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Bosonic atoms trapped in an optical lattice at very low temperatures can be modeled by the Bose-Hubbard
model. In this paper, we propose a slave-boson approach for dealing with the Bose-Hubbard model, which
enables us to analytically describe the physics of this model at nonzero temperatures. With our approach the
phase diagram for this model at nonzero temperatures can be quantified.
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I. INTRODUCTION

The physics of the Bose-Hubbard model was the sub
of intensive study for some years after the seminal pape
Fisheret al., which focused on the behavior of bosons in
disordered environment@1#. More recently it has been rea
ized that the Bose-Hubbard model can also be applied
bosons trapped in so-called optical lattices@2#, and mean-
field theories@3–5# and exact diagonalization@6# have been
successfully applied to these systems in one-, two- and th
dimensional systems. The experiments performed by Gre
et al. @7# have confirmed the theoretically predicted quant
phase transition, i.e., a phase transition induced by quan
fluctuations, between a superfluid and a Mott-insulat
phase. A review of the work carried out in this field has be
given by Zwerger @8#. Strictly speaking, the above
mentioned quantum phase transition occurs only at zero t
perature@9#. At nonzero temperatures there is a ‘‘classica
phase transition, i.e., a phase transition induced by ther
fluctuations, between a superfluid phase and a normal p
and there is only a crossover between the normal phase a
Mott insulator. It is important to mention here that a Mo
insulator is by definition incompressible. In principle the
exists, therefore, no Mott insulator for any nonzero tempe
ture where we always have a nonvanishing compressib
Nevertheless, there is a region in the phase diagram w
the compressibility is very close to zero and it is therefo
justified to call this region for all practical purposes a Mo
insulator@5#. Qualitatively this phase diagram is sketched
Fig. 1 for a fixed density. This figure shows how at a su
ciently small but nonzero temperature we start with a sup
fluid for small positive on-site interactionU, encounter a
phase transition to a normal phase as the interaction stre
increases, and ultimately cross over to a Mott insulator
even higher values of the interaction strength. We can a
incorporate this nonzero temperature behavior into the ph
diagram in Fig. 2. This figure shows how at zero temperat
we only have a superfluid and a Mott insulator phase, bu
the temperature is increased a normal phase appears i
tween these two phases.

The aim of this paper is to extend the mean-field appro
for the Bose-Hubbard model to include nonzero tempera
effects and make the qualitative phase diagrams in Fig
and 2 more quantitative. To do that we make use of auxili
1050-2947/2003/68~4!/043623~13!/$20.00 68 0436
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particles that are known as slave bosons@10#. The idea be-
hind this is that if we consider a single lattice site, the occ
pation number on that site can be any integer. With e
different occupation number we identify a new particle. A
though this means that we introduce a lot of different n
particles, the advantage of this procedure is that it allows
to transform the on-site repulsion into an energy contribut
that is quadratic in terms of the new particles. Because
want to be able to uniquely label each different state of
system, the new particles cannot independently be prese
each lattice site. That is why we have to introduce a c
straint. Using this we derive within a functional-integral fo
malism an effective action for the superfluid order parame
which depends on the temperature. The equivalence w
previous work at zero temperature is demonstrated.

The outline of the paper is as follows. In Sec. II we intr
duce the slave-boson formalism and derive an effective
tion for the superfluid order parameter. In Sec. III we pres
the zero- and nonzero-temperature mean-field results.
remainder of the paper is devoted to the effect that the
ation of quasiparticle-quasihole pairs has on the system.

II. SLAVE-BOSON THEORY FOR THE BOSE-HUBBARD
MODEL

In this section we formalize the above introduced idea
the slave bosons. We rewrite the Bose-Hubbard mode
terms of these slave bosons within a path-integral formu
tion and derive an effective action for the superfluid ord
parameter, which then describes all the physics of our B
gas in the optical lattice.

The slave-boson technique was introduced by Kotliar a
Ruckenstein@10#, who used it to deal with the fermionic
Hubbard model. A functional integral approach to the pro
lem of hard-core bosons hopping on a lattice has been
viously put forward by Ziegler@11# and Frésard@12#. Let us
first shed some light on this slave-boson formalism. We c
sider a single site of our lattice. If the creation and annihi
tion operators for the bosons are denoted byâi

† and âi , re-

spectively, we can form the number operatorN̂i5âi
†âi ,

which counts the number of bosons at the sitei. In the slave-
boson formalism, for any occupation number a pair
bosonic creation and annihilation operators is introduced
create and annihilate the state with precisely that given in
©2003 The American Physical Society23-1
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ger number of particles. The original occupation numb
statesuni& are now decomposed asuni

0 ,ni
1 , . . . &, whereni

a

is the eigenvalue of the number operatorn̂i
a[(âi

a)†âi
a

formed by the pair of creation (âi
a)† and annihilationâi

a

operators that create and annihilate bosons of typea at the
site i. As it stands, this decomposition is certainly not uniqu
For example, the original stateu2& could be written as
u0,0,1,0, . . . & or as u0,2,0, . . . &. Our Hilbert space thus
greatly increases. To make sure that every occupation oc
only once we have to introduce an additional constra
namely,

(
a

n̂ j
a51 ~1!

for every sitej. This constraint thus makes sure that there
always just one slave boson per site. Because in the pos
U Bose-Hubbard model bosons on the same site repel
other, high on-site occupation numbers are disfavored.
therefore conceivable that a good approximation of the ph
ics of the Bose-Hubbard model is obtained by allowing
relatively small maximum number, e.g., two or three or fo
of bosons per site.

