
Solitary Waves and Fluctuations in Fragile Matter
Upadhyaya, N.

Citation
Upadhyaya, N. (2013, November 5). Solitary Waves and Fluctuations in Fragile Matter.
Casimir PhD Series. Retrieved from https://hdl.handle.net/1887/22138
 
Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/22138
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/22138


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/22138 holds various files of this Leiden University 
dissertation. 
 
Author: Upadhyaya, Nitin 
Title: Solitary waves and fluctuations in fragile matter 
Issue Date: 2013-11-05 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/22138
https://openaccess.leidenuniv.nl/handle/1887/1�


5
S O L I TA RY WAV E I N F L U C T U AT I N G
B A C K G R O U N D

In linear elastic solids, phonons are the basic mechanical exci-
tations responsible for energy propagation. By contrast, as dis-
cussed in the previous chapters, an aggregate of macroscopic
grains just in contact with their nearest neighbours constitute
a novel elastic material where solitary waves or shocks replace
phonons as the basic excitations [32, 49, 26]. The origin of these
strongly non-linear waves can be traced to the fact that, unlike
the case of harmonic springs, the repulsive force between two
grains in contact does not depend linearly on the relative com-
pression. So far, little effort has been directed to determine the
fate of these strongly non-linear excitations in a background of
thermal fluctuations because temperature is clearly not a pa-
rameter relevant to the elastic response of macroscopic grains.

However, as we saw in chapter 4, an impulse excitation atten-
uates as it propagates through a two dimensional amorphous
packing and interacts with the inhomogeneities. In turn, the ag-
gregate of grains get effectively thermalized by the energy that
leaks away from the solitary wave and the final state of the pack-
ing changes to a fluid-like state, suggesting the notion of a gran-
ular analogue of temperature. Unlike a system truly in thermal
equilibrium, this new state is at best categorized as a quasi-
equilibrium state since an analogous fluctuation-dissipation me-
chanism to maintain the state of equilibrium is so far not known
to exist.

Notwithstanding, granular aggregates at zero pressure are
just one example of a broader class of materials that can be
prepared in a unique mechanical state called sonic vacuum [32].
Grafted colloidal particles [50] and ultra-cold atoms in optical
lattices [51] are microscopic systems that allow for tunable non-
linear interactions, while being naturally coupled to a source
of fluctuation (thermal or quantum). Much like the granular
analogue of temperature, these fluctuations restore rigidity and
generate long wavelength phonon modes [52, 38]. However, the
physics of very high amplitude strain propagation is still pre-
dominantly non-linear and resembles the state of sonic vacuum
perturbed by background fluctuations. This extreme regime is
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56 solitary wave in fluctuating background

particularly relevant for energy transport in some biological
systems, where transport occurs through localized non-linear
excitations with energy significantly higher than the thermal
energy [55, 56].

Moreover, systems such as polymer networks and colloidal
glasses undergoing an unjamming transition are also character-
ized by vanishing elastic moduli as the coordination number
or packing fraction are lowered towards the critical point [57].
The effect of thermal fluctuations on the non-linear response of
materials undergoing an unjamming transition is relatively un-
explored, despite they are obvious examples of a sonic vacuum
state at zero temperature [53, 58, 59]. Note, that in the case of
jamming the linear elastic moduli can be lowered towards zero
even if the microscopic interactions are harmonic, simply be-
cause there are not enough forces to prevent floppy motions.

In this chapter, we now focus on strongly non-linear mechan-
ical waves propagating in a background of small thermal fluctu-
ations, a non-equilibrium problem that lies outside the realm of
perturbation theory. The starting point of conventional pertur-
bation methods is a linear elastic solid, possibly at finite tem-
perature, perturbed by small anharmonic terms. By contrast,
we adopt as a starting point the fully non-linear state of sonic
vacuum whose elementary excitations are long-lived solitary
waves [60]. Subsequently we switch on temperature as a small
perturbation that creates a background of thermal fluctuations.

