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6
S H E A R F R O N T S I N R A N D O M S P R I N G
N E T W O R K S

As discussed in the introduction, a disordered network of har-
monic springs constitutes another interesting model for fragile
matter, where the loss of rigidity is a collective phenomenon. In
this chapter, we turn to the study of this model by subjecting
a two dimensional random network of harmonic springs (not
coupled to any other local source of fluctuations) to a constant
influx of energy, by shearing one of its edges at a uniform rate.
We will then study the response of the network by following the
evolution and propagation of the resulting shear excitations.

We construct computer models of weakly connected two di-
mensional random viscoelastic networks from highly compress-
ed jammed packings of frictionless poly-disperse disks. One
first identifies the disk centers as point particles (network nodes)
and then models the interactions between overlapping disks us-
ing two sided harmonic springs of varying rest length to elim-
inate any pre-stress existing in the original jammed packings.
The result is a highly coordinated (z ≈ 6) spring network that
serves as the seed from which families of networks with a wide
range of z are generated by removing springs. See, Fig. (6.1).

Once the networks are generated, we shear the left most edge
at a constant speed v0, and follow the evolution of the resulting
shear velocity profile by averaging out the longitudinal parti-
cle speeds over bins along the x direction effectively creating
a one dimensional front profile propagating in the x direction.
Note here, it is useful to express the rate of shearing in terms
of dimensionless parameter, that we define as the strain γ = v0

vf
,

where vf is the speed of propagation of the front. In the fol-
lowing discussions, we will find two distinct regimes of shear
front propagation - a linear regime for γ < γc and a non-linear
regime for γ > γc, where γc is the critical strain, to be defined
later.

The dynamics is obtained by numerically integrating New-
ton’s equations of motion (using the velocity Verlet method)
subject to Lees-Edwards boundary conditions in the y-direction
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72 shear fronts in random spring networks

Figure 6.1: From a jammed packing of soft frictionless disks (left),
we identify the disk centers with point nodes and model
the interaction between overlapping disks as harmonic
springs (middle). We then remove springs to obtain an
ensemble of disordered spring networks with the desired
coordination number (right).

and hard walls in the x-direction *. The samples are composed
of up to N = 105 identical particles with mass m. In addition
to the Hookean interaction (with a spring constant k) between
connected particles, i, j, we include the effects of viscous dissi-
pation: ~fijdiss = −b(~vi −~vj), where b is the microscopic damping
constant, and ~vi,j are the velocities of a pair of particles con-
nected by a spring. Time is measured in units of

√
m/k and

the damping constant in units of
√
km, which is equivalent to

setting m = 1 and k = 1. Lengths are measured in units of d
the mean spring length at rest.

6.1 linear regime

6.1.1 Early time

In the inset to Fig. (6.2), we plot the resulting velocity field
(normalized by the shearing rate v0) for times less than a critical
transition time , i.e., t < tc. Notice, the velocity field simply
broadens away from the shearing edge that is located at x=0,
while remaining centered there. Thus, in this regime, we do
not observe any propagating shear fronts.

In the main panel of Fig. (6.2), we plot the width w(t) of the
velocity field as a function of time t. Expectedly, the width in-

* A hard wall can only move up and down as a whole, but no relative motion
of the particles is allowed.



6.1 linear regime 73

Figure 6.2: The main plot shows the time evolution of the squared
front width, whereby the time axis has been normalized
by tc ∝ ∆z−2 and the width axis by ∆z2.9. The inset shows
the broadening at early times, t < tc, of the velocity pro-
files, v(x, t), in the ŷ direction, normalized by v0. Note the
absence of front propagation, in contrast with the plot in
the left inset of Fig. (6.3).

creases with time. At early times we find that w2dz3 ∼ (tdz2)
3
2 ,

implying, a super-diffusively increasing width:

w2(t) ∼ t
3
2 . (6.1)

However, at later times (t > tc), there is a transition to a new
regime where the width increases diffusively,

w2(t) ∼
t

dz
. (6.2)

Recall, particle diffusion in a medium can be characterized
by a diffusion constant defined from the mean square displace-
ment as:

〈r2(t) − r2(0)〉 = Dtξ, (6.3)

where, r(t) is the displacement, D is a characteristic diffusion
constant and ξ is an exponent characterizing the nature of dif-
fusion. If ξ = 1, we are in the regime of normal diffusion where
the mean square displacement increases linearly with time and
is consistent with the late time dynamics that we observe in Fig.
(6.2) and Eq. (6.2). By contrast, a ξ different from 1 is considered
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anomalous diffusion, with ξ < 1 being referred to as the sub-
diffusive regime and ξ > 1 as the regime of super-diffusion.
From Eq. (6.1), we find that a ξ = 3

2 characterizes the broaden-
ing of the velocity field at early times.