As is well known, the Hamiltonian of the Bose-Hubba
model reads

Ĥ52(
^ i , j &

âi
†t i j â j2m(

i
âi

†âi1
U

2 (
i

âi
†âi

†âi âi . ~2!

Here^ i , j & denotes the sum over nearest neighbors,t i j are the
hopping parameters, andm is the chemical potential. Using
our slave-boson operators we now rewrite Eq.~2! into the
form

Ĥ52(
^ i , j &

(
a,b

Aa11Ab11~ âi
a11!†âi

at i j â j
b11~ â j

b!†

2m(
i

(
a

an̂i
a1

U

2 (
i

(
a

a~a21!n̂i
a ~3!

FIG. 1. Qualitative phase diagram for a fixed and integer filli
fraction in terms of the temperatureT and the dimensionless cou

pling constantŪ5U/zt, with superfluid~SF!, normal, and Mott
insulating phases~MI !. A true Mott insulator exists only atT50.
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with the additional constraint given in Eq.~1!. We see that
the quartic term in the original Bose-Hubbard Hamiltoni
has been replaced by one that is quadratic in the slave-b
creation and annihilation operators, which is the most imp
tant motivation for the introduction of slave bosons.

Now that we have introduced the slave-boson method
derived its representation of the Bose-Hubbard model,
want to turn the Hamiltonian into an action for the imagina
time evolution. Using the standard recipe@13,14# we find

S@~aa!* ,aa,l#5E
0

\b

dtH(
i

(
ab

~ai
a!* Mabai

b2 i(
i

l i~t!

3S (
a

ni
a21D 2(

^ i , j &
(
a,b

Aa11Ab11

3~ai
a11!* ai

at i j aj
b11~aj

b!* J , ~4!

whereM is a diagonal matrix that has as theath diagonal
entry the term\]/]t2am1a(a21)U/2, andb51/kBT is
the inverse thermal energy. The real-valued constraint fiell
enters the action through,

)
i

dS (
a

ni
a21D 5E d@l#expF i

\E0

\b

(
i

l i~t!

3S (
a

ni
a21DdtG . ~5!

Although we have simplified the interaction term, th
hopping term has become more complicated. By perform
a Hubbard-Stratonovich transformation on the above ac
we can, however, decouple the hopping term in a sim
manner as in Ref.@4#. This introduces a fieldF into the
action which, as we will see, may be identified with th

FIG. 2. Qualitative phase diagram in terms of the chemical

tential m̄5m/zt and the dimensionless coupling constantŪ
5U/zt. The solid lines indicate real phase transitions between
perfluid, normal, and Mott insulating phases. the dashed line co
sponds to a crossover between a normal and a Mott insula
phase.
3-2
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superfluid order parameter. The Hubbard-Stratonovich tra
formation basically consists of adding a complete square
the action, i.e., adding

E
0

\b

dt(
i , j

S F i* 2(
a

Aa11~ai
a11!* ai

aD
3t i j S F j2(

a
Aa11aj

a11~aj
a!* D .

Since a complete square can be added to the action wit
changing the physics we see that this procedure allows u
decouple the hopping term. We also perform a Fourier tra
form on all fields by means of ai

a(t)
5(1/ANs\b)(k,nak,n

a ei (k•xi2vnt). If we also carry out the
remaining integrals and sums we find

S@F* ,F,~aa!* ,aa,l#

5(
k,n

ekuFk,nu22 i
1

ANs\b
(
k,q

(
n,n8

lq,n8~ak,n
a !*

3ak¿q,n1n8
a

1 iNs\bl1(
k,n

~ak,n
a !* Mab~ ivn!ak,n

b

2 (
k,k8,n,n8

ek8

ANs\b
H S (

a
Aa11~ak¿k8,n1n8

a11
!* ak,n

a D
3Fk8,n81Fk8,n8

* S (
a

Aa11ak¿k8,n1n8
a11

~ak,n
a !* D J ,

~6!

where the matrixM ( ivn) is related to the matrixM in Eq.
~4! through a Fourier transform. Furthermore,l
5(l0,0 /ANs\b), ek52t( j 51

d cos(kja), wherea is the lattice
constant of the square lattice withNs lattice sites. For com-
pleteness we point out that the integration measure has
come

E d@~aa!* #d@aa#5E )
k,n

d@~ak,n
a !* #d@ak,n

a #
1

\b
. ~7!

