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3
A M O R P H O U S PA C K I N G S

We now consider, simple models of a disordered two dimen-
sional packing. As a first step, we begin with a hexagonal lat-
tice of particles that are just in contact with their nearest neigh-
bours, but with particle masses distributed as a normal random
variable. We again excite the packing with an impulse imparted
to one end of the sample and follow the evolution of the exci-
tation. Here, we find two distinct regimes of attenuation of the
initial impulse excitation.

3.1 exponential attenuation : weak disorder

For weak mass disorder (or a small variance in masses), a well
defined solitary like wave is formed in response to an impulse.
As the initial solitary wave propagates through the packing, it
begins to attenuate and we find the initial stages of this attenu-
ation to be well approximated as an exponential decay (see Fig.
(3.3), left panel top inset).

In the last chapter, we used the quasi-particle approximation
of the solitary wave to study the disintegration of a solitary
wave across a mass interface [17, 39]. Consider again, an inter-
face between two regions of sonic vacuum with grain masses
m1,m2 respectively. For mass ratios A = m2

m1
close to 1, a soli-

tary wave initially moving with amplitude P0 is seen to split
into two new solitary waves, with momentum P1,P2 that may
be obtained using an elastic collision model that conserves the
quasi-particle energy and momentum -

P0 = P1 + P2,
P20
m1,eff

=
P21
m1,eff

+
P22
m2,eff

(3.1a)

from where, we obtain

P1 =

(
1−A

1+A

)
P0, (3.2a)

P2 =

(
2A

1+A

)
P0. (3.2b)
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30 amorphous packings

Figure 3.1: (a) The exponential decay of the solitary wave energy U2p
as a function of distance x along a one dimensional chain
of granular particles with mass disorder modelled as a
normal random variable with mean 1 and variance ε2. (b)
The noisy state comprising of a non-linear superposition
of several smaller solitary waves left behind by the leading
solitary wave as it interacts with the disorder. The main
panel compares the exponent in Eq. (3.6) (solid red line)
against numerical data (black circles).

Thus, the ratio of transmitted to incident energy is

m1,eff

m2,eff

P22
P20
≡ TE
T0

=
4A

(1+A)2
. (3.3)

In order to study the propagation of the solitary wave in a
medium with weak mass inhomogeneity, consider a chain of
beads with the mass ratio of neighbouring beads i, j related via
mi = Ai,jmj, where Ai,j = 1+ Ni,j(0, ε2), The normal random
variable Ni,j(0, ε2) has mean 0 and variance ε2. Upon appeal-
ing to the localized nature of the solitary wave (its width being
around 5 bead diameters and also independent of the ampli-
tude of the solitary wave), we treat each bead as an interface
and invoke the quasi-particle elastic collision model.
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Thus, the energy of the leading solitary wave after the first
collision is

T1 =
1+ εN1(0, 1)

(1+ ε
2N1(0, 1))2

T0

≈
[
(1+ εN1(0, 1))

(
1− εN1(0, 1) +

3

4
ε2N2

1(0, 1)
)]
T0

≈
[
1−

1

4
ε2N2

1(0, 1)
]
T0,

where, we have retained terms up to order ε2. Iterating this
process n− times, we find that the solitary wave energy after it
has propagated n beads diameters is approximately

Tn ≈
[
1−

1

4
ε2N2

n(0, 1)) · ·(1−
1

4
ε2N2

1(0, 1)
]
T0. (3.4)

Retaining terms only to order ε2, we find

Tn

T0
≈ 1−

1

4
ε2

n∑
k=1

N2
k(0, 1),

≈ 1−
1

4
ε2χ2(n), (3.5)

where, χ2(n) is the chi function with an expectation value n.
Taking the mean, we obtain that the average solitary wave en-
ergy after propagating n beads diameters reads

〈Tn〉
T0
≈ 1− 1

4
nε2 ≈ e−

n
4 ε
2
. (3.6)