In the super-diffusive regime, Eq. (6.3) can also be interpreted
in the form

〈r2(t) − r2(0)〉 = D(t)t, (6.4)

with a diffusivity that depends upon time ,i.e., D(t) = Dtξ−1

(see also Chapter 4). If ξ > 1, this implies that the diffusiv-
ity will continue to increase with time. However, we note from
Fig. (6.2) that beyond a transition time tc we enter the regime
of normal diffusion that has a constant diffusivity. Thus, if we
imagine that this transition process physically corresponds to
a diffusivity that increases with time until it saturates to a con-
stant value 1

dz (from Eq. (6.2)), we find the transition time,

Dtξ−1 ∼
1

dz
(6.5)

t ∼

(
1

dz

) 1
ξ−1

. (6.6)

For ξ = 3
2 ,the transition time is therefore

tc ∼
1

dz2
. (6.7)

This explains the choice of normalization used in the axes of
Fig. (6.2). Note, the critical transition time is exactly the critical
time for transition from the so called non-quasistatic regime to
the quasi-static regime, first studied for visco-elastic random
spring networks using linear oscillatory rheology [4].

In the context of the transverse velocity field studied here,
physically, the transition time represents the time required for
the front width to increase to a large enough length scale so that
wave numbers characterizing the front discontinuity only con-
tains low frequency components and the network response can
then be described by frequency independent elastic constants.
The length scale up to which anomalous diffusion persists is
then

lc ∼ t
3
4
c ∼

1

dz
3
2

. (6.8)

This length scale can therefore be associated with the charac-
teristic size of the network beyond which its response can be
considered elastic, as we will see in the next section.
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6.1.2 Late Times

At late times (for t > tc), along with the transition to a regime
where the width spreads diffusively, we also find the onset of
front propagation, see inset to Fig. (6.3), with a speed that is
characteristic of the network shear modulus. As discussed in
the introductory chapter, for random spring networks near the
rigidity transition critical point, the shear modulus scales lin-
early with the excess coordination number G ∼ dz. In Fig. (6.4),
we extract from the speed of front propagation, the correspond-
ing shear modulus via the relation cs ∼

√
G, and plot it as a

function of dz, finding very good agreement with the expected
scaling.

In addition, in Fig. (6.5), we extract the width of the propa-
gating shear fronts as a function of dz (after normalizing out
the diffusive spreading in time seen in Fig. (6.2). As anticipated
from the relation Eq. (6.2), we find a width that diverges with
the excess coordination number w2 ∼ 1

dz . Conversely, from the
width of the propagating fronts we can define a transport coef-
ficient, that we call the effective viscosity of the network ηe ∼ 1

dz .
Phenomenologically, this amounts to a second order equation
of motion for the transverse y- displacement field of the form

ρ
∂2y

∂t2
= G

∂2y

∂x2
+ ηe

∂3y

∂x2∂t
. (6.9)

In turn, this equation can be derived from a visco-elastic stress-
strain relation of the form:

σ = Gγ+ ηeγ̇, (6.10)

where γ = ∂y
∂x . Thus, for t > tc, the network response can be

effectively described by time independent (or frequency inde-
pendent) characteristic storage (G) and loss (ηe) moduli. As dis-
cussed in the introductory chapter, this is consistent with the
recent studies that probe random visco-elastic spring networks
by imposing a linear frequency dependent strain at the bound-
aries (oscillatory rheology), where the response of the networks
in the quasi-static regime (for frequenciesω < ωc ∼ dz2) is char-
acterized by frequency independent storage modulus G ∼ dz

and a frequency independent loss modulus η ∼ 1
dz . By con-

trast, forω > ωc, the complex moduli are frequency dependent.
See Supplementary information F for more details, including a
derivation of the velocity profiles in the frequency dependent
regime.
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Figure 6.3: Shape of the linear wave profile. In the main plot, velocity
profiles for different ∆z are superimposed, with the small-
est ∆z corresponding to the widest profile. The damping
coefficient is b = 0.1 and the time is chosen such that the
wave has roughly reached the center of the sample. The
left inset shows the wave front for ∆z = 0.15 (same color
as main plot) for different times. In all plots, data points
are (averaged) profiles from the simulation and the solid
lines are fits to analytical solution [9].