In principle, Eq.~6! is still an exact rewriting of the Bose
Hubbard model. As a first approximation we soften the c
straint by replacing the general constraint fieldl i(t) with a
time and position independent fieldl. By neglecting the
position dependence we enforce the constraint only on
sum of all lattice sites. Doing this we are only left with th
l0,0 contribution in Eq.~6!, which can then be added to th
matrix M. The path integral over the constraint field reduc
to an ordinary integral. So we have

S@F* ,F,~aa!* ,aa,l#5S01SI , ~8a!

where
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S05 iNs\bl1(
a,b

(
k,n

$ekuFk,nu21~ak,n
a !* Mab~ ivn!ak,n

b %

[S0
SB1(

k,n
ekuFk,nu2. ~8b!

The matrix Mab( ivn)5dab@2 i\vn2 il2am1a(a
21)U/2#, and

SI52 (
k,k8,n,n8

ek8

ANs\b
H S (

a
Aa11~ak¿k8,n1n8

a11
!* ak,n

a D
3Fk8,n81Fk8,n8

* S (
a

Aa11ak¿k8,n1n8
a11

~ak,n
a !* D J .

~8c!

The crucial idea of Landau theory is that near a critic
point the quantity of most interest is the order parameter
our theory the superfluid fieldF plays the role of the orde
parameter. OnlyF0,0 can have a nonvanishing expectatio
value in our case and, therefore, we can write the free ene
as an expansion in powers ofF0,0 ,

F~F0,0!5a0~a,U,m!1a2~a,U,m!uF0,0u21O~ uF0,0u4!,

~9!

and minimize it as a function of the superfluid order para
eter F0,0 . We thus find that̂ F0,0&50 when a2(a,U,m)
.0 and that^F0,0&Þ0 when a2(a,U,m),0. This means
thata2(a,U,m)50 signals the boundary between the sup
fluid and the insulator phases at zero temperature and
boundary between the superfluid and the normal phase
nonzero temperature. Therefore we are going to calculate
effective action of our theory up to second order inF. The
zeroth-order term in the expansion of the action in powers
the order parameter gives us the zeroth-order contribu
V0 to the thermodynamic potentialV. We have

e2bV0[E )
a

S )
k,n

d@~ak,n
a !* #d@ak,n

a #
1

\b D e2S0
SB/\.

~10!

From this it follows that

2bV052 iNsbl1Ns(
a

ln~12e2bMaa(0)!, ~11!

and Maa(0)5@2 il2am1a(a21)U/2#. Next we must
calculatê SI

2& where^•••& denotes averaging with respect
S0, i.e.,

^A&5
1

e2bV0
E )

a
S )

k,n
d@~ak,n

a !* #d@ak,n
a #

1

\b D
3A@~aa!* ,aa#e2S0

SB/\. ~12!

Once we have this contribution, we automatically also fi
the dispersion relations for the quasiparticles in our sys
3-3
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as we will see shortly. For smallF we are allowed to expand
the exponent in the integrand of the functional integral
the partition function as

e2S/\5e2(S01SI )/\'e2S0 /\@12SI /\1 1
2 ~SI /\!2#.

~13!

It can be shown that the expectation value ofSI vanishes.
The second-order contribution is found to be

^SI
2&52 (

k,k8,n,n8
ek

2 uFku2

Ns\b (
a

~a11!

3^~ak1k8,n1n8
a11

!* ak1k8,n1n8
a11 &^~ak,n

a !* ak,n
a &. ~14!

One of the sums over the Matsubara frequenciesvn can
be performed and the sum overk8 produces an overall facto
Ns . We thus find

^SI
2&5(

k,n
ek

2uFku2

\b (
a

~a11!
na2na11

2 i\vn2m1aU
, ~15!

where we have defined the occupation numbersna

[^(ai
a)* ai

a& that equal

na5
1

expH bF2 il2am1
1

2
a~a21!UG J 21

. ~16!

Having performed the integrals over the slave-boson field
second order, we can exponentiate the result to obtain
effective action for the order parameter

Seff@F* ,F#5S \bV02\(
k,n

Fk,n* G21~k,ivn!Fk,nD ,

~17!

where we have defined the Green’s function

2\G21~k,ivn!5S ek2ek
2(

a
~a11!

na2na11

2 i\vn2m1aU D .

~18!

This result is one of the key results of this paper, which
correct in the limit of smallFk,n . If we want to make the
connection with the Landau theory again, we can identify
a2(a,U,m) in Eq. ~9! with G21(0,0)/b. In Sec. III we ana-
lyze this further.