As a minimal model that is analytically tractable, we study
impulse propagation in a one dimensional lattice of non-linear
springs with a tune-able power law interaction. In addition to
the compressive solitary waves seen in a lattice of macroscopic
grains with one-sided repulsive interaction, we find an accom-
panying anti-solitary wave solution for the lattice of non-linear
springs with two sided interactions. By coupling the lattice to
a heat bath, we then study the effects of the thermal fluctua-
tions on the leading solitary wave generated in response to an
impulse of energy much higher than the background thermal
energy. Our approach in a nutshell is to treat the solitary wave
as a quasi-particle and derive an effective Langevin equation
that describes its stochastic dynamics. We corroborate our ana-
lytical predictions for the damping rate and thermal diffusion
of the solitary waves with Langevin dynamic simulations.
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Figure 5.1: left:(a) Velocity profile of the compressive solitary wave
(SW) generated in an athermal chain of beads with one
sided interaction. (b-c) Velocity profiles showing the for-
mation of a train of SW-ASW pair for two-sided non-linear
springs. A single particle is initially given an impulse to
the right, generating a train led by a SW moving in the
direction of the impulse (b), while simulatenously gen-
erating a symmetric train led by an ASW moving in the
opposite direction. right: The energy momentum relation
for the leading SW/ASW in the three cases shown in the
left panel following the energy (E) momentum (P) relation
E = P2

2meff
. inset: Zoom in of the leading SW-ASW pair from

left panel (b).
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5.1 the anti-soliton

In Fig. (5.1), we demonstrate that the compressional solitary
wave (SW) excitation discovered by Nesterenko in a chain of
non-cohesive beads is also seen in a lattice of springs with two
sided interactions. However, unlike the case of a one sided po-
tential, each compressive SW generated in response to an im-
pulse is accompanied by a corresponding expansion solitary
wave (formed by local stretching of springs) of the same mag-
nitude but moving in the opposite direction. This anti solitary
wave (ASW) is not sustained by beads interacting with purely
repulsive potentials – the beads would merely loose contact.The anti-soliton is

not sustained by
beads interacting

with purely
repulsive potentials.

In Fig. (5.1) left panel, we show the SW/ASW excitations for
(a)beads , (b-c) particles connected by springs. In Fig. (5.1), right
panel, we plot the energy-momentum relation for the leading
SW/ASW demonstrating that SW excitations in a lattice of re-
pulsive beads have the same effective mass meff (as defined in
Eq. (A.17)) as a SW and ASW in two-sided springs. As shown
in Fig. (5.1) left panel (b-c), the leading SW-ASW generated in
response to an impulse imparted to one of the particles towards
the right (direction of arrow) is followed by a train of alternat-
ing SW-ASW’s excitations, of progressively smaller magnitudes.
The smaller SW/ASW’s are generated as the particle initially
imparted the impulse, recoils with its left-over energy. This pro-
cess is repeated several times, leading to the generation of the
train of smaller excitations. Since the speed of propagation de-
pends upon the amplitude, the SW and ASW that start propa-
gating together initially (appearing bounded), eventually sepa-
rate and become clearly distinguishable.

5.2 langevin equation

The classical energy-momentum relation (see Fig. (5.1) right
panel) satisfied by the SW motivates the interpretation of the
solitary wave as a quasi-particle [32, 17]. For small perturba-
tions, the SW can still be treated as a quasi-particle provided
the effects of the perturbations accrue gradually such that the
SW retains its functional form. We now apply this adiabatic
approximation to derive an effective Langevin equation for the
SW quasi-particle when the lattice of springs is coupled to a
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heat bath. Recall first, the Langevin equation for a particle of
mass m undergoing Brownian motion in one dimension is

dx

dt
= v,

dE

dt
= −2

ζ

m
K+

√
2β2K

dt
N(0, 1). (5.1)

Here, E,K are the total and kinetic energies respectively, ζ,β are
the dissipation and diffusion coefficients related via the fluc-
tuation dissipation theorem β2 = 2ζkBT/m

2, where kB is the
Boltzmann constant. N(0, 1) is a normal random variable with
mean 0 and variance 1, and encapsulates the effects of random
fluctuations during the time interval t, t+ dt. For a free parti-
cle of unit mass moving with speed v, E = K = 1

2v
2 and upon

substituting in Eq. (5.1), we recover the Langevin’s equation
conventionally expressed as the rate of change of momentum
of the particle [63].

