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1
I N T R O D U C T I O N

Materials are conventionally classified in one of three states of
matter: solid, liquid or gas. However, many commonly available
materials may be easily arranged to display novel properties,
that defy their simple classification into any of the above states
of matter. Consider for instance, a block of steel, see Fig . (1.1).
It is clearly a solid – if we hammer one end gently, the material
remains intact and we hear sound. Now, construct out of the
block of steel many smaller steel balls and pack them together
so that the balls just touch each other. What happens if we now
hit one end of this packing ?

No matter how gently you touch the sample, super-sonic
waves (waves that travel faster than the sound speed of the
medium) , rather than ordinary sound, will propagate in the In fragile matter

near their critical
point, energy
propagates through
strongly non-linear
waves that travel
faster than the
speed of sound

packing. This happens no matter how hard (or soft) the con-
stituent balls are. Surprisingly then, this simple aggregate of
steel balls already uncovers a unique state of matter, that we
will call fragile matter.

What is the origin of such an extreme response ? The paradigm
of solids is the long range ordering of identical constituents
(such as atoms) that interact harmonically for small displace-
ments from their equilibrium lattice spacing. Within such ap-
proximations, their response to any external mechanical per-
turbation is linear and is embodied in a finite elastic moduli
that also endows the solid with a finite speed of sound. Higher
order non-linear terms conventionally appear as small pertur-
bations around a response that is predominantly linear.

By contrast, in the above example of a granular aggregate of
steel balls just in contact with their nearest neighbours, both the
linear elastic moduli and speed of sound drop to zero. This ex-
treme softness stems directly from the local strongly non-linear
interaction between macroscopic balls in contact since the inter-
particle interaction now no longer has a harmonic part. More-
over, this behaviour is independent of the material the ball is
made of which could be as hard as steel or as soft as bubbles
- it is a result of continuum elasticity that dictates the nature
of the interaction between macroscopic objects in contact [1].
This is just one example of how fragility originates. Note, the
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2 introduction

notion of a granular aggregate of steel balls as constituting a
state of matter, is now at one higher level of abstraction: we are
considering the collective behaviour of an aggregate of macro-
scopically solid balls and studying its mechanical (collective)
response.

Interestingly, fragility itself can also arise from a global crite-
ria, for instance in a weakly connected network of cross-linked
polymers that are often modelled as a random network of har-
monic springs. Here, softness in linear response can arise irre-
spective of the strength of the local spring constant, provided
that the number of mechanical constraints is too low to main-
tain rigidity. In these physical systems, the disordered arrange-
ment of particles plays a pivotal role in shaping the mechanical
response by causing the particle displacement field in response
to strains applied at the boundaries, to be very heterogeneous
(not mimic the direction of strains applied at the boundaries).
Such displacements are called non-affine and by absorbing a sub-
stantial part of the energy supplied at the boundaries, these dis-
placements allow new configurations to minimize the energy,
causing a vanishingly small linear response[2, 3, 4].

In many materials (see Fig. (1.2)), it is often the interplay be-
tween the nature of the constituents (that dictates their interac-
tion locally) and how they are arranged in the material (global
criteria), that together determine the nature of the elastic re-
sponse. Note here, the notions of fragility and softness are onlyFragility can arise

from local
non-linear

interactions and/or
emerge as a

collective
phenomenon where

disorder plays a
pivotal role.

to stress the unusual behaviour within the regime of linear re-
sponse and does not necessarily imply a breaking apart of the
material.

In the following sections, we now give some examples of the
kinds of unusual behaviour that arise in simple (often idealized)
model systems, that are used to study fragile states of matter.

1.1 strongly non-linear waves in fragile matter

1.1.1 Hertz interaction for elastic bodies

As alluded to above, the strongly non-linear interaction poten-
tial between macroscopic bodies in contact is often a source of
fragility. Here, we provide a simple intuitive explanation of the
origins of a strongly non-linear elastic response. Detailed an-
alytic derivation may be found in Lev Landau’s book on the
Theory of Elasticity [5].
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Figure 1.1: A block of steel (left) has a finite speed of sound (6000

m-sec). However, if we cut the block of steel into smaller
steel balls and arrange the balls such that they are just
touching each other, we uncover a new mechanical state
where the sound speed is zero. Energy propagation there-
fore happens through strongly non-linear waves. This ex-
treme response follows from the non-linear inter-particle
interaction and motivates calling this new state as fragile
matter. Source for figures: google.

