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2
G R A N U L A R I N T E R FA C E S

In this chapter, we start with the two dimensional problem of
determining the reflection and transmission of a strongly non-
linear solitary wave-front incident upon an interface between
two hexagonal lattices both in a sonic vacuum (zero sound
speed), but with different particle masses specified by the ra-
tio A = m2/m1. We treat the solitary wave as a quasi-particle
with an effective mass and model the interaction with a two-
dimensional granular interface, as an elastic collision process
conserving energy and linear momentum that is validated by
simulations. Here, two distinct scenarios emerge valid approxi-
mately for - (a) A ∼ 1 and (b) A� 1.

In the case A ∼ 1, the incident solitary waves evolves into
two new solitary waves, a leading one that is transmitted into
the lighter medium and a smaller one, that is either reflected
or transmitted depending upon the mass ratio being greater or
less than 1. This is simply modelled as an elastic disintegration
of a solitary wave. In the A� 1 case, the solitary waves moves
from a much denser medium to a lighter medium and it is seen
that the last row of “heavy" beads at the interface, absorbs on
a “fast" time scale the main part of the energy and linear mo-
mentum of the incident solitary wave-front (assumed parallel
to the interface) and detaches from the heavy medium while
repeatedly colliding with the the lighter medium, see Fig. (2.1)
(c). Through this process, the last row decelerates on a “slower"
time scale, and generates a train of asymptotically well sepa-
rated solitary waves in the “lighter" sonic vacuum. Crucial to
understanding this phenomenon is the role of contact breaking
at the interface and the resulting break-down of the continuum
approximation that we model using an elastic collision process
between the heavy beads and the solitary wave quasi-particle.

We then apply our understanding from the study of parallel
interfaces, to study how a solitary wave that is incident at an an-
gle to the interface, moves from one medium to another. Here,
we find that the angles of refraction and reflection of the the
leading solitary waves that are generated as a result of the elas-
tic disintegration, are surprisingly well captured by a granular
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20 granular interfaces

analogue of Snell’s law that holds irrespective of the solitary
wave-front amplitude, for small angles of incidence.

2.1 simulations

In order to investigate the solitary wave scattering at a two di-
mensional granular interface, we perform molecular dynamics
simulations for a hexagonal packing of 104 frictionless spher-
ical grains, using periodic boundary conditions. As shown in
Fig. (2.1), an interface is introduced by assigning a mass m1 to
the rows of grains on its left (shown in red) and a mass m2 to
rows on its right (shown in yellow). Both portions of the hexago-
nal lattice are comprised of grains with zero initial overlap and
equal diameters. Two grains of radius R and masses {mi,mj}

at positions {~xi,~xj} interact via a one-sided non-linear repulsive
potential following Hertz law [5]

Vij =
Kij

α
δij

5
2 (2.1)

only for positive compressional strains δij ≡ 2R− |~xi −~xj| > 0,
otherwise Vij = 0, when δij 6 0. Here, the interaction parameter
Kij =

2
3RE

∗
ij is expressed in terms of the effective Young’s modu-

lus of the two particles, E∗ij, see Ref. [20] for more details. Conse-
quently, due to the non-linear interaction potential and absence
of any initial overlap between grains, both the hexagonal lat-
tices are in a state of sonic vacuum. At t = 0, we impart to the
left-most row a speed up and subsequently integrate Newton’s
equations of motion numerically subject to periodic boundary
conditions perpendicularly to the direction of propagation. As
seen in Fig. ( 2.1) (a), we see a well defined solitary wave that
propagates along the direction of impact.

2.2 quasi-particle model

We take advantage of the isotropic elasticity of the hexagonal
lattice to assume that the dynamics of a solitary wave-front par-
allel to the interface, as in Fig. (2.1), is effectively one dimen-
sional and governed, in the continuum limit, by the non-linear
wave equation Eq. (A.10):

