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4
F L U C T U AT I O N S A N D E M E R G E N T
P R O P E RT I E S

The simple model that we have used to understand the regime
of exponential decay of the solitary wave amplitude (for weak
disorder) suggests that at each subsequent collision with an in-
homogeneity, the solitary wave splits approximately into two
solitary waves- a leading pulse (the main degree of freedom
that is damped exponentially as a result) and a smaller solitary
wave, that is either reflected or transmitted depending upon
the mass ratio *. Therefore, once we allow sufficient time for
the leading solitary wave to disintegrate completely such that a
leading pulse is no longer distinguishable from the background,
we expect to reach a state comprised of several smaller solitary
waves with different energies, see Fig. (4.1)(bottom). The soli-
tary waves in turn interact with each other in-elastically, (as a
consequence of the Nesterenko equation of motion being non-
integrable [6]) and thus their interaction may be thought of as
inherently dissipative. However, in addition to these processes
that seek to distribute the energy initially concentrated in a sin-
gle solitary wave excitation into multiple smaller solitary waves,
the structural disorder in two dimensional amorphous pack-
ings also spills a part of the energy into transverse degrees of
motion. Through a series of such intrinsic dissipative mecha-
nisms, we eventually reach a fluctuating equilibrium-like state
that spans the entire finite-sized packings under-investigation.

4.1 virial relation

As a check to demonstrate the emergence of an equilibirum like
state, we compute the distribution of energies between the ki-
netic and potential degrees of freedom - the Virial relation. We
first recall the Virial relation for a general (non) linear oscillator.

Consider a one dimensional oscillator whose Hamiltonian is

H =
p2

(2m)
+ qα, (4.1)

* Here, we are sidestepping the question pertaining to the identity of the
transmitted solitary wave, i.e., whether it is a new solitary wave with a
smaller amplitude or the old one that has been attenuated
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42 fluctuations and emergent properties

Figure 4.1: (a) A schematic illustration of how a hexagonal packing
at zero pressure (with vanishing longitudinal and trans-
verse sound speeds) and weak mass disorder, responds
to an impact at one of its ends, by generating a soli-
tary wave excitation. (b) As the solitary wave propagates
and interacts with the weak mass inhomogeneity, its am-
plitude decays. The decay at early times is nearly expo-
nential and the process of energy loss is such, that it ex-
cites several smaller solitary waves. Over the long run, a
noisy state (velocity fluctuations) spanning the size of the
packing emerges (zoomed region). (c) The initial solitary
wave is now no longer identifiable in a hexagonal packing
with strong mass disorder. Instead we observe a triangular
shock like profile that is defined as an envelope over the
smaller excitations. In this regime, the decay of the leading
edge follows a power law. Eventually, no leading propagat-
ing edge is visible. (d) Similar to the strongly disordered
hexagonal packing, no initial solitary wave is seen in a
jammed amorphous packing. Instead, an impulse excita-
tion soon evolves into the universal triangular shock-like
profile. These plots, show the particle velocity field where
the front amplitudes and positions have been rescaled for
better illustration.
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Figure 4.2: The virial relation in the quasi-equilibirum state showing
the ratio between kinetic energy (KE) and potential energy
(PE) to be approximately KE/PE≈1.27.

where, p,q are the generalized momentum and position coor-
dinates. The equipartition theorem states that under suitable
assumptions of thermal equilibrium, the following is satisfied:〈

xn
∂H

∂xn

〉
= kBT (4.2)

where xn = p,q is a generalized coordinate. Thus, p
2

m = kBT

and αqα = kBT . Therefore, the kinetic energy is KE= p2

(2m) =
kBT
2

and the potential energy is PE=qα = kBT
α with their ratio being

KE/PE=α2 .
For the harmonic oscillator, α = 2 and thus, we recover the

usual equipartition of energy between quadratic degrees of free-
dom. However, for a non-linear oscillator, say of the Hertz form
considered previously, the corresponding ratio is 5

4 . In other
words, on an average the kinetic energy is greater than the
potential energy for α > 2. Intuitively, for α > 2 and small
displacements from equilibrium, the non-linear return force is
weaker (or the potential is said to be softer) than for the cor-
responding harmonic oscillator. Thus, such a particle is “free"
more of the time, and consequently, has a higher kinetic energy.