When two macroscopic objects are brought into contact an
elastic deformation δ is generated, as illustrated in Fig. 1.3 [1].
If a ball of radius R is squeezed against a flat wall, it is com-
pressed in the longitudinal direction and expands in the trans-
verse direction. Simple geometric considerations reveal that the
radius of the area of contact is approximately (Rδ)

1
2 (see Fig.

1.3). Therefore in the contact area, the deformation (or strain)
γ can be estimated by dividing the longitudinal deformation δ
by this radius: γ = δ

(Rδ)
1
2

∼ δ
1
2 . According to linear elasticity,

for small strains, the stress σ is proportional to the strain γ so
that σ ∼ δ

1
2 . The corresponding force f is obtained by multi-

plying the stress by the area of contact, which is proportional
to Rδ, see the dashed circle in the Figure. The Hertzian law of
interaction then follows: f ∼ δ

3
2 , where only the dependence on

δ has been kept explicitly. Note that, despite the linear stress-
strain relation for the balls material, their interaction force is
non-linear.

1.1.2 A prelude to non-linear waves

Consider now a general oscillator of the form described above
with a return force given by f ∼ δα−1, where δ is the displace-
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Figure 1.2: Real examples of fragile matter: (left) a polymer like net-
work of biological muscle fibres , (center) an amorphous
packing of tennis balls and (right) bubbles. Source for fig-
ures : google.

ment from the equilibrium position and α >= 2. In the absence
of any dissipation, the total mechanical energy is conserved and
is the sum of kinetic and potential energies:

E =
1

2

(
dδ

dt

)2
+ δα. (1.1)

Since E is a constant, we obtain a differential equation for the
variable δ, (

dδ

dt

)
=
√
2(E− δα), (1.2)

solving which, we obtain the time period of oscillation

T =
√
2

∫A
−A

dδ

Aα − δα
, (1.3)

where, we have defined the amplitude of oscillation A = E
1
α .

Defining a new variable t =
(
δ
A

)α
, the integral can be simplified

and expressed in the form a Beta integral

T =
2
√
2

A
α−2
2

∫1
0
dt t

1
α−1 (1− t)−

1
2 (1.4)

with the solution

T =
2
√
2

A
α−2
2

Γ
(
1
2

)
Γ
(
1
α

)
Γ
(
1
2 +

1
α

) . (1.5)

Notice now, the time period or equivalently, the frequency of
oscillation depends upon the amplitude as ω ∼ A

α−2
2 for α > 2

(non-linear oscillator) but is independent of the amplitude for
α = 2 (harmonic oscillator).
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Figure 1.3: Schematic illustation of the origin of non-linear Hertz law
of interaction between macroscopically large bodies inter-
acting elastically. The top inset shows two sphere with
an overlap δ. In the bottom figure, a sphere is pressing
against a flat surface that causes both compression by
an amount δ and lateral deformation proportional to δ

1
2 .

source : Shocks in fragile matter [1]

This dependence of the frequency of oscillation upon the ini-
tial condition or the amplitude of excursion is the crucial differ-
ence between a harmonic oscillator with a linear restoring force
(simply called a linear oscillator, such as the simple pendulum)
and a non-linear oscillator and already alludes to the notion of
non-linear waves. Recall, a linear non-dispersive wave typically
assumes the form ψ(x, t) = AG(x− ct), where A is the ampli-
tude, c = ω/k is the constant speed of sound that only depends
on the material properties of the medium, k is the wave-number
and ψ,G are some general functions. Roughly then, since for a
non-linear wave the frequency of oscillation is a function of the
amplitude ω ≡ ω(A), therefore the speed of propagation also
depends upon the amplitude of the wave c(A). In subsequent
sections, we will explore specific examples where the depen-
dence of the speed of propagation of the wave on its amplitude
will signal the onset of a non-linear regime.

1.1.3 Examples of fragile matter in one dimension

One of the simplest example of fragile matter is a one dimen-
sional chain of spherical macroscopic beads that are just in con-
tact with their two nearest neighbours. Since this is a perfectly
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ordered arrangement, we could try to define an effective spring
constant from the second derivative of the interaction potential.
Consider an interaction potential of the generalized Hertz form,
i.e., V(δ) ∼ δα, where α > 2 is the non-linear exponent. The case
α = 5

2 corresponds to the Hertz law of interaction for linear
macroscopic objects as described in section 1.1.1.

