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Bosonic atoms trapped in an optical lattice at very low temperatures can be modeled by the Bose-Hubbard
model. In this paper, we propose a slave-boson approach for dealing with the Bose-Hubbard model, which
enables us to analytically describe the physics of this model at nonzero temperatures. With our approach the
phase diagram for this model at nonzero temperatures can be quantified.
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[. INTRODUCTION particles that are known as slave bospb8]. The idea be-
hind this is that if we consider a single lattice site, the occu-

The physics of the Bose-Hubbard model was the subjedpation number on that site can be any integer. With each
of intensive study for some years after the seminal paper bflifferent occupation number we identify a new particle. Al-
Fisheret al, which focused on the behavior of bosons in athough this means that we introduce a lot of different new
disordered environmeritl]. More recently it has been real- particles, the advantage of this procedure is that it allows us
ized that the Bose-Hubbard model can also be applied t transform the on-site repulsion into an energy contribution
bosons trapped in so-called optical lattid®3, and mean- that is quadratic in terms of the new particles. Because we
field theorie3—5] and exact diagonalizatidi6] have been ~Wwant to be able to uniquely label .each different state of the
successfully applied to these systems in one-, two- and thre8ystem, the new particles cannot independently be present at
dimensional systems. The experiments performed by Grein&ach lattice site. That is why we have to introduce a con-
et al.[7] have confirmed the theoretically predicted quamumstraint. Using this we derive within a functional-integral for-
phase transition, i.e., a phase transition induced by quamumalism an effective action for the superfluid order parameter
fluctuations, between a superfluid and a Mott-insulatingvhich depends on the temperature. The equivalence with
phase. A review of the work carried out in this field has beerPrevious work at zero temperature is demonstrated.
given by Zwerger [8]. Strictly speaking, the above- The outline of the paper is as follows. In Sec. Il we intro-
mentioned quantum phase transition occurs only at zero tenfluce the slave-boson formalism and derive an effective ac-
perature[9]. At nonzero temperatures there is a “classical” tion for the superfluid order parameter. In Sec. lll we present
phase transition, i.e., a phase transition induced by thermahe zero- and nonzero-temperature mean-field results. The
fluctuations, between a superfluid phase and a normal phaggmainder of the paper is devoted to the effect that the cre-
and there is only a crossover between the normal phase andon of quasiparticle-quasihole pairs has on the system.
Mott insulator. It is important to mention here that a Mott
insulator is by definition incompressible. In principle therell. SLAVE-BOSON THEORY FOR THE BOSE-HUBBARD
exists, therefore, no Mott insulator for any nonzero tempera- MODEL

ture where we always have a nonvanishing compressibility. In this section we formalize the above introduced idea of

Nevertheless, there is a region in the phase diagram whe ) ;
the compressibility is very close to zero and it is thereforeEﬁe slave bosons. We rewrite the Bose-Hubbard model in

justified to call this region for all practical purposes a Mott terms of these slave bosons within a path-integral formula-

. o . : ; .tion and derive an effective action for the superfluid order
insulator[5]. Qualitatively this phase diagram is sketched in ; , .
Fig. 1 foE a]\ f§<ed densit))//. Thispfigure sh%ws how at a Suffi_parameter, which then describes all the physics of our Bose

ciently small but nonzero temperature we start with a supergaﬁ_r':;tglgvc;?ggaslof?;%m ue was introduced by Kotliar and
fluid for small positive on-site interactiotd, encounter a d y

phase transition to a normal phase as the interaction strengEUCkenStem[lo]' who used it to deal with the fermionic

increases, and ultimately cross over to a Mott insulator fo ubbard model. A functional integral approach to the prob-

even higher values of the interaction strength. We can als!)e.m of hard-core bosons hopping on a lattice has been pre-

incorporate this nonzero temperature behavior into the pha yiously put forward by Zle_glefll] and Frsard[lZ_]. Let us
diagram in Fig. 2. This figure shows how at zero temperatur Irst shed_ some_llght on this _slave-boson fofma"sm- We_ con-
we only have a superfluid and a Mott insulator phase, but aglder a single site of our lattice. If the creazlon ang annihila-
the temperature is increased a normal phase appears in 0 operators for the bosons are denotedaﬁ)apd aj, re-
tween these two phases. spectively, we can form the number operatd;= aiTai ,

The aim of this paper is to extend the mean-field approackvhich counts the number of bosons at the sita the slave-
for the Bose-Hubbard model to include nonzero temperaturboson formalism, for any occupation number a pair of
effects and make the qualitative phase diagrams in Figs. thosonic creation and annihilation operators is introduced that
and 2 more quantitative. To do that we make use of auxiliarncreate and annihilate the state with precisely that given inte-

1050-2947/2003/68)/04362313)/$20.00 68 043623-1 ©2003 The American Physical Society



DICKERSCHEIDet al. PHYSICAL REVIEW A 68, 043623 (2003

[
T
NORMAL
" T #0SE/N
- T =0SF/MI
”
P T#O0N/MI
4
4
4
4
/
SF , “MI” -
/
4
4
U, u
FIG. 1. Qualitative phase diagram for a fixed and integer filling u

fraction in terms of the temperatufieand the dimensionless cou-

pling constantU=U/zt, with superfluid (SF), normal, and Mott
insulating phaseéMl). A true Mott insulator exists only aE=0.

