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1

Introduction

Our knowledge of the content and history of the physical cosmos has seen an unprecedent

revolution in the last century. In these years we have seen how the scientific method

was finally capable of providing insights to many questions that were previously only of

the realm of the metaphysical experience and speculation. As a result a widely accepted

cosmological model has been established, which describes a vast and evolving Universe

since fractions of a second after the so-called Big-Bang until today. The history of

this revolution is a good lesson on how physics is nothing more than the description of

the observed natural world and that without an observed world, it is very difficult -if

not impossible- to make definitive scientific claims. The onset of this revolution was,

first, the discovery of the recession of distant galaxies in the 1920’s, and later on the

measurement in the 60’s of a uniform cosmic microwave background radiation. The

realization that the Universe is dynamical, and that the microwave radiation is a relic

from a primordial era of its evolution, were the clues that finally converted cosmology

into a scientific discipline.

These transformations were possible not only by the advent of new technologies which

made observations possible, but also because the necessary mathematical tools to de-

scribe spacetime and its internal constituents were at hand. The advent of General

Relativity in the beginning of the 20th century (exactly 100 years ago when writing this

introduction) made it possible to make definite predictions which could finally be under

the scrutiny of data. This fortunate conjunction between the presence of data and a

variety of well motivated models for the Universe eventually made it possible to arrive

at what we call today the Standard Cosmological Model.

While these developments are undoubtedly tremendous steps towards an understanding

of the Universe, the Standard Cosmological Model may well be considered just a para-

metric model of our ignorance. Indeed, we have little idea of what the physical origin
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Chapter 1. Introduction 2

of many of its free parameters is. As it is, the main contributions to the energy den-

sity of our present Universe come from two unknowns forms of energy, dark energy and

dark matter, that together sum up to 96% of the total present energy density. While

dark matter may be embedded in rather minimal extensions of the Standard Model of

particles, understanding the physical origin of dark energy (in particular its incredibly

small value compared to the Planck scale) may well need yet another paradigmatical

revolution. Furthermore, if the Universe is an evolving system we need to understand its

initial conditions. Contrary to other areas of physics, we do not have the experimental

privilege to create Universes, and study their subsequent evolution as a function of fixed

initial conditions. We can however infer them from its present stage of evolution, and

the likeliness or unlikeness of the initial conditions is also a measure on how satisfactory

our cosmological model is. As we will see later, we will have to deal with the fact that

the initial conditions that result in our present observed Universe may not seem natural.

While we cannot replicate the evolution of the Universe in the laboratory, the Universe

can in itself be understood as a major experiment in which extremely high energy pro-

cesses have occurred. This is the “poor man’s laboratory” through which we can observe

the spectrum of particles present at energies which are beyond any direct experimenta-

tion. We expect these observations to be essential for resolving the problems mentioned

above, knowing that any resolution will be an important step forward in the construction

of a theory able to reconcile all of the fundamental forces and particles into one single

consistent picture.

The question of initial conditions, and the possibilities of accessing high energy states is

going to be, in a very broad sense, the framework for this thesis.

1.1 The homogeneous and isotropic model of the Universe

The first step leading to our current cosmological model is the observation that at

sufficiently large scales the Universe looks homogeneous and isotropic. This can be

implemented in General Relativity while still allowing for a dynamical Universe, by

describing spacetime with the so-called Friedmann-Lemâıtre-Roberston-Walker (FLRW)

metric, given by1:

ds2 = −dt2 + a(t)2

(
dr2

1− κr2
+ r2dθ2 + r2 sin2 θdφ2

)
. (1.1)

In this model, κ is the curvature of the three-dimensional space, and a(t) -called the

scale factor- parametrizes the dynamics of the metric. On large scales, where local

1As usual done in cosmology, we work in units in which the speed of light c = 1.
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inhomogeneities induce small displacements and velocities compared to the background

cosmic flow, the physical distance R between two observers is R(t) = a(t)χ, where χ is

defined as the comoving (or coordinate) distance. The comoving distance between these

observers is constant2, and then all the time dependence of their physical distance is set

by the scale factor a(t). In a flat metric (κ = 0) and for simplicity only considering radial

separations, their comoving distance is simply χ = ∆r. As only a(t) determines the

evolution of large scale physical distances, a history of the Universe might be understood

as a history of the scale factor a(t).

The time dependence of the scale factor is intimately related to the constituents of

the Universe. In particular, Einstein’s equations couple the scale factor and its time

derivative to the density and pressure of the different ‘matter’ constituents. For a single

fluid with pressure p and density ρ, the relevant equations are:3

H2 ≡ ȧ(t)2

a2
=
ρ

3
− κ

a2
, (1.2)

ρ̇+ 3
ȧ(t)

a
(ρ+ p) = 0 , (1.3)

where a dot represents a derivative with respect to cosmic time. The first equation is

known as the Friedmann equation, while the latter is the continuity equation, ensuring

energy conservation. We have further defined the Hubble parameterH, whose magnitude

and evolution will set an important cosmological scale. The Friedmann equation (1.2)

can be written in terms of the density parameter Ω ≡ ρ/ρc (or equivalently the curvature

density parameter Ωκ ≡ 1− Ω), where ρc ≡ 3H2 is known as the critical density, as

1− Ω = Ωκ (1.4)

=− κ

(aH)2
. (1.5)

The density parameter Ω determines whether the Universe is closed (Ω > 1), flat (Ω = 1)

or open (Ω < 1).

Additionally, from equations (1.2) and (1.3) we can derive an equation for the accelera-

tion of the scale factor, which will later prove important:

ä

a
= −ρ

6
(1 + 3w) . (1.6)

Here we have further introduced the equation of state parameter w which links the

pressure to the density of a perfect fluid, as p = wρ. Each different constituent of the

2Observers moving with the background cosmic flow are also called comoving observers
3Throughout all this thesis we work in units in which the reduced Planck mass mpl = Mpl/

√
8π ≡ 1.

In units in which c = ~ = 1, the Planck mass is given by M2
pl = G−1, where G is the gravitational

constant.
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Universe has a different equation of state. For example, normal matter is effectively

presureless (because of its small velocity compared to speed of light), so it is described

by an equation of state parameter w = 0. Radiation instead is described by w = 1/3.

An element that does not dilute as the Universe expand, i.e. that has a constant energy

density, satisfies w = −1. This is the cosmological constant, and its value for the energy

density is usually called Λ, i.e. ρc.c. = Λ.