6.2 non-linear regime

For large strain rates i.e., γ > γc the network response changes
substantially, see Fig. (6.6). Compared to the inset in Fig. (6.2),
we now find that even at early times, a well defined front prop-
agates. At the same time, the front width continues to increase
super diffusively with the same exponent ξ = 3

2 as seen in the
linear regime. However, unlike the case for γ < γc where we
found a cross-over to ordinary diffusion for times t > tc, we no
longer observe such a transition in the non-linear regime dur-
ing the entire times probed in our simulations, see Fig. (6.7).

For a qualitative understanding of this network response for
large strains, consider first, the one dimensional diffusion equa-
tion :

∂u

∂t
= D

∂2u

∂2x
. (6.11)

Let us impose a field of the form u = u0e
i(kx−ωt). The solution

is:

u = u0e
(−ttr )eikx, (6.12)
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Figure 6.4: The shear modulus G versus ∆z extracted from the speed
of the linear front propagating in a homogeneously cut
network.

where we have defined a response time tr

tr =
1

Dk2
. (6.13)

This implies that for large wave numbers (or small wavelength
fluctuations), the response time for their decay is very small.
However, at such short time scales, the continuum diffusion
equation Eq. (6.11) should no longer be a good approximation
to the physical processes since the diffusion equation is gener-
ally associated with the long wavelength and long time proper-
ties of the medium. In fluids for instance, one way to account
for the short time response of the fluid is to introduce a dif-
fusion kernel (memory function) [69]. Similarly, the anomalous
wavenumber dependent viscosity that we observed in the quasi-
equilibrium state of amorphous packings (see Chapter 4) is also
related to the inability of fluids in low dimensions to respond
instantaneously to fluctuations. Since the transport properties
(such as diffusivity, viscosity, conductivity) are long time inte-
grals of correlation functions, their time dependence typically
correspond to correlation functions that do not decay exponen-
tially but have a long time power law tail.

Similarly for the random spring networks, we find that their
initial response in the linear regime is marked by a diffusivity
that is time (frequency) dependent. Only when the diffusion
causes the width to grow to large enough length scales of the
order of lc (small wave numbers), do we find a transition to a
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Figure 6.5: The main panel shows numerical data for the rescaled
width w̃ ≡ w(t)√

t
(or equivalently the effective viscosity

ηe) versus ∆z (dots) for homogeneously cut networks with
b = 0.1. The solid line represents the scaling w̃ ∝ ∆z−

1
2 .

Figure 6.6: Evolution of a non-linear ( γγc
= 6.8) wave front for ∆z ≈

0.15. Late times t∆z2 > 10 are indicated by full circles.
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Figure 6.7: Time dependence of the widths in the non-linear regime.
Different colors correspond to different ∆z, as in the plot
on the left. The full symbols correspond to the non-linear
regime with 1.5 < γ

γc
< 680. The open symbols correspond

to the linear regime
(
γ
γc
< 10−3

)
.

regime where the transport process with a constant diffusivity
may be defined. However, why is this regime not attained when
the strain rates are large ?

Intuitively, for large strain rates, Eq. (6.11) is expected to be
modified to include non-linear corrections of the form:

∂u

∂t
+ κ

∂un

∂x
= D

∂2u

∂2x
, (6.14)

where n is the index of non-linearity.
Consider the simplest non-linear term with n = 2 (such as in

the Navier-Stokes equation without a pressure gradient term).
How does this term respond to a perturbation of the form :
u = u0cos(kx), that we considered previously. To leading or-
der, we find u2 = u20cos2kx and upon differentiating once with
respect to the spatial variable x, we find a new term of the
form u20sin(2kx) with a wavenumber 2k. Once a perturbation
with larger wavenumber is generated, the non-linear term re-
sponds again to this new perturbation, by generating another
higher wavenumber, and this process thus keeps repeating, lim-
ited only by the largest wavenumber physically supported by
the medium or by other dissipative processes. Thus, one effect
of the non-linear term is that it acts as a source term that gen-
erates higher wavenumbers. This mechanism is similar to the
generation of smaller and smaller eddies in the study of turbu-
lence, where large wavenumbers represent the smaller eddies
that are eventually dissipated by thermal processes, such as the
one encapsulated in Eq. (6.13).
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Thus, if the response of random spring networks at high
strain rates is non-linear, then one effect of the non-linearity
would be to act as a source for higher wave numbers. However,
Eq. (6.13) also indicates that due to the generation of the higher
wave numbers, the network will have to keep responding at
short time scales to diffusive these fluctuations away. This, in a
sense is the physical process modelled by Eq. (6.14). However,
at short time scales, the response of random spring networks is
no longer in the quasi-static regime with a constant diffusivity
D and therefore, the non-linearity constantly forces the system
to remain in the regime with a time dependent diffusivity. By
contrast, in the linear regime, once the higher wave-numbers
inevitably generated during the early phases of the network
response (due to the sharper front discontinuities) have been
dissipated away, the network gradually enters the regime of
quasi-static visco-elastic response with constant material prop-
erties.

Is there a distinctive signature of the kind of non-linearity
present in our system ? As remarked in the introductory chap-
ter, a non-linear response could lead to the generation of non-
linear fronts, whose speeds depends upon the applied strain. In
the main panel of Fig. (6.8), we plot the normalized front speed
vf/c versus the normalized strain rate, γ/γc for the random net-
works at various values of ∆z . For γ � γc, we find vf ∝ γ

1
2 .

Thus, we find a non-linearity index n = 2. This index is consis-
tent with the findings in reference [2], where close to the critical
point, the stress response of random spring networks was seen
to take the form

σ = Gγ+ κγ|γ| (6.15)

In the strongly non-linear regime, differentiating once with re-
spect to spatial coordinate x (ignoring the term Gγ), we can
write the continuum equation of motion

∂σ

∂x
= ρ

∂2y

∂t2
, (6.16)

where y is the shear displacement. Using Eq. (6.15), we obtain
the non-linear equation

∂2y

∂t2
=
κ

ρ

∂γ2

∂x
. (6.17)
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Figure 6.8: In the main panel, the normalized front velocity, vf/c, is
plotted as a function of the normalized strain γ/γc for a
range of ∆z. For γ/γc � 1, the front speed vf is inde-
pendent of the applied strain and corresponds to the lin-
ear speed of sound c. In the strongly non-linear regime
γ/γc � 1, the front speed is independent of ∆z and scales
with the applied strain as vf ∝ γ

1
2 (straight black line). The

solid curve is plotted using the relation vf =
(G20+knl

2γ2)
1
4

√
ρ .

The inset compares the solid curves from the main plot

to the alternative relation ṽf =
√
c2 + knlγ

ρ (dashed lines),
clearly favouring vf over ṽf.
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Differentiating once more with respect to x and noting that γ =
∂y
∂x , we arrive at the second order non-linear wave equation:

∂2γ

∂t2
=
κ

ρ

∂2γ2

∂x2
. (6.18)

Comparing the two terms dimensionally, we can define a char-
acteristic speed

vf ∼

(
κγ

ρ

)1
2

. (6.19)

In the strongly non-linear regime where the network response
persists in the non-quasistatic regime with a front width that
spreads super-diffusively, vf is the only characteristic speed in
the system. In essence, this is reminiscent of the effective sound
speed we found in Chapter 4, where the effective sound speed
depends upon the initial solitary wave energy as c ∼ E

1
10 . Since

the solitary wave amplitude is related to the energy as E ∼ A2,
the only characteristic speed in that medium was c ∼ A

1
5 . Con-

sequently, one way to understand the response of the random
spring network in the strongly non-linear regime is as a simple
advection of the super-diffusive fronts with the characteristic
speed vf.

More-over, the critical strain for the transition from linear to
non-linear regime can be obtained by comparing the two terms
on the right of Eq. (6.15),

γc ∼ dz. (6.20)

In the main panel of Fig. (6.8), we do find a good collapse of the
data, where strains have been normalized by the critical strain
Eq. (6.20). Note also, for γ < γc and at later times, the front
speed is simply the speed of linear sound c ∼

√
G. Although

the dynamics in the intermediate regime γ ∼ γc is complex, we
do find well defined front propagation and indeed find a good
collapse of the data for the front speed by the expression

vf =

(
G2 + κ2γ2

)1
4

√
ρ

(6.21)

that correctly captures the asymptotic front speeds.