FIG. 2. Qualitative phase diagram in terms of the chemical po-
tential w=pwu/zt and the dimensionless coupling constadt
=U/zt. The solid lines indicate real phase transitions between su-
rperfluid, normal, and Mott insulating phases. the dashed line corre-
sponds to a crossover between a normal and a Mott insulating
phase.

ger number of particles. The original occupation numbe
states|n;) are now decomposed &s’,n!, ...), wheren?
is the eigenvalue of the number operatof=(a®)'a®
formed by the pair of creationé(“)’f and annihilationéi“ with the additional constraint given in E¢l). We see that
operators that create and annihilate bosons of typt the  the quartic term in the original Bose-Hubbard Hamiltonian
sitei. As it stands, this decomposition is certainly not unique.has been replaced by one that is quadratic in the slave-boson
For example, the original statf?) could be written as creation and annihilation operators, which is the most impor-
10,0,1,9...) or as]0,2,q...). Our Hilbert space thus tant motivation for the introduction of slave bosons.
greatly increases. To make sure that every occupation occurs Now that we have introduced the slave-boson method and
only once we have to introduce an additional constraintderived its representation of the Bose-Hubbard model, we
namely, want to turn the Hamiltonian into an action for the imaginary
time evolution. Using the standard reciff3,14] we find

n%=1 1
20 . st arnl- [ 3 3 @oruesab-iS e
0 [ i

for every sitej. This constraint thus makes sure that there is

always just one slave boson per site. Because in the positive %
U Bose-Hubbard model bosons on the same site repel each

other, high on-site occupation numbers are disfavored. It is

therefore conceivable that a good approximation of the phys- X (a® Y*act, alftL(af)* (4
ics of the Bose-Hubbard model is obtained by allowing a ! P ey

relatively small maximum number, e.g., two or three or four,

p nf‘—l)—%}%\/m\/,m

of bosons per site. whereM is a diagonal matrix that has as th¢h diagonal
As is well known, the Hamiltonian of the Bose-Hubbard entry the ternid/d7— ap+ a(a—1)U/2, andB=1/kgT is
model reads the inverse thermal energy. The real-valued constraint field

enters the action through,

H 5 ; nf—1)=f d[)\]exr{fii—J:BEi Ni(7)

. A ~y~ U Npmin A
H=—<Z> altja—p a;rai+5 > alalaa. (2
1] 1 I

Here(i,j) denotes the sum over nearest neighbigrsire the
hopping parameters, and is the chemical potential. Using
our slave-boson operators we now rewrite E). into the
form

X

. (5)

2 n?—l)dr

Although we have simplified the interaction term, the
H=— z E \/m\/,m(éi”lféf“t”éf“(éf?f hopping term has be(_:ome more corr_lplicated. By performi_ng
il ap a Hubbard-Stratonovich transformation on the above action
we can, however, decouple the hopping term in a similar
E E a(a—l)ﬁi“ 3) manner as in Refl4]. T_his introduces a field_D_ into _the
- action which, as we will see, may be identified with the

N| C

uZ S ai+
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superfluid order parameter. The Hubbard-Stratonovich trans- _ , . _ ,
formation basically consists of adding a complete square t0So=iNgi BN + 2 kE {e| Py ol >+ (af )*M“P(iwp)af b
the action, i.e., adding a,B k,n

EScS;B‘F% e Py nl?. (8b)

[Fars (cpr—z Jati(ast Y an
0 i, @

The  matrix Maﬁ(iwn)Z5aﬁ[—iﬁwn—i)\—a,u,+a(a

Xtij (I)]_E a+1aj“+l(aj“)* 1)U/2], and
. . . S=- |(2 Na+ (ak+k’ n+n’ )*aﬁ,n
Since a complete square can be added to the action without K, k’ n,n’ ,3
changing the physics we see that this procedure allows us to
decouple the hopping term. We also perform a Fourier trans- XD, n,+q)k, n’( Z aka{ (@) }
form on all fields by means of a(7) @ ’ '
= (1IN B) S nag ,e'® %~ n?If we also carry out the (80)

remaining integrals and sums we find
The crucial idea of Landau theory is that near a critical

S D*,d,(a%)*,a%\] point the quantity of most interest is the order parameter. In
Y T our theory the superfluid field plays the role of the order
parameter. OnlyP,, can have a nonvanishing expectation

= E €k|q)k,n|2_| INAB an’(@kn)* value in our case and, therefore, we can write the free energy
Kn B ka nn as an expansion in powers @,
Xas+qyn+n,+iNSﬁﬁ)\+k§; (ag )*M*B(iwy)af | F(®oo)=ap(a,U,u) +az(a,U,u)|Pog?+0(|Pgd?),
' €)

[(2 Ja+1 (asikl, S LE- T and minimize it as a function of the superfluid order param-
’ ' eter ®,,. We thus find that{®y0) =0 whenay(a,U,u)
)] >0 and that(®g0)#0 whena,(a,U,u)<0. This means

- 2>
k,k’,n,n’ \/Nh

* a+l
X(Dk’,n’_'—q)k’,n’(; atla o nin(@cn)”

thata,(a,U,u) =0 signals the boundary between the super-

fluid and the insulator phases at zero temperature and the
(6) boundary between the superfluid and the normal phases at
nonzero temperature. Therefore we are going to calculate the
effective action of our theory up to second orderdin The
zeroth-order term in the expansion of the action in powers of
the order parameter gives us the zeroth-order contribution
), to the thermodynamic potenti&l. We have

where the matrixM (i w,,) is related to the matrid in Eq.
(4) through a Fourier transform. Furthermore)
=(Noo/ VN&i 8), ek:2t2?:1coskja), wherea is the lattice
constant of the square lattice will lattice sites. For com-
pleteness we point out that the integration measure has be-