We now derive an equation analogous to Eq. ( 5.1) for the
compressive solitary wave quasi-particle. Identifying the lattice

spacing a as a characteristic length scale and ω =
√

k
ma

α−2 as
an inverse time scale, the equation of motion for the compres-
sive displacement field φ(x, t) in dimensionless units reads-

φtt −
1

12
φxxtt + [(−φx)

α−1]x = 0 (5.2)

where subscripts denote partial derivatives with respect to space
x and time t. Eq. (5.2) is a simplified form of the Nesterenko
equation [32, 49], see Supplementary Information I for details.
The first two terms express the rate of change of momentum
while the third term represents the force. Although the soli-
tary wave solution to Eq. (5.2) is not exact (lacking compact
support), Eq. (5.2) provides a good approximation while being
analytically more tractable especially since we are interested in
keeping the non-linear exponent α general [49, 26]. Note that
the equation for the ASW (stretching) is obtained by modifying
the third term +[(−φx)

α−1]x → −[(φx)
α−1]x in Eq. (5.2). Upon

substituting δ = −φx for the compressive SW or δ = φx for
the expansive ASW, we find the same functional forms for the
solitary wave solutions in both cases.

In analogy with the Langevin equation for a particle, we
model the coupling to a heat bath as the sum of two contributions-
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an external drag and a random fluctuating force, phenomeno-
logically introduced into the equation of motion as :

φtt −
1

12
φxxtt + [(−φx)

α−1]x = −γ

(
φt −

1

12
φtxx

)
+√

2γ

αΓdt

(
η(x, t; t+ dt) −

1√
12
ηx(x, t; t+ dt)

)
(5.3)

where γ = ζ
mω is the dimensionless drag coefficient that cou-

ples to the momentum Π =
(
φt −

1
12φtxx

)
. It is useful to de-

fine a coupling constant Γ = kaα

αkBT
as the ratio of potential to

thermal energy in terms of which, the dimensionless diffusion
coefficient is D = 2γ

αΓ . The last (noise) term on the right of
Eq. (5.3) in conjunction with Π, satisfies the fluctuation dissi-
pation theorem [64] (see Supplementary Information 3 for de-
tails). Here, η(x, t; t + dt) is a Gaussian random noise during
the time interval t, t+ dt with the moments 〈η(x, t; t+ dt)〉 = 0
and 〈η(x, t; t+ dt)η(x ′, t ′; t ′ + dt ′)〉 = δ(x− x ′)δ(t− t ′) respec-
tively, where angular brackets denotes ensemble averaging.

To study the propagation of the SW in a background of ther-
mal fluctuations, we now make a working assumption based on
the quasi-particle approximation to the SW: whenever the en-
ergy of the SW, E ≡ ESW � kBT , the SW functional form is un-
altered and only its amplitude A(t) becomes time-dependent.
The amplitude A(t) is the collective variable for the SW quasi-
particle and other properties of the solitary wave, such as its
energy and momentum may be determined from it. Note, the
width of the SW is independent of its amplitude and therefore
we do not consider its time dependence [64].

From Eq. (5.2), the conserved energy is

E =

∫
dx

1

2
φ2t +

1

24
φ2tx +

1

α
(−φx)

α, (5.4)

and the energy of the SW may be obtained by integrating Eq.
(B.27) over the width of the SW of order W. (This avoids includ-
ing the energy of small SW that separate from the main wave).
Using Eq. (5.2), the rate of change of energy is,

dE

dt
=

√
D

dt

∫
dxη(x, t; t+ dt)

(
φt +

1√
12
φtx

)
− 2γK (5.5)

where, K is the kinetic part of the energy,

K =

∫
dx

(
1

2
φ2t +

1

24
φ2tx

)
. (5.6)
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The last term on the right of Eq. (5.5) describes the possible
mechanisms of decay of the SW by “friction” from the heat bath
(γ). The first term is the fluctuating part of the energy. In the
following, we make the assumption (verified numerically) that
the coupling to the heat bath is more important and therefore,
any drag induced by background phonons is negligible.