The first observation that pointed towards a dynamical history of the scale factor a(t)

was the observation of the recession of distant galaxies4. Distant galaxies recede from

each other at a velocity v that is proportional to their distance d. This is the famous

Hubble law:

v = H0d . (1.7)

The factor of proportionality H0 is the present expansion rate, and its value is con-

strained with percent level precision by present cosmological data. The Hubble law has

striking consequences. If galaxies are moving away from each other, it immediately fol-

lows that galaxies were closer as we go back in time. As can be deduced from eq. (1.6),

if the Universe is filled with normal matter during all its evolution (w > 0) this process

is never reversed. Using the known abundances of the different elements that contribute

to the total energy density of the Universe, we can arrive at the conclusion that our

observable Universe was contracted to a spacetime singularity 13.8 Gyr ago. In reality,

however, we have no clue as to whether the Universe is infinitely old or not: neither

the equations of General Relativity nor the matter content of the Standard Model of

particles should be extrapolated back to the singularity. In particular, unknowns forms

of energy may emerge, and a quantum theory of gravity would be needed. This will not

be an impediment for loosely setting the starting time of the cosmic clock at the would

be singularity, having in mind that we should not necessarily attribute to it any deep

physical meaning.

In an expanding Universe, as we go back in time the same amount of matter was cir-

cumscribed to a smaller volume. This means that the energy density, and therefore the

overall temperature of the Universe were higher. For example, far enough in the past,

the energy density would have been so high that the common building blocks of our

present Universe, like stars and galaxies, could not exist. As temperature is propor-

tional to some (negative) power of the scale factor, a thermal history of the Universe

can be derived. This is very useful since many important physical processes depend on

temperature (for a detailed account, see [4]). In particular, below certain critical tem-

peratures gauge symmetries can be spontaneously broken and phase transitions occur,

4While usually attributed to Hubble in 1929 [1], already in 1927 Lemâıtre was able to derive the
linear relation between velocity and distance from General Relativity, and test it against data [2]. For
an historical account on this discovery, see e.g. [3].
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as for the electroweak and quantum chromodynamics sectors of the Standard Model of

particles. Other processes like particle and antiparticle annihilation also depend on tem-

perature (in this case, whether it is below or above the particles’ rest mass), as well as

the interaction rates between different particles. All of these elements make the thermal

history of the Universe a very peculiar process. Considering the fundamental particles

and their interactions, it was shown very early [5] that a Hot Big Bang scenario predicts

the creation of light atomic elements. This is the subject of Big Bang nucleosynthesis

(or BBN), and its predictions for the relative abundances of the primordial elements

(from H to Li7) is one of the most famous and -relatively- well tested predictions of the

Hot Big Bang model.

We can begin a (very) brief thermal history of the Universe 1 sec after the “singularity”,

when the temperature was about 1010 K: back then the energy density of the Universe

was dominated by a plasma consisting of electrons, protons, neutrons and photons, all of

them in thermal equilibrium. As Thomson scattering between photons and electrons was

very efficient, this plasma was homogeneous and opaque (in the sense that photons could

not free stream for long distances). On the other hand species like neutrinos and dark

matter, having smaller cross sections, were decoupled from the plasma. At a temperature

of 109 K, or 100 s after the singularity, some of the protons and neutrons bound in the

form of atomic nuclei, in particular He4. Eventually, when the temperature dropped

to 103 K, 380.000 years after the singularity, atomic nuclei could bind with electrons,

forming the first atoms. This process is called recombination. Soon after, with a reduced

density of free electrons, Thomson scattering became inefficient: photons could travel

freely, and the Universe became transparent. This is known as the time of decoupling,

and it is the furthest event we can directly observe with photons. The photons that

we observe today that scattered for the last time at recombination emerged from a thin

shell that we call the surface of last scattering. After decoupling, gravity became the

major driving force, making atomic clouds -mostly composed by hydrogen- collapse to

form the first stars and galaxies.

At the time of decoupling the plasma was at a finite and homogeneous temperature,

and then the photons that emerged from this plasma, having travelled without further

interactions, should be at a finite and homogeneous temperature today. This temper-

ature (T0) is directly related to the temperature at decoupling (Tdec) by noticing that

temperature drops as a−1, such that T0 = Tdecadec/a0, where adec and a0 are the scale

factor today and at decoupling respectively. These arguments led Alpher and Herman [6]

to predict that if the Universe has been expanding there should be, today, a uniform

bath of radiation at a temperature of ∼ 5 K. This is the famous Cosmic Microwave

Background (CMB).
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The observational milestone that strongly supported this Big-Bang picture (as was pejo-

ratively named by one of its firmer detractors), was the discovery of the CMB. In 1965,

Penzias and Wilson [7, 8] measured a constant and isotropic radiation, consistent with

a CMB blackbody spectrum at a temperature T0 = 3.5± 1 K. In 1993, the COBE satel-

lite [9] determined that the CMB indeed follows a blackbody spectrum by measuring

the intensity of the signal at different wavelengths. Its temperature was measured to

be T0 = 2.7 K, which is consistent with the first measurement of Penzias and Wilson.

Crucially, the same satellite also measured the presence of small inhomogeneities (of the

order of 10−5 with respect to the homogeneous 2.7 K component), when comparing the

temperature at different directions in the sky [10].

The discovery by COBE of these small inhomogeneities is, with the discovery of the late

time accelerated expansion of the Universe, among the major recent breakthroughs in

observational Cosmology. The importance of the primordial inhomogeneities is two-fold.

First, they are nothing less than the initial density perturbations from which galaxies and

clusters of galaxies formed. To understand the process of structure formation necessarily

implies that we need to know how to characterize its initial conditions. Secondly, the

initial conditions for large scale structure formation are also the final state of an earlier

stage of evolution. In this sense, they are a portal to access the Universe at times way

before the generation of the CMB map. These are the reasons why understanding the

initial inhomogeneities is one of the major goals of modern Cosmology, and why so much

effort has been made in order to measure these inhomogeneities with better precision and

at a wider range of scales. The latest space mission (able to cover the full sky) designed

for this purpose was the Planck satellite [11]. In figure (1.1) we show the CMB map

of inhomogeneities, as measured by this experiment. By computing n-point correlation

functions from this map it is possible to extract quantitative statistical information. The

power spectrum, which measures the correlation in temperature between two directions

separated by an angle θ in the sky, is shown in figure (1.2)

1.1.1 The contents of the Universe

Observations of the CMB have made it possible to construct a minimal model with 6 free

parameters, able to consistently describe the main features of our observed Universe. In

this model the Universe has been expanding for 13.8 Gyr until today. It is composed

by matter, radiation, neutrinos and a cosmological constant (denoted by Λ, which as

we explained above, is a form of energy that does not dilute as the Universe expands).