1 SB,
come e*BQOEJ ];[ (H d[(aﬁ‘,n)*]d[aﬁ‘,n]% e St
1 (10
f d[(a“)*]d[a“]:j H d[(aﬁ,n)*]d[aﬁ,n]%- () From this it follows that

In principle, Eq.(6) is still an exact rewriting of the Bose- —BQo=—iINgBN+ Ns%: In(1—e AM™©)  (11)
Hubbard model. As a first approximation we soften the con-
straint by replacing the general constraint figldr) witha  gng M““(O) [—iN— aﬂ+ a(a—1)U/2]. Next we must

position dependence we enforce the constraint only on thg0 ie

sum of all lattice sites. Doing this we are only left with the

N, contribution in Eq.(6), which can then be added to the

matrix M. The path integral over the constraint field reduces (A)=
to an ordinary integral. So we have

1 1
e—;mof 1;[ (H d[(aﬁ’,n)*]d[aﬁ,n]@

ayk ala—Solh
S *,@,(a%)*,a* \]=S+S, (83 XA[(a®)*,a“le . (12)

Once we have this contribution, we automatically also find
where the dispersion relations for the quasiparticles in our system

043623-3
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as we will see shortly. For smalt we are allowed to expand 40 ety
the exponent in the integrand of the functional integral for z=eF ZJ dnd[@*]d[P]e
the partition function as

_ _ _ _ 2
e—S/ﬁ:e—(SO+S|)/h%e—So/ﬁ[l_Sl /ﬁ+%(sl /ﬁ)Z] _f d)\eX[{ BQO kE,n In B( €k €
(13
na_na+l
. . X +1)————| | ;. 19
It can be shown that the expectation valueSpfvanishes. Z, (a+1) —ifhw,—pt+al ] (19
The second-order contribution is found to be
D, 2 At this point we perform a saddle point approximation for
(=2 > eﬁ—k > (a+1) the constraint field\. This implies that we only take into
k,k’,n,n’ N B “a account that value of that maximizes the canonical parti-
atl . atl @ %o tion function. If we now thus minimize the free energy with
X<(ak+k/,n+n/) A+kr,n+n N (@kcn) i) (14 respect to the chemical potential and the constraint field, we

get two equations that need to be solved. The first is
One of the sums over the Matsubara frequengigcan  90/dx=0 and reads
be performed and the sum ouver produces an overall factor

Ns. We thus find )
G Y(k,iwy) B

i
o Ns(l—E ) — > G(k,iwp) P

k,n

|®[? '
(Sh)= 2 ﬁﬁ; ; (a+1)m, (15 (209

where we have defined the occupation numbers In amean-field approximation the last term is neglected, and
={(af)*a") that equal this equation tells us that the sum of the average slave-boson
occupation numbers must be equal to 1. This reflects the

exp[ B

constraint of one slave boson per site. The second equation
N E an®+ = 2 G(K,iwp)
Having performed the integrals over the slave-boson fields to

(16)  follows from —dQ)/du=N and gives
second order, we can exponentiate the result to obtain the (20b)
effective action for the order parameter

1

n=

1
—i)\—a,LH—Ea(a—l)U” -1
G~ l(k Iwn)

This equation shows how the particle density can be seen as
. . the sum of termsen® and a correction coming from the
ffi * _ _ * 1
sTTe ,@]—(ﬁﬂﬂo ﬁkE’n PinG (k"‘”“)q)kv“)' propagator of the superfluid order parameter. The latter is
(17 again neglected in the mean-field approximation.

where we have defined the Green’s function B. Superfluid phase

In the superfluid phase the order paramédeg > has a
nonzero expectation value. We find this expectation value by
calculating the minimum of the classical part of the action,
i.e., —hG 1(0,0)|Pggl?+ay Pogl*. This minimum be-
comes nonzero whenr#G~1(0,0) becomes negative, and is
then equal to

This result is one of the key results of this paper, which is
correct in the limit of smalk®, ,. If we want to make the , hG70,0)
connection with the Landau theory again, we can identify the [(Po)|*= 2a,
ay(a,U,u) in Eq.(9) with G~1(0,0)/8. In Sec. Ill we ana-
lyze this further.

ne¢— na+l

_ -1 i — _ 2 \
ARG (ki) (E" &2 (et D= )

(18)

=n,. (21

In Appendix A we calculate the coefficierst, of the
fourth-order term|®,/*. We approximate the prefactor to
the fourth-order term, which in general depends on momenta

In the Mott insulator where,=|(®,)|>=0, the thermo- and Matsubara frequencies, with the zero-momentum and
dynamic potential is now easily calculated by integrating outzero-frequency value &, so that the approximate action to
the superfluid field. In detail, fourth order becomes

A. Mott insulator

043623-4
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S=hB0—1 2 Of G (Kiw) Py,
k,n ' '

*
ta, 2 X D n P Prr Pk — -

k,k’ k" n,n’,n"
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a4n0;1 ((bk,nq)—k,fn'l' 4q>’kr,nq)k,n'l' (b:,n tk,—n)-

There is also a contribution—%AG~%(0,0)n, from the
second-order term. To summarize, in the superfluid phase we
can write the action Eq22) to second order as

22
22 SSF=4B80,— G 1(0,0n,
We now write the order parameter as the sum of its expec- . fl o* P 10 DPin
tation value plus fluctuations, i.eBoo— VNoVNgi B+ @ 2 kz:’] ( kn _k’fn)G (Kiwp) * n
and a similar expression fabg,. If we put this into the 29
action and only keep the terms up to second order, the con-
tribution of the fourth-order term is given by with
|
—G YK,iw,) +4hayn 2hayn
~G 7k iwp)= S . (24)
2hayng -G (—k,—iw,)+4hayng

Integrating out the fieldb, ,, we find the Bogoliubov ex-

the superfluid field we extract the dispersion relations of the

pression for the thermodynamic potential in the superfluidquasiparticle-quasihole pairs and their temperature depen-

phase,

zEe*m:f drd[@* Jd[D]eS°7h

= f drexp{— BQo+NneG~1(0,0)— Tr{In(—2BG™H]}.