A. Mott insulator

In the Mott insulator wheren0[u^F0,0&u250, the thermo-
dynamic potential is now easily calculated by integrating
the superfluid field. In detail,
04362
r
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Z[e2bV5E dld@F* #d@F#e2Seff/\

5E dlexpH 2bV02(
k,n

lnFbS ek2ek
2

3(
a

~a11!
na2na11

2 i\vn2m1aU D G J . ~19!

At this point we perform a saddle point approximation f
the constraint fieldl. This implies that we only take into
account that value ofl that maximizes the canonical part
tion function. If we now thus minimize the free energy wi
respect to the chemical potential and the constraint field,
get two equations that need to be solved. The first
]V/]l50 and reads

NsS 12(
a

naD 2
i

b (
k,n

G~k,ivn!
]G21~k,ivn!

]l
50.

~20a!

In a mean-field approximation the last term is neglected,
this equation tells us that the sum of the average slave-bo
occupation numbers must be equal to 1. This reflects
constraint of one slave boson per site. The second equa
follows from 2]V/]m5N and gives

Ns(
a

ana1
1

b (
k,n

G~k,ivn!
]G21~k,ivn!

]m
5N.

~20b!

This equation shows how the particle density can be see
the sum of termsana and a correction coming from th
propagator of the superfluid order parameter. The latte
again neglected in the mean-field approximation.

B. Superfluid phase

In the superfluid phase the order parameteruF0,0u2 has a
nonzero expectation value. We find this expectation value
calculating the minimum of the classical part of the actio
i.e., 2\G21(0,0)uF0,0u21a4uF0,0u4. This minimum be-
comes nonzero when2\G21(0,0) becomes negative, and
then equal to

u^F0,0&u25
\G21~0,0!

2a4
[n0 . ~21!

In Appendix A we calculate the coefficienta4 of the
fourth-order termuF0,0u4. We approximate the prefactor t
the fourth-order term, which in general depends on mome
and Matsubara frequencies, with the zero-momentum
zero-frequency value ofa4 so that the approximate action t
fourth order becomes
3-4
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S5\bV02\(
k,n

Fk,n* G21~k,ivn!Fk,n

1a4 (
k,k8,k9

(
n,n8,n9

Fk,n* Fk8,n8
* Fk9,n9Fk¿k8Àk9,n1n82n9 .

~22!

We now write the order parameter as the sum of its exp
tation value plus fluctuations, i.e.,F0,0→An0ANs\b1F0,0

and a similar expression forF0,0* . If we put this into the
action and only keep the terms up to second order, the c
tribution of the fourth-order term is given by
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n-

a4n0(
k,n

~Fk,nFÀk,2n14Fk,n* Fk,n1Fk,n* FÀk,2n* !.

There is also a contribution2\G21(0,0)n0 from the
second-order term. To summarize, in the superfluid phase
can write the action Eq.~22! to second order as

SSF5\bV02\G21~0,0!n0

2
\

2 (
k,n

~Fk,n* FÀk,2n!GÀ1~k,ivn!S Fk,n

FÀk,2n* D
~23!

with
2GÀ1~k,ivn!5S 2G21~k,ivn!14\a4n0 2\a4n0

2\a4n0 2G21~2k,2 ivn!14\a4n0
D . ~24!
the
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t
ting

t-
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ac-
Integrating out the fieldFk,n we find the Bogoliubov ex-
pression for the thermodynamic potential in the superfl
phase,

Z[e2bV5E dld@F* #d@F#e2SSF/\

5E dlexp$2bV01n0G21~0,0!2Tr@ ln~2\bGÀ1!#%.

~25!

III. MEAN-FIELD THEORY

In this section, we apply the theory we have developed
the preceding section. First, using the Landau procedure
reproduce the mean-field zero-temperature phase diag
We then study the phase diagram at nonzero temperature
do so we calculate the compressibility of our system a
function of temperature, showing how for fixed on-site r
pulsion U the Mott insulating region gets smaller. By als
looking at the condensate density as a function of temp
ture, we get a quantitative picture of what happens at fi
on-site repulsionU. The nice feature is that all our expre
sions are analytic. Next, we consider our system at zero t
perature again and we study at the mean-field level the
havior of the compressibility as we go from the superflu
phase to the Mott insulating phase. What we find is con
tent with the general idea that the quantum phase trans
between the Mott insulator and the superfluid phases belo
to different universality classes depending on how you w
through the phase diagram~cf. Ref. @9#!. We then obtain an
analytic expression for the critical temperature of t
superfluid-normal phase transition in the approximation
three slave bosons, i.e., up to doubly occupied sites. Num
cally we extend this study to include a fourth slave bos
and find only slight changes toTc . From the propagator o
d

n
e

m.
To
a
-

a-
d

-
e-

s-
n

gs
k

f
ri-
n

the superfluid field we extract the dispersion relations of
quasiparticle-quasihole pairs and their temperature dep
dence.