Solving for the SW solution from Eq. (5.2), we find φt = Aψ,
where

ψ(x, t) = sech
2
α−2

(
x− Vst

W

)
(5.7)

is the functional form of the SW with amplitude A, speed Vs =
A
α−2
α and width W = 1√

3(α−2)
in units of the lattice spacing,

see Supplementary Information I for details. The SW energy,
kinetic energy, and momentum may now be expressed in terms
of the collective variable A:

E = A2
∫
dx ψ2(x, t) = A2IE (5.8)

and from the the virial theorem,

K =
α

α+ 2
E =

α

α+ 2
IEA

2 (5.9)

Additionally, the solitary wave momentum is

P = A

∫
dx ψ(x, t) = AIP. (5.10)

Here,

IE =

∫
dx sech

4
α−2

( x
W

)
(5.11)

IP =

∫
dx sech

2
α−2

( x
W

)
, (5.12)

are constants obtained by integrating over all space [49].
Substituting for E and K in terms of A, we cast Eq. (5.5) into

the form of an ordinary Langevin equation (with additive noise)
for the collective variable A(t),

dA

dt
=

√
2γ

αΓI2EA(t)
2dt

∫
dx η(x, t; t+ dt)

(
φt +

1√
12
φtx

)
−
αγ

α+ 2
A(5.13)

where, φ ≡ φ(x, t). Eq. (5.13) is the central result of our work
whose analytical predictions we derive and test numerically in
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the next sections. The first term can be written as 1√
dt
ηA(t, t+

dt), where ηA is a white noise signal; that is, its correlations
are given by 〈ηA(t)ηA(t ′)〉 = 2γ

(α+2)IEΓ
δ(t − t ′). Using the fact

that the correlations of η(x, t) are described by delta-functions,
the correlations of ηA(t) can be related to the kinetic energy Eq.
(5.6), which can be replaced by α

α+2IEA(t)
2.

5.3 mean and variance

Taking the expectation value (ensemble average) of Eq. (5.13),
we find

d〈A〉
dt

= −
αγ

α+ 2
〈A〉, (5.14)

where, owing to the noise term η(x, t; t + dt) (which acts be-
tween times t; t+dt) and φt(x, t) (which is a solution at time t)
being statistically independent, the expectation value 〈η(x, t; t+
dt)φt(x, t)〉 = 0. Consequently, the solitary wave amplitude de-
cays as

〈A〉 = A0e−
αγ
α+2 t (5.15)

where, A0 is the initial solitary wave amplitude. Note, the effec-
tive damping rate γ ′ = − αγ

α+2 is independent of inverse tempera-
ture Γ but rescales with the exponent of the non-linear potential
α.

Similarly, we solve for the variance of the solitary wave ampli-
tude or equivalently, the variance in the square root of energy.
Re-defining, D = γ

2αΓI2E
, we solve for the variance in the soli-

tary wave amplitude by first evaluating the differential d[A2] =
A2(t+ dt) −A2(t), by substituting A(t+ dt) = A(1− αγ

α+2dt) +√
Ddt

∫
dx η(x, t; t+ dt)

(
ψ+ 1√

12
ψx

)
from Eq. 5.14 and retain-

ing terms to order 0(
√
dt)[65, 66],

d[A2] = −
2αγ

α+ 2
A2dt+ 2A

√
Ddt

∫
dxη(x, t; t+ dt)ξ(x, t) +

+Ddt

∫ ∫
dxdx ′η(x, t; t+ dt)η(x ′, t; t+ dt)ξ(x, t)ξ(x ′, t)

(5.16)

where for brevity, we have defined ξ(x, t) =
(
ψ(x, t) + 1√

12
ψx(x, t)

)
.

Taking the expectation value, the second term on the right van-
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ishes (as discussed for the mean) and using the property that
the noise term is delta-correlated in space, we obtain

d[〈A2〉]
dt

= −
2αγ

α+ 2
〈A2〉+D

∫
dx

(
ψ+

1√
12
ψx

)2
.

The last term when expanded gives twice the solitary wave ki-
netic energy 2K, see Eq. (5.6), plus an integral 2√

12

∫
dxψψx, that

vanishes by symmetry for the SW solution. Moreover, the SW
kinetic energy is related to its total energy via the virial relation
K = α

α+2E. Hence, we obtain the ordinary differential equation
correct to order dt -

d〈A2〉
dt

= −
2αγ

α+ 2
〈A2〉+ 2DIE

α

α+ 2
. (5.17)

Solving, the differential equation subject to the initial condition
〈A2〉t=0 = A20 and substituting for D, we obtain,

〈A2〉 = A20e−
2αγ
α+2 t +

1

2IEαΓ

(
1− e−

2αγ
α+2 t

)
. (5.18)

Using Eq. (5.15), this may be expressed as

var(A) = 〈A2〉− 〈A〉2 = 1

2IEαΓ

(
1− e−

2αγ
α+2 t

)
. (5.19)

Using the relation in Eq. ( 5.8), we rewrite the above equation
as

var(
√
E) =

1

2αΓ

(
1− e−

2αγ
α+2 t

)
. (5.20)

The coefficient 1
2αΓ reduces to kBT

2 when the energy is not mea- The SW
quasi-paricle in a
background of
thermal fluctuations
behaves as
Brownian particle.

sured in units of kaα, so this expression is analogous to the
velocity variance of a Brownian particle. Note, for large α, the
SW is effectively one particle wide and thus Eq. (5.20) captures
the correct thermal equilibration of the particle energy with the
heat bath. However, for the dynamics of the SW, Eq. (5.20) is
only useful as long as the SW is identifiable against the back-
ground thermal energy, that is ESW � Γ−1.

5.4 simulations

We consider a one dimensional chain consisting of N = 1024

particles each having a mass m placed regularly on a lattice
with spacing a (spring rest length) interacting pair-wise with a
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nearest neighbour interaction V(δ) = K
α (δ)

α, where δ is the com-
pression/stretching induced during the dynamics. We model
the coupling to the heat bath by numerically integrating Eq.
( 5.1) for each particle using the predictor-corrector algorithm
[71]. In thermal equilibrium the mean kinetic energy is KE∼ kBT

2

and potential energy is PE∼ kBT
α , where their ratio satisfies the

virial relation, see Fig. (5.3), inset for α = 5/2. In the following,
all numerical data is presented in dimensionless units, ensem-
ble averaged over 1000 samples.

5.4.1 Fluctuation induced rigidity

To extract the equilibrium properties in the thermalized state,
we define the longitudinal current density of particles as j(x, t) =
1√
N

∑N
i=1 vi(t)δ(x − xi(t)), and its Fourier transform j(k, t) =

1√
N

∑N
i=1 vi(t)e

ikx, where k is the longitudinal collective mode
along the x-direction. Thus, the corresponding longitudinal cur-
rent density auto-correlation functions is C(k, t) = 〈j∗(k, 0)j(k, t)〉,
where the angular brackets denote ensemble averaging over the
initial time. The longitudinal power spectral density is then ob-
tained as the Fourier transform of the respective current den-
sity auto-correlation functions as, P(k,ω) =

∫∞
−∞ dt eiωtC(k, t).

The Fourier transforms defined above are evaluated using fast
Fourier transform from simulation data. The sound speeds in
Fig. (5.3) correspond to the linear part of the dispersion curves,
obtained by projecting the power spectral densities on the fre-
quency (ω)- wavenumber (k) plane. See Supplementary Infor-
mation C for details. By coupling a

lattice of non-linear
springs to a thermal
bath, we see the
emergence of
entropic elasticity.

In Fig. ( 5.3), we plot the sound speed from the slope of the
dispersion curves for α = 5/2 for a range of Γ . At thermal
equilibrium, the mean kinetic energy and hence the tempera-
ture T satisfy the virial relation T ∼ δαT , where δT is the average
displacement of the particles induced by thermal fluctuations.
Defining the sound speed c as the second derivative of the in-
duced potential energy leads to the relation, c2 ∼ T

α−2
α [38].

For α = 5
2 , we find c ∼ Γ

−1
10 ∼ (kBT)

1
10 , closely matching the

linear fit in Fig. 5.3. Thus, coupling the lattice of non-linear
springs that is initially in its state of sonic vacuum (implying
the absence of linear sound) to a heat bath, leads to hydrody-
namical sound modes with a linear sound speed that scales
with the temperature of the heat bath [38]. Note, setting α = 2

(harmonic springs) yields a sound speed that is independent
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Figure 5.4: left: the numerically obtained mean solitary wave energy
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(blue squares), α = 2.5,γ = 0.02 (black circles), α =

3.0,γ = 0.02 (gray squares) decaying exponentially com-
pared against the analytical expression (solid curves). The
mean decay rate is independent of the temperature Γ−1.
right: the numerically obtained varaince of the solitary
wave energy for α = 2.2,γ = 0.02, Γ = 6000 (blue squares),
α = 2.5,γ = 0.02, Γ = 6000 (black circles), α = 3.0,γ =

0.02, Γ = 6000 (grey squares), α = 2.5,γ = 0.01, Γ = 6000

(purple circles) and α = 2.5,γ = 0.02, Γ = 10000 (red
squares) compared against the analytical expression Eq.
(5.20) (solid curves).

of temperature while the limit α → ∞ yields c ∼ (kBT)
1
2 , a re-

sult in agreement with the entropic elasticity for hard sphere
colloidal crystals [52].

5.4.2 Comparison with analytics

Once the lattice reaches thermal equilibrium, we excite a soli-
tary wave (SW) by imparting one of the particles an initial en-
ergy of order ESW = 0.5 in dimensionless units. In Fig. (5.2) left
panel, we show a snapshot of two SWs at the same time, prop-
agating in a background of thermal fluctuations for α = 2.5
(red) and α = 2.2 (black). We see that the SW with lower α is
wider and moves faster for the given amplitude, in qualitative
agreement with the analytic widths W ∼ 1√

3(α−2)
and speeds

Vs ∼ A
α−2
α .
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In Fig. (5.4) left panel, we plot the numerical data (symbols)
for the attenuation of the SW amplitude as a function of time
for various values of γ and α and we find a very good match
to the analytic expression in Eq. (5.15) (solid curves). For the
range of Γ explored, we find the damping rate is independent
of temperature (Γ ) but depends on the environmental drag γ
and α.

In Fig. (5.4) right panel, we show the increase in the variance
of SW amplitude (or the square root of its energy) as a function
of time for multiple values of α , γ and Γ obtained numerically
(symbols) and compare them with the complete analytical so-
lution Eq.(5.20) finding good agreement. Notice, the final value
of the variance correctly approaches the thermal energy, as ex-
pected for a Brownian particle. However, since the solitary wave
is a dynamical object that decays under the influence of the ex-
ternal drag, once the solitary wave energy becomes comparable
to the background thermal energy, it is no longer meaningful
to consider it as a Brownian particle.





S H E A R F R O N T S I N R A N D O M S P R I N G
N E T W O R K S .

We now shift our attention to another model of frag-
ile matter: a two dimensional disordered network
of harmonic springs. At a critical value of its mean
connectivity, such a network becomes fragile: it un-
dergoes a rigidity transition signalled by a vanish-
ing shear modulus and transverse sound speed. We
then investigate analytically and numerically the lin-
ear and non-linear visco-elastic response of these
networks by probing the dynamics that result from
shearing one edge of the sample at a uniform rate.
Similar to our previous studies, we will find that
close to the rigidity transition, the regime of linear
response becomes vanishingly small and the tini-
est shear strains generates non-linear shear shock
waves. Moreover, we find that the response of the
networks at early times is reminiscent of the emer-
gent fluid like state we saw in Chapter 4. In this
case, the emergent viscosity directly manifests in the
super-diffusively growing widths of the nonlinear
shock front*.

* The research ideas presented in this chapter evolved out of interesting dis-
cussions with V. Vitelli and S. Ulrich and are part of Reference [9]. Thanks
to S. Ulrich for the simulations and accompanying figures.
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