Matter itself is composed by atoms and their internal constituents, and an elusive form

of matter called dark matter. The presence of dark matter has only been inferred by its

gravitational effects, so little is known about its internal constitution (for example, on
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Figure 1.1: CMB intensity map. Colours represent inhomogeneities of the order of
10−5 with respect to the homogeneous 2.7 K component.

Figure 1.2: Power spectrum of the CMB temperature map. The horizontal axis
represents the angular scale l ∼ 180/θ (a logarithmic scale is used in the interval
l = [2, 49]), while the vertical axis is the intensity of the power spectrum. The first
peak is located at l ∼ 220. The red curve is the theoretical prediction of the best fit
ΛCDM model (to be explained in the following section), while blue dots are the data

points taken from the map in figure 1.1. Figure taken from [12].

whether is charged under a certain gauge group). The present conclusion is that most

of the matter should be composed of cold -slowly moving- dark matter (CDM). The so-

called normal hierarchy is assumed for neutrinos (with an effective number Neff = 3.046,

and well approximated by a single massive neutrino), and the radiation density can be

derived from the homogeneous component of the CMB temperature. As the energy

density of the present Universe is dominated both by a cosmological constant and cold
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dark matter, this model is called ΛCDM5. The Universe is just a box in which these

elements (and the size of the box) evolve according to their relative abundance and

initial conditions. The minimal cosmological model assumes the Universe is flat (κ = 0),

and its 6 parameters are:

• Ωb: Fraction of so-called baryonic matter. It represents atoms and their internal

constituents (so, in this definition, leptons also make part of baryonic matter).

• Ωc: Fraction of cold dark matter. This is a type of matter that has, if any at

all, very suppressed interactions with Standard Model particles. We can infer its

presence only by its gravitational effect.

• τ : Optical depth to the epoch of reionization. When the first stars formed, new

ionizing photons where produced, so that free electrons were again present to

eventually interact with CMB photons. Roughly speaking τ measures the strength

of that secondary interaction (or, equivalently, the number of additional scattering

events).

• θMC: Approximation to the angular scale of the sound horizon, defined as the sound

horizon at the surface of last scattering divided by the distance to the surface of last

scattering. The sound horizon is the distance sound waves of the photon-baryon

fluid could have travel in the time up to recombination. θMC roughly corresponds

to the angular size of the first peak in the two-point correlation function that can

be seen in fig. 1.2.

• AS: In order for inhomogeneities to be seen in the CMB, an initial amplitude for

these inhomogeneities should have been present. AS is the amplitude of the initial

two-point function (to be defined more precisely later) at a given scale.

• ns: The amplitude of the initial fluctuations may depend on the scale. The quan-

tity ns is the spectral dependence of the two-point function, when parametrized

as a power law (ns = 1 being scale invariance).

Given these parameters, it is possible to reproduce to a great accuracy the CMB data

as well as the abundances of the primordial elements. We show in table 1.1 their best fit

values as deduced from the Planck 2015 analysis [12]. Apart from the first six parameters,

we have added the values of three additional parameters that, while they are not part

of the baseline cosmological model, are very important for the subject of this thesis.

5It is very important to stress that, within this model, the universe is dominated by these constituents.
Different cosmologies may lead to very different values for different parameters. The ΛCDM model
continues to be preferred since it has the best compromise between number of parameters and goodness
of fit to the data.
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Parameter Best fit value at 68% limits

Ωbh
2 0.02230 ± 0.00014

Ωch
2 0.1188 ± 0.0010

100θMC 1.04093 ± 0.00030

τ 0.066 ± 0.012

ln (1010AS) 3.064 ± 0.023

ns 0.9667 ± 0.0040

Ωk 0.000 ± 0.005

r < 0.09

βiso < 0.03

Table 1.1: Best fit parameters of the 6 parameter ΛCDM model. The factor h
appearing in front of Ωc,b denotes the current expansion rate, as a fraction of 100 km
s−1 Mpc−1. The last three parameters are important extensions to the 6 parameter

ΛCDM model.

These are the tensor-to-scalar ratio, r, which is the ratio of the initial tensor to scalar

perturbations, the curvature density of the universe Ωk (defined in 1.4) and βiso, the

initial isocurvature fraction. We will later define them more precisely (in particular r

and βiso), and their importance will become more transparent as we go further on.

In order to solve any dynamical system it is important to set the initial conditions, so

we should not be surprised if we need some parameters to describe them. We should be

surprised, however, if the initial conditions consistent with the observations are a very

special subset of all the possible initial conditions. This is exactly what happens in the

base ΛCDM cosmology. This issue is present at different levels:

• The first observation that should call our attention is the fact that the CMB can

be described by a single temperature, i.e., that the CMB is a bath of radiation,

of the size of the observable Universe, in thermal equilibrium. This would not be

an issue if there were the means of reaching thermal equilibrium in the very early

Universe, which would demand the very different patches of the Universe to be in

causal contact and with large interactions among its constituents. The size of a

causal patch is known as the particle horizon, and it is given by the distance light

could travel from an initial time t0 to any given time t?. The comoving particle

horizon at t = t? is given by

h =

∫ t?

t0

dt

a(t)
=

∫ a?

aini

d ln a

aH
. (1.8)



Chapter 1. Introduction 10

Taking t0 = 0, t? to be the time of decoupling and assuming the scale factor is

determined by the ΛCDM model, one finds that only patches separated by less

than 2◦ in the sky could have been in causal contact. This mean that patches of the

CMB separated by more than 2◦ were never in their history in causal contact, and

could not by any thermodynamical mechanism reach the very same temperature.

This apparent acausal correlation is also seen at the level of the perturbations,

since a non-zero correlation for the two-point function is also measured on such

large scales (see fig 1.2). This is known as the horizon problem.

• Another issue concerns the observation that the Universe is flat to an incredible

accuracy. If, today, the energy density associated with the curvature is measured

to be negligible, it means that the curvature energy density was exponentially

smaller in the past. This can be seen by considering how the curvature parameter,

Ωκ, evolves with time. From equation (1.5) this is given by

dΩκ

d log a
= Ωκ(1− Ωκ)(1 + 3w) . (1.9)

Unless the Universe is exactly flat (Ωκ = 0), the curvature density parameter

depends on time. Moreover, for (1 + 3w) > 0 , which is the case in a Universe

dominated by radiation and/or matter, small departures from flatness are said to

be unstable since any small initial curvature density Ωκ (positive or negative) will

grow as the size of the Universe grows. Today we have an upper bound |Ωk| < 10−2

which means that |Ωk| < 10−18 at BBN era, and exponentially smaller as we go

back in time. As there is no a priori reason in General Relativity to choose κ = 0

among all the possibilities, we may be puzzled by the fact that such value was

initially tuned to zero to such great accuracy.