Using the second derivative of the potential to define an ef-
fective spring constant, we find, Keff ∼ δ

α−2. For a vanishingly
small initial overlap, δ ≡ δ0 → 0, and we see that for α > 2,
Keff → 0, while for α = 2, it is a finite constant. Since the speed
of sound is related to the effective spring constant as c ∼

√
Keff,

we find that in a system that is initially un-stressed δ0 → 0

(and has an interaction potential that has no harmonic part),
the speed of sound in the medium is zero. Such a unique me-
chanical state, characterized by the absence of any sound, is
referred to as sonic vacuum[6].Sonic vacuum is the

unique mechanical
state characterized

by the absence of
linear sound.

Consequently, mechanical strains that arise for instance, in
response to an impulse given to one of the beads, evolve into
strongly non-linear waves that propagate as spatially compact
excitations known as solitary waves. Note, in this example we
have considered a chain of macroscopic beads (or balls) ar-
ranged in a line. In principle, this allows the possibility for the
beads to break contact with each other. However, the state of
sonic vacuum defined above simply stems from the non-linear
power law interaction potential and exists even if we replace the
beads with point nodes that interact with a non-linear spring,
where both spring stretching and compression are accommo-
dated. In subsequent sections, we will explore these examples
in more detail.

1.1.4 Examples of fragile matter in two dimensions

As a minimal two dimensional model for fragile matter with
disorder, we consider an amorphous packing of frictionless sph-
eres (or disks) that interact repulsively upon overlap (including
the possibility of no overlap as in hard disks). The unique con-
trol parameter specifying such a system is the packing fraction,
φ defined as the ratio of the volume occupied by the spheres
to the total volume of the sample. Extensive simulations have
revealed the existence of a critical packing fraction φc, at which
the packing undergoes a jamming (or rigidity) transition - be-
low φc, the particles do not overlap and the energy, pressure
and number of contacts between particles is zero. Above, φc
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the energy, pressure, number of contacts, shear and bulk mod-
ulii are non-zero and scale with the distance from the critical
point; δφ = φ−φc.

If the interaction potential between particles that overlap by
an amount δ is V(δ) ∼ δα, then for α = 2 (harmonic interac-
tion), the bulk modulus at the critical point is finite, but it is
found that the shear modulus still vanishes. This is an example
where fragility arises macroscopically and here, the amorphous
arrangement of the spheres plays a crucial role. For α > 2

(strongly non-linear interaction), the local spring constant de-
fined as the second derivative of the interaction potential (as in
the one dimensional example) vanishes in the limit δ0 → 0. Con-
sequently, at the critical point both the bulk and shear modulus
are zero.

Another extensively studied model for fragile systems is a
random network of harmonic springs that may be derived from
the amorphous packing of spheres by replacing their centres
with nodes and by modelling the interaction between neigh-
bouring overlapping spheres with springs that can both, stretch
and compress (two sided interaction). Such a random network
of springs is often also used as a starting point to model poly-
mer networks and glasses. Here, the control parameter is the
average number of nodes each node is connected to, i.e., z. If
we start with a loose arrangement of spheres, then at the rigid-
ity transition, φc, the average connectivity z also jumps discon-
tinuously from zero to a critical value zc = 2d (also called the
isostatic value ziso), that according to Maxwell’s criteria marks
the onset of mechanical rigidity for a lose particulate system
in d dimensions. The mechanical properties above the critical
value, are seen to scale with the distance from the critical value
as δz = z− zc.1

In these examples, the vanishing of one or both the elastic
modulii near the critical point leads to fragility that dictates
their mechanical properties well beyond the critical point itself.
We next explore as a consequence, some of the non-linear exci-
tations that result when we strain at a uniform rate, one of the
boundaries of the above model systems.

1 Once a random network is used as a model under study though, there is
no constraint in making z < ziso (due to springs that connect neighbouring
nodes, it is no longer a loose arrangement of particles) and the mechanical
properties below the isostatic value constitutes an active area of research.
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Figure 1.4: Schematic illustration of left: compressing an amorphous
packing of soft frictionless disks close to the critical pack-
ing fraction φc with a piston moving at a uniform speed
up. This results in a velocity field (illustrated in red)
that corresponds to a uni-axial shock front that propa-
gates along the direction of compression (x−direction) at

a speed vs ∼ u
α−2
α
p . right: shearing a random network of

harmonic springs close to the isostatic value zc results in
a shear front that propagates transverse to the direction of
shearing . The velocity field is defined by averaging the
longitudinal speeds of nodes. For high strain rates, the
speed of propagation of non-linear shear fronts depends
upon the applied strain rate as vf ∼ γ1/2.