Ill. MEAN-FIELD THEORY

(29)

dence.

A. Zero-temperature phase diagram

From the zeros of5~1(0,0) in Eq. (18), we obtain the
mean-field phase diagram in the,U) plane. For a Mott
insulating state with integer filling factor’ we haven®
=0, 4 - When this is substituted into the equation
G 1(0,0)=0 we can find theJ(u) curve that solves that
equation and thus determines the size of this Mott insulating
state. For given filling factow’ we also defindJ. as the
minimal U that solves the equation. Within the Mott insulat-

In this section, we apply the theory we have developed inng phase we have a zero compressibikitsz n/du, where

the preceding section. First, using the Landau procedure, we

reproduce the mean-field zero-temperature phase diagram.
We then study the phase diagram at nonzero temperatures. To

do so we calculate the compressibility of our system as a
function of temperature, showing how for fixed on-site re-
pulsion U the Mott insulating region gets smaller. By also
looking at the condensate density as a function of tempera-
ture, we get a quantitative picture of what happens at fixed
on-site repulsiorJ. The nice feature is that all our expres-
sions are analytic. Next, we consider our system at zero tem-
perature again and we study at the mean-field level the be-
havior of the compressibility as we go from the superfluid
phase to the Mott insulating phase. What we find is consis-
tent with the general idea that the quantum phase transition
between the Mott insulator and the superfluid phases belongs

to different universality classes depending on how you walk FIG. 3. Phase diagram of the Bose-Hubbard Hamiltonian as
through the phase diagratof. Ref.[9]). We then obtain an obtained from the mean-field zero-temperature limit in the slave-

60

401

20

10 15 20
U

analytic expression for the critical temperature of theboson formalism. It shows the superflF phase and the Mott

superfluid-normal phase transition in the approximation ofinsulator regions with different integer filling factors here denoted
three slave bosons, i.e., up to doubly occupied sites. Numerhy «’. The vertical axis shows the dimensionless chemical potential
cally we extend this study to include a fourth slave bosonu=u/zt and the horizontal axis shows the dimensionless interac-

and find only slight changes t6,. From the propagator of tion strengthU=U/zt.
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0.5 0.5 [ovveereeeme e s
0.4 04r
03 03r
og «:
0.2 0.2 FIG. 4. Numerical solution of
the slave-boson occupation num-
0.1 0.1 bersn® n?, andn? is shown in
(a)—(c) as a function ofu for vari-
0 00 ous temperatures and for fixed
(a) (c) U/zt=10. (d) shows the total
densityn. The compressibility in-
L5t creases as a function of tempera-
) ture. The solid line corresponds to
ztB=2, the dashed line corre-
sponds toztB=3, the dashed-
dotted line corresponds tatB
" — =4, and the dotted line corre-
sponds taztB=10.
.;a”
0% 2 4 6 8 10
(b) (@) B

n=n(u,U) is the total density as determined from the ther-of temperature. As the temperature is raised we find that the
modynamic potential. Straightforward calculation gives thatcompressibility, which is the slope of the curve, for a given
we are in a Mott insulating phase wheneyeties between Vvalue of U becomes nonzero for all values pf Although
' ' the slope can be exponentially small, this shows that there is
pne ,anduf where - ;
no longer a Mott insulator present. Because we are dealing
with a crossover there is no unique way to define the transi-
tion from a normal to a Mott insulator phase. There are vari-
ous ways to determine the crossover line. For instance, we
, , ) ) can define it by requiring that (T)/kgT is of order 1, where
Here we have introduced the dimensionless chemical poterk 1) s defined as the difference of the quasiparticle and
tial u=pu/zt and on-site repulsion strength=U/zt. When  quasihole dispersions &t=0. Another possibility is to de-
w does not lie between any® and ,uiﬁ/ the “superfluid”  fine it by requiring that the incommensurability is equal to a
density|(® )| will no longer be zero and the Mott insu- certain small value.
lating phase has disappeared. We have drawn the zero-

2 =1U(2¢'—1)—1]=3JU2-2U(2a’ +1)+1.
(26)

temperature phase diagram in Fig. 3. Our slave-boson ap- 028
proach reproduces here the results of previous mean-field 0.2}
studies [1,3,4. For nonzero temperatures the equation
G~ 1(0,0)=0 no longer describes a quantum phase transition < 0.15
between a superfluid and a Mott insulator but it describes a =)
thermal phase transition between a superfluid and a normal 2 01}
phase. We will look into this in more detail in Sec. Il F.
0.05
B. Compressibility 0

To see what happens to the Mott insulator as we move
away from zero temperature we must look at the compress-
ibility as a function of temperature. Numerically we have  FIG. 5. Superfluid densityd, > as a function ofu for various
solved Eq.(20), which gives us the occupation numbers of temperatures and fdo/zt=10. The superfluid density as well as
the slave bosons as depicted in Fig. 4. With that we carthe region of superfluid phase diminish as a function of increasing
determine the total density in the phase where the order paemperature. The vanishing o2 at #=0 and x=10 is an
rameter is zero. It is clear that within a mean-field approxi-artefact of our approximatiotsee text In the figure the dotted line
mation the compressibility at zero temperature is exactlyorresponds t@t3=10, the dashed line corresponds ztg=3,
zero. In Fig. 4 we have plotted the total density as a functiorand the solid line corresponds 18=2.