1.2 Inflation

The theory of inflation was proposed as a solution to these problems, and it can be

understood as a theory for the initial conditions of the ΛCDM cosmology [13–17]. Its

real achievement is that it pushes back the problem of initial conditions to ∼ 10−30

s after the singularity6. It is not difficult to see that both the horizon and curvature

problem are linked to the fact that the comoving Hubble radius, defined as rH = (1/aH),

increases as the scale factor increases. Then, one solution to the problem of the initial

conditions is to impose that at some earlier period the comoving Hubble radius decreased

6Inflation also needs initial conditions which may or not be considered natural. Whether they are or
not or whether they should be at all is of course a very important question.
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with time. This would in turn mean the Universe was accelerating, as

d

dt

1

aH
< 0 → ä > 0 . (1.10)

Inflation is just a period in which these conditions are fulfilled. This simple behaviour

naturally generates the initial conditions for the primordial plasma: On the one hand,

in an inflationary period the integrand in (1.8) rapidly diverges in the past, making

the particle horizon substantially bigger as we go back in time. This can make all the

observable Universe to have been in causal contact. Additionally, the curvature density

converges at late times to zero as can directly be seen from its definition. A successful

solution of these problems needs at least 60 e-folds of inflation, by which we mean that

the ratio of the scale factor at the beginning and at the end of inflation is ∼ e60. As we

will see shortly, this very singular causal structure, i.e. a shrinking Hubble radius, will

also provide an elegant mechanism to generate the initial perturbations for the matter

distribution in the Universe.

From equation (1.6) it is clear that an exotic type of matter should be dominating the

energy density of the Universe such that an accelerated expansion can take place. Neither

radiation nor baryons nor CDM can achieve such an expansion, since wγ,b > −1/3. One

possibility, though, is that the energy density is in the form of a cosmological constant,

since wΛ = −1. Ending inflation would demand tunneling to a different vacuum with

a smaller cosmological constant, as for example, the one we measure today. While

apparently satisfactory, this first order phase transition would cause bubble nucleation,

spoiling the isotropy and/or the spectrum of the primordial perturbations [18]. These

problems can be avoided by considering instead a scalar field classically rolling down in a

potential. If the potential is flat enough, the scalar field would resemble a cosmological

constant and produce an accelerated expansion. However, and contrary to the first

scenario, in this case inflation can ends smoothly if, after the required e-folds of inflation,

the potential becomes steep. To see how this could happen, consider a scalar field φ(x, t),

canonically coupled to gravity. It is then described by an action of the form

S =

∫
d4x
√
−g
[

1

2
R− 1

2
gµν∂µφ∂νφ− V (φ)

]
. (1.11)

Here gµν is the spacetime metric and R and g are respectively the Ricci scalar and the

determinant of this metric. We have further introduced ∂µφ ≡ ∂φ/∂xµ, where µ ranges

from zero (time) to three (space). In a FLRW metric the equation of motion for the

homogeneous component of the field, φ = φ(t), is given by

φ̈+ 3Hφ̇+ V,φ = 0 , (1.12)
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where V,φ = dV/dφ. The Hubble parameter H is determined by the Friedmann equation

(1.2), which in this case reads

3H2 =
1

2
φ̇2 + V (φ) . (1.13)

Equations (1.12) and (1.13) determine the joint evolution of the background component

of the scalar field φ(t) and the scale factor a(t). A shrinking Hubble radius is equivalent

to demanding that the Hubble parameter varies slowly. Indeed, it is easy to show that

d

dt

1

aH
< 0 → ε ≡ Ḣ

H2
=

φ̇2

H2
< 1 . (1.14)

A slow variation of H (ε� 1) implies then that the kinetic energy is a small fraction of

the total energy, or equivalently, that the dynamics are dominated by the potential en-

ergy (which is changing slowly). In this case the scale factor grows almost exponentially

3H2 ∼ V (φ) → a(t) = eH(tini−t) . (1.15)

The requirement of having at least 60 e-folds of inflation demands that the condition

ε� 1 is maintained for a sufficient amount of time. The proper dimensionless variable

quantifying the rate of change of ε is known as η, as is defined as

η ≡ ε̇

εH
. (1.16)

Then, both ε and η, the so-called slow-roll parameters, must satisfy the following con-

ditions:

ε� 1 and |η| � 1 . (1.17)

Indeed, we can define an entire hierarchy of slow-roll parameters εn+1 ≡ ε̇n/(Hεn), where

ε1 = ε and ε2 = η. For smooth potentials it is in general a good approximation to treat ε

and η as constants, which is equivalent to neglecting all the tower of slow-roll parameters

with n > 2. This is not however a necessary condition for having an overall exponential

expansion since higher order slow-roll parameters may become large for a very small

amount of time (i.e. ε < 1 may still be satisfied while, locally in time, |η| > 1). This

regime will have important observable consequences that we will address in Chapter 3.

For the moment, we stick to the simple case where the slow-roll conditions (1.17) are

satisfied all along the inflaton trajectory and the higher order slow-roll parameters are

negligible.

In order to know whether a given potential V (φ) can sustain inflation or not, we may

write the slow-roll parameters as a function of V . At leading order in slow-roll (i.e. for
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ε,|η| � 1), ε and η are given by

ε =
1

2

(
Vφ
V

)2

and η = −2
Vφφ
V

+ 2

(
Vφ
V

)2

. (1.18)

We finish this section by saying that we may have considered different definitions for η.

For example, at leading order in slow-roll it is also true that |Vφφ/V | � 1. Furthermore,

in this regime ε− φ̈/Hφ̇− Vφφ/V = 0, such that it is also true that |φ̈/Hφ̇| � 1. Then,

as is usually found in the literature, one may rather impose that

ηV ≡
Vφφ
V
� 1 or ηφ ≡

φ̈

Hφ̇
� 1 . (1.19)

The different definitions of η are related through the following equations:

η = −2ηV + 4ε and ηV = ε− 2ηφ . (1.20)

In the next section, we study how do perturbations evolve on top of the inflationary

background.

1.2.1 Primordial perturbations

Undoubtedly, the big success of inflation is that it provides a mechanism for generat-

ing the primordial density fluctuations from which the structure of the Universe was

created [19] (for a pedagogical review, see [20]). In this model, the primordial pertur-

bations are nothing more than a combination of the quantum fluctuations of the scalar

field and spacetime metric7. The peculiar causal structure of an accelerating Universe

is responsible for converting these microscopic quantum fluctuations into classical and

macroscopic density perturbations.