1.1.4.1 Compression shocks in amorphous packings:

Consider first the two dimensional packing of soft frictionless
disks close to the critical point φc (see Fig. (1.4) left panel),
where overlapping nearest neighbours interact with a purely
non-linear potential of the form V(δ) ∼ δα, α > 2. As shown in
Fig. (1.4) left panel, compressing one end of the packing at a
uniform rate up results in a compressive shock front (red field)
that propagates along the direction of compression at a speed

vs ∼ u
α−2
α
p (see Fig. (1.5)). Since on either side of the shock front

the number of disks is conserved, the relation between the driv-
ing speed up and the front speed vs may be obtained from the
conservation of number density.

In a frame of reference moving at the front speed vs, the flux
q to the left of the front equals the flux to its right- ql = ρl(up−
vs) = ρr(0− vs) = qr. This is known as the Rankine-Hugoniot
condition for the shock speed:

vs = up
ρl

ρl − ρr
. (1.6)

Assuming now, that the average overlap between disks in the
un-compressed region (right of the front) is δ0 and in the com-
pressed region (left of the front) is δs, the respective number
densities in the two regions are ρl = 1

2R−δs
and ρr = 1

2R−δ0
,
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where R is the average radii of the disks. Substituting in Eq.
(1.6), we arrive at vs = up

2R−δ0
δs−δ0

which for strongly non-linear
fronts δs � δ0, yields vs ∼

up
δs

.
Next, we make the working assumption that the particles en-

veloped within the region of the shock (see Fig. (1.4) red region)
satisfy a Virial-like relation, i.e., in steady state, there exists a
balance between the disk kinetic energies and the induced po-
tential energy u2p ∼ δαs . Then, the average compression induced

by the propagating front is δs ∼ u
2
α
p . This non-trivial scaling rela-

tion is a consequence of the non-linear local interactions and is
verified numerically[26]. Thus, for strongly non-linear shocks,
the shock speed is related to the driving rate via

vs ∼
up

δs
= u

α−2
α
p . (1.7)

As alluded to earlier, this is a defining feature of non-linear
waves: the speed of propagation depends upon the amplitude
of the wave, unlike for linear sound waves, where the speed of
propagation is independent of the amplitude (for instance, if
α = 2, vs becomes independent of up). As shown in Fig. (1.5)
left panel, this scaling relation is in very good agreement with
numerical findings (shown for α = 5

2 ) and is also confirmed in
recent experiments [7].

1.1.4.2 Densification fronts in hard sphere gas below the critical
point:

In a recent experimental study, it is shown that uni-axially com-
pressing a two dimensional loose assembly of hard binary disks
below the jamming critical density φj, leads to a densification
front that travels along the direction of compression, leaving the
region enveloped by the front jammed at φj [8]. This is analo-
gous to the red region shown in Fig. (1.4) left panel, except
that for hard disks, the maximum packing fraction saturates at
φj < φc. Since the number of disks behind and ahead of the
front is conserved, the Rankine-Hugoniot condition Eq. (1.6)
still holds. However, for hard disks, the region to the left of the
front can be compressed to its maximum density φj and thus
the front speed is simply related linearly to the driving speed
vs = up

φj
φj−φ0

, where φ0 < φj is the initial packing fraction.
Notice, this relation is also obtained by taking the hard sphere

limit of Eq. (1.7) : vs ∼ limα→∞ uα−2αp = up.
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1.1.4.3 Shear fronts in random spring networks:

Next, we consider a random network of nodes connected by
harmonic springs in the vicinity of the critical point , with an
average connectivity z > zc. Here, fragility manifests in the
vanishingly small shear modulus that scales linearly with the
distance from the critical point G ∼ ∆z. Consequently, as we
approach the critical point from above, the transverse speed of
sound c ∼

√
G also drops to zero.

This limited window of linear response near the critical point,
manifests in a non-linear constitutive stress-strain relation (in
the frequency independent regime) for the shear stress as a
function of shear strain applied at the boundary: [2]-

σ = Gγ+ κγ|γ|. (1.8)

Here, σ ≡ σxy is the coarse grained shear stress, γ is the shear
strain and κ is the coefficient of the first non-linear term (in-
dependent of ∆z). Upon comparing the two terms on the right
hand side, we find the critical strain γc = G

κ , beyond which the
elastic response is predominantly non-linear. Note that, as we
approach the critical point, ∆z → 0, the critical strain γc →
0 and thus, an infinitesimally small strain elicits a strongly
non-linear response. Since the constitutive random spring net-
work is composed of purely harmonic springs, the strongly
non-linear response near the critical point, highlights the macro-
scopic fragility of these networks, although the origins of non-
linearity remain local (see Supplementary Information E).

The dynamics of energy propagation can now be explored by
conducting numerical experiments analogous to the ones con-
sidered previously for an amorphous packings of frictionless
spheres, but now in the transverse direction. Here, it is found
that by shearing one edge of the sample at a uniform rate below
the critical strain rate γc (in dimensionless units, the strain and
strain rates coincide), initially gives rise to a transient super-
diffusive spreading of the transverse velocity field away from
the shearing zone, see Fig. (1.4) right panel. At later times how-
ever, this crosses over into a well defined shear front that propa-
gates with the transverse speed of sound c ∝

√
G. Interestingly

though, the linear shear fronts are not in a steady state, i.e., their
widths continue to increase with time. We understand this be-
haviour as arising from the increasingly heterogeneous elastic
displacement field near the critical point, that makes the ran-
dom spring networks an over-damped system, despite no mi-
croscopic mechanism for dissipation being present. This unique
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feature is a direct evidence of how the underlying network dis-
order manifests in the properties of the shear front, causing
their widths to spread diffusively with time [9].

For strain rates γ > γc, the constitutive stress-strain rela-
tion described by Eq. (1.8) is non-linear and results in super-
sonic shear fronts. From Eq. (1.8), we identify a non-linear mod-
ulus Gnl = G+ κγ, and consequently a characteristic non-linear
speed of propagation that is a function of the applied strain
rate:

vf =

√
Gnl

ρ
=

√
c2 +

κγ

ρ
. (1.9)

Notice, for γ � γc, the front speed approaches the transverse
speed of sound c and is independent of the strain rate (driv-
ing amplitude). On the other hand, for γ� γc, the front speed
becomes independent of c (and hence ∆z), and depends only
upon the applied strain as vf ∝ γ

1
2 , this we classify as the

strongly non-linear regime.
In Fig. (1.5) , right panel, we see the analytically predicted

speed of propagation Eq. (1.9)(solid lines) compared against
numerical findings (symbols) for a range of dz. For γ < γc, the
speed of propagation is independent of the applied strain rate
and agrees very well with the numerically determined trans-
verse speed of sound. For γ > γc, we observe non-linear fronts
that propagate at speeds that depends on the applied strain
rate and the numerical findings are in very good agreement
with the analytical estimate in Eq. (1.9). For γ � γc, we enter
a strongly non-linear regime where the front speed depends
quadratically upon the applied strain rate as vf ∝ γ

1
2 while

becoming independent of ∆z.
The behaviour of shear fronts in the strongly non-linear regime

is analogous to the strongly non-linear compressional fronts ob-
served in amorphous packings of soft frictionless disks where

for sufficiently large driving speeds, vs ∼ u
1
5
p (for α = 5

2 inde-
pendent of the packing fraction). Thus, we find that despite the
disparate sources of fragility (local versus global), the physics
of energy propagation in the form of strongly non-linear waves
is one of the defining features of fragile matter near their critical
point. Note also, despite the differing exponents that capture
the front speed as a function of driving rate, in both cases, the
front speeds in the strongly non-linear regime is independent
of the underlying microstructure, not being dependent on the
distance from the critical point (δφ or δz).
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Figure 1.5: The front speed as a function of applied strain rate for
left: compressional shocks in a jammed amorphous pack-
ing of soft frictionless disks for α = 5

2 in agreement with

the relation vs ∼ u
1
5
p (dashed line) for high strain rates.

The symbols correspond to numerical data of the front
speed, obtained for a range of initial packing fractions
δ0. right: shear fronts in random network of harmonic
springs shown for a range of coordination numbers dz.
The solid lines correspond to the analytical prediction Eq.
(1.9) while symbols correspond to numerical data for the
front speed.

1.2 disorder as an effective viscosity ?

Understanding the nature of disorder in amorphous materials
is still an arduous task. In particular, for fragile matter near the
critical point, the breakdown of linear elasticity and the result-
ing non-linear response makes a quantitative analysis difficult.
Notwithstanding, disorder has some clear signatures in the dy-
namical response of these systems, that we could try to explore.

At a simpler, qualitative level, the process of defining uni-
axially propagating fronts involves an averaging over the de-
grees of motion transverse to the direction of propagation. See
for instance Fig. (1.4), where for compressional fronts propagat-
ing along the horizontal x− direction, an averaging of the par-
ticle speeds over the transverse y- direction is necessary. Simi-
larly for the shear fronts, an averaging along the horizontal di-
rection is implied. For amorphous packings, this process thus
necessarily involves ignoring a part of the energy that is being
supplied at the boundaries. The net result is that this loss of en-
ergy effectively acts as a source of dissipation, that we refer to
as an effective viscosity. The way this effective viscosity mani-
fests in the properties of the propagating fronts however, differs
in details.
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The steadily propagating compressional shocks in amorphous
packings are a consequence of the interplay between locally
non-linear inter-particle interaction potential and the granular
nature of the medium, that acts as a source of dispersion. The
shock widths are thus a few grain diameters and happen to be,
independent of the shock amplitude. As a result, the leakage of
energy (or the effective viscosity) into degrees of motion trans-
verse to the direction of propagation of the front, do not effect
the shock width but act as a small perturbation that smooths
out the shape of the shock profiles, in contrast to the oscillatory
profiles observed in more ordered packings [26]. 2

By contrast, both the linear and non-linear shear fronts ob-
served in random spring networks are a macroscopic phenomen-
on. The increasingly heterogeneous (non-affine) elastic displace-
ment field close to the isostatic value, spills a large part of the
energy into degrees of motion transverse to the ones being ex-
cited at the boundaries. For shear fronts, this amounts to a loss
of energy into longitudinal excitations and several numerical
studies have indicated that this loss diverges with the distance
from the critical point l∗ ∼ ∆z−1/2. Consequently, both in the lin-
ear and non-linear regimes, random spring networks are found
to be over-damped and the propagating fronts never achieve a
steady state. Instead, their widths continue to grow with time.
For instance, upon rescaling the temporal diffusive spreading
of the linear shear fronts for strain rates γ < γc, the front widths
are observed to be dictated by the diverging length l∗. Since this
effect mimics the effect of viscosity (in setting the width of the
shock transition region), disorder emerges as an effective vis-
cosity that diverges as the critical point [9].

The densification fronts observed below the hard disk jam-
ming density φj are found to be in a steady state and sat-
isfy a Burgers-like non-linear diffusion equation. Like the shear
fronts in random spring networks, a diverging length scale
lj ∼ (φj − φ0)

−0.65 sets the widths of the propagating fronts
that now scales as η = uplj, where up is the driving speed [8].
Physically, the length scale lj here is found to be the character-
istic length scale associated with longitudinal velocity-velocity
correlation function.

2 It is not the intention to convey here that these observations are obvious. We
are only drawing some of these conclusions after having done the numerical
experiments.
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1.3 this thesis

As part of this thesis, we will try to understand the interplay
between the strongly non-linear waves and the underlying dis-
order, in models of fragile matter that are in the vicinity of
the critical point. For instance, to better understand the role of
disorder in jammed amorphous packings close to their critical
packing fraction, we will study what happens to an impulse
that is imparted at one of the edges of such a packing. This
is in contrast to the compression experiments discussed previ-
ously, where an amorphous packing of soft frictionless disks
is compressed at a uniform rate resulting in steadily propagat-
ing shock fronts. Rather, the study of impulse propagation will
somewhat simplify the analysis and bring to the fore, the role
played by disorder as a mechanism that continually takes en-
ergy away from the propagating excitation.