A. Zero-temperature phase diagram

From the zeros ofG21(0,0) in Eq. ~18!, we obtain the
mean-field phase diagram in the (m,U) plane. For a Mott
insulating state with integer filling factora8 we havena

5da,a8 . When this is substituted into the equatio
G21(0,0)50 we can find theU(m) curve that solves tha
equation and thus determines the size of this Mott insula
state. For given filling factora8 we also defineUc as the
minimal U that solves the equation. Within the Mott insula
ing phase we have a zero compressibilityk[]n/]m, where

FIG. 3. Phase diagram of the Bose-Hubbard Hamiltonian
obtained from the mean-field zero-temperature limit in the sla
boson formalism. It shows the superfluid~SF! phase and the Mott
insulator regions with different integer filling factors here denot
by a8. The vertical axis shows the dimensionless chemical poten

m̄5m/zt and the horizontal axis shows the dimensionless inter

tion strengthŪ5U/zt.
3-5
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FIG. 4. Numerical solution of
the slave-boson occupation num
bers n0, n1, and n2 is shown in

~a!–~c! as a function ofm̄ for vari-
ous temperatures and for fixe
U/zt510. ~d! shows the total
densityn. The compressibility in-
creases as a function of temper
ture. The solid line corresponds t
ztb52, the dashed line corre
sponds to ztb53, the dashed-
dotted line corresponds toztb
54, and the dotted line corre
sponds toztb510.
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n5n(m,U) is the total density as determined from the th
modynamic potential. Straightforward calculation gives th
we are in a Mott insulating phase wheneverm̄ lies between

m̄2
a8 , andm̄1

a8 where

m̄6
a85 1

2 @Ū~2a821!21#6 1
2
AŪ222Ū~2a811!11.

~26!

Here we have introduced the dimensionless chemical po
tial m̄[m/zt and on-site repulsion strengthŪ[U/zt. When

m̄ does not lie between anym̄2
a8 and m̄1

a8 the ‘‘superfluid’’
density u^F0,0&u2 will no longer be zero and the Mott insu
lating phase has disappeared. We have drawn the z
temperature phase diagram in Fig. 3. Our slave-boson
proach reproduces here the results of previous mean-
studies @1,3,4#. For nonzero temperatures the equati
G21(0,0)50 no longer describes a quantum phase transi
between a superfluid and a Mott insulator but it describe
thermal phase transition between a superfluid and a no
phase. We will look into this in more detail in Sec. III F.

B. Compressibility

To see what happens to the Mott insulator as we m
away from zero temperature we must look at the compre
ibility as a function of temperature. Numerically we ha
solved Eq.~20!, which gives us the occupation numbers
the slave bosons as depicted in Fig. 4. With that we
determine the total density in the phase where the order
rameter is zero. It is clear that within a mean-field appro
mation the compressibility at zero temperature is exa
zero. In Fig. 4 we have plotted the total density as a funct
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of temperature. As the temperature is raised we find that
compressibility, which is the slope of the curve, for a giv
value of Ū becomes nonzero for all values ofm̄. Although
the slope can be exponentially small, this shows that ther
no longer a Mott insulator present. Because we are dea
with a crossover there is no unique way to define the tra
tion from a normal to a Mott insulator phase. There are va
ous ways to determine the crossover line. For instance,
can define it by requiring thatD(T)/kBT is of order 1, where
D(T) is defined as the difference of the quasiparticle a
quasihole dispersions atk50. Another possibility is to de-
fine it by requiring that the incommensurability is equal to
certain small value.

FIG. 5. Superfluid densityuF0,0u2 as a function ofm̄ for various
temperatures and forU/zt510. The superfluid density as well a
the region of superfluid phase diminish as a function of increas

temperature. The vanishing ofuF0,0u2 at m̄50 and m̄510 is an
artefact of our approximation~see text!. In the figure the dotted line
corresponds toztb510, the dashed line corresponds toztb53,
and the solid line corresponds toztb52.
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C. Superfluid density

In a mean-field approximation the superfluid density
extracted from the action by finding theu^F0,0&u2 that mini-
mizes the fourth-order action in Eq.~22!,

u^F0,0&u25
\G21~0,0!

2a4
, ~27!

wheneverm is not betweenm2
a8 and m1

a8 , and zero other-
wise. We have plotted this expectation value in Fig. 5
a851. In this figure we see how the superfluid dens
grows as a function ofm moving away from the Mott insu-
lator phase. Our expansion of the Landau free energy is o
valid around the edge of the Mott lobes and therefore bre
down when we go too far away from the Mott insulator. Th
can be seen in the figure as the decrease of the supe
density whenm approaches 0 and/orU. It can also be seen
from the propagator of the superfluid field, which has po
when m5aU. For m not too far away from the insulating
phase the figure quantitatively agrees with the ones ca
lated by other authors@4#.