We begin by writing the most general perturbation of the inflaton field and metric. One

possible parametrization is the following:

φ(t)→ φ(t) + δφ(x, t) , (1.21)

gµν→ (−1 + 2Φ)dt2 + 2a(t)Bidx
i + a(t)2 [(1− 2Ψ)δij + Eij ] dx

idxj . (1.22)

where Φ, Bi, Ψ and Eij are functions of both space and time. Perturbations of the metric

can be classified according to their transformation properties under spatial rotations.

In particular, they can be decomposed into scalar, vector and tensor modes, and it

7As we will argue later, it is not even important that inflation is driven by a scalar field. The only
important information is that the Universe undergoes a quasi de Sitter expansion.
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can be shown that these different components are decoupled at the linear level. In

principle, we can directly expand the action (1.11) to second order using the expansions

(1.21) and (1.22) and treat every mode independently and up to second order. We will

however find that the equations of motion are overconstrained. To see this, let us note

that the perturbations defined in (1.21) and (1.22) are not invariant under a generic

coordinate transformation, which means that, taken individually, they are not physical.

For example, by redefining time as t → t̃ = t + ξ0, the perturbation to the scalar field

becomes

δφ(t, x)→ δφ(t, x) + ξ0 ˙δφ(t, x) . (1.23)

If we choose ξ0 such that ξ0 = −δφ(t, x)/ ˙δφ(t, x), then in the new coordinate system

δφ(t, x) = 0. This means that the perturbation to the scalar field is not a physical

quantity in itself, since we can always choose a coordinate system in which it vanishes.

However, we do not have the freedom to choose one single coordinate transformation

in which all the perturbations vanish simultaneously. This is because the most general

coordinate transformation is parametrized by only three degrees of freedom, two scalars

and one vector, and that the perturbations in (1.21) and (1.22) are parametrized by

5 scalar, 2 vector and 1 tensor degrees of freedom. Thus, we do not have sufficient

functions in our coordinate transformation to make all the perturbations in the metric

and scalar field to disappear, and we are left with only 3 scalar, 1 vector and 1 tensor

degrees of freedom (which may be later reduced by the equations of motion). There

are two ways of dealing with the ambiguity of choosing the coordinate system. The

first is to fix it from the beginning, which is known as fixing a gauge. For example, the

coordinate system defined previously, in which the inflaton’s perturbation vanishes, is

called the comoving gauge8. There are indeed infinite ways of fixing a gauge, but in

general there will be more appropriate ones depending on which calculation one wants

to perform. The second possibility is to work with gauge invariant variables, which are

linear combinations of the perturbation in (1.21) and (1.22) that do not transform under

coordinate transformations. There is also an infinity of gauge invariant variables but

some of them are more useful than others. In particular we will work with the so-called

comoving curvature perturbation R, defined as

R ≡ Ψ +H
δφ

φ̇
. (1.24)

This variable is called the comoving curvature perturbation because in the comoving

gauge (where δφ = 0), it reduces to the spatial curvature of the metric. As we will see

later in this section, this variable becomes constant in time for modes whose wavelength

8Formally, the comoving gauge is defined as the gauge in which the perturbation to the stress-energy
tensor δT0i vanishes. In slow-roll inflation, this is equivalent to having δφ = 0.
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exceed the Hubble radius, a crucial behavior that allows us to connect the quantum

perturbations during inflation with the perturbations of the CMB.

In general, any field theory may be classified by its predictions for the n-point correla-

tion functions of whatever observables the theory possesses. One of the predictions of

the canonical single field models of inflation (as the one we have considered) is that the

statistics of the curvature perturbations are nearly gaussian. Indeed, for single-field and

canonical models of inflation, the smallness of the curvature perturbations and the flat-

ness of the potential ensure that interactions other than quadratic in the field variables

are highly suppressed. This means that the only relevant n-point correlation function is

the two-point function (in an exactly gaussian theory all the n-point correlation func-

tions are either zero -for n odd-, or a function of the two-point function -for n even-).

We start then with the action for the comoving curvature perturbation at second order,

which is given by

S2 =

∫
d4x a3ε

{
Ṙ2 − 1

a2
(∇R)2

}
, (1.25)

At this point we may introduce an important time re-parametrization, known as con-

formal time and defined as dτ = adt. In this new coordinate system, the canonical

perturbation v is given by

v ≡ zR with z2 = 2a2ε, (1.26)

where the scale factor, at first order in slow-roll, takes the following form:

a(τ) = − 1

Hτ
(1 + ε) . (1.27)

Let us note that τ takes negative values, from −∞ in the far past to 0 at the end of

inflation. In order to find a solution to the equation of motion we expand the field in

Fourier modes v(x, τ) as

v(x, τ) =

∫
d3k vk (τ) eik.x . (1.28)

The mode function vk(τ) satisfies the Mukhanov-Sasaki equation [21, 22]:

v′′k +

(
k2 − z′′

z

)
vk = 0 , (1.29)

where k2 = k.k, and prime denotes derivatives with respect to conformal time. There

are two independent solutions of the previous equation, only dependent on k, so we

might further expand vk(= vk) and write

v(x, τ) =

∫
d3k

[
a−k vk(τ)eik.x + a†kv

∗
k(τ)e−ik.x

]
, (1.30)
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where (a−k )∗ = a†k so that the solution v(x, τ) is real. The Mukhanov-Sasaki equa-

tion (1.29) has an exact solution for constant ε and η and the integration constants

can be found by imposing boundary conditions and quantum commutation relations to

the mode functions. First of all, we need to promote vk to an operator and impose the

quantum commutation relations to v̂k and its conjugate momentum π = v′. This implies

identifying a−k and a†k as the usual creation and annihilation operators. Then, boundary

conditions can be imposed in the far past (kτ � 1), by assuming that every mode k

begin its evolution in the vacuum state: high frequency modes do not feel the curva-

ture of spacetime, and the expectation value of the Hamiltonian can be unambiguously

minimized as in flat space. This is known as the Bunch-Davies vacuum [23]. Under

these prescriptions, and in the most simple case of an exact de Sitter expansion, the full

solution to equation (1.29) is given by:

vk(τ) =
1√
2k
e−ikτ

(
1− i

kτ

)
. (1.31)

As we have shown, during inflation modes go from the ultraviolet (or subhorizon) to

the infrared (or superhorizon) regime9. We might then trace the history of a given

mode vk by analysing the different asymptotic regimes of the solution (1.31). In the

far past (|kτ | � 1), the solution to the mode function is dominated by the oscillating

part exp(−ikτ). This is nothing more than the result of imposing the Bunch-Davies

vacuum prescription. As inflation proceeds, a mode initially in the short wavelength

regime eventually crosses the horizon and becomes superhorizon (|kτ | � 1). Then,

the dominant contribution to the solution (??) is the divergent factor ∝ 1/τ . This

means that the curvature perturbation Rk, related to vk through eq. (1.26), becomes

constant10. When inflation ends the Hubble radius starts to grow, and this superhorizon

mode k eventually re-enters inside the horizon. When it does, it will start to oscillate

with an initial amplitude that was fixed when that mode crossed the Hubble radius

during inflation. This is precisely the way in which perturbations generated during

inflation are connected with the initial conditions for the photon-baryon plasma.