ξtt = c
2

[
ξ
3
2 +

2R2

5
ξ
1
4 (ξ

5
4 )xx

]
xx

, (2.2)

where c is a material constant and ξ(x, t) is the strain field
ξ(x, t) = −∂xu(x, t) expressed in terms of the particle displace-
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ment field, u(x, t), along the x direction. The left-hand side of
Eq. (2.2) is the standard inertia term, the second term on the
right-hand side captures non-linear dispersive effects, while the
first arises from the restoring force as in the wave-equation, if
one considers that the force is not linear, but it depends on ξ3/2

according to Hertz law.
As discussed in the previous chapter, a strongly nonlinear

solitary wave solution of Eq. (2.2) can be derived analytically
[6] and it has been validated by extensive simulations and ex-
periments mostly on granular chains [15, 6, 23, 24, 17, 33, 26, 27].
Crucially, the total energy E = P2

2meff
carried by the solitary wave

depends quadratically on its total momentum P, which allows
the interpretation of the solitary wave as a quasi-particle with
an effective mass meff ≈ 1.4m. We next use this quasi-particle
interpretation of the solitary wave to study its interaction with
a two dimensional granular interface.

2.3 weak disorder

If the ratio of bead masses on either side of the interfaceA = m2
m1

is nearly equal to 1, an initial solitary wave excitation is seen to
split at the interface into two new solitary waves: a leading soli-
tary wave that crosses the interface into the new medium and
a smaller solitary wave, that is either reflected back or trans-
mitted depending on the mass ratio being greater or less than
one. The quasi-particle notion of the solitary wave provides a
simplified model to study the interaction of the solitary wave
with the granular interface as an elastic collision process (con-
serving momentum and energy) resulting in the disintegration
of the initial solitary wave into two new solitary waves [17, 39]
-

P0 = P1 + P2, (2.3)
P20

2m1,eff
=

P21
2m1,eff

+
P22

2m2,eff
(2.4)

where, P0 is the momentum of the incident solitary wave, P1
is the momentum of the smaller reflected or transmitted soli-
tary wave and P2 is the momentum of the leading transmitted
solitary wave. Solving, we obtain

P1 =
P0 (1−A)

(1+A)
, (2.5)
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where A ≡ m2,eff
m1,eff

and

P2 =
2P0
1+A

A. (2.6)

The predicted momentum P1,P2 are found to be in good agree-
ment with numerical data in both one and two dimensional
granular interfaces for A ∼ 1 [17, 39]. Since this case is well
studied and we will make further use of it in a later chapter
where the validity of this result will be explicitly used (Chap-
ter 3), we now turn to discussing the more novel observations
when the mass ratio A� 1.

2.4 strong disorder : A � 1

As shown in Fig. (2.1)(a), the initial impulse imparted to the
left most beads, leads to the generation of a non-linear wave
front parallel to the interface that travels towards the right with
a speed Vs ∼ u

1/5
p analogously to solitary waves in granular

chains [6]. At t0, all the energy and linear momentum P0 of
the incident solitary wave is concentrated in the “heavy" (red)
chain of beads and we have an undisturbed chain of “light"
(yellow) beads. At later times, shown in Fig. (2.1)(b), when
the solitary wave has interacted with the interface, we see a
ruptured interface with one of the inter-facial rows of heavy
(red) beads “dancing" in contact with the lattice of lighter (yel-
low) beads, throttling the generation of an oscillatory wave pro-
file in the lighter lattice close to the interface. This oscillatory
wave is subsequently disintegrated into a sequence of separate
solitary waves, as shown in Fig. (2.1)(c). The separate solitary
waves propagate with different speeds (dependent on their am-
plitude), while a second collision of the “dancing" interfacial
row of particles, shown in Fig. (2.1)(d), generates a second de-
layed solitary-wave train with smaller amplitudes.

The notion of the solitary wave as a quasi-particle again al-
lows us to construct a simple quasi one-dimensional model for
the generation of the solitary wave train, illustrated schemati-
cally in Fig. (2.2). At t0, we assume that a chain of light yellow
beads is uncompressed and all the energy and linear momen-
tum P0, carried by the incident solitary wave, is concentrated
in the heavy red interfacial particle. At a subsequent time t1 a
single solitary wave is generated in the light chain by reduc-
ing the energy and linear momentum of the interfacial heavy
particle. We apply conservation of energy and linear momen-