As our first step towards this, we will consider a two dimen-
sional hexagonal packing of soft frictionless disks that are just
in contact with their nearest neighbours and thereby, constitute
a state of sonic vacuum (upon overlap the disks interact with
the nonlinear Hertz potential). As the simplest form of disor-
der, we will consider an isolated impurity that we model as an
interface that separates two hexagonal packings composed of
disks with different masses so that on one side of the interface
all the disks (particles) have a mass m1 and on the other side all
the disks have a mass m2. The elastic isotropy of the hexagonal
lattice will essentially reduce the study of impulse propagation
to a one dimensional problem, whose analytic solitary wave so-
lutions are by now well established. Consequently, by mapping
the resulting solitary wave excitation to a quasi-particle with an
effective mass, we will be able to (approximately) understand
the interaction of the solitary wave with the interface for differ-
ent choices of mass ratios A = m2/m1.

Our understanding of the solitary wave behaviour across the
interface will equip us with some approximate analytical tools
to then study the problem of solitary wave propagation in a
hexagonal lattice with particle masses distributed randomly.
Subsequently, we will find a good estimate of how increas-
ing the disorder (variance in mass distribution), increases the
damping rate of the propagating solitary wave.

For a larger variance in the mass distribution, we will find a
new regime of wave propagation and an associated decay rate.
We will see that it is no longer possible to identify a propagat-
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ing solitary wave except at the very early stages of the evolu-
tion of the impulse. Instead, we will find that the initial impulse
soon transitions into a triangular shock like propagating front
whose amplitude decays as it traverses the medium. This ex-
treme limit of high disorder in particle masses then provides
us with a link to the physics of impulse attenuation in amor-
phous packings where again an initial impulse transitions into
a triangular shock front whose amplitude decays with the same
power law exponent as in the hexagonal packing.

The attenuation of the impulse then leads to some interest-
ing consequences. As noted, disorder will cause the energy ini-
tially localized in an impulse to be distributed throughout the
amorphous packing (of finite size). Consequently, in a system
with no intrinsic mechanism to dissipate energy, the particles
will continue to fluctuate forever. This we imagine as a granu-
lar analogue of temperature where the passage of the impulse
effectively fluidizes the amorphous packing and where the en-
ergy of the impulse plays a role that is analogous to tempera-
ture (but not really in thermal equilibrium). As a consequence,
the emergent mechanical state will have a finite bulk modulus
and a viscosity that we will see is consistent with the descrip-
tion of a one dimensional fluid in equilibrium (recall, we started
with an amorphous packing at the critical point where it has
vanishingly small bulk and shear modulus).

The emergence of a granular analogue of temperature and a
fluctuation induced rigidity then motivates us to study an ex-
ample of fragile matter that is explicitly coupled to a source of
thermal fluctuation. The coupling to the heat bath forces the
system to be truly in a state of thermal equilibrium. As the
simplest toy model, we will adopt a one dimensional chain of
strongly non-linear Hertz springs coupled to a heat bath. We
will then study the propagation of an impulse along this chain
and find that for small thermal fluctuations, the impulse again
evolves into the same solitary wave solution that are the charac-
teristic excitations in a granular chain of beads. By mapping the
solitary wave to a quasi-particle, we will find that its dynamics
can be described in analogy with that of a Brownian particle.

In the last chapter, we will shift our attention to another
model of fragile matter: a two dimensional disordered network
of linear springs, where the loss of rigidity (vanishing shear
modulus) is a collective phenomenon. By shearing one edge of
the sample at a uniform rate we will study the resulting dynam-
ics, finding both a linear and non-linear regime for the propa-
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gation of the shear front. In addition, within the linear regime,
we will find that at early times, there is no front propagation
but only a super-diffusive spreading of the energy away from
the shearing edge.



G R A N U L A R I N T E R FA C E S

In order to build up the tools to study the propaga-
tion of strongly non-linear solitary waves in a two
dimensional amorphous material, we begin here by
looking at the interaction of the solitary wave with
an isolated impurity modelled as a granular inter-
face formed between two hexagonal lattices com-
prising particles with different masses. By treating
the solitary wave as a quasi-particle with an effec-
tive mass, we construct an intuitive (energy and lin-
ear momentum conserving) discrete model to pre-
dict the amplitudes of the transmitted and reflected
solitary waves generated when an incident solitary
wave, parallel to the interface, moves from a lighter/-
denser to a denser/lighter granular hexagonal lat-
tice ‡.

‡ This chapter builds on the work done in the master’s thesis by A. Tich-
ler (2012) . Further research ideas evolved out of discussions with V. F.
Nesterenko ,V. Vitelli and L.R. Gomez and are presented in reference [39].
Thanks to L.R. Gomez for simulations and accompanying figures.
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