Let us note that in this description we have implicitly assumed that a superhorizon

mode k remains constant after inflation ends (which we have derived only for the case

in which there is a de Sitter background expansion). This is an important assumption,

since between inflation and the decoupling of the CMB photons there are many unknown

processes which may in principle invalidate the simple predictions of our calculations. For

9As usually done in the literature, we will say that a mode with wavelength bigger than the Hubble
radius is a superhorizon mode (k > aH), while a mode with wavelength smaller than the Hubble radius
is a subhorizon mode (k < aH). This terminology is not accurate since the Hubble radius is neither a
particle nor an event horizon.

10In the long wavelength regime the dominant contribution to vk comes from its imaginary part. The
real part is constant for vk which means that it is a decaying perturbation mode for Rk.
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example, the energy density of the inflaton has to be transferred to matter and radiation,

a process -called reheating- which we know very little about. A superhorizon evolution

of the curvature perturbations would mean that we need to follow the evolution of those

modes through these mysterious ages, which would in practice spoil the predictability

of inflation. Importantly, it is possible to show that superhorizon perturbations remain

constant independently of the background FLRW cosmology, provided the perturbations

are adiabatic [24]. By adiabatic perturbations we mean that for a fluid composed of

different elements (and in the case in which the total stress-energy tensor is the sum of

the individual stress-energy tensors), all the individual components of the fluid (labelled

i) are perturbed satisfying
δρi
ρ̇i

=
δpi
ṗi

=
δρt
ρ̇t

=
δpt
ṗt
, (1.32)

where t refers to the total energy density and pressure. For adiabatic perturbations, the

local perturbation to the energy density (pressure) corresponds to a time shift of the

background energy density (pressure). Single field models of inflation only produce this

type of perturbations, and then the conservation of superhorizon modes is guaranteed.

The two-point quantum correlation function, evaluated in the vacuum, allows us to

define the power spectrum PR as

〈RkRk′〉 ≡ (2π)3δ3(k + k′)PR(k) . (1.33)

Using the solution (1.31) and (1.26) in the long wavelength limit, we find

PR(k) =
1

8π2

H2

ε
. (1.34)

The amplitude of the power spectrum at a given scale k depends on the value of H

and ε at the moment in which Rk became frozen. As every mode k crosses the Hubble

radius and becomes constant at a different moment (thus, for slightly different values of

H and ε) the amplitude of the power spectrum has a mild scale-dependence. This can

be parametrized by the spectral index ns, giving

ns≡
d lnPR
d ln k

= 1− 2ε− η . (1.35)

Higher order derivatives of the power spectrum will depend on higher order derivatives

of the slow-roll parameters, which are suppressed in the simple case considered here.

Considering only the first derivative of the power spectrum is equivalent to assuming
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that it is parametrized by a power law of the form

PR = AS

(
k

k?

)ns−1

, (1.36)

in which AS = H2/(8π2ε), evaluated at an arbitrary scale k = k?. As we will see in

the following chapters, if the slow-roll parameters are allowed to become large for some

small amount of time during the inflationary trajectory (e.g. for the case of a very flat

potential with a small and localized ‘bump’), higher derivatives of the power spectrum

may become important and a power law expansion of the form (1.36) may not be the

most adequate parametrization for the power spectrum.

Apart from scalar perturbations, the spacetime metric also has vector and tensor degrees

of freedom. While the vector modes decay rapidly as the scale factor increases, tensor

modes are also conserved after crossing the Hubble radius. Calculating their power spec-

trum is a simpler task since only the metric contributes to the total tensor perturbation.

Their power spectrum is given by

Ph =
2H2

π2
. (1.37)

Then, we can define the tensor-to-scalar ratio, r, as the ratio between the tensor and

the scalar power spectrum

r ≡ Ph
PR

= 16ε . (1.38)

Before linking these predictions to the observation of the CMB, we will briefly discuss

one simple extension of the model presented here. In the previous example the speed

of sound cs of the scalar curvature fluctuations was, in units of the speed of light, equal

to one. This can be immediately deduced by noticing that the dispersion relation in

the mode function equation (1.29) is, in the short wavelength regime, ω = k. We can

easily generalize the predictions above to the case in which the speed of sound cs is a

free parameter [25]. At the level of the action, a speed of sound can be introduced by

generalizing (1.25) to be of the form

S2 =

∫
d4x a3ε

{
Ṙ2

c2
s

− 1

a2
(∇R)2

}
. (1.39)

We can introduce a new variable s parametrizing the rate of change of cs, given by

s ≡ ċs
csH

. (1.40)
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The Mukhanov-Sasaki equation now reads:

v′′k +

(
c2
sk

2 − z′′

z

)
vk = 0 , (1.41)

where this time z = 2a2εc−2
s . In the limit in which the speed of sound changes slowly,

i.e, s � 1, we can follow the same steps as previously in order to calculate the power

spectrum and spectral index of the curvature perturbations, and we get

PR =
1

8π2

H2

csε
and ns = 1− 2ε− η − s . (1.42)

When calculating the power spectrum we must have in mind that curvature perturba-

tions will now become constant when a mode k exists the sound horizon, i.e., at times

satisfying csk � aH. For a subluminal speed of sound, this happens before the freezing

of modes with cs = 1. The tensor-to-scalar ratio is now11

r = 16εcs . (1.43)

At this point, the motivation for considering inflation with a reduced speed sound might

only seem phenomenological but, as we will see in the following chapters, reduced speeds

of sound may be a portal to access very high energy degrees of freedom.

In order to confront theory with observations we need to evolve the initial theoretical

power spectrum to a power spectrum for the CMB photons at the time of decoupling.