2.4 strong disorder : A� 1 23

Figure 2.1: Time sequence leading to the generation of a solitary wave
train in simulations. The (red) beads on the left of the
interface constitute the heavier medium with mass m1
and the (yellow) beads on the right of the interface con-
stitute the lighter medium with mass m2. The mass ratio
A ≡ m2

m1
= 0.125. The velocity field overlayed in green,

denotes the instantaneous speeds of the beads.
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Figure 2.2: (a) Schematic illustration of our model for the formation
of a solitary-wave train, side-view. (b) Momentum ratios
P2,n
P2,1

between the n-th solitary wave and the leading one in
the train for A = m2

m1
= 0.125. Red circles are the theoreti-

cal predictions while the black squares are the numerical
values from the simulations of Fig. (2.1).

tum to the collision process between the “dancing" bead with
mass m1 and the solitary wave, treated as a quasiparticle with
mass m2,eff. Note, it is here that the effective mass of the soli-
tary wave becomes crucial to our understanding of the process,
unlike the case for A ∼ 1, where the collision is between two
solitary waves with effective masses that are rescaled by the
same constant value (≈ 1.4) and thus cancel out. We calculate
the momentum of the “dancing" interfacial particle P1,1 after
the first collision as

P1,1 =
P0 (B− 1)

(B+ 1)
, (2.7)

where B ≡ m1
m2,eff

. The momentum P2,1 carried by the first lead-
ing solitary wave at t = t1 is

P2,1 =
2P0
B+ 1

. (2.8)

At time t2 another independent single solitary wave is gener-
ated in the "light" chain, further reducing the energy and linear
momentum of the "dancing" interfacial particle. Upon apply-
ing conservation of energy and linear momentum, as before,
and assuming that the first solitary wave does not participate
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in this process, we find the momentum of the “dancing" particle
at t = t2, P1,2, and of the second solitary wave, P2,2, as

P1,2 =
P0 (B− 1)2

(B+ 1)2
,P2,2 =

2P0 (B− 1)

(B+ 1)2
. (2.9)

Upon iterating this process n times (assuming that the genera-
tion of each solitary wave occurs independently and does not
interfere with the previous or subsequent solitary wave) , we
find that the “heavy" interfacial bead at t = tn is left with a
linear momentum P1,n while the n-th solitary wave carries mo-
mentum P2,n given by

P1,n =
P0 (B− 1)n

(B+ 1)n
,P2,n =

2P0 (B− 1)n−1

(B+ 1)n
. (2.10)

Fig. (2.2)(b) illustrates the favorable comparison of P2,n
P2,1

=(
B−1
B+1

)n−1
against numerical data (red circles) for A = 0.125.

The amplitudes of the delayed secondary sequence of solitary
waves generated is neglected in our approximate model.





D I S O R D E R E D PA C K I N G S

In the previous chapter we found that approximat-
ing the solitary wave as quasi-particle, provides us
with a simple model to study its interaction with
an isolated granular interface characterized by mass
mismatch. Upon crossing the interface, the solitary
wave was seen to disintegrate into approximately
two solitary waves when the mass ratio is small.
This suggests that if we keep track of the leading
transmitted solitary wave as it propagates through
a series of well separated interfaces as a model for
a medium with mass disorder, we will find the soli-
tary wave amplitude to decrease with distance.

In this chapter, we study numerically and analyti-
cally the decay of the solitary wave excitations in
such a two dimensional mass disordered and amor-
phous packings of grains that are just in contact
with their nearest neighbours. We find that there
is a regime of weak mass disorder, where the soli-
tary wave excitation generated in response to an im-
pulse decays exponentially at early times, with a
rate that depends upon the amount of disorder. In
the long time limit, the initially well defined soli-
tary wave soon transitions into a triangular shock
like profile, whose amplitude decays as a power law
with an exponent that is consistent with 1

2 and in-
dependent of the amount of disorder. Additionally,
there is a regime of strong disorder where the quasi-
particle model is not adequate to model the interac-
tion of the solitary waves with the material inhomo-
geneities. Rather in this regime, the power law de-
cay is the dominant mechanism of attenuation and
we observe this in hexagonal lattices with strong
mass disorder (large variance in masses) as well as
in jammed amorphous packings close to their criti-
cal packing fraction *.

* The research ideas presented in this chapter evolved out of discussions with
L. R. Gomez and V. Vitelli and are part of Reference[45]. Thanks to L.R.
Gomez for the 2D simulations and accompanying figure 3.3.
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