In Fig. (4.2), we verify this relation in the asymptotic state that
an amorphous packing reaches, once we allow sufficient time
for the initial impulse excitation to no longer be identifiable.
We find that in this state, the ratio of kinetic and potential en-
ergies, does indeed approach the Virial limit. Recall, all model



44 fluctuations and emergent properties

systems we have considered so far, represent macroscopic ob-
jects in contact and a-priori, temperature is not a relevant vari-
able. However, the agitations induced by the decaying solitary
wave cause the packing of frictionless disks to acquire a state,
that mimics an equilibrium like state, where the initial solitary
wave energy plays the role of temperature (although not truly
in thermal equilibrium).

4.2 hydrodynamical modes

In order to rationalize the physics behind this fluctuating state
that at first appears to be just noise (see Fig. (4.1), bottom pan-
els), we assume the existence of small wave-number k and small
frequency ω, longitudinal (l) and transverse (t) hydrodynami-
cal modes and obtain their power spectral densities, as follows.

In order to obtain hydrodynamical modes from the velocity
field of fluctuating particles, we use the statistical mechanical
definition of particle current density, defined as

j(r, t) =
1√
N

N∑
i=1

vi(t)δ(r − ri(t)), (4.3)

where, N is the number of particles and bold-face variables cor-
respond to two dimensional Cartesian coordinates. The Fourier
transform of the Cartesian component α, is given by

jα(k, t) =
1√
N

N∑
i=1

viα(t)e
ik·ri(t). (4.4)

Assuming now, that the hydrodynamical collective modes prop-
agate along the x-direction (assumed isotropy of the amorphous
packing) , i.e., k = (k, 0), we let α = x or y, which allows us
to define the corresponding longitudinal or transverse current
density auto-correlation functions as

Cl,t(k, t) = 〈j∗l,t(k, 0)jl,t(k, t)〉, (4.5)

where the angular brackets denote ensemble averaging over the
initial time. The longitudinal/transverse spectral densities are
then obtained as the Fourier transform of the respective current
density auto-correlation functions as,

Pl,t(k,ω) =

∫∞
−∞ dt eiωtCl,t(k, t). (4.6)
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The Fourier transforms defined in Eq. (4.6) are evaluated using
Fast Fourier transform from simulation data.

Within the linearized hydrodynamical description, the longi-
tudinal power spectral density is of the form (see Supplemen-
tary Information C for a detailed derivation)

Pl ∝
ω2ηk2[

ω2 −ω20
]2

+ (ωηk2)2
, (4.7)

while the transverse power spectral density is of the form

Pt ∝
ηk2

ω2 + (ηk2)2
. (4.8)

Here, η is the coefficient of viscosity in the Navier-Stokes equa-
tion and ω0 = ck is the linear longitudinal dispersion curve,
where c is the speed of sound. Thus, the longitudinal modes
(or current fluctuations) propagate at the speed of sound (ob-
tained from the linear dispersion relation) and are damped by
viscous effects, manifest in the half-width at half-maximum of
the power spectral density that scales as h.w.∼ ηk2. On the other
hand, the transverse modes are non-propagating, but instead,
are damped exponentially in time, at a rate equal to ηk2, which
is also its half-width at half-maximum. This coincides with our
intuitive understanding, that fluids have a finite bulk modulus
(longitudinal sound speed), but no shear modulus.

Shown in Fig. (4.3), right panel (b), are the longitudinal (red
squares) and transverse (red circles) dispersion curves that are
obtained numerically by projecting the respective power spec-
tral densities (Fig. (4.3) right panel (a)) into the k−ω plane. For
comparison are shown, the corresponding longitudinal (black
squares) and transverse (black circles) dispersion curves for a
highly compressed jammed packing far from the critical den-
sity, prepared at a pressure of P∼ 10−1. Since the total poten-
tial energy of a jammed packing is related to its pressure via
E∼ P

5
3 , the numerical data shown for the emergent state, cor-

responds to an impact speed Up ≈ 2.0 in order to generate
a solitary wave in the weakly compressed packings (P∼ 10−6)
with an energy ESW that is comparable to the energy of the
highly compressed packing EPC to facilitate a more meaningful
comparison between the two states.

As seen in Fig. (4.3) right panel (b), highly compressed jammed
packings behave as ordinary solids with a finite bulk and shear
modulus and this translates into a finite sound speed mani-
fest in the linear regime of the longitudinal (black squares)
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and shear (black circles) dispersion curves. In contrast, exciting
a jammed packing prepared at a vanishingly small pressures
(that a-priori has nearly zero longitudinal and shear sound
speeds), leads to a linear dispersion regime for the longitudi-
nal modes, but no such regime is obtained for the transverse
modes. The slope of the linear regime in the longitudinal dis-
persion curves, corresponds to the speed of long wavelength hy-
drodynamical sound modes. Defining the sound speed c as the
second derivative of the induced potential energy; ESW ; leads

to the relation, c ∼ E
1
10
SW [38], closely matching the numerical

data in Inset to Fig. (4.3) right panel (b), red squares. Thus, the
speed of the long wavelength hydrodynamical sound modes
scales with the energy of the initial solitary wave ESW injected
into the system [45].

This is analogous to the scaling relation for pre-compressed
jammed packings at a finite packing fraction δ0, where the

sound speed is found to scale as c ∼ E
1
10
PC, with EPC being the

potential energy due to the finite pre-compression δ0. Thus, in
so far as longitudinal sound modes are concerned, a rigidity in-
duced by statically compressing a marginally compressed pack-
ing is analogous to the rigidity induced by exciting a marginally
compressed packing with a finite energy wave. Note therefore,
one can easily replace the source of energy by a heat bath and
thereby obtain a thermally induced rigidity upon making the
substitution E→ kBT . However, unlike a state that is truly in
thermal equilibrium, an external perturbation over the fluctuat-
ing state created by the disintegration of a solitary wave, will
further raise its energy due to the absence of a fluctuation-
dissipation mechanism. The emergent state is thus at best de-
scribed as a quasi-equilibrium state.Fluidization of the

jammed packing
endows it with a

finite bulk modulus.

In contrast to the longitudinal modes, the transverse modes
obtained by energizing a marginally compressed packing do
not show a well defined linear regime, see Fig. (4.3) right panel
(b), red circles. This is in stark contrast from a statically com-
pressed jammed packing where a linear transverse dispersion
regime (owing to the finite shear modulous) with a slope that
scales with the amount of pre-compression (and does not de-

pend upon the solitary wave energy injected) as c ∼ E
1
5
PC is ex-

pected (Fig. (4.3) right panel (b), black circles). Thus, the shear
modes excited by injecting energy into a packing near its crit-
ical point are purely diffusive and the medium does not de-
velop a finite shear modulus. There is therefore a profound dif-
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ference between the resultant states obtained by (a) statically
compressing a granular packing near its critical point versus
(b) injecting energy either in the form of an excitation or ther-
mally. In the former case, one obtains a solid-like medium with
finite bulk and shear moduli, while in the latter, we fluidize
the medium. This means that, even after the non-linear wave
excitations (characteristic of the jamming point) are strongly at-
tenuated, one cannot describe the system purely in terms of
the normal modes of a (linear elastic) solid because the system
has de facto become a fluid. This is one of the key conclusions
of this work and it heralds the signature property of packings
at the jamming threshold: they are fragile. See also Chapter 6,
where we find that the initial response (below a length scale)
of a fragile network of harmonic springs is independent of the
details of the network connectivity and does not contain any
propagating modes.

In Fig. (4.3) right panel (c), we show how the half width (in-
verse lifetime τ ) of the longitudinal hydrodynamical modes
depends anomalously upon the wavenumber as τ−1 ∼ k1.6. For
purely hydrodynamical modes obeying the Navier-Stokes equa-
tion, the half width scales with the wave number as hw ∼ ηk2,
where η is the shear viscosity, see Eq. (4.7). However, extensive
numerical and analytical studies have shown that in one dimen-
sion the time correlation functions (whose long time integrals
by definition correspond to macroscopic transport properties
such as diffusivity and shear viscosity) do not decay exponen-
tially but display long time tails, decaying as power laws in-
stead [40, 41, 42].

This phenomenon indicates the breakdown in low dimen-
sions of the standard mean field approximation embedded in
the Navier-Stokes equation – the strength of fluctuations is too
strong for simple coarse-grained theories to hold. Note, the
Navier-Stokes equation is conventionally expressed without any
fluctuating noise term. For three and two dimensional equilib-
rium fluids, noise produces a small correction to the dynamics
of large scale and long time time properties (k → 0,ω → 0),
the same is not true in one dimension [46, 47]. In addition, as
we review below, the non-linear term that we dropped while
linearizing the equations of motion (see Supplementary Infor-
mation C ) is no longer justified for the description of an equi-
librium fluid in one dimension. (Although the packings are
two-dimensional, their emergent hydrodynamic description is
effectively one-dimensional because of the longitudinal binning
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inherent in our description of the packing. This for instance
ignores the effect of particles diffusing in the transverse direc-
tions.)

For simplicity, we consider the one dimensional Burger’s equa-
tion stirred with a random force as a model for a one dimen-
sional fluid-

∂v

∂t
+ v

∂v

∂x
= ν

∂2v

∂x2
− λ

∂η

∂x
, (4.9)

where v is the fluid viscosity, ν is the kinematic viscosity and
λ∂η∂x is the random stirring force such that in d-dimension (d=1

here):

〈η(x, t)〉 = 0 (4.10)
〈η(x, t)η(x ′, t ′)〉 = 2Dδd(x− x ′)δ(t− t ′). (4.11)

The Burger’s equation (without random stirring) is obtained
from the Navier-Stokes equation by ignoring the compressibil-
ity (pressure gradient term). As discussed earlier, the finite com-
pressibility leads to propagating modes in the dispersion rela-
tion and the width of the power spectral density is measured in
a frame that is moving at the speed of sound. Thus, the propa-
gating modes only shifts the peak and do not effect the scaling
properties of the width [47]. (Note, the Navier-Stokes equation
is obtained from Newtons equations of motion written for a
fluid particle. We can consider the Navier-Stokes with a noise
term as the equivalent of a Langevin equation phenomenolog-
ically written for a fluid particle that is perturbed by thermal
fluctuations.)

We can re-write this equation in terms of the potential func-
tion v = −λ∂φ∂x to arrive at the Kardar-Parisi-Zhang (kpz) equa-
tion [48]:

∂φ

∂t
= ν

∂2φ

∂x2
+
λ

2

(
∂φ

∂x

)2
+ η. (4.12)

Now consider rescaling the variables: x → bx ′, t → bzt ′ and
φ→ bξφ ′. In terms of the primed variables, Eq. (4.12) becomes
[48]

∂φ

∂t
= bz−2ν

∂2φ

∂x2
+ bξ+z−2

λ

2

(
∂φ

∂x

)2
+ η ′, (4.13)

where, η ′ = bz−ξη(bx ′,bzt ′) and therefore

〈η ′(x, t)η ′(x ′, t ′)〉 = 2Dbz−d−2ξδd(x− x ′)δ(t− t ′). (4.14)
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Therefore, the transport coefficients in the primed coordinates
are ν ′ → bz−2ν,λ ′ → bξ+z−2λ and D ′ → bz−2ξ−dD.

Suppose, we now ignore the non-linear coefficient, that is
λ = 0. Then, the transport coefficients are scale invariant for
z = 2 and ξ =

(2−d)
2 . For this choice of exponents, we find the

combination x

t
1
2

is invariant, as expected for ordinary diffusion.

However, around this point, λ scales as b
2−d
2 . For d < 2, this

is a relevant parameter and it is no longer possible to ignore
the non-linear term. Thus, it is necessary for us to include both
a fluctuating term and the non-linear term while describing
equilibrium properties of a one dimensional fluid (d=2 is the
critical dimension for fluids). By carrying out this analysis with
the non-linear term and enforcing the invariance of λ under
scale transformations (due to Galilean invariance of the Navier-
Stokes equation) and of D/ν ∼ kBT (that scales as the equilib-
rium temperature of the fluid), we find the relevant exponents
are z = 3

2 , ξ = 1
2 [48, 47]. (Note, in this description the fluid

itself is assumed not to be near a phase transition.)
With z = 3

2 , we therefore find the invariant combination to be
x

t
2
3

. The behaviour thus corresponds to a super-diffusive spread-

ing of information, i.e.,

x2 ∼ t
4
3 . (4.15)

In order to see how super-diffusion effects the scaling of half-
width with wave-number, we first define a time dependent dif-
fusivity, i.e.,

x2 ∼ t
4
3 = D(t)t (4.16)

,where D(t) ∼ t
1
3 . The time correlation function associated with

this diffusivity then scales as

C(t) ∼ t
1
3−1 = t−

2
3 (4.17)

since, D ∼
∫
C(t)dt. The Fourier transform of the time correla-

tion function therefore scales as

C(ω) ∼ ω−13 (4.18)

For small wavenumbers near the linear regime of the disper-
sion curves ω ∼ k and therefore, C(k) ∼ k−

1
3 . Since a transport
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coefficient is associated with the low frequency limit of the cor-
relation function in frequency space, i.e.,

D ∼ lim
k→0

∫
C(t)e−iktdt (4.19)

∼ lim
k→0

C(k), (4.20)

we find that the wave-number dependent diffusivity should
scale asD(k) ∼ k−

1
3 . Consequently for small wave-numbers, the

half-width scales as hw∼ D(k)k2 = k−
1
3k2 = k

5
3 . This is close to

the value we observe in simulations.
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Figure 4.3: (a) The power spectral density for longitudinal modes that
emerge in marginally compressed amorphous packings
(P ∼ 10−6) by the complete disintegration of an initial soli-
tary wave excitation. (b) The red squares shows the numer-
ical data for the longitudinal dispersion curves. The slope
of the linear regime scales with the energy of the solitary
wave as c ∼ E

1
10 for Hertzian interaction, that we iden-

tify with long wavelength longitudinal hydrodynamical
modes. In contrast, the red circles shows the numerically
obtained data for the transverse dispersion curve where
no linear regime is seen. The shear mode is therefore non-
propagating. For comparison, shown are linear disper-
sion curves for longitudinal (black squares) and transverse
(black circles) obtained for highly compressed jammed
packings, prepared at a pressure P∼ 10−1.(c) The half-
width obtained numerically from the longitudinal modes
as a function of wavenumber on a linear scale and com-
pared against the analytical estimates h.w.∼ k

5
3 (solid red

line).





T H E R M A L F L U C T U AT I O N S

We found in the last chapter, that the attenuation of
a solitary wave eventually leads to the emergence of
an equilibrium like state, where particle fluctuations
mimic thermal fluctuations. However, the system is
not truly in a state of equilibrium, since there is no
mechanism (such as an explicit coupling to a heat
bath), to dampen external perturbations.

In this chapter, we therefore take a slight departure
from our theme on the study of solitary wave propa-
gation in disordered two dimensional packings and
turn to the study of a strongly non-linear one dimen-
sional chain of oscillators that is initially in the state
of sonic vacuum, that we then couple to a heat bath.
Like the granular analogue of temperature, thermal
fluctuations induce an entropic rigidity. We then ex-
plore the propagation of a strongly non-linear soli-
tary wave in this background of thermal fluctuations
and environmental drag, and find an effective Lange-
vin equation to describe the propagation of the soli-
tary wave quasi-particle. This gives us the mean dam-
ping rate and thermal diffusion of the solitary wave
quasi-particle that we compare against numerical re-
sults from a Langevin dynamic simulation. In addi-
tion, we find that a one dimensional chain composed
of two sided non-linear springs, also supports an ex-
pansion solitary wave, as companion to the compres-
sive solitary waves observed for macroscopic parti-
cles †.

† The research ideas presented in this chapter evolved out of discussions with
A.M. Turner and V. Vitelli and are part of Reference [62].
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