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Chapter 8

Homodyne detection of coherence and phase shift of a
quantum dot in a cavity

A homodyne measurement technique is demonstrated that enables direct ob-
servation of the coherence and phase of light that passed through a coupled
quantum dot (QD)–microcavity system, which in turn enables clear identifica-
tion of coherent and incoherent QD transitions. As an example, we study the
effect of power induced decoherence, where the QD transition saturates and in-
coherent emission from the excited state dominates at higher power. Further,
we show that the same technique allows measurement of the quantum phase
shift induced by a single QD in the cavity, which is strongly enhanced by cavity
quantum electrodynamics effects.

M. P. Bakker, H. Snijders, W. Löffler, A. V. Barve, L. A. Coldren, D. Bouwmeester,
M. P. van Exter, submitted to Optics Letters

8.1 Introduction
Quantum dots (QD) are artificial atoms in the solid–state with potential appli-

cations for quantum information [71]. Embedding QDs in high Q microcavities holds
promise to implement deterministic logic gates [112], entangle independent photons
[160], and couple distant QDs to form a quantum network [13]. Additionally, cavity-
enhanced light–matter interactions enable a powerful spectroscopic tool for QD char-
acterization. In the following, we present a straightforward technique to analyze
both the coherence as well as the quantum phase shift of light transmitted through a
QD–cavity system.

Several techniques have been demonstrated to determine the coherence of the
emission of a coherently driven two-level transition in an atomic or molecular system,
i.e. resonance fluorescence (RF). These techniques include analyzing the interfer-
ence between RF and the incident laser itself as function of polarization, analyzing
the time correlation function g(2)(t) using a Hanbury Brown Twiss setup, measuring
with an interferometer the mutual phase coherence between the coherently scattered
light and a local oscillator, or analyze the frequency spectrum using a high finesse
scanning Fabry Perot interferometer [161–164]. Additionally, the phase shift of trans-
mitted light through a cavity with a strongly coupled atom can be determined using
a heterodyne setup [56].
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8. Homodyne detection of coherence and phase shift of a quantum dot in a cavity
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Figure 8.1: Demonstration of the homodyne interference technique. (a)
Schematic of the setup. Coherent light from a scanning laser is split using a
fiber beam-splitter (FBS), transmitted through the QD-cavity system, recom-
bined with the local oscillator on a FBS and recorded with a avalanche photodi-
ode (APD). Pol: polarization controlling optics. Pol3 is always set to match Pol2.
(b) Signal for an empty cavity as function of scanning laser frequency detuning.
Grey: interference signal I when combing the local oscillator and the cavity sig-
nal. Black: DC component. Green: I2 reference signal. Blue: predicted DC
signal from the sum I1 + I2. Red: predicted envelope of the interference signal
for full interference (see text for details). (c) zoom-in around zero detuning.

Recently, such techniques have been extended to also study QDs in solid-state
systems [165–168] and to measure the quantum phase shift induced by a coupled
QD-cavity system by analyzing the reflection intensity as function of output polar-
ization [145], or by interfering light reflected from the QD-cavity system with light
reflected from another piece of the sample [169]. In this Letter we present a homodyne
detection technique that enables simultaneous measurement of both coherence and
induced phase shift. The technique is relatively straightforward as it requires only
one scanning laser and it is mostly fiber-based. It provides complete coherence and
phase information as function of scanning laser detuning.

8.2 Setup and technique
The setup for the homodyne interference technique is schematically displayed in

Fig. 8.1 (a). Light from a scanning laser is first split into two paths with a fiber
beam splitter (FBS). One path (with intensity I1 ∝ |E1|2) is transmitted through the
QD–cavity system, while the other path (I2 ∝ |E2|2) is used as the local oscillator.
The two signals are combined using a FBS and the interference signal (I ∝ |E1 +
E2|2) is recorded. The sample under study is an oxide apertured micropillar with
embedded InAs self-assembled QDs, a system that combines QD charge and energy
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8.3. Charge neutral QD and power dependence

control, access to the intermediate coupling regime, and polarization degenerate cavity
modes [94, 96, 98–100, 170]. Access to the full polarization degree of freedom enables
us to use free space polarizing optics (Pol1 and Pol2) to set the input and output
polarizations. These are either set to be parallel, or the output is set at orthogonal
crossed polarization; we use a combination of a quarter wave plate and a polarizer to
compensate for the small amount of birefringence present in the sample. To match the
local oscillator polarization (Pol3) to the output polarization (Pol2), we use a coiled
fiber polarization controller. In our setup there is no need for active stabilization and
a single scan is recorded in typically a couple of seconds.

The signal after transmission through the sample is given by E1(t) =
E1 exp

(
iωt+ i2π∆x

c ∆f + iφ(f, t)
)
, where ω is the angular frequency, ∆f is the laser

frequency detuning, ∆x ≈ 10 m is the optical path length difference between the two
interferometer arms, c is the speed of light, φ(∆f, t) is the phase shift induced by the
QD–cavity system, and E1 is the transmission amplitude of the cavity. When this
signal is combined with the local oscillator E2(t) = E2e

iωt, the resulting interference
intensity I is given by:

I = I1 + I2 + 2
√
I1I2 cos

(
2π

∆x

c
∆f + φ(f, t)

)
. (8.1)

When the transmitted light is coherent, i.e. φ(∆f, t) = φ(∆f) does not vary in time,
I contains interference oscillations that are bounded by I± = I1 + I2 ± 2

√
I1I2. In

case of incoherent light, which can be interpreted as a rapidly varying phase φ(∆f, t),
no interference is present and I = I1 + I2.

In Figure 8.1 (b,c) we show the case for an empty cavity, where the transmitted
light naturally remains fully coherent. Also the polarization is not modified, and we
set Pol2 parallel to Pol1 and use a large intensity ∼ 10 µW that is recorded with a fast
photodiode instead of an APD. First, we record the reference signal I2 (green curve)
and the transmitted intensity I1 (not shown) separately; this enables us to predict
the DC signal I1 +I2 (blue curve) and the interference envelope I± = I1 +I2±2

√
I1I2

(two red curves). The grey curve shows the measured interference signal I. By low
pass filtering we obtain the DC signal IDC (black curve) that agrees well with I1 +I2.
The envelope of I agrees nicely to the independently measured calculated envelopes
(red curves), which is especially clear in the zoom-in around the cavity resonance in
Fig. 8.1 (c). It is worth pointing out that, even though I1/I2 ' 0.3, the ratio of the
maxima and minima of the interference fringes is much larger: I+/I− ' 12. This
demonstrates the beauty of interference and the strength of the technique to measure
the coherence of the transmitted light.

8.3 Charge neutral QD and power dependence
We now investigate the coherence properties of light scattered by a charge neutral

QD. The lowest excited states of a neutral QD are split in energy, due to electron-
hole interaction arising from QD anisotropy, and couple through orthogonally linear
polarized transitions with the ground state in a V-type system as is shown in the
inset in Fig. 8.2 (a). We prepare the input polarization at 45◦ with respect to the
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Figure 8.2: Coherence of the scattered light by a QD as function of laser cavity
detuning and injected power. (a) Scans for various laser powers. The input polar-
ization was set to 45◦ and transmission was recorded through a crossed polarizer
such that only the two fine-split QD transitions, see inset for a schematic, and
not the cavity are visible. The five curves show: I (grey), IDC (black), I1 + I2
(blue), I+ and I− (red 2×). (b) zoom-in of the 500 pW scan in (a). (c) Coherent
fraction determined as the ratio F = (Imax−Imin)/(I+−I−). (d) Coherent frac-
tion as function of laser power determined on the resonance of a QD transition
(blue vertical lines in (a,c)) and off resonance (green vertical lines). Red lines are
predicted curves using Eq. (8.2).
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8.3. Charge neutral QD and power dependence

polarizations of both transitions such that scattered light, with a polarization of 0◦

or 90 ◦, passes through the crossed polarizer set to -45◦; while the cavity background
transmission, of which the polarization is unchanged, is filtered out.

Figure 8.2 (a) shows the light scattered by the two transitions for various intensi-
ties. First I1 and I2 are recorded separately and I1 + I2 (blue lines) and the envelope
I+ and I− (two red lines) are calculated. The interference signal I is shown in grey
and the low pass filtered signal IDC is shown by the black line, which follows the blue
line. The interference signal I was Fourier-filtered with a bandpass filter centered at
the oscillation frequency to remove some noise. Figure 8.2 (b) shows a zoom-in of the
500 pW scan around the low frequency transition. A clear oscillation signal is visible,
with a coherent fraction, defined as the ratio F = (Imax − Imin)/(I+ − I−), where
Imax and Imin are the upper and lower bounds of the interference envelope, of about
0.6. This indicates that the scattered light is only partially coherent.

To investigate this further, we show in Fig. 8.2 (c) the calculated coherent fraction
as function of the laser detuning for various intensities. For a low power of 30 pW
it can be seen that the scattered light coherence is about 0.7, but this decreases for
increasing intensities. An additional structure of dips in the curve of the coherent
fraction becomes visible. This shows that the coherence decreases more rapidly at
the QD resonances (marked by the blue vertical lines), compared to the detuned case
(the green vertical line marks the center between the two transitions) due to the less
efficient off-resonant driving. We note that for increasing power the QD line shapes
become distorted and the fine splitting between transitions becomes smaller, due to
a dynamical charging effect as is explained in Ref. [171].

To analyze this power-dependency, we plot in Figure 8.2 (d) the coherent frac-
tion at the resonance and off the resonance of a QD transition as function of the
laser power. The fraction F of the scattered light that remains coherent follows the
relationship [172]:

F =
γ‖/γ⊥

1 + (P/Po)/(1 + ∆′2)
, (8.2)

where γ‖ and γ⊥ denote the population relaxation rate and the homogeneous dephas-
ing rate, respectively, P is the laser power, P0 is the saturation power, and ∆′ is
the detuning with respect to the QD linewidth. The scattered light is almost fully
coherent if the used power is small and γ‖ ≈ γ⊥, i.e. the pure dephasing is small. For
increasing power the coherent fraction decreases as the QD excited state population
builds up and incoherent emission increases. For frequencies detuned from the QD
resonance the effective driving rate becomes smaller and the effects gets reduced. We
show theoretical curves for γ‖/γ⊥ = 0.65, P0 = 6 nW, and ∆′ = 0 and ∆′ = 1.5 for
the on-resonance and off-resonance cases, which match the data well and demonstrate
the nonlinear QD saturation dynamics. The mean intracavity photon number 〈n〉 is
given by: 〈n〉 = Pout/κm~ω, where κm ≈ 11 ns−1 is the mirror loss rate, and the
maximum output intensity Pout = |t|2P is a function of the maximum transmittivity
|t|2 ≈ 0.09 and incident power P . A saturation power of P0 = 6 nW corresponds
to a mean intracavity photon number 〈n〉 ≈ 0.2, and sounds reasonable compared to
other work with efficient coupling to a single emitter [164]. The direct observation
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Figure 8.3: Incoherent scattered light from a singly-charged QD (X1−) that
suffers from fast decoherence. A linear input and a crossed output polarization
is used such that only light scattered by the circularly polarized QD transitions
is detected. (a) shows the interference signal I (grey), I1 + I2 (blue), and I+
and I− (red lines). (b) cross-polarized transmitted intensity I1 of the QD-cavity
system (green) and the determined coherence visibility (blue), showing that the
scattered is nearly fully incoherent (F < 0.05).

that γ‖/γ⊥ = 0.65 indicates that the QD lineshape is not lifetime limited and that
additional pure dephasing, such as spectral fluctuations or coupling to phonons, plays
a role.

8.4 Singly-charged QD
We now turn in Fig. 8.3 to a negatively charged QD that suffers from decoherence.

We use a linear input polarization such that only the light scattered by the circularly
polarized QD transitions passes through the crossed output polarizer. In Fig. 8.3 (a)
we show I1 + I2 (blue line) and the predicted envelope I+ and I− (red lines). The
interference signal I (grey line) now hardly shows oscillations. The calculated coherent
fraction, shown by the blue curve in Figure 8.3 (b), is less than 5%. This implies that
γ‖/γ⊥ � 1 and that the QD suffers from fast decoherence. The green curve in
Fig. 8.3 (b) displays the transmitted intensity I1; showing the red detuned QD, and
part of the cavity line shape due to the dispersive effect of the QD coupled to it.

The strong incoherent behavior was previously also investigated through high
resolution spectral and polarization resolved studies in Ref. [170]. Here among others
a larger homogeneous dephasing rate γ⊥ and smaller cooperativity C were observed
for the charged QDs compared to the charge neutral ones. The findings are attributed
to a fast co-tunneling process of electrons across the very small (20 nm) tunnel barrier
that separates the QD from a n-doped contact region. Our technique therefore serves
as a powerful QD characterization technique which will help to characterize future
sample improvements, such as utilizing a thicker tunnel barrier.

8.5 Phase shift
Finally, we show that from the obtained data we can also derive the quantum

phase shift induced by a single QD transition coupled to a cavity, which forms a
hallmark in cavity QED experiments [56, 145, 169, 173]. This phase shift φ(∆f),
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Figure 8.4: Phase shift induced by a QD–cavity system. (a) shows the trans-
mitted intensity I1 of a coupled QD–cavity system recorded at Plaser = 10 pW.
(b) shows the phase shift for an empty cavity for Plaser = 10 µW (upper curve)
and a coupled system for Plaser = 10 pW (lower curve). The lower curve is
displaced for clarity. Red lines in (a,b) are predicted curves for QD cooperativity
C = 0.4, QD depasing rate γ⊥ = 4 ns−1 and cavity total loss rate κ = 80 ns−1.
Green curves in (a,b) are predicted lines for an empty cavity.

see Eq. (8.1), can easily be extracted from the interference signal by analyzing the
oscillation in a rotating frame, which we realize in practice by multiplying the signal
with a complex exponent exp

(
i2π∆x

c ∆f
)

and applying a DC filter. We switch back to
a neutral QD and set the input polarization to match one of the fine split transitions
and now record the transmission with a parallel polarization. In Fig. 8.4 (a) we
display the transmitted intensity I1, showing the QD feature appearing as a dip
in the otherwise Lorentzian cavity lineshape. Figure 8.4 (b) shows the phase shift
induced by an empty cavity and by a coupled QD–cavity system. The red and green
curves are calculated based on a cavity QED model with no additional fit parameters
[37, 139, 170], and agree nicely to the data.

8.6 Conclusion
In conclusion, we have presented a technique that enables to determine the coher-

ence and phase of light that is transmitted through a coupled QD-cavity system. The
method is versatile as it only requires one scanning laser and is mostly fiber-based.
This technique is important for QD characterization studies and for fundamental tests
of cavity QED.

89



90