The power spectrum of the comoving curvature perturbations determine the initial con-

ditions for the perturbations of the photon-baryon plasma. If the perturbations are

adiabatic, the initial density contrast, δi = δρi/ρ for photons (γ), baryons (b), CDM (c)

and neutrinos (ν) are related to the initial curvature perturbation (in the long wave-

length limit) as

δb = δc =
3

4
δγ =

3

4
δν = ζ . (1.44)

Once we impose the initial conditions, the evolution of the plasma is given by a set of

Boltzmann equations. The perturbations must be further projected onto the celestial

sphere, since we actually measure different temperatures at different angles in the sky.

The physical evolution and the geometrical projection of the initial inhomogeneities

will transform the initial flat quantum spectrum into a series of temperature peaks.

This process can be modelled numerically with the help of publicly available codes

as CAMB [28] or CLASS [29]. The structure of the peaks has been measured to

a great accuracy by a number of experiments, the last one being the Planck satellite

11Contrary to curvature perturbations, the freeze-out time for tensor perturbations is not affected, as
tensor modes (gravity waves) still travel at the speed of light. This difference in the time of freeze-out
induces corrections to the tensor-to-scalar ratio which might be important if cs � 1 [26, 27], but that
we neglect in formula (1.43).
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mission [11], which we already showed in figure 1.2. From these observations it is possible

to determine the nature of the initial conditions, for example the amplitude AS of the

scalar fluctuations, the spectral index ns and the tensor to scalar ratio r. The central

values for AS and ns) and constraints (for r) can be read from table 1.1. Every single

field potential has a very precise prediction for these values, as can be seen explicitly from

eqs. (1.18). The contour plot of ns and r, together with several theoretical predictions,

are shown in figure 1.3. The constraints are specified for a specific scale in the CMB,

k∗ = 0.002 Mpc−1 which may have exited the Hubble radius 50 or 60 e-folds before

the end of inflation. The predictions for the models are then specified for this range of

e-folds.

Figure 1.3: Marginalized joint 68% and 95% CL regions for ns and r from Planck in
combination with other data sets, compared to the theoretical predictions of selected

inflationary models. From [30].

Among the theoretical predictions shown in figure 1.3, two of them are specially going

to call our attention during this thesis. The first is the simplest inflationary model we

can imagine, described by a quadratic potential (in black in fig. 1.3) [31]

V (φ) =
1

2
m2φ2 . (1.45)

The second model is the so-called natural inflation potential (in purple in fig. 1.3) [32],

described by the following potential:

V (φ) = Λ4

[
1 + cos

(
φ

f

)]
, (1.46)

where f is a constant parameter known as the axion decay constant. The fact that these

two well motivated potentials are in tension with the data (a tension that is enhanced
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when considering the BICEP2/Keck Array experiment [33]) will be a motivation for

testing the robustness of their predictions. We will carry out that work in Chapters 4

and 5.

1.2.2 Higher order correlation functions

As we shall also discuss in this thesis, modifications of the canonical single-field model of

inflation can generate a large non-gaussian signal. First of all, from the point of effective

field theory (EFT), higher order interactions are unavoidable. In the case of inflation [34]

they can be calculated relying only on the background spacetime symmetries, so we

expect them to be quite universal. In particular, the curvature perturbations of every

single-clock inflationary model12 are described by a unique Lagrangian, in which only the

specific value for the coefficients of the different operators depends on the microscopic

origin of the model.

A well studied non-gaussian signature is the three-point correlation function (for a re-

view, see e.g. [35]). The simplest way of generating a three-point function is through

an explicit third order interaction in the Lagrangian. The first thorough calculation of

this signal was performed by Acquaviva et al. [36], and later Maldacena determined its

explicit k-dependence [37]. From the EFT of inflation [34], the action of the curvature

perturbation, up to third order, is given by:

S2 =

∫
d4x a3Ḣ

{
−
[
π̇2

c2
s

− 1

a2
(∇π)2

]
+ 3Ḣπ2

}
, (1.47)

S3 =

∫
d4x a3

{[
π̇2 − (∇π)2

a2

] [
Ḣπ̇

(
1− c−2

s

)
− Ḧπ

]
+ 2Ḣ

ċs
c3
s

ππ̇2 (1.48)

−4

3
M4

3 π̇
3 − 3ḦḢπ3

}
,

where π is defined as the Goldstone boson of the broken time diffeomorphism which, at

linear order, is related to the curvature perturbation as R = −Hπ. First of all, let us

note that the second order action derived from the EFT is the same as the one we wrote

in section 1.2.1. At that point we derived the action for the specific case in which the

curvature perturbations were identified with the scalar field and metric perturbations.

The interesting point to notice is that in order to construct the EFT we do not really

need to know the energy content of the Universe. More precisely, the action for the

curvature perturbation is the same independently of whether the inflaton is a scalar

12As inflation describes a quasi de Sitter Universe, time translation is not a symmetry of the back-
ground evolution. By single-clock it is understood that time translation is broken by a single degree of
freedom.
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field, a composite field or any other exotic matter field (provided spatial diffeomorphism

is preserved and there is only one degree of freedom dictating the background dynamics).

The microscopic details of the theory are only going to be encoded in the values of cs

(which also determines s), M3 (which is in general time dependent) and H (which has

however more restrictions since it needs to support inflation).

While higher order correlation functions are unavoidable, in the simplest version of

inflation they are highly suppressed. The first reason is because of the smallness of

R (the amplitude of the two-point function translates into R ∼ 10−5). Higher order

operators are described by higher powers of R, and so they are small with respect to

the gaussian (quadratic) component. Moreover, also the coefficients of the higher order

operators are suppressed since they are composed of higher order derivatives and higher

order powers of the slow-roll parameters (e.g. through Ḧ in (1.48)). These parameters

are also small in canonical, and smooth, single-field models of inflation.

More precisely, the smallness of the three-point function is guaranteed provided some

conditions are fulfilled. These condition are i) single-clock inflation: there is only one

effective degree of freedom dictating the dynamics. ii) Bunch-Davies initial conditions:

modes with wavelength much smaller than the Hubble radius effectively experience

Minkowski spacetime. iii) Canonical kinetic terms: the inflaton has canonical kinetic

terms with speed of sound cs = 1. iv) The slow-roll parameters and their time variations

are small during all the observable inflationary trajectory.

The interest in studying non-gaussianity comes from the fact that any detection of

primordial non-gaussianity would very likely come from the violation of any of these

conditions, which would be an incredibly important step towards understanding the

nature of inflation.