D. Bogoliubov dispersion relation

We now demonstrate that the dispersion\vk is linear ink
in the superfluid phase and that the spectrum is gaples
the superfluid phase we can expand around the expect
value n05\G21(0,0)/2a4 of the order parameter. Up t
quadratic order this gives

S5\bV02\(
k,n

Fk,n* G21~k,ivn!Fk,n

1a4n0(
k,n

~Fk,nFÀk,2n14Fk,n* Fk,n1Fk,n* FÀk,2n* !.

~28!

From this we find the dispersion relation\vk in the super-
fluid in the usual way. We perform an analytic continuati
G21(k,ivn)→G21(k,vk) and find

\vk5\A@G21~k,vk!/22G21~0,0!#22@G21~0,0!/2#2.

~29!

Note that (k,vk)5(0,0) is a solution. Expanding around th
solution ink now gives

\vk5a
\G21~0,0!

A2
uku, ~30!

wherea is again the lattice constant.

E. Near the edges of the Mott lobe

If we substitute the vacuum expectation value of the or
parameter back into our effective action, we see that
zeroth-order contribution to the thermodynamic potential
the superfluid phase in mean-field approximation is given
04362
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\bV5\bV02
@\G21~0,0!#2

2a4
. ~31!

From this the particle density can be obtained by making
of the thermodynamic identityN52]V/]m. We can calcu-

late this atT50 and take the limitm→m6
a8 to show that the

derivative of the density with respect tom, i.e, ]n/]m shows
a kink for all UÞUc . This means that only if we walk
through the tip of the Mott lobes there is not a kink in th
compressibility. In fact, it is not hard to see why this is tru
At zero temperature the roots of2\G21(0,0) are by defini-

tion m6
a8 . This means that we can write2\G21(0,0)

5C(m2m2
a8)(m2m1

a8). The proportionality constant can b
shown to be equal toC5e0$(a8U2m)@(a821)U2m#%.
This then shows that the thermodynamic potential is

\bV5\bV01
C2

4

~m2m2
a8!2~m2m1

a8!2

a4
. ~32!

Remembering that the density is the derivative of the th
modynamic potential we see that the second derivative of
thermodynamic potential with respect tom can show a non-
zero value upon approaching the Mott lobe. Since in
Mott isolator the density is constant and equal toa8 we have
shown the existence of a kink in the slope of the density
all paths not going through the tip of the Mott lobe. Th
causes the difference in the universality class of the quan
phase transition.

F. The superfluid-normal phase transition

In this subsection, we show that it is possible to obtain
analytical expression for the critical temperatureTc of the
transition between superfluid and normal phases as a f
tion of U, for values ofU below the criticalU of the zero-
temperature superfluid-Mott insulator transition. The analy
cal result is obtained if we include occupations up to two p
site, i.e., three slave bosons or occupation numbersn0,n1,
andn2. Along similar lines,Tc can be found numerically if
more slave bosons are included. We have carried out
procedure for the case of adding a fourth boson~triple occu-
pancy! and find only modest quantitative changes.

If we restrict the system to occupancies 0, 1, and 2, a
fix the total densityn[N/Ns at 1, the occupation number
n0,n1, andn2 should obey the following relations if we ne
glect fluctuation corrections@cf. Eq. ~20!#:

n01n11n251 ~33!

and

n112n251. ~34!

The na are furthermore given by Eq.~16!, enabling us to
eliminatel and expressn0 andn2 in terms ofn1. We obtain

n05
n1

~n111!exp~bm!2n1
~35!
3-7
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and

n25
n1

~n111!exp@b~U2m!#2n1
. ~36!

The constraints in Eqs.~33! and ~34! immediately lead to
n05n2, so that, according to Eqs.~35! and ~36!, we must
havem5U/2. We notice that at this level of approximatio
we obtain a slight discrepancy with the result from Sec. II
that at zero temperature the critical value ofŪ of the
superfluid-Mott insulator transition, which is the limitingŪ
for the superfluid-normal transition that is addressed here
according to Eq.~26! with a851 determined bym̄5(Ū
21)/2 @15#.

As argued above, the criticality condition for th
superfluid-normal transition is obtained by puttin
G21(0,0)50. Restricting the sum in the right-hand side
Eq. ~18! to a50 anda51, we obtain@16#

15
2

m̄2Ū
~n22n1!1

1

m̄
~n12n0!. ~37!

Since the relation betweenm andU is fixed by Eqs.~33! and
~34!, andn0 and n2 can be expressed inn1 as n05n25(1
2n1)/2, the criticality condition Eq.~37! results in a remark-
ably simple relation betweenn1 and Ū at Tc , namely,n1

5(Ū13)/9. Using this in Eq.~35! leads to the following
analytic formula for T̄c[Tc /zt for the superfluid-norma
transition:

kBT̄c5
Ū

2
ln21F ~Ū224!~Ū13!

~Ū26!~Ū112!
G . ~38!

It is straightforward to generalize this procedure to arbitr
integer density a8 while allowing occupation number
na821,na8,na811 only. The result is

FIG. 6. Critical temperatureTc of the superfluid-normal phas

transition as a function of the interaction strengthŪ5U/zt. The
solid line is an analytic expression obtained in the approxima
where we only take into account three slave bosons. The pl
correspond to a numerical solution for the case of four slave bos
04362
is

y

kBT̄c
a85

Ū

2
ln21F @Ū28~2a811!#@Ū1~2a811!#

@Ū22~2a811!#@Ū14~2a811!#
G .

~39!

The critical temperatureTc for integer filling factor n
[N/Ns51, i.e., Eq.~38!, is plotted in Fig. 6. The overal
qualitative behavior is as one would expect~cf. Fig. 1!. A
few finer details appear to be less satisfactory. For insta
Tc vanishes forŪ56, whereas we would expect this to co
incide with the mean-field result forŪc for the superfluid-
Mott insulator transition for the first Mott lobe, i.e.,Ūc
55.83 obtained from Eq.~26! with a851. We note that the
discrepancy is not large and is even smaller for the hig
Mott lobes. Indeed Ū(Tc→0)52(2a811) versus Ūc

5(2a811)1A(2a811)221. Another feature is the maxi
mum in the T̄c(U) curve ~cf. Fig. 1 and Ref.@3#!. Both
features mentioned are caused by the fact that the two
ditions Eqs.~33! and~34! are strictly enforced, whereas the
become less appropriate for smallU. The exact solution@17#

for four slave bosons on a four site lattice for smallŪ shows
that a better result may be obtained if a fourth boson oc
pation numbern3 is included in our approach. The set o
equations to be solved then becomes, again forn51,

n01n11n21n351, ~40!

n112n213n351, ~41!

3

m̄22Ū
~n32n2!1

2

m̄2Ū
~n22n1!1

1

m̄
~n12n0!51.

~42!

Again n0, n2, andn3 can easily be expressed in terms ofn1,
but no exact solution appears to be possible in this ca
However, we have managed to find solutions numerica
The results forTc are depicted in Fig. 6 and show fairly little
quantitative change compared to the analytical result
~38!. In particular,T̄c still vanishes forŪ'6, and the maxi-

n
es
s.

FIG. 7. The dispersion relations fork50 in the case where we
take into account higher filling factors at nonzero temperature.

the vertical axis is (\v1m)/zt and on the horizontal axis isŪ.
Here we have taken into account all the terms witha50,1,2 at a
temperature ofztb510.
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mum is still there, although shifted to a lowerŪ'1.8 com-
pared toŪ52.15 for Eq.~38!. It is satisfactory to find that
for the higher values ofŪ, n1 starts to increase rapidly to
wards 1, signaling the approach of the Mott-insulator pha
whereasn3 is almost negligible (,1%) already forŪ'3,
supporting a description in terms of three slave bosons o
@18#.

G. Quasiparticle-quasihole dispersion relations

Consider now the propagatorG21(k,v), given by

2\G21~k,v!5S ek2ek
2(

a
~a11!

na2na11

2\v2m1aU D .

~43!

At zero temperature and for a given integer filling factora8,
we have in a mean-field approximation thatna5da,a8 and
cle
p
-
d

in
e

s
tu
w
u
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e
on
h
a

o
m
q

en
at
th
r
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we retrieve the previously found result for the quasipartic
quasihole dispersions@4#. In this case the real solutions o
\v follow from a quadratic equationG21(k,vn)50. At
nonzero temperature the occupation numbers, in general
all nonzero and there will be more than just two solutions
\v. In the set of solutions there are still two solutions th
correspond to the original single quasiparticle and quasih
dispersions. The physical interpretation of the other soluti
is that they correspond to the excitation of a higher num
of quasiparticles and quasiholes. In Fig. 7. we show the th
low-lying excitation energies fork50 at a temperature o
ztb510. To obtain an analytic expression for the sing
quasiparticle-quasihole dispersion we only take into acco
the two terms in the sum in Eq.~18! which have numerators
na8212na8 andna82na811. These correspond to process
where the occupation of a site changes betweena821,a8,
anda811. We find
\vk
qp,qh52m1

U

2
1

1

2
ek@a8na8212na81~a811!na811#

6
1

2
AU212@a8na8212~112a8!na81~11a8!na811#Uek1@ana8211na82~11a8!na811#2ek

2. ~44!
a
by
be
In Fig. 8 we have plotted these dispersions atk50 as a
function of U. Comparison with Fig. 7 shows that Eq.~44!
gives an appropriate description of the single quasiparti
quasihole dispersions. As can be seen from Fig. 8, the ti
the lobe moves to smallerU as a function of increasing tem
perature. This can be understood because that point now
scribes the superfluid-normal phase transition~cf. Figs. 1 and
6!. In Fig. 9 we show how the superfluid-normal boundary
the m̄-Ū plane evolves for nonzero temperatures. If we d
fine the gap as the difference between the two solution
k50, we find that the gap grows bigger as the tempera
increases. As we have seen in Sec. III B it is incorrect, ho
ever, to conclude from this that the region of the Mott ins
lating phase in them-U phase diagram grows as temperatu
increases. As mentioned previously, strictly speaking ther
no Mott insulator away from zero temperature and at n
zero temperatures there is only a crossover between a p
which has a very small compressibility and the norm
phase.