As shown in the inset to Fig. (3.3) top inset, this estimate
is in very good agreement with numerical observations on an
hexagonal packing and for the solitary wave attenuation in
weakly-disordered granular chains [34]. Note, as the solitary
wave propagates through a disordered lattice, at each subse-
quent collision with the material inhomogeneity, a smaller exci-
tation in addition to a leading solitary wave is generated. This
is the simplest example of how disorder effectively acts as a
source of dissipation for the solitary wave, despite no source
of microscopic dissipation being present in the lattice. We refer
to this regime of attenuation, where the initial stages of expo-
nential decay can be well captured, as the weakly disordered
regime. Note, the reason we do not obtain an exact quantitative
match in two dimensional packings is because in constructing
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our quasi-one dimensional model, we are inevitably ignoring
transverse degrees of motion that are necessarily excited. How-
ever, the exponential decay is in very good agreement with nu-
merical studies on one dimensional lattices, including the pre-
factor 1

4 for small ε, see Fig. (3.1) [34].

3.2 strong disorder

Our study in the previous chapter on the formation of a solitary
wave train across an interface for mass ratios A � 1, provides
an important prelude to the propagation of a solitary wave in
a strongly disordered lattice. Consider for instance, a hexago-
nal lattice with masses distributed normally but with a large
variance in the grain masses. Here, numerical observations re-
veal that an initial solitary wave (still modelled approximately
by the Nesterenko solitary wave) soon transitions into a trian-
gular shock like propagating front whose amplitude decays as
a power law, while the regime of exponential decay is barely
identifiable, see Fig. (3.3) middle inset.

What is the manifestation of multiple scattering by strong
heterogeneity around the mechanical state of sonic vacuum ?

As may be anticipated by the formation of the solitary wave
train during a collision with a strong heterogeneity, if multi-
ple such closely located regions of strong disorder are present,
multiple overlapping solitary waves will be formed. In turn, the
solitary wave train will not have the occasion to separate into
isolated solitary waves, since that requires a homogeneous re-
gion for them to separate asymptotically. As a result, we are
only able to follow the evolution of an envelope of many such
solitary waves and the spatial extent of the envelope continues
to grow as more and more wave trains are generated. Eventu-
ally we find that such an envelope spans several hundred grain
diameters and acquires a nearly triangular shock like profile.

The power law decay in this regime, reveals a striking sim-
ilarity for the long time decay in a hexagonal packing with
weak mass disorder, the dominant regime of decay in a hexag-
onal packing with strong mass disorder (large ε) as well as the
dominant mechanism of decay in amorphous jammed pack-
ings, see Fig. (3.3). In all these cases, a triangular shock like
profile emerges, whose leading edge decays as a power law x−r

with an exponent approximately r ≈ 0.5 (solid red line). This
exponent seems to be independent of the amount of disorder.
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Figure 3.2: The cylindrical box around a sphere for an effective
medium description. Here, R is the radius of the sphere
and cylinder, while δ is the average compression.

In a recent study, the existence of very long wavelength trian-
gular shock like fronts in a one dimensional chain of granular
particles is established [43]. Here, we find that due to material
inhomogeneities, an initial excitation in two dimensional dis-
ordered packings, naturally evolve into long wavelength shock
solutions and their power law decay may be captured approxi-
mately (ignoring transverse excitations) from the conservation
of energy [31, 43]. Below, we review the derivation of the long
wavelength waves and then provide an intuitive argument for
its power law decay in a disordered packing.

3.3 long wavelength waves

Here, we review the long wavelength waves that are derived
for a coarse grained variable representing an averaged compres-
sional field [43]. We first define a mass density averaged over a
cylindrical segment containing a single sphere (see Fig. (3.2)):

ρ =
m

πR2 (2R− δ)
(3.7)

≈ m

2πR3

(
1+

δ

2R

)
, (3.8)

or ρ = ρ0 + ρ
′, where ρ0 = m

2πR3
and ρ ′ = ρ0

δ
2R . Here, δ is

the average or coarse grained compression. Defining a coarse
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grained pressure p as the contact force between spheres divided
by the cross-sectional area πR2 (see Fig. (3.2)) of the chain, we
find

p =

√
2

3

E

1− ν2
R1/2

πR2
δ3/2 ≈ Aρ ′

3
2 , (3.9)

where A = 4E

3πρ
3
2
0

(1 − ν2), see Eq. (A.1)) for the prefactors. If

we define v as the velocity field, the equations for mass and
momentum continuity (Euler equations) are

ρ ′t = −(ρv)x , (3.10)

(ρv)t = −
(
ρv2
)
x
− px. (3.11)

Differentiating Eq. (3.10) once with respect to time (t), we obtain

ρ ′tt = − [(ρv)x]t = − [(ρv)t]x , (3.12)

and substituting Eq. (3.11) for the last expression in the square
brackets above, we find

ρ ′tt =
(
p+ ρv2

)
xx
≈ A

(
ρ ′
3
2

)
xx

+ O(ρ ′
5
2 ). (3.13)

where, the O(ρ ′5/2) corresponds to the leading term from ρv2 =

ρ0v
2. Recall the discussion from the introductory chapter, where

for compressional shocks, the particle speeds and average com-
pression follow a Virial like relation v2 ∼ δ

5
2 (see discussion fol-

lowing Eq. (1.6). Consequently, if we assume the validity of this
relation, then the particle speed scales as v2 ∼ ρ ′

5
2 and is thus

a higher order correction, that we ignore in Eq. (3.13). Shortly
we will see that this relation is consistent with the form of the
solution we obtain.

A subset of solution for Eq. (3.13) moving along the positive
x- direction is (as can be verified by substituting into Eq. (3.13))

ρ ′t =
4

5

√
3A

2

(
ρ ′
5
4

)
x
= −(ρv)x. (3.14)

Now, if we compare the two terms on the right (to leading or-

der) , we find ρ ′
5
4 ∼ ρ0v and therefore, v ∼ ρ

′5
4

ρ0
, consistent with

our assumption in ignoring the term ρv2 in Eq. (3.13).
Casting in terms of the compressional field, δ this reads

δt = −
4

5

√
6KR2

(
δ
5
4

)
x

. (3.15)

This equation represents a coarse grained compressional field
propagating along the positive x direction. Note here, the sim-
ilarity with the better know inviscid Burger’s equation, where
the non-linear exponent is 2 instead of 54 .
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3.4 similarity solution

As discussed previously in our studies, the triangular shock
like fronts evolve from an initial impulse excitation irrespective
of the amount of disorder. However, since our medium is in a
state of sonic vacuum (no sound waves) where the only known
excitations are the Nesterenko solitary waves, any other initial
excitation is likely to eventually decay into a train of (possibly
overlapping) solitary waves. Indeed, the long wavelength solu-
tions first studied for one dimensional granular lattices evolve
from an initially Gaussian profile.

Consequently, our investigations suggest that any initial exci-
tation will in the long time limit evolve into a triangular shock
front. This is especially true for two dimensional disordered
and amorphous packings, where the disorder will ensure the
attenuation of any initial solitary like wave, irrespective of the
amount of disorder.

Moreover, since the dynamical response we are trying to de-
scribe is still far from any equilibrium condition, we try to look
for similarity solutions to Eq. (3.15), that are often character-
istic of travelling wave solutions in the regime of intermediate
asymptotics (independent of initial condition and still far from
equilibrium).

The propagating solutions we have considered elsewhere in
the thesis, for instance, the steadily propagating solitary wave
solutions, are also a form of similarity solution, except that they
are simple translations of each other (here, the name similarity
draws from similar figures in geometry that are proportional to
each other but not necessarily exactly equal). Like the propagat-
ing solutions, these help reduce a partial differential equation
into an ordinary differential equation. Here, the basic idea is to
look for solutions of the form f(x, t) = tmf(η) where η = xtn

and m,n are chosen to reduce the partial differential equation
into an ordinary differential equation (in our example, x, t are
taken to be space and time variables respectively, but this is not
necessary).

To motivate this idea, we first start with the better know heat
equation ut = uxx and look for its similarity solutions by sub-
stituting u = tmf(η). This results in

mtm−1f+ntm+n−1xf ′ = tm+2nf ′′, (3.16)
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where, primes denote derivative with respect to η = xtn. A
choice of m = 0,n = −1

2 leads to η = x

t
1
2

and reduces the heat

equation to

−
1

2
ηf ′ = f ′′, (3.17)

which is an ordinary differential equation with a solution f ∼

exp(−η2) = exp−x
2

t . Thus, we obtain the characteristic Gaus-
sian heat kernel.

We now apply this to the non-linear equation δt + δ
1
4δx = 0

(omitting the constant in Eq. (3.15)). Substituting δ = tmf(η)

leads to

mtm−1f+ntm+n−1xf ′ + t
m
4 +m+nf ′f

1
4 = 0. (3.18)

Now, a choice m = 0,n = −1 reduces this to an ordinary differ-
ential equation

− ηf ′ + f
1
4 f ′ = 0, (3.19)

with solutions are f =constant or f ∼ η4 ∼
(
x
t

)4. This is the
similarity solution describing the long wavelength shock like
compressional field.

In order to connect this solution to the velocity field that
we probe during simulations, we next re-cast this solution in
the form of a propagating velocity field. Upon integrating once
with respect to x (to obtain the displacement field from the com-
pressional strain) and differentiating once with respect to t, we
obtain the corresponding solution for the particle velocity field
φ(x, t) ∼

(
x
t

)5.
If we ignore the energy that goes into exciting the trans-

verse degrees of motion (as discussed for compression shocks
in Chapter 1, this is a reasonable working approximation for
non-linear waves arising from strongly non-linear local interac-
tions), the energy of the beads enclosed within the shock enve-
lope is approximately conserved (in the longitudinal direction).
Therefore,

E ∼

∫xf
0
dxφ2(x, t) ∼

x11f
t10f

= constant, (3.20)

where xf is the position of the shock front at a time tf, see Fig.

(3.3). Consequently, tf ∼ x
11
10
f . Thus, at the location of the shock

front, the jump in the velocity field should scale as

φ(xf, tf) ∼
x5f

x
11
2
f

∼ x
−12
f , (3.21)
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which indicates that the amplitude of front will decay as a
power law with an exponent of 12 . As shown in Fig. (3.3), solid
red lines, we do find this estimate to be in good agreement with
the numerically determined exponent r ≈ 0.5 for the decay of
the shock front.
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Figure 3.3: (a): The time evolution in response to an impulse in a
hexagonal packing with weak mass disorder ε. An im-
pulse response generates a solitary wave excitation that de-
cays exponentially at early times. In the long time limit, a
shock like triangular profile emerges whose leading edge
decays as a power law with an exponent x−0.5. (b)The
time evolution in response to an impulse in a hexago-
nal packing with strong mass disorder ε. An impulse re-
sponse generates a solitary wave excitation but the regime
of exponential attenuation is barely identifiable. Instead,
a shock like triangular profile soon emerges whose lead-
ing edge again decays as a power law with an exponent
x−0.5 (solid red line). (c) The time evolution in response
to an impulse in a jammed amorphous packing prepared
at a pressure of P∼ 10−6 and an average overlap between
grains δ0 ∼ 10−4. An impulse response still generates a
solitary wave excitation but like (b), a shock like triangu-
lar profile soon emerges whose leading edge decays as a
power law with an exponent x−0.5 (solid red line).



F L U C T U AT I O N S A N D E M E R G E N T
H Y D R O D Y N A M I C S

Up till now, we have seen that for amorphous pack-
ings of soft frictionless disks close to their critical
packing fraction, an initial impulse excitation evol-
ves into a solitary like wave, that is progressively at-
tenuated by disorder. For a finite size packing, what
happens to the energy that was initially localized in
the form of the solitary wave at very long times?

In this chapter, we demonstrate that the particle fluc-
tuations generated by the solitary-wave decay, can
be viewed as a granular analogue of temperature,
that fundamentally alters the state of the packing.
The presence of fluctuations leads to two emergent
macroscopic properties absent in the unperturbed
granular packing: a finite pressure that scales with
the injected energy (akin to a granular temperature)
and a wavenumber dependent viscosity that is con-
sistent with the observations in one dimensional flu-
ids *.

* The research ideas presented in this chapter evolved out of discussions with
V. Vitelli and L. R. Gomez and are part of Reference [45]. Thanks to L.R.
Gomez for Fig 4.1.
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