As the three-point correlation function depends on three momenta (which are bounded

to form a triangle in k-space because of translational invariance), its comparison with

data is particularly difficult. It is then useful to concentrate on a few well motivated

templates, which characterizes the shape of some ‘expected signals’. A template α can

be generally defined as:

〈R(k1)R(k2)R(k3)〉α = (2π)3δ(k1 + k2 + k3)fαNL . F
α(k1, k2, k3) . (1.49)

Every template α has a scale-dependent shape Fα(k1, k2, k3) and a corresponding am-

plitude fαNL, which is a number that does not depend on ki. The current data and

techniques available for the analysis of the three-point function allow us to constrain

the amplitude fαNL for a finite set of templates, that we have to choose beforehand. In

this sense, the non-detection of a particular template α does not imply the absence of
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non-gaussianity, but rather constrains the presence of the non-gaussian signal described

by that specific template. Furthermore, even if the three-point function is measured to

be consistent with zero in every momentum configuration, non-gaussianities may appear

in higher order correlation functions. This is the reason why complementary studies of

non-gaussianities, e.g. based upon real-space statistics, are also very important.

The most studied templates for the three-point function are three (we refer the reader

to [35] for a detailed account). Two of them come from noticing that, at first order

in slow-roll, there are two free parameters in the cubic action (1.48), namely cs and

M4
3 . When cs is a constant (ċs = 0), cs and c̃3 ≡ 2M4

3 c
2
s/Ḣ control the amplitude

of two different templates, named equilateral and orthogonal [38]. The third template,

historically the first to be considered, is the so-called local template. It describes the non-

gaussian signal for the case in which there is a non-linear relation between the inflaton

and the observed curvature perturbations. It borrows its name from being defined in

real space [39]. The main characteristics of the templates mentioned above are:

• Equilateral: This is the non-gaussian signal when cs is a constant cs 6= 1, and

c̃3 = Ḧ = 0. The template peaks in the equilateral limit, which is the configuration

in which the three momenta are equal, k1 = k2 = k3. Models with constant reduced

speed of sound will peak at this configuration.

• Orthogonal: This is a template designed to be orthogonal to the equilateral tem-

plate, such that a basis is defined that covers all the relative contributions of cs and

c̃3. This template also peaks in the equilateral but has an important contribution

in the flattened limit (defined as 2k1 = 2k2 = k3).

• Local: The local configuration comes when the non-gaussian component of the

curvature perturbation R is parametrized as a function of its gaussian component

Rg as:

R(x) = Rg(x) +
3

5
f loc
NL

(
Rg(x)− 〈Rg(x)2〉

)
. (1.50)

The parameter f loc
NL controls the skewness of the probability density function. In

momentum space this template peaks in the squeezed limit. This is an interesting

configuration, in which one of the momenta is much smaller that the other two,

k1 = kL and k2 = k3 = kS with kS � kL (S,L denoting short and long mode

respectively). In [37], Maldacena showed that the amplitude of the bispectrum in

the squeezed limit is proportional to the tilt of the power spectrum, as

lim
kL→0

〈R(kS)R(kS)R(kL)〉 = −PR(kL)PR(kS)
d

d ln kS
ln
[
k3
SPR(kS)

]
. (1.51)

This is also know as the ‘consistency condition’, since any model violating this

relation will have non trivial departures from the simplest single field inflationary
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models. In particular, this configuration is bound to be undetectable in the sim-

plest inflationary models since d lnPR/d ln k ∼ (ns − 1) is of order slow-roll in all

the observable inflationary trajectory (see equation 1.35). Contracting cosmolo-

gies, multifield models of inflation, as well as single field models with features (e.g.

oscillations) in the primordial power spectra can generate however a large local

signal13.

These configurations have been tested in the Planck 2105 data [40], and the following

constraints has been derived (the amplitude of the three shapes being consistent with

zero):

f local
NL = 0.8± 5.0 , f equi

NL = −4± 43 , forth
NL = −26± 21 (68%CL) (1.52)

These constraints can be related to constraints in cs and c̃3, from where we can deduce

an upper bound on cs, cs > 0.024 at 95% CL (the two-dimensional constraint is shown

in figure (1.4)).

Figure 1.4: 68%, 95%, 99.7% confidence regions in the single field inflation parameter
space (cs, c̃3), with c̃3 ≡ 2M4

3 c
2
s/Ḣ. Figure from [40]

13In some of these cases the consistency condition will be violated (by violating some of the assumptions
necessary for its derivation) while in others not. In particular, let us note that single field models with
oscillations in the primordial power spectrum still satisfy this relation. A primordial power spectrum
which is overall flat but has small oscillations on top of it has big and oscillatory values for d lnP/d ln k.
This family of primordial power spectrum can also provide better fits to the data than the featureless
power-law primordial power spectrum, and will be an important subject of this thesis.
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In the general framework of EFT, the coefficients that appear in the low energy La-

grangian are functions of the ‘UV’ completion of the theory. For example, consider a

‘UV’ theory consisting of two fields: a massless field φl and a massive field φh (with mass

M) with an interaction gφ2
l φh. At energies well below M , this interaction is effectively

described by a 4-point self interaction of the massless field of the form (g2/M2)φ4
l . The

strength of this 4-point self interaction is then proportional to the UV parameters of the

theory, in this case g and M . So, in the context of the EFT of inflation, a natural ques-

tion arises: what are the possible UV completions of inflation that give rise to non-zero

values for the parameters of the low energy EFT (in our case, cs and M4
3 when consid-

ering up to third-order interactions)? Are they bound to be very suppressed (∝ 1/M2),

as in the simple two-field model showed here? Or more generally, which values for these

parameters can be interpreted in terms of the UV completion?

While we will not address these questions in full generality (see e.g. [41]), in this thesis

we will consider a particular embedding of inflation in which this procedure is tractable.

In particular, we will consider inflation happening in a two-field landscape, in which

one of the fields is light and the other is heavy (with respect to the scale of inflation),

and we will show explicitly how the coefficients of the low energy operators emerge

when integrating out the heavy field. In particular, we will show that the speed of

sound of the curvature fluctuations is linked to the angular velocity of the inflationary

trajectory. The time dependence of the speed of sound will not only determine the

regime of validity of the single-field low energy effective theory but it will also demand

using new techniques for calculating the n-point correlation functions. Of course, this

is not the only UV completion for which the EFT of the curvature fluctuations has a

reduced speed of sound14, but, as we will see explicitly, this particular embedding has

enough richness to provide a better understanding of the subtleties of both decoupling

in EFT and of multifield inflation. We will address these questions up to Chapter 4,

while we will reserve the fifth and last chapter to study the case in which there are two

light fields during some part of the inflaton trajectory.

14As in the Dirac-Born-Infeld (DBI) models of inflation [42, 43].