IV. FLUCTUATIONS

In this section we make a first step towards the study
fluctuation effects and derive an identity between the ato
Green’s function and the superfluid Green’s function in E
~18!. This we then use to calculate the atomic particle d
sity. In Appendix B we show that the easiest way to calcul
the density is by making use of currents that couple to
atomic fields. We start with the action of the Bose-Hubba
model
-
of

e-

-
at
re
-

-

is
-

ase
l

f
ic
.
-
e
e
d

S@a* ,a#5E
0

\b

dtF(
i

ai* S \
]

]t
2m Dai2(

i j
t i j ai* aj

1
U

2 (
i

ai* ai* aiai G . ~45!

We are interested in calculating the^ai* ai& correlation func-
tion. Therefore we add currentsJ* ,J that couple to thea*
anda fields as

Z@J* ,J#5E d@a* #d@a#expH 2S0 /\1
1

\E0

\b

dt(
i j

ai* t i j aj

1E
0

\b

dt(
i

@Ji* ai1ai* Ji #J . ~46!

HereS05S0@a* ,a# denotes the action fort i j 50. The most
important step in the remainder of the calculation is to
perform again a Hubbard-Stratonovich transformation
adding a complete square to the action. The latter can
written as

E dt(
i , j

~ai* 2F i* 1\t i j 8
21Jj 8

* !t i j ~aj2F j1\t j j 9
21Jj 9!,

~47!
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where the sums overj 8 and j 9 are left implicit for simplicity.
Straightforward algebra yields

Z@J* ,J#5E d@F* #d@F#expH(
k,n

S 2\Fk,n* G21~k,ivn!

3Fk,n1Jk,n* Fk,n1Jk,nFk,n* 2
\

ek
Jk,n* Jk,nD J .

~48!

Differentiating twice with respect to the currents gives th
the relation

1

Z@0,0#

d2

dJk,n* dJk,n

Z@J* ,J#U
J* ,J50

5^ak,n* ak,n&5^Fk,n* Fk,n&2
\

ek
. ~49!

FIG. 8. Dispersion relations\v1m as a function ofU/zt for
k50 for zero and nonzero temperatures. The inner lobe corresp
to zero temperature. The outer lobe corresponds to a temperatu
ztb53. Here we have only taken into account the first three te
in the right-hand side of Eq.~18!, i.e., in the sum we only include
the terms witha50 anda51.

FIG. 9. Them̄-Ū phase diagram for zero and nonzero tempe
tures. The inner lobe corresponds to the zero-temperature case
outer lobe corresponds to a temperature ofztb52.
04362
This is very useful indeed since the correlator^Fk,n* Fk,n&
52G(k,ivn). At zero temperature the retarded Green
function can be written as

2
1

\
G~k,v!5

Zk

2\v1ek
qp

1
12Zk

2\v1ek
qh

1
1

ek
, ~50a!

where the wave-function renormalization factor is

Zk5
U~112a8!2ek1AU222Uek~112a8!1ek

2

2AU222Uek~112a8!1ek
2

~50b!

and

ek
qp,qh52m1

U

2
~2a821!2

ek

2

6
1

2
Aek

22~4a812!Uek1U2. ~50c!

Note thatZk is always positive and in the limit whereU
→` we have thatZk→(11a8). The quasiparticle disper
sion ek

qp is always greater than or equal to zero andek
qh is

always smaller than or equal to zero. Because of this only
quasiholes give a contribution to the total density at z
temperature. The density can be calculated from

n5
1

Ns\b (
k,n

^ak,n* ak,n&5
1

Ns\b (
k,n

H 2G~k,vn!2
\

ek
J

5
b→` 1

Ns
(

k
~Zk21! 5

U→`

a8. ~51!

If we expand the square-root denominator ofZ for small k
we see that it behaves as 1/k, therefore in two and three
dimensions we expect the integration overk to converge. In
Fig. 10 we have plotted the density fora851 as given by the
equation above. We see that the density quickly converge
1, but near the tip of the Mott lobe in all dimensions

ds
of

s

-
he

FIG. 10. Total densityn at T50 as a function of interaction

strengthŪ5U/zt for the first Mott lobe in two~dashed line! and
three dimensions~solid line! when including fluctuations. The den
sity approaches a finite value different from 1, when approach
Uc .
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deviates significantly from 1. This result is somewhat un
pected@9# and may be due to the breakdown of the Gauss
approximation near the quantum phