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Chapter 6

Polarization degenerate solid-state cavity QED

A polarization degenerate microcavity containing charge-controlled quantum
dots (QDs) enables equal coupling of all polarization degrees of freedom of light
to the cavity QED system, which we explore through resonant laser spectroscopy.
We first measure interference of the two fine-split neutral QD transitions and
find very good agreement of this V-type three-level system with a coherent po-
larization dependent cavity QED model. We also study a charged QD that
suffers from decoherence, and find also in this case that availability of the full
polarization degrees of freedom is crucial to reveal the dynamics of the QD tran-
sitions. Our results pave the way for postselection-free quantum devices based
on electron spin–photon polarization entanglement.

M. P. Bakker, A. V. Barve, T. Ruytenberg, W. Löffler, L. A. Coldren, D.
Bouwmeester, and M. P. van Exter, Phys. Rev. B 91, 115319 (2015).

6.1 Introduction
Quantum dots (QDs) embedded inside microcavities are of interest for hybrid

optical-solid-state quantum information schemes [127, 128], and long-distance quan-
tum networks [13, 129]. A key ingredient is the realization of entanglement between a
QD-spin and a single photon. Several experiments have demonstrated this by utiliz-
ing spontaneous emission [6, 7, 130], but these methods require postselection and are
therefore not suitable for deterministic approaches. The need for postselection can
be eliminated by using the spin-dependent reflection or transmission of a photon by
a quantum dot in a cavity QED system. Several protocols have been proposed that
either require polarization degenerate microcavities in order to couple with circular
polarized light [112, 131], or would be aided in order to match more easily with linear
polarized transitions [132]. Further key system requirements are charge controlled
QDs and access to the Purcell or strong coupling regimes, which has been realized in
photonic crystal cavities [84] and micropillars [100]. Micropillars have the additional
benefit of mode-matching to external fields and polarization control of the cavity
modes [32, 82, 98, 99, 122, 133].

In this Chapter we report on a system exhibiting all these features, being a charge
controlled quantum dot coupled to a polarization degenerate micropillar cavity. The
microcavity consist of two distributed Bragg reflectors, a 3/4λ thick aperture region
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6. Polarization degenerate solid-state cavity QED
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Figure 6.1: (a) Schematic of the setup. Light is coupled into a microcav-
ity mode and the reflection and transmission spectra are recorded using single-
photon avalanche photodiodes. The elements with names between brackets can
be introduced for polarization analysis with either linear or circularly polarized
light. λ/2 (λ/4): half- (quarter-) waveplate. (b) Optical microscope image of a
sample and (c) Electron micrograph of the cavity region.

for transverse mode confinement, and a λ thick cavity layer, containing InAs self-
assembled QDs embedded inside a PIN-diode structure [98, 105]. By systematically
varying the size and shape of the oxide aperture, we were able to select on average
one polarization degenerate cavity (polarization splitting <3 GHz) out of an (6× 7)
array [96]. This technique could be combined with a technique to actively tune the
polarization properties by applying laser-induced surface defects [94], to enhance the
sample yield. We tune the QD transition through the cavity resonance by the quantum
confined Stark effect, induced by an applied bias voltage across the active region
[134, 135]. In principle this can be combined with other QD tuning techniques, such
as strain tuning [90, 95, 136], which would further increase the sample yield. Further
details on the sample structure and characterization can be found in the Appendix
6.5. The setup, an optical, and an electron microscope image of the sample are shown
in Fig. 6.1.

This system enables polarization resolved studies, which, as we will demonstrate,
provides insight in the excitonic coherence of the system. First we study the coherent
interaction of charge-neutral quantum dot transitions with resonant laser light and
give a theoretical description. Then we investigate a singly charged QD and study
its more complex dynamics, which we can describe with a second, decoherent model
where all spin-photon entanglement is lost.

6.2 Neutral quantum dot
The lowest energy levels of a neutral QD are depicted in Fig. 6.2 (e). Due to

the QD anisotropy, the electron-hole exchange interaction leads to a fine-structure
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6.2. Neutral quantum dot
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Figure 6.2: (a) Reflectivity measurement of two neutral QDs as function of
the scanning laser frequency and applied voltage. The incoming polarization
θin = 0◦, Plaser = 1 pW and λ ≈ 940 nm. Panel (b, c) show reflectivity and
transmittivity spectra of QD1 recorded at V = 0.725 V for various incoming
linear polarizations. Blue points: experimental data. Red line: fitted curve
using Eqs. 6.1 and 6.2. Grey curve: empty cavity, calculated from the fits.
Vertical dashed lines: frequencies corresponding to the two fine-split transitions.
(d) Transmittivity spectra when a crossed polarizer is used with respect to the
incoming polarization, relative to the maximum transmittivity of an uncoupled
cavity. The red line is calculated using Eqs. 6.1 and 6.2 and the parameters
obtained from the fits in (b, c). (e) Energy level diagram of the ground-state and
lowest energy excited states of a neutral QD.
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6. Polarization degenerate solid-state cavity QED

splitting of the excited states (∼ 3 GHz for the QD under study), the neutral ground
state is coupled to two excited states by two linear orthogonally polarized transitions.
In the resonant reflection measurements in Fig. 6.2 (a), the QD-cavity anti-crossing,
as a hallmark of strong to intermediate QD-cavity coupling, is clearly visible. Low
laser power (Plaser = 1 pW) is used in order to avoid saturation of the QD transition,
charging [137] and dynamical nuclear spin polarization effects [138]. Fig. 6.2 (b, c)
show reflection and transmission spectra for a voltage V=0.725 V, where QD1 is tuned
into resonance with the cavity. The spectra are recorded for three linear polarizations
that couple either with the low frequency QD transition (θin = 0◦), or the high
frequency QD transition (θin = 90◦), or both QD transitions (θin = 45◦).

For 0◦ and 90◦ polarization we observe that the quantum dot is able to restore high
cavity reflectivity with near-unity fidelity, but this effect appears to be reduced for 45◦.
Additionally we show spectra when a crossed polarizer is used in the transmission path
in Fig. 6.2 (d). We see that for 0◦ and 90◦ the light matches the natural polarization
axes of the QD and that this polarization is maintained, resulting in a very low
signal. For 45◦ incoming polarization the transmission is significant however. In the
following, we develop a theoretical model to gain insight into the dynamics.

The transmission amplitude through a cavity with a coupled two-level system is
given by [37, 133, 139]:

t = ηout
1

1− i∆ + 2C
1−i∆′

, (6.1)

where ∆ = 2(ω − ωc)/κ is the relative detuning between the laser (ω) and cavity
(ωc) angular frequencies, ∆′ = (ω − ωQD)/γ⊥ is the relative detuning between the
laser and QD transition (ωQD) and ηout is the output coupling efficiency. The device
cooperativity is C = g2/κγ⊥ where, κ is the total intensity damping of the cavity, γ⊥
is the QD dephasing rate and g is the QD-mode coupling strength. We obtain close
to perfect mode-matching, and therefore the total transmittivity through the cavity
is given by T = |t|2, and the total reflectivity is given by R = |1−t|2. A more detailed
description of Eq. (6.1) is provided in Appendix 6.6.

An important figure of merit of the QD-cavity system is the cooperativity param-
eter C. By fitting our model to the experimental data in Fig. 6.2 for θin = 0◦ and
θin = 90◦, we find C = 2.5±0.5, a value similar to previously reported [133]. We also
obtain γ⊥ = 2.0± 0.5 ns−1, which corresponds to a total dephasing time τ = 500 ps,
and total cavity damping rate κ = 77 ns−1, which corresponds to a quality factor of
Q ∼ 2.6∗104, see Appendix 6.6. Since γ⊥ < 2g = 39 ns−1 < κ, this places the system
in the intermediate coupling regime.

The lineshapes corresponding to an empty cavity can be calculated from the fitted
curves and are shown by the grey curves in Fig. 6.2 (b,c). The very small dependence
of the cavity resonance frequency on the polarization angle confirms the high degree
of polarization isotropy of this device.

To account for the fine-structure splitting of the neutral QD transitions in the
polarization-degenerate cavity, we write the transmission of the system in terms of a

Jones matrix t(ω) =

(
tx(ω) 0

0 ty(ω)

)
. The measured transmittivity therefore depends
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Figure 6.3: Resonant (a) reflection and (b) transmission spectroscopy with a
neutral QD (QD1 in Fig. 6.2) for θin = 45◦ and for various θout = θin + 90◦ +
∆θout. Blue dots: experimental data. Red lines: predicted curves using Eqs. 6.1
and 6.2 and the parameters obtained from the fits in Fig. 6.2 (b,c). Grey lines:
predicted curves corresponding to an empty cavity. Vertical dashed lines mark
the two transitions split by the fine-structure interaction.

on the input and output polarization as

tθout,θin(ω) = e†outt(ω)ein, (6.2)

where ei = (cos(θi), sin(θi)) defines the linear input/output (i =in/out) polarization
with angle θi. This model assumes that when the two transitions are excited simulta-
neously (θin = 45◦), coherence in the system is fully maintained leading to quantum
interference between the transmission amplitudes tx and ty. In an incoherent system
we would obtain a classical mixture of the excited states, making such interference
impossible. The reflectivity is calculated in a similar way by using rx/y = 1− tx/y(ω)
in the Jones matrix.

To further explore the validity of Eq. (6.2) and to demonstrate the full power
of polarization degenerate cavity QED, we show in Fig. 6.3 (a, b) reflection and
transmission spectra for θin = 45◦, while θout = θin + 90◦ + ∆θout is varied. For
∆θout = 0◦, the crossed polarizer condition, the transmission and reflection spectra
consist of two partially overlapping Lorentzian lines split by ∼3 GHz. The phase
difference between these two resonances becomes apparent for the ∆θout = +22.5◦

(−22.5◦) spectra, which can be seen as the coherent sum of the ∆θout = 0◦ and
the ∆θout = +45◦ (−45◦) spectra, where the latter only contains the high (low)
frequency transition. All the red curves in Fig. 6.2 and 6.3 are produced with the
same parameters for C, κ and γ⊥ and fit the experimental data very well. The results
demonstrate how in a polarization degenerate cavity the fine-split excited states of a

61



6. Polarization degenerate solid-state cavity QED

neutral QD can be simultaneously addressed in a coherent way. Furthermore, these
interference measurements hold great promise as a clever combination of ein and eout
can be used to tune the constructive or destructive interference between tx and ty.
This forms a generic technique to increase the ratio between an uncoupled and a
coupled cavity system, and thereby the fidelity of entanglement operations.

6.3 Singly-charged quantum dot
Now we turn to a different QD in the same polarization degenerate cavity, but

operated in a voltage regime around 0.9 V where it is singly negatively charged. This
system is of particular importance in quantum information as the optical transitions
are polarization degenerate (see Fig. 6.4 (a)), due to cancellation of electron-hole
exchange interaction, and enables coherent control of the resident electron spin if a
small in-plane magnetic field is applied. We first focus on Fig. 6.4 (b, c), which shows
transmission spectra when circularly (σ+) or linearly polarized light is coupled into
the cavity and transmitted light of the same (i.e., parallel) polarization is recorded.
We define the contrast as (|tc|2−T )/|tc|2, with the measured transmittivity T with a
QD and the calculated transmittivity |tc|2 without a QD. While for the neutral QD
case we found contrasts of > 91% in Fig. 6.2 (c), we now observe a strongly reduced
contrast of the QD resonance, which is ∼ 19% when circularly polarized light is used
and ∼ 26% for linear polarization.

We use a slightly larger laser power (Plaser = 10 pW) compared to the neutral QD
as we find that the charging effects are now significantly smaller, due to less absorption
of the resonant laser at this voltage. Furthermore, this intensity corresponds to a
mean intracavity photon number 〈n̄〉 = |t|2Plaser/(κm~ω) < 0.001, and is therefore
sufficiently small to prevent QD saturation effects from occurring.

In addition, we compared the cross-polarized transmitted intensity for circular and
linear polarized light. For circular (σ+ and σ−) polarization, shown in Fig. 6.4 (d),
we observe negligible transmission, indicating that circular polarization remains un-
changed. Surprisingly, for two linear orthogonal (lin1 and lin2) polarizations displayed
in Fig. 6.4 (e), we observe that about 10% of the light is transmitted relative to |tc|2,
despite the low cooperativity (see below).

We will first try to explain our observations with a coherent model, which we
adapt to the four-level system of a charged QD shown in Fig. 6.4 (a): The ground
state consists of the two spin eigenstates, oriented in the out-of-plane direction, which
couple with two corresponding trion lowest-energy excited states by degenerate cir-
cularly polarized optical transitions carrying spin σ± = ±1. We write t±1 ≡ t1 for
the corresponding transmission amplitudes of σ± polarized light coupling with a cor-
responding transition, and t±c ≡ tc for the case of an empty cavity. Since we do not
control the electron spin state it can be in any random state |φspin〉 = α |↑〉 + β |↓〉.
With the incoming photon state |φin〉 = γ |+〉+ δ |−〉, we obtain for the input quan-
tum state |Ψin〉 = |φin〉 ⊗ |φspin〉. The spin-selective interaction with the cavity-QD
system entangles the photon with the electron spin via

|Ψout〉 = t1γα |+ ↑〉+ tcγβ |+ ↓〉+ tcδα |− ↑〉+ t1δβ |− ↓〉 . (6.3)

We then project this output state onto the detected polarization |φout〉 = γ′ |+〉+
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Figure 6.4: (a) Energy-level diagram of a singly charged QD. Transmission
spectra for Plaser = 10 pW are shown for circular and linear polarization, ana-
lyzed with a (b) and (c) parallel or (d) and (e) crossed polarizer. The red-black
dashed line in (b) is a fit of Eq. (6.4) (coherent model, M1) to the data, which
yields the same result as Eq. (6.5) (decoherent model, M2). The red (black)
solid lines in (c) and (e) predict the experimental data using Eq. (6.4) [Eq. (6.5)].
Black (red) dashed curves: empty (coupled) cavity calculations.
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6. Polarization degenerate solid-state cavity QED

δ′ |−〉, and take the trace over the electron spin to obtain the projected transmission:

T = |t1γγ′ + tcδδ
′|2|α|2 + |tcγγ′ + t1δδ

′|2|β|2. (6.4)

Since we do not control the spin state we use |α|2 = |β|2 = 0.5 for the bal-
anced case. Note that this model (M1) is coherent in the sense that it still contains
interference between the t1 and tc terms.

The red through line in Fig. 6.4 (c) shows how model M1 fits our data for the
optimum cavity-QD coupling and QD dephasing parameters C = 0.13 and γ⊥ = 9.5
ns−1. The dephasing rate can not be explained by the decay rate of the excited
state, since lifetime measurements showed this to be about 1.2 ns. Instead, we at-
tribute this much faster dephasing rate to an efficient cotunneling process across the
20 nm electron tunnel barrier, which is expected to be more pronounced for the flatter
conduction band here compared to the neutral QD case presented before. This fast
dephasing also reduces the cooperativity, which, however, might also be reduced due
to low spatial overlap between the QD and the cavity mode. We expect that utilizing
a thicker 35 nm tunnel barrier will decrease the cotunneling process and enable high
fidelity spin state preparation [107].

Next we consider the linear-polarization data shown in Fig. 6.4 (c,e), where the
model prediction is shown by red lines. Eq. (6.4) predicts that purely circular polar-
ized light should pass the cavity unmodified, and can therefore be fully blocked by a
crossed polarizer (γγ′ = δδ′ = 0), which is indeed what we observe experimentally in
Fig. 6.4 (d). Significant discrepancies between the data and our model are however
observed in Fig. 6.4 (c) and in (e) particularly, where the cross-polarized transmission
signal for linear-polarizations lin1 and lin2 is much larger than expected. This can
not be caused by an energy splitting, or phase difference, between the two transitions,
as these splittings would have been visible in the data. Furthermore, the observed
cross-polarized transmission is so large that it would require C > 0.8 in Eq. (6.4) to
explain the cross-polarized transmission in Fig. 6.4 (e), while we found C = 0.13 for
the fit in Fig. 6.4 (b).

This result therefore indicates that additional dephasing processes take place that
project linear polarized light on the preferred circular basis of the QD transitions.
The preference for this basis is known from literature Refs. [71, 107, 140] and is
experimentally demonstrated by the fact that circular polarized light remains circular
polarized after the interaction with the QD–cavity system. If the absorption and re-
emission of linear light would be a fully coherent process, the linear polarization
should largely remain, which is clearly not the case in Fig. 6.4 (e).

To model the results, we now introduce a tentative model (M2) that describes
the spin-exciton system as if it were fully decoherent, meaning that any light inter-
acting with the QD is instantaneously projected on the QD transition polarization
basis. This corresponds to immediate decoherence of the entangled state described
by Eq. (6.3) and elimination of interference between the t1 and tc terms in Eq. (6.4).
Since only a fraction of the light that enters the cavity becomes entangled with the
QD spin state, we first need to calculate the fraction of the light that did not inter-
act. We estimate this fraction T0 by multiplying the cavity transmission with the QD
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6.4. Conclusion

response function: T0 = |tc|2 × | 1
1+ 2C

1−i∆′
|2. The intensities of the circularly polar-

ized components of the transmitted light that interacted with a parallel or opposite
electron spin are now given by T ′1 = |t1|2 − T0 and T ′c = |tc|2 − T0, respectively.

The total transmitted intensity corresponds now to the incoherent sum of five
transmission channels:

T = T0| 〈φout|φin〉 |2 + T ′1|γα 〈φout|+〉 |2 + T ′c|δα 〈φout|−〉 |2

+T ′c|γβ 〈φout|+〉 |2 + T ′1|δβ 〈φout|−〉 |2.
(6.5)

The transmission predicted by the incoherent model (M2, Eq. (6.5)) and coher-
ent model (M1, Eq. (6.4)) are equivalent in case of circular incoming polarization
(Fig. 6.4 (b,d)). They differentiate however in case of the linear-polarization data in
Fig. 6.4 (c,e). The solid black curves predicted by the incoherent model (M2), based
on the parameters deduced from Fig. 6.4 (b), agrees very well while the coherent
model (M1) does not.

While the polarization degenerate microcavities enables systematic polarization
analysis and the identification of a high degree of decoherence in the charged QD
system, the exact origin of decoherence is not known to us. We think it is related to
the cotunneling process and future sample designs with thicker tunnel barriers will
resolve this issue.

6.4 Conclusion
In conclusion, we have demonstrated a polarization degenerate solid-state cavity

QED system with charge control, which allows full use of all polarization degrees of
freedom. Here, simple polarimetric reflection and transmission measurements enable
the study of the coherence properties of the coupled QD–cavity system, for neutral
and charged quantum dots. This is an important advance for fundamental studies
of spin dynamics and optical interactions in solid-state cavity QED systems, and an
important step towards quantum information applications with single electron and
hole spin qubits, and postselection-free spin–photon polarization interaction.

6.5 Appendix A: Sample structure and characterization
The sample under study has been grown by molecular beam epitaxy on a GaAs

[100] substrate. Two distributed Bragg reflectors (DBR) surround an aperture region
and a λ thick cavity region containing in the center InAs self-assembled quantum
dots (QDs). The top DBR mirror consists of 26 pairs of λ/4 layers of GaAs and
Al0.90Ga0.10As, while the bottom mirror consists of 13 pairs of layers of GaAs and
AlAs and 16 pairs of GaAs and Al0.90Ga0.10As layers. This way the reflectivities
of top and bottom mirrors are matched in order to enable transmission and reflec-
tion measurements and optimize the incoupling efficiency. The oxidation aperture
consists of a 10 nm AlAs layer embedded between 95 nm Al0.83Ga0.17As and 66 nm
Al0.75Ga0.25As layers, providing a linearly tapered oxidation upon wet oxidation. The
QDs are separated by a 20 nm GaAs tunnel barrier to n-doped GaAs (Si dopant, con-
centration 2.0 × 1018 cm−3) and by a 107 nm GaAs to p-doped GaAs (C doping,
concentration 1.0× 1018 cm−3).
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Figure 6.5: Spatial PL scans of the Hermite-Gaussian modes, where (a) is the
fundamental mode Ψ00 and (b,c) the first order Ψ10/Ψ01 modes. Light: more
PL counts. The captions denote the wavelength λ00 of the fundamental mode,
or the wavelength splitting ∆λ10/01 = λ00 − λ10/01.

By analyzing the confined optical modes and the wavelength splitting between
the fundamental and first order optical modes, an estimation can be made of the
maximum Purcell factor and the numerical aperture (NA) of the fundamental mode.
A high Purcell factor is necessary to observe QD couplings close to the strong coupling
regime, while a modest NA enables perfect mode-matching to external fields.

To characterize the optical properties of the confined modes, the sample is excited
using an 852 nm laser diode and photoluminescence as function of position is recorded
using a spectrometer. Hermite-Gaussian modes are clearly identified in Fig. 6.5.
Following methods described in [103] we calculate the mode volume V using:

V = Lcav
λ3

00

8πn2
0

√
∆λ01∆λ10

, (6.6)

where Leff ≈ 5λ00/n ≈ 1.4 µm is the effective cavity length, λ00 = 940.48 nm is the
wavelength of the fundamental mode in vacuum, n ≈ 3.25 is the average refractive
index, and ∆λ01/10 are the mode splittings between the Ψ01/10 modes and the Ψ00

mode. Filling in the experimentally obtained values for the modesplitting, we obtain
V = 2.2 µm3. The expected maximum Purcell factor P is given by:

P =
3

4π2
(
λ00

n0
)3Q

V
, (6.7)

where Q = 2.6 ∗ 104 is the quality factor measured during the resonant spectroscopy
scans. Using the above mentioned values we find P = 22. The intensity of the
fundamental mode, perpendicular to the propagation direction ẑ, has the form: I ∝
exp[−2( x

2

w2
x

+ y2

w2
y
)], where wx/y = 1

n0π

√
λ3

00

2∆λ10/01
is the mode waist. The numerical

aperture of the Gaussian beam originating from the fundamental mode is given by
NAx/y = sin( λ00

πWx/y
), which gives NAx = 0.18 and NAy = 0.25. The NA of the used

objective 0.4, enabling perfect mode-matching.
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6.6. Appendix B: Complete description of the transmission amplitude

6.6 Appendix B: Complete description of the transmission amplitude
The transmission amplitude through a cavity with a coupled QD is given by

[37, 133, 139]:

t = ηout
1

1− i∆ + 2C
1−i∆′

, (6.8)

where the parameters are defined in the main text. We will here quantify the role
of losses and its effect on the out-coupling efficiency ηout = 2κm

κ , defined as the
probability that a photon in the mode will leave the cavity through the top or bottom
mirror. Here κm is the damping rate of each Bragg mirror, κs is the scattering and
absorption rate inside the cavity, and κ = 2κm + κs is the total cavity intensity
damping rate. Furthermore κm = Tmirror/tround, where Tmirror is the transmittivity
of a single mirror and tround = 2nLcav/c is the cavity round trip time. n is the average
refractive index, Lcav ≈ 5λ/n is the effective cavity length, c is the speed of light and
λ ≈ 940 nm is the wavelength in vacuum.

The mirror damping rate κm ≈ 11 ns−1 is calculated from the sample design
parameters. Three observations consistently yield κs ≈ 55 ns−1: (i) the measured
quality factor Q ≈ 2.6× 104 is lower than Q = 9.1× 104 as determined by the mirror
transmittivity Tmirror = 3.4∗10−4 and cavity length, and corresponds to κ = 77 ns−1,
(ii) the minimum reflectivity of the empty cavity Rmin

Rmax
= |1 − ηout|2 ≈ 0.5, and (iii)

the maximum transmission Tmax = |ηout|2 ≈ 0.08, (not taking into account a ∼ 30%
reflectivity at the GaAs to air interface at the back of the sample). We attribute
this scattering rate κs to (spectrally broad) absorption losses in the doped layers and
scattering by the oxide aperture. Reducing κs, for example by using a lower doping
concentration, is a major concern in future sample designs.

Finally we will comment on the case of non-perfect mode matching. The total
transmission T through the cavity is then given by T = ηinηT |t|2, where ηin is the
in-coupling efficiency and ηT is the collection efficiency at the transmission port. The
total reflection is given by R = ηR|1− ηint|2, where ηR is the collection efficiency at
the reflection port. In case of perfect mode matching ηin = ηR = ηT = 1.
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6. Polarization degenerate solid-state cavity QED
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Figure 6.6: Lifetime measurements on an ensemble of QDs. (a) shows a
colormap of the photoluminescence (PL) as function of wavelength and volt-
age. (b) shows lifetime traces for three voltages. Red lines are fit using
y = A exp(−t/T1) + B. (c) displays a colormap of the normalized PL inten-
sity as function of time and bias voltage (logarithmic scale). (d) shows lifetimes
T1 determined from fits as function of voltage for three different pump laser
(λ = 850 nm) intensities.

6.7 Appendix C: Lifetime measurements
Lifetime measurements were performed in order to investigate to what extent the

recorded homogeneous dephasing rates of the QD are lifetime limited or if additional
pure dephasing plays a role. The homogeneous dephasing rate is given by: γ⊥ =
γ‖+γ∗, where γ‖ is the population relaxation rate, and γ∗ is the pure dephasing rate.
The homogeneous dephasing time T2 is related to the population decay time T1 and
the pure dephasing time T ∗2 through: 1/T2 = 1/2T1 + 1/T ∗2 , where the factor 2 arises
because T1 refers to a population decay rate while T2 refers to an amplitude decay
rate. In the following we present lifetime decay measurements in order to determine
T1.

We switch to the region around where the top metal contact is applied, as here
the top DBR is largely etched away and a low Q cavity is present. The sample is
excited with a pulsed Ti:sapphire laser (∼80 MHz, λ = 850 nm). We first record
photoluminescence (PL) of an ensemble of QDs shown in Fig. 6.6 (a). The QDs are
charge neutral in the voltage range 600-850 mV and become charged for voltages
> 850 mV. We then switch to lifetime measurements and detect the PL with an
‘ID Quantique ID100-MM50’ avalanche photodiode, with a timing jitter of about 100
ps, and analyze this with a ‘Becker & Hickl SPC330’ time-correlated single photon
counter card.

Figure 6.6 (b) shows individual lifetime traces recorded at different voltages. Fits
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6.7. Appendix C: Lifetime measurements

(red lines) are applied using y = A exp(−t/T1)+B. Reasonable fits are obtained which
could probably be further improved around t = 0 ns by taking the response function of
the APD into account. In Fig. 6.6 (c) we show a colormap of the PL counts as function
of time and voltage, normalized by the number of counts at t = 0 ns. In Fig. 6.6 (d)
we display the lifetimes T1 determined from such fits as shown in Fig. 6.6 (b). Small
variations in the lifetimes are visible for increasing pump intensities, possibly arising
from QD saturation and biexciton decay effects. The maximum lifetime of the QDs
is around 750 mV, in the voltage regime where the QDs are charge neutral. For
smaller voltages, and thus increasing electric field in the out-of-plane direction, the
lifetime decreases as fast non-radiative tunneling processes become more dominant.
For larger voltages and decreasing electric field the lifetimes slightly decreases. The
electron and holes are now less separated which results in a larger oscillator strength,
as this is proportional to the square of the vertical components of the electron and
hole wave functions. The lifetime for the charge neutral QDs determined from the
fits is approximately T1 = 1.7 ns at 750 mV, and for the singly-charged QDs T1 = 1.2
ns at 900 mV.

For the neutral QD we found from the resonant scanning laser fits γ⊥ = 2.0± 0.5
ns−1, while a value of γ‖ = 1/2T1 = 0.3 ns−1 would be expected if the line shape
were transform limited. This indicates that the pure dephasing rate γ∗ ≈ 1.7 ns−1,
which could be related to charge or nuclear spin noise, or coupling to phonons. For
the single-charged QD γ⊥ = 9.5 ns−1 and T1 = 1.2 ns, which implies that the pure
dephasing rate is γ∗ ≈ 9.1 ns−1. This indicates that for the trion pure dephasing
processes take place that occur much faster compared to the charge neutral QD, and
we hypothesize this is related to a co-tunneling mechanism.
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