043623-6
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C. Superfluid density [#G~%(0,0)]?
In a mean-field approximation the superfluid density is hBQA=1p00~ 23, ' (31)
extracted from the action by finding théd )| that mini-
mizes the fourth-order action in E(R2), From this the particle density can be obtained by making use
. of the thermodynamic identitf = — 9Q}/du. We can calcu-
|<q,00>|2:w, (27) late this atT=0 and take the limils— 1% to show that the
: a

derivative of the density with respect tg i.e, dn/du shows
) ) a kink for all U#U.. This means that only if we walk
wheneveru is not betweenu® and u% , and zero other- through the tip of the Mott lobes there is not a kink in the
wise. We have plotted this expectation value in Fig. 5 forcompressibility. In fact, it is not hard to see why this is true.
a'=1. In this figure we see how the superfluid density At zero temperature the roots ef4G~(0,0) are by defini-

grows as a function oft moving away from the Mott insu- ;5 lﬁ,- This means that we can write 4G~ 1(0,0)
lator phase. Our expansion of the Landau free energy is only T o . .
valid around the edge of the Mott lobes and therefore breaks C(#~ #=)(n—n:). The proE)ortlonallty,constant can be
down when we go too far away from the Mott insulator. This S1OWN o be equal t€=eq(a'U—u)[(a’~1)U—pu]}.

can be seen in the figure as the decrease of the superfluld''S then shows that the thermodynamic potential is
density whenu approaches 0 and/ds. It can also be seen ) ol \2 o'\ 2

from the propagator of the superfluid field, which has poles 5 BO=1 SO +C_ (e=pZ)(p—ps) (32)
when u=aU. For g not too far away from the insulating 0" 4 ay '

phase the figure quantitatively agrees with the ones calcu-

lated by other authorfst]. Remembering that the density is the derivative of the ther-
modynamic potential we see that the second derivative of the
thermodynamic potential with respect gocan show a non-

] o ] zero value upon approaching the Mott lobe. Since in the
~ We now demonstrate that the disperstan is linear ink  nott jsolator the density is constant and equaktowe have

in the superfluid phase and that the spectrum is gapless. Uhown the existence of a kink in the slope of the density for
the superfluid phase we can expand around the expectatigy paths not going through the tip of the Mott lobe. This

value no=:G~*(0,0)/2a, of the order parameter. Up 10 cayses the difference in the universality class of the quantum

D. Bogoliubov dispersion relation

quadratic order this gives phase transition.
S=h,890—h2 OF G HK,iw,) Dy F. The superfluid-normal phase transition
k,n ' '

In this subsection, we show that it is possible to obtain an
analytical expression for the critical temperaturg of the
transition between superfluid and normal phases as a func-
tion of U, for values ofU below the criticalU of the zero-

(28) temperature superfluid-Mott insulator transition. The analyti-
cal result is obtained if we include occupations up to two per
site, i.e., three slave bosons or occupation numbéra?,
andn?. Along similar lines,T, can be found numerically if
more slave bosons are included. We have carried out this
_ =1 —Q—1 T T ~—1 2 procedure for the case of adding a fourth bogwiple occu-
ho =[Gk w/2-G (0.0~ [G(0.0)/2]". pancy and find only modest quantitative changes.
(29 If we restrict the system to occupancies 0, 1, and 2, and
fix the total densityn=N/N; at 1, the occupation numbers
Note that k, ) =(0,0) is a solution. Expanding around this n° n, andn? should obey the following relations if we ne-

+ a4nOk§:41 (q)k,nq)—k,fn+4q);,nq)k,n+ q):,n tk,fn)'

From this we find the dispersion relatidiw, in the super-
fluid in the usual way. We perform an analytic continuation
G Y(k,iw,)—G (k,w,) and find

solution ink now gives glect fluctuation correctionf. Eq. (20)]:
hG~1(0,0) n+nt+n?=1 (33)
ho=a—-=—1k|, (30)
V2 and
wherea is again the lattice constant. nl+2n2=1. (34)
E. Near the edges of the Mott lobe The n are furthermore given by Ed16), enabling us to

_ _ eliminateX and express® andn? in terms ofn!. We obtain
If we substitute the vacuum expectation value of the order

parameter back into our effective action, we see that the 1

zeroth-order contribution to the thermodynamic potential in no n (35)

the superfluid phase in mean-field approximation is given by _(n1+ 1)exp Bu)—nt
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FIG. 6. Critical temperaturd of the superfluid-normal phase  FIG. 7. The dispersion relations fér=0 in the case where we
transition as a function of the interaction strengtlk=U/zt. The  take into account higher filling factors at nonzero temperature. On
solid line is an analytic expression obtained in the approximationthe vertical axis is w+ u)/zt and on the horizontal axis ig.

where we only take into account three slave bosons. The plusagere we have taken into account all the terms with 0,1,2 at a
correspond to a numerical solution for the case of four slave bosonsemperature oftB3=10.

