2 perm)

](
DS −K

dDS
dK

)}

+ sin (Kτf )

{
{DS ↔ DA , τf ↔ −τf}

}}
, (3.45)

where the sin(Kτf ) in the last line contains the same terms as the cos(Kτf ), but changing

DS ↔ DA and τf ↔ −τf , as indicated. This is the formula we want to compare with

equation (3.6), after proper normalization. Below, we show the comparison for different
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Figure 3.4: left : bispectrum fNL signal in the equilateral limit with the normalization
indicated in eq. (3.44), given by a symmetric reduction in the speed of sound as in
(3.46) (top) and an asymmetric reduction as in (3.48) (bottom), calculated with the
SRFT formula (3.6) (solid) and with the sharp approximation (3.45) (dashed). right :
absolute difference between the signals showed in the left plot (solid), together with
the envelope of the signal (dashed). The grey strips represent the approximate scales
of the first four acoustic peaks of the CMB temperature spectrum. The parameters are
σ∗ = 0.04, βs = 25.5, ln(−τf ) = 6. This gives |s|max ' 0.42 for the symmetric case and
|s|max ' 0.55 for the asymmetric case. In both cases the relative difference with respect
to the envelope is large only at very small scales, which will be indistinguishable at the
observational level. We are also within the limit |s|max < 1, where these signatures are

reliable but sharp enough so that the sharp approximation works.

functional forms of the speed of sound.

3.2.5 Comparison of bispectra

In this section we compare the bispectrum obtained using the SRFT method (3.6) with

that using the first order approximation for sharp features (3.45). As a first example, one

can reproduce our test case of gaussian reductions in the speed of sound, cf. equation

(3.51), by taking:

F = exp

[
−β2

s

(
ln τ

τf

)2
]
⇒ 1− c−2

s = −σ∗ e
−β2

s

(
ln

τ
τf

)2

+O (σ∗)
2 , (3.46)

where the correspondence between this set of parameters and the one used in [156]

is σ∗ ↔ −B, τf ↔ τ0, and βs ↔
√
β. In this case F is symmetric in the variable

y = −βs ln τ
τf

and therefore only the symmetric envelope function DS contributes, which
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is given by

DS = −
2Kτf
βs

√
π exp

(
−
K2τ2

f

4β2
s

)
, DA = 0 . (3.47)

In figure 3.4 we show the excellent agreement between the results obtained with equations

(3.6) and (3.45) for the equilateral limit k1 = k2 = k3. We have checked that for

other configurations in momentum space, such as the folded or the squeezed shapes, the

agreement is very similar. Note that in figure 3.4 we are plotting the absolute difference

in fNL and comparing with the total envelope of the signal6. At small scales one can

see that the relative difference compared to the total signal is high, due to the fact that

the approximation for sharp features starts to fail for large values of Kτ . However, the

absolute signal is insignificant at such small scales.

As a second example, we propose a shape function with an antisymmetric part:

F = exp

[
−β2

s

(
ln τ

τf

)2
+ βs ln τ

τf

]
, (3.48)

so that

1− c−2
s = −σ∗

(
τ

τf

)βs
e
−β2

s

(
ln

τ
τf

)2

+O (σ∗)
2 . (3.49)

Then, the symmetric and antisymmetric envelope functions read

DS = −
2Kτf
βs

√
π exp

(
β2
s −K2τ2

f

4β2
s

)
cos

(
Kτf
2βs

)
,

DA = −
2Kτf
βs

√
π exp

(
β2
s −K2τ2

f

4β2
s

)
sin

(
Kτf
2βs

)
. (3.50)

We show in figure 3.4 the equilateral bispectrum signal produced by the asymmetric

shape given by eq. (3.48), again derived using equations (3.6) and (3.45). As one can

see in figure 3.4, the agreement is also remarkable for functions with an antisymmetric

part.

3.3 Search for features in the Planck data

Equipped with accurate analytical predictions for the effect of a varying speed of sound

in the power spectrum and bispectrum, we are in a position to search for these features

in the CMB data. We choose to parametrize the reduction in the speed of sound as a

6We point out that the total envelope of the signal is not given by DS or DA alone. The total
envelope is a combination of both functions, their derivatives, and the polynomials of ki that appear in
Equation 3.45.
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gaussian in e-folds N as previously defined in eq. (3.33), i.e.

u = 1− c−2
s = B e−β(N−N0)2

= B e
−β
(

ln τ
τ0

)2

, (3.51)

where β > 0, B < 0 and N0 (or τ0) is the instant of maximal reduction. Assuming

slow-roll, ln (−τ) = (Nin −N) − ln (ainH0), where ain = a(Nin) and Nin is the time

when the last ∼ 60 e-folds of inflation start.

This functional form is inspired by soft turns along a multi-field inflationary trajectory

with a large hierarchy of masses, a situation that is consistently described by an effective

single-field theory [55, 76, 81, 92] (see also [82, 131]). Here, the value of the speed

of sound asymptotes to one at the beginning and at the end of inflation (as opposed

to step features in which the value at the beginning and at the end of inflation are

different). Nevertheless we stress that reductions in the speed of sound are a more

general phenomenon within effective field theory (and hence may have diverse shapes

and physical origins).

3.3.1 Parameter space

The template for the speed of sound feature (3.51) has three parameters, namely B (the

amplitude), β (the sharpness) and τ0 (equivalently N0, the time of maximum reduc-

tion). There are two main criteria that we followed in order to determine the explored

parameter regions:

(a) The angular scales probed by Planck (` = 2− 2500) roughly correspond to certain

momentum scales crossing the Hubble sound horizon during the first NCMB ' 7

e-folds of the last ∼ 60 e-folds of inflation. If the data resembles features due to

a reduced speed of sound, it is most likely to find them in this “CMB window”.

The sharpness β and the position N0 are chosen so that the reduction happens

well within this window7. As a by-product, we avoid degeneracies with the spectral

index ns and the optical depth τreio that would be present in very wide reductions.

(b) The Slow Roll Fourier Transform (SRFT) calculation of the power spectrum and

the bispectrum (reviewed in section 3.2.1) is valid for mild and moderately sharp

reductions of the speed of sound. Also, the slow-roll contributions to the bispectrum

are disregarded with respect to the terms arising from the reduced speed of sound

[108]. This means that the amplitude |u| and the rate of change s ≡ ċs
csH

must

be much smaller than one, while being (at least one of them) much larger than

7As we explain later, this a sufficient but not necessary condition for inducing changes in the power
spectrum at these scales.
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the slow-roll parameters. More precisely we demand the following hierarchy to be

present

O(ε, η)� Max (|u|, |s|)� 1 . (3.52)

We took a very conservative definition for the total width of the reduction (in e-folds):

ten standard deviations, ∆N = 10/
√

2β. Then, from (a), the position N0 and the

sharpness β should satisfy 5
√

2β < N0 < NCMB− 5
√

2β and 10
√

2β < NCMB. As to the

perturbative regime, the rate of change s of the speed of sound (3.51) reads:

s(N) =
1

cs

dcs
dN

= −Bβ(N −N0) e−β(N−N0)2

1−B e−β(N−N0)2 . (3.53)

Since we have to impose |s| � 1 for all values of N , it suffices to impose this condition

at the point where |s| takes its maximum value |s(N∗)| = |s|max, determined by:

N∗ = N0 ±
1√
2β

√
1 +O(B) ' N0 ±

1√
2β

, (3.54)

which approximately corresponds to one standard deviation of our gaussian, and we have

used that |B| � 1. Then the condition |s|max � 1 translates into β � 2e
B2 + O(B−1).

Altogether, the allowed region of our parameter space is taken to be:

O(ε, η)� |B| � 1 , (3.55a)

50

N2
CMB

< β � 2e

B2
, (3.55b)

5√
2β

< N0 < NCMB −
5√
2β

. (3.55c)

Notice that, as explained above in (b), the bound |B| � O(ε, η) can be avoided if

|s|max � O(ε, η). For computational purposes, we use the parameter ln(−τ0) instead of

N0 for the data analysis. We take uniform priors on B, lnβ and ln(−τ0). The range for

the parameter ln(−τ0) is taken to be more strongly restricted than by equation (3.55c):

4.4 ≤ ln(−τ0) ≤ 6 , (3.56)

Before we proceed with the search in the data, a few comments are in order. The chosen

region of parameter space (3.55) is a very conservative choice. First, equation (3.55c)

and the lower bound in equation (3.55b) are more restrictive than the condition that

the feature be observable. For example, we expect observable effects when the reduction

occurs before the CMB window, since it would effectively modify the initial conditions

of the modes subsequently leaving the sound horizon. We are also trying to avoid very

broad features that could be degenerate with cosmological parameters as the spectral
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index ns and the optical depth τreio, as well as highly oscillating features (for large values

of |τ0|) that make computational control difficult.

Secondly, this range is well within the region of the parameter space where the theory is

weakly coupled. As we explained in Chapter 2 following [97], a hard upper bound on the

sharpness of the feature can be derived by imposing that the theory is weakly coupled

at the energy scale where the changes in the mode functions are induced. Our sharpness

parameter β is related to that of [97] (that we will call βCBM) by β = 50β2
CBM, where we

took the conservative definition of the width to be ten standard deviations. The feature

unitarity bound eq. (2.88) imposes that our sharpness parameter must satisfy:

lnβ < 14 . (3.57)

Since we restrict our search to 2 < lnβ < 7.5, we are perfectly consistent with the bound

given above. Even if we take the crude definition for the width of only one standard

deviation, the correspondence would be β = β2
CBM, and the bound would translate to

lnβ < 10, which still leaves us in a safe region. Given that we a priori constrained our

search to a region of the parameter space where the perturbative and adiabatic regimes

are respected, the predictions obtained are consistently interpreted by the underlying

theory.

Let us note that respecting the weak coupling condition (3.57) has important conse-

quences. Indeed, it was found [97, 98] that some of the best fits found so far for steps

in the potential in the CMB [136, 146, 147] do not lie within this bound. This calls into

question the consistency of the framework in which these predictions are derived. More

interestingly, this motivates a new theoretical framework able to consistently describe

those predictions, since the data is blind to whether a theory is internally consistent or

not. An important and evident conclusion of these analyses is that very sharp features

are problematic from the theoretical point of view. In addition, one could speculate that

if the data finally points to inflationary scenarios with large field excursions, a (slightly

broken) symmetry should protect the background, and then we would not expect to find

sharp features in the potential. This further motivates the study of moderately sharp

features, which are still safely described by an underlying theory. In the following, we

present the results of our search.



Chapter 3. Transient reductions in the speed of sound 76

3.3.2 Results

As already stated in precedent section, a variation in the speed of sound will generate a

primordial power spectrum given by:

∆PR
PR,0

(k) = k

∫ 0

−∞
dτ u(τ) sin (2kτ) , (3.58)

This primordial power spectrum feature is computed using a Fast Fourier Transform,

and added to the primordial spectrum of the ΛCDM Planck baseline model described

in ref. [157, sec. 2]. The resulting CMB power spectrum, calculated using the CLASS

Boltzmann code [29, 158], is fitted to the Planck 2013 CMB temperature data [159]

and the WMAP CMB low-` polarization data [160], using Monte Python [161] as a

Markov chain Monte Carlo (MCMC) sampler. We varied all cosmological, nuisance and

feature parameters. For those last ones, the likelihood probability distribution is found

to be multi-modal. Though multi-modal distributions are more efficiently sampled using

other methods (e.g. MultiNest [162, 163]), we were able to perform the search using

only MCMC’s.

Our statistical analysis of the Planck CMB power spectrum reveals several fits with a

moderately improved likelihood compared to the best ΛCDM fit. Having discarded small

signals with ∆χ2 > −2 (defined in 8) over ΛCDM, we find a series of five well-isolated

bands of almost constant ln(−τ0), with variable significance, see table 3.1 and figure 3.5.

For each of those fits we give the associated full primordial bispectrum. At the time of

writing this thesis the Planck bispectrum data have not yet been released, but templates

similar to our predictions have already been tested by the Planck collaboration. We find,

through a heuristic and limited comparison, that the predicted bispectra have frequencies

which are not favoured by the latest data.

The amplitude B of the fits is rather small, O(10−2), and therefore comparable with

neglected slow-roll terms. This means the bispectrum is dominated by terms of order

s = ċs/(Hcs). The maximum values of s at the best fits for the modes A to E in table

3.1 are respectively 0.33, 0.42, 0.40, 0.48, 0.05. Notice that the value of s for E is also

comparable to neglected terms, so the prediction for the bispectrum based on eq. (3.6)

cannot be trusted in this case. We therefore disregard this mode in the comparison with

the bispectrum.

For the modes A, B and C the table shows the 68% c.l. ranges. For bands B and C we

were unable to put an upper bound on lnβ due to a degeneracy between that parameter

8Hereafter, χ2 refers to the effective quantity defined as χ2
eff = −2 lnL, see [164, p. 10]; in turn, ∆

stands for the difference with the corresponding best fit value of Planck baseline model, using the same
likelihood.
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Figure 3.5: Profile of ∆χ2
eff = −2∆ lnL for the features in the CMB power spectrum

in the (lnβ, ln(−τ0)) plane.

# −B × 102 lnβ ln(−τ0) ∆χ2

A (4.5) 3.7 +1.6
−3.0 (5.7) 5.7 +0.9

−1.0 (5.895) 5.910 +0.027
−0.035 −4.3

B (4.2) 4.3 ± 2.0 (6.3) 6.3 +1.2
−0.4 (5.547) 5.550 +0.016

−0.015 −8.3

C (3.6) 3.1 +1.6
−1.9 (6.5) 5.6 +1.9

−0.7 (5.331) 5.327 +0.026
−0.034 −6.2

D (4.4) (6.5) (5.06) −3.3

E ∗ (1.5) (4.0) (4.61) −2.2

Table 3.1: CMB power spectrum best fits (in parentheses), 68% c.l. intervals and
effective ∆χ2 at the best fit value for each of the different modes. The prediction for

the bispectrum for E is not reliable (see text).

and the amplitude |B|. For those two modes, the upper bound on lnβ is set by the prior

s < 1 in eq. (3.55b), which is saturated at lnβ ' 7.5. The best fit for B lies at s ' 1,

so we present in table 3.1 the second best9. We show in figure 3.6 the predicted Cl for

mode B.

The lower bands D (and E) are less significant and their likelihoods much less gaussian,

so we only show their best fits. Despite their low significance, they are worthy of

mention because they fall in the region overlapping with Planck’s search for features in

the bispectrum (see below).

The best fits and 68% c.l. ranges [157] of the six ΛCDM parameters are quite accurately

reproduced. We find two mild degeneracies (|r| . 0.15) of ln(−τ0) with ωCDM and H0.

9The high-` CMB polarization data of the new Planck release should put an upper bound on lnβ,
as well as confirm that we are not fitting noise. This is an important reason for repeating this analysis
with the new data.
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Figure 3.6: CMB temperature power spectrum for mode B.

Best fits and confidence intervals are also preserved for the nuisance parameters.

Due to the Fourier transform in eq. (3.58), our features oscillate as exp (i2kτ0). Thus

it is natural to compare to other searches for linearly oscillating features in the Planck

CMB power spectrum10. In [145], Meerburg et al. searched for constant amplitude

oscillations with frequencies that compare to ours as ω2 = 2|τ0|. The search was done

up to ln(−τ0) = 9. In the overlapping region, ω2 ∈ [160, 810], they find peaks at roughly

ln(−τ0) ∼ {5.0, 5.1, 5.3, 5.6, 5.7} (|∆χ2
bf| ' 8). We find three peaks in this region with

similar significance; it could be that the discrepancies come from signals at scales at

which our (localized) features are negligible.

Also, the Planck collaboration [146, sec. 8] searched for features motivated by step-

inflation [135]. In 2013 they performed a search up to frequency ln(−τ0) = 12 (in that

parametrization ηf = |τ0|). The profile likelihood in [146, fig. 19, middle] reveals peaks

at ln ηf ∈ [4.5, 4.8] (|∆χ2
bf| ' 2) and ln ηf ∈ [5.3, 5.7] (|∆χ2

bf| ' 8), which is consistent

with our results. It is worth noting that in both searches above (also in [147]) the overall

best fit occurs at ln(−τ0) ' 8.2 (|∆χ2
bf| ∼ 10), too high a frequency for the scope of our

search.

Our analysis and the ones mentioned above were made with the 2013 Planck data.

Since that date new data became available, in particular containing new polarization

measurements. At the moment only the Planck collaboration has repeated the anal-

ysis [30], containing a new search for both step features and linear oscillations. For

steps in the potential the best fit value reaches a maximum of |∆χ2
bf| ∼ 8 for a slightly

10Logarithmic oscillations, in which the primordial power spectrum oscillates as cos(ω ln(k)), is also a
well studied and motivated template (see [30] and references therein).
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smaller frequency (ln(−τ0) ' 7.1) and different values for the amplitude and width of

the envelope (the fit is similar to the one found by Benetti in [136]).

In all the cases mentioned above (and also including searches with templates with fewer

parameters), the bayesian evidence does not prefer the feature model over the featureless

power law spectra, which suggests that CMB power spectrum data alone cannot justify

the introduction of these features. Nevertheless, one of the aims of this chapter is to

show that low-significance fits can still predict correlated features in the bispectrum

which are possibly observable with the current data. Model selection should be done

taking into account both observables (or naturally, any other combination).

3.3.3 Comparison with the search for features in Planck’s bispectrum

A first search for linearly oscillatory features was performed on Planck’s bispectrum

with the 2013 data (cf. [165, sec. 7.3.3]) using a constant feature model (i.e. with no

envelope modulating the amplitude of the oscillation). The constant feature template is

given by [166]

B(k1, k2, k3) =
6A2f feat

NL

(k1k2k3)2
sin

(
2π

∑3
i=1 ki
3kc

+ φ

)
, (3.59)

where A = Ask
1−ns
∗ , As and ns being the amplitude and spectral index of the pri-

mordial power spectrum, and k∗ = 0.05 Mpc−1 a pivot scale. They sampled the am-

plitude f feat
NL over a coarse grid of wavelengths kc and phases φ. Our features also

present a linearly oscillatory pattern, which comes from the Fourier transform in (3.5).

These oscillations enter the bispectrum approximately as exp(i
∑

i kiτ0), cf. eq. (3.6).

Thus, Planck’s 2013 search falls inside ln(−τ0) ∈ [4.43, 5.34], while ours spans up to

ln(−τ0) = 6
(
kc = 0.00519 Mpc−1

)
. The overlap includes our modes C and D (and also

the discarded E). In the range of ln(−τ0) probed here, we were not able to reproduce

the improvement Planck appears to see for features at the first peak. On the other

hand, we found good matching around the second and third peak scales between the

best fit of D with kc = 0.01327 Mpc−1 and the 2.3σ signal of Planck bispectrum at

kc = 0.01375 Mpc−1 with f feat
NL = 345 and φ = π/2.

Having found an interesting hint for the presence of such a feature, it is important

to know whether such good matching persists when considering additional data. In

particular, the Planck search for features in the bispectrum was extended in 2015 [40].

New feature templates were tested, and the search was enlarged to higher frequencies

(up to ln(−τ0) = 7.6 for the constant feature model, and therefore covering all the modes

A to E). Comparing our fits of the power spectrum with the new bispectrum search

would require computing the best fit parameters for the power spectrum again, using
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Figure 3.7: The likelihood for the constant feature models eq. (3.59), from Planck
2015 analysis [40]. Upper panel is for T only, and lower pannel is T+E. We superimpose
in turquoise the best-fits frequencies we found in the power spectrum with the 2013 data.

the new released data. This is going to be done in the future, and for the moment we

will very qualitatively address what happens for the fits found with the 2013 data.

In order to facilitate the comparison we write in table 3.2 our power spectrum fits in

terms of the frequency ω defined as ω ≡ 2π/3kc (= −τ0). In figure (3.7) we show the

mode A B C D E

ω (363) 369 +10
−13 (256) 257 +4

−4 (207) 206 +5
−7 158 100

Table 3.2: CMB power spectrum best fits (parentheses) and 68% c.l. intervals for
modes A to E (shown in table 3.1) in terms of the frequency ω = 2π/3kc = −τ0.

likelihood for the template (3.59) up to ω = 350 (where there is a better resolution of

the data). We superimpose to this figure the frequencies we found in the 2013 power

spectrum.

For templates with both oscillations and envelopes, the case of a step in the speed of

sound and a step in the slow-roll parameters were analyzed. While the full shape is given
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Figure 3.8: The likelihood for single feature models, whose dominant contribution is
given in eqs. (3.60)-(3.61), from Planck 2015 analysis [40]. We superimpose in turquoise
the best-fits frequencies we found in the power spectrum with the 2013 data. LEFT:
Step in the potential (T-only top, and T+E bottom) RIGHT: Step in the speed of

sound (T-only top, and T+E bottom).

by a very long formula, we can write the dominant contribution for each case. They are

given by:

BK sin(k1, k2, k3) =
6A2f feat

NL

(k1k2k3)2
KD(αωK) sin

(
2π

∑3
i=1 ki
3kc

+ φ

)
, (3.60)

BK2 cos(k1, k2, k3) =
6A2f feat

NL

(k1k2k3)2
K2D(αωK) cos

(
2π

∑3
i=1 ki
3kc

+ φ

)
. (3.61)

Here f feat
NL is a constant that sets the overall amplitude of the bispectrum, D(αω) is

the envelope function that modulates this amplitude in k-space, α is the sharpness of

the step, and K = k1 + k2 + k3. The envelope is taken to come from a tanh-step,

i.e. D(αωK) = αω/ (K sinh(αωK)) (see eq. (3.32)). We show the likelihood for these

models as a function of the frequency of oscillation ω in figure 3.8.

From figures (3.7) and (3.8) we can see that only mode E correspond to a frequency that is

a peak in the bispectrum (σ ∼ 2 for all the envelopes). Some comments are in order. The

likelihood values of figure (3.8) are obtained after marginalizing over the envelope factor

α and the amplitude f feat
NL . In our case they are not free parameters of the bispectrum

since they are fixed by the fit to the power spectrum. Unfortunately we do not know

how the likelihood changes as we vary these parameters. The likelihood values of figure

(3.8) should then be understood as a maximum value for an arbitrary α and f feat
NL .

Furthermore, our template does not really correspond to any of the templates studied

by Planck: while they considered a step in the speed of sound, i.e. an antisymmetric

function, our test case is a symmetric reduction in the speed of sound. We know that

the symmetry of the feature determines where does the envelope peaks, see e.g. figure
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3.1, so this might be an important difference between our template and theirs. Whether

the data can distinguish between these two templates is a question left for future work.

3.4 Conclusions

In this chapter we have studied moderately sharp features in the speed of sound from the

point of view of theory and observations. In particular, we have shown that the effect of

a transient reduction in the speed of sound can be calculated with the simple Slow Roll

Fourier Transform (SRFT) approximation [108], in which the correlations between power

spectrum and bispectrum are manifest. Additionally, we have presented an alternative

way to calculate both the power spectrum and bispectrum, by consistently applying an

approximation for moderately sharp features, both to the Generalized Slow Roll (GSR)

power spectrum (eq. (3.29)) and to the in-in calculation of the bispectrum (eq. (3.45)).

Within this regime, we have extended existing GSR calculations of the power spectrum

to less sharp and arbitrary shapes of the speed of sound, and found excellent agreement

with the SRFT approximation in the regime where both methods apply. Given that the

regimes of validity of the two methods are not entirely coincident, we are now equipped

with a robust machinery that will allow us to describe features in the speed of sound

for a broader region of the parameter space. Broad features can be calculated with

the SRFT approach, while sharp features can be calculated using GSR for the power

spectrum (eq. (3.29)) and the in-in approach for the bispectrum (eq. (3.45)).

Furthermore, we have carried out a statistical search for localized oscillatory features

in the CMB power spectrum produced by a transient reduction in the speed of sound.

We have found a number of fits and calculated the associated primordial bispectra. The

bispectrum prediction resembles templates that were tested by the Planck collaboration,

so we can compare our predictions with the templates used in that search. Using the

2013 data and Planck bispectrum analysis, we found a surprisingly good agreement. This

is remarkable, considering that these bispectrum features are predicted from a search in

the CMB power spectrum with a very simple ansatz for cs. The new release made by

Planck calls for a new analysis, but from their bispectrum analysis it seems that a shift

in the best fit frequencies of the power spectrum will be necessary in order to find an

interesting correlation.

We emphasize that the CMB power spectrum data alone can hardly justify the intro-

duction of features on top of the ΛCDM model; a gain of |∆χ2| . 10 is not uncommon.

However, as we have shown, low-significance fits in the power spectrum can still predict

correlated features that may be observable in the CMB bispectrum. Therefore, model

selection should take into account both observables simultaneously.
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Our results suggest that, by exploiting correlations between different observables, current

data might already be sensitive enough to detect transient reductions in the speed of

sound as mild as a few percent, opening a new window for the presence of extra degrees

of freedom during inflation.