and [u 8(2a’+1)J[U+(2a’+1)]
kBTa __I

ot 2 [U-2(2a’'+1)][U+4(2a'+1)]]
2= (39
T Dexd BU—p)]—nt’ (%9

The critical temperaturd . for integer filling factorn

The constraints in Eqe33) and (34) immediately lead to = \/Ns=1, i.e, Eq.(38), is plotted in Fig. 6. The overall
n°=n2, so that, according to Eq¢35) and (36), we must qualitative behavior is as one would expéct. Fig. 1). A
have,u U/2. We notice that at this level of approximation, few finer details S appear to be less satisfactory. For instance,
we obtain a slight discrepancy with the result from Sec. Il AT vanishes folU=6, whereas we would expect this to co-
that at zero temperature the critical value Uf of the incide with the mean-field result fer for the superflwd-
superfluid-Mott insulator transition, which is the limiting ~ Mott insulator transition for the first Mott lobe, i.ele
for the superfluid-normal transition that is addressed here, is 5.83 obtained from Eq26) with «’=1. We note that the
according to Eq.(26) with a’=1 determined by;=(U discrepancy is not Iarge and is even smaller for the hlgher
—1)/2[15]. Mott lobes. Indeed U(T —0)=2(2a’+1) versus U

As argued above, the criticality condition for the =(2a’+1)+V(2a’ +1)?—1. Another feature is the maxi-
superflmd normal transition is obtained by putting mum in the TC(U) curve (cf. Fig. 1 and Ref[3]). Both

G 1(0,0)=0. Restricting the sum in the right-hand side of features mentioned are caused by the fact that the two con-

Eq. (18) to a=0 anda=1, we obtain[16] ditions Eqgs.(33) and(34) are strictly enforced, whereas they
become less appropriate for smdll The exact solutiofl7]
2 T P for four slave bosons on a four site lattice for smalshows
1= —U(n -n )+i(n —no). (87)  that a better result may be obtained if a fourth boson occu-

pation numbem? is included in our approach. The set of

) ) o equations to be solved then becomes, agaimfed,,
Since the relation betweeai andU is fixed by Eqs(33) and

(34), andn® andn? can be expressed imt asn®=n?=(1 n°+nl+n2+n3=1, (40)
—nY)/2, the criticality condition Eq(37) results in a remark-
ably simple relation between® andU at T, namely,n® nl+2n2+3ns=1, (41)

=(U+ 3)/9. Using this in Eq.(35) leads to the following

analytic formula forﬁETC/zt for the superfluid-normal
transition:

e ZU(n3_n2)+%U(n2_nl)+%(n1_ n%=1.
(42)
(U 24)(U+3)

_ (38)  Againn® n?, andn? can easily be expressed in termsof
(U—6)(U+12)

but no exact solution appears to be possible in this case.
However, we have managed to find solutions numerically.
It is straightforward to generalize this procedure to arbitraryThe results foiT . are depicted in Fig. 6 and show fairly little

mteger densnya while allowing occupation numbers quantitative change compared to the analytical result Eq.

n®' ~1npa’ pe’+1 only. The result is (39). In parucularT still vanishes folU~6, and the maxi-

KeTc=

2"
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mum is still there, although shifted to a lower~1.8 com-  We retrieve the previously found result for the quasiparticle-

pared toU=2.15 for Eq.(39). It is satisfactory to find that guasihole dispersiongt]. In_this cas.e thialreal solutions of
for the higher values o, n! starts to increase rapidly to- hio follow from a quadratic equgtlorﬁ (k’w”.)zo' Al
nonzero temperature the occupation numbers, in general, are

wards 1, i'gna"”g the apprpach of the Mott-lnsulaior phaseé” nonzero and there will be more than just two solutions for
whereasn® is almost negligible € 1%) already foru~3,

) d oY £ th | b Iﬁw. In the set of solutions there are still two solutions that

Fijéa]portmg a description in terms of three slave bosons on Xorrespond to the original single quasiparticle and quasihole

' dispersions. The physical interpretation of the other solutions
G. Quasiparticle-quasihole dispersion relations is that they correspond to the excitation of a higher number
of quasiparticles and quasiholes. In Fig. 7. we show the three
low-lying excitation energies fok=0 at a temperature of
n¥—petl ztB=10. To obtain an analytic expression for the single
quasiparticle-quasihole dispersion we only take into account
the two terms in the sum in E¢L8) which have numerators
n® ~1—n®" andn® —n® *1. These correspond to processes
At zero temperature and for a given integer filling factd;, ~ where the occupation of a site changes betweén 1,a’,
we have in a mean-field approximation th#t=45, , and anda’+1. We find

Consider now the propagat@ (k,w), given by

_ -1 — _ 2 -
AG (k,w)=| € 6"; (a+1)—ﬁw—,u+aU '

(43

u 1 , : :
hofP@=—pt+ S+ Sela’n t=n"+(a’+1n" ]

1 ’ ’ r ’ ’ r
iz\/Uz-I-Z[a’n“ (14 2a)n* +(1+a )N U+ [an® T1+n? —(1+a')n® T2, (49

In Fig. 8 we have plotted these dispersionskatO as a np
function of U. Comparison with Fig. 7 shows that E@4) S[a*,a]=f dr
gives an appropriate description of the single quasiparticle- 0
guasihole dispersions. As can be seen from Fig. 8, the tip of U
the lobe moves to smallés as a function of increasing tem- + > 2 a‘aaa,
perature. This can be understood because that point now de- '

scribes the superfluid-normal phase transiticih Figs. 1 and

6). In Fig. 9 we show how the superfluid-normal boundary "NWe are interested in calculating tha a;) correlation func-
the u-U plane evolves for nonzero temperatures. If we desiony. Therefore we add currend ,J that couple to the*
fine the gap as the difference between the two solutions al,q4 fields as

k=0, we find that the gap grows bigger as the temperature

increases. As we have seen in Sec. lll B it is incorrect, how-

ever, to conclude from this that the region of the Mott insu- 1 (4B

lating phase in the.-U phase diagram grows as temperatureZ[J*,J]= d[a*]d[a]exp{ —So/t+ gf dr> alta
increases. As mentioned previously, strictly speaking there is 0 .

no Mott insulator away from zero temperature and at non-

zero temperatures there is only a crossover between a phase + f
which has a very small compressibility and the normal
phase.

> ar Bl
7 1 or I‘L

ai_% tijai*aj

. (45)

thTE [J¥a;+aJi]|. (46)

0 i

Here Sy=Sy[a*,a] denotes the action fdf;=0. The most
important step in the remainder of the calculation is to a

In this section we make a first step towards the study oP€rform again a Hubbard-Stratonovich transformation by
fluctuation effects and derive an identity between the atomi@dding a complete square to the action. The latter can be
Green’s function and the superfluid Green’s function in Eq.Written as
(18). This we then use to calculate the atomic particle den-
sity. In Appendix B we show that the easiest way to calculate

IV. FLUCTUATIONS

the density is by making use of currents that couple to the dr>, (a* —d* +ht M%)t (a— D + At 13)
atomic fields. We start with the action of the Bose-Hubbard A L
model (47)
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FIG. 8. Dispersion relations w+ x as a function ofu/zt for FIG. 10. Total densin at T=0 as a function of interaction
k=0 for zero and nonzero temperatures. The inner lobe correspondgrengthU=U/zt for the first Mott lobe in two(dashed ling and
to zero temperature. The outer lobe corresponds to a temperature bfree dimensiongsolid line) when including fluctuations. The den-
ztB=3. Here we have only taken into account the first three termsity approaches a finite value different from 1, when approaching
in the right-hand side of Eq18), i.e., in the sum we only include Uc-

the terms witha=0 anda=1.
This is very useful indeed since the correla{dry ,®y )

=—-G(k,iw,). At zero temperature the retarded Green’s

where the sums ovgf andj” are left implicit for simplicity. - ‘
function can be written as

Straightforward algebra yields
Z 1-Z
k + k -
—ho+tel? —fote

1 _ 1
—gG(k,a))— +E—k, (509

Z[J*,J]=f d[(b*]d[(b]exp{z (—m;ne—l(k,iwn)

k,n
" where the wave-function renormalization factor is
* * 1%
X Pt I Piont JanPicn eka’“Jk'”) } ' . U(l+2a’)— g+ JU2—2Ue(1+2a’) + €
49) “ 2JU2—2Ue(1+2a’ )+ &
(50b
Differentiating twice with respect to the currents gives thenand
the relation U
qh__ ’ €k
Gqu ——,bL+ 5(2& —1)—5
! > Z[J*,J]
L 1
Z[0,0] 635 83y -0 +—Je&—(4a’' +2)Ue+ U2 (500

(49) Note thatZ, is always positive and in the limit wherg
—oo we have thatZ,—(1+a'). The quasiparticle disper-
sion €JP is always greater than or equal to zero ad is
always smaller than or equal to zero. Because of this only the
quasiholes give a contribution to the total density at zero
temperature. The density can be calculated from

h
= <a:,nak,n>: <CD;,n(I)k,n>_E_k-

1 1 h
_ * — _ _
n= Nsﬁﬁ an <ak,nak,n> Nsﬁﬁ an [ G(k!wn) ek]
B—e 1 U—ox
= N—E (Z-1) = a'. (52)
s k
If we expand the square-root denominatorZofor small k

we see that it behaves askl/therefore in two and three
dimensions we expect the integration oketo converge. In
FIG. 9. Theu-U phase diagram for zero and nonzero tempera-Fig. 10 we have plotted the density fef =1 as given by the
tures. The inner lobe corresponds to the zero-temperature case. Teguation above. We see that the density quickly converges to
outer lobe corresponds to a temperatureif=2. 1, but near the tip of the Mott lobe in all dimensions it
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deviates significantly from 1. This result is somewhat unex- Bo
pected 9] and may be due to the breakdown of the Gaussian B
approximation near the quantum phase transition. A more 2

detailed study of the fluctuations is beyond the scope of the M= Bs ' (A3a)
present paper and is therefore left to future work.

V. CONCLUSIONS

where

In summary, we have applied the slave-boson formalism
to the Bose-Hubbard model, which enabled us to analytically Ja+1
describe the physics of this model at nonzero temperatures. Xa o®oo
We have reproduced the known zero-temperature results and VN¢i
we have computed the critical temperature for the superfluid- B.= Jat1 (A3b)
normal phase transition. The crossover from a Mott insulator ee®o Xa+1
to a normal phase has also been quantified. We have shown VN¢i B

how thermal fluctuations introduce additional dispersion
modes associated with paired quasiparticles-quasiholes. . .
propagating through the system. We have also considerdfh  Xo=—ifiop=iN—ap+a(a—1)U/2. The slave
density fluctuations induced by the creation of quasiparticleP0SONs can be integrated out with the result

guasihole pairs. These fluctuations do not average out to zero

in the Gaussian approximation. f d[ @5 old[ Do ]

1
Iy exp{—%(leﬁB)\Jrfo@o,oF)
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APPENDIX A: HIGHER-ORDER TERMS detM = ( H B, 1+2 €5 |q)00|2 (at+1)
If we also want to calculate quantities like the superfluid @ @ NshB' ™7 XaXa+a
density, we have to calculate the effective action up to fourth
order. One way to do this is by going to higher order in the " ot Dol (at1)(B+1)
interaction part. Here we follow a slightly different strategy. @ \a%BZ (Nsﬁﬁ)4 00 XaXa+1XpXp+1 '

Because we are only interested in the mean-field theory, it
suffices to just consideb, terms. The effective action for
®g o is found from

(A5)

For small®,, we can expand the logarithm in EGA4) by
using the Taylor expansion

7 f d[D5old[ Doyl d[(a®)g nld[ay ]
ip akon hp In{1— ax?+ yx*} = — ax®+ (- 24+ 4y)x*+ O(x>).
1
X exp( — gS) , (A1) Combining the latter equation with EGA4), we also recover
that the second-order term in the effective actiondgyy is
given by

where from Eq.(6) we have

@l

2
co—1i _0 ==
( 0 an ; Nshﬂ XaXa+1
a__ patl

2
€t € —ut+al

S=iNgh B\ + €| Do o>+ EB an (ag )*M*Paf .
(A2) _

) |Doo?=—1G 1(0,0)|Pggl%.

Note, however, that now the matiM is only block diagonal (AB)

and it contains off-diagonal terms proportional .

When we take the determinant of that matrix, you get auto- We determine the effective action to fourth order in the
matically all powers inP, 4. This can be made more explicit case of the first four slave bosons. Using the above we can
by looking at the block structure of the matrix which is readily verify that
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1 3 From this we find thag, in the case of four slave bosons is
— S = — 71 € O 2+iNsﬁB)\—JZO In Bx; given by
4 3 2
h € (a+1) 12
2 0
€ 3 2 1 ) ag=— >Sl-21 > + :
—In1- ) ( + + Do ol? 4\ UNgB| a=0 XaXa XoX1X2X3
(Nﬁﬁ X3X2  X2X1  X1Xo [®og Bk o !
(A8)
4 3
450 ) D |4H (A7) or explicitly
NeiB| xoxixaxs °° |J '
|
a4=—< ZO )| _9_2[3n3(1—n3)+2n2(1—n2)]+_—_3(n3—n2)+;_2[2n2(1—n2)+n1(1—n1)]
2NshB) [ (2U— ) (2U—p) (U=p)
1 2 4
+——xo(n®—nY)+ = [n%1-n%)+n'(1-nH]+ =5 (- )+ =—==n- =———=—=——n"
(U=n) (m) ® (U=2p)p (U=2p)(U—=p)
4 4u 12 12
+_—__n1(1_n1)_ pr— _2_2n1_ — — — _2n3— —2 [— —2 2n2(1_n2)
(U—p)p (U=p)u (BU—2u)(2U—pu) (2U°=3Upu+u9)
120 12

2
(3U—2u)(U—p)?

Note that in the zero-temperature limit for the first Mott lobe,

— ——N
(2U2—=3U p+ u?)?

when the slave-boson occupation humbers are proportional
to a Kronecker delta, this result coincides exactly with the

one previously derived in standard perturbation the@fy
Ref.[4]).

APPENDIX B: DENSITY CALCULATIONS

In this appendix we demonstrate for the noninteracting .
case the equivalence of the calculation of the total particle Z[J

density through the thermodynamic relatibh= —dQ/du

and through the use of source currents that couple to the
atomic fields. We consider a system of noninteracting bosons

described by creation and annihilation fielfS(7) anda;(7)

on a lattice. First we calculate the generating functional

Z[J*,J] for this system,

Z[J*,J]=f d[a*]d[a]exp[ - %So[a*,a]

1
+%f dTiEj ai*tijaj+f dTEi (‘Jrai—}_ar‘]i) .

(B1)
In this equatiorS, is the on-site action, which in frequency-
momentum representation typically looks like

so[a*,a]=k2n af \(—ifiw,— w)ay - (B2)

(A9)

Z (ar‘—(b;k-f—ﬁz tJ}JT’)tU(aI_Cbl—FﬁZ ti}:;LJjn .
j J

The atomic fielda*, a can now be integrated out. Going
through the straightforward algebra one arrives at the follow-
ing expression for the generating functional:

,J]=f ol[c1>*]d[<1>]exu[k2n DL nG (ki wn) Py

|

where —4AGY(K,iw,) = e,— eo(—ihwy,— ) L. The total
density may be calculated from this expression by first cal-
culating the correlatofay ,a, ) through functional differen-
tiation with respect to the source curredtsaand then to sum
over all momenta and Matsubara frequencies. We have for
the first step

*
Jk,n k,n

+JE,nq)k,n+Jk,n E,n_ﬁ (83)

2

1
2 g ) Z[J*,J
(8K ndk,n) Z[0,0] 53¢ 83, , [ : =
' ! J*’J_O
- #i B4
—iho,—pn—e o

The hopping term is decoupled by means of a HubbardWe see that there is a pole here Biw,=—¢€—pu.

Stratonovich transformation, i.e., we add the following com-

plete square to the action:

The density now can be calculated fromn
= (1IN B) 2y n(@k nax n)- This is the expected result.
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On the other hand, we can also calculate the density from 1 90 1 i
the thermodynamic potentidl, by using the relationN = N.9u NZ& Tiho—
=—90/du whereN is the total number of particles. Doing sdp Nip & @nT K
that for this case we use that h €k
+ — . . (B6)
—ihw,—u—€ —iho,—u

1 . PP
0= k}; {In[B(—itiwy—p)]+IN[ -4 BG (K, iwy)]} When doing the sum over Matsubara frequencies the pole at
’ (B5) ifiw,=— w in the first term in the right-hand side is canceled
by the second term and only the other poldfab,= — €

— u gives a contribution. This shows the equivalence of both
and obtain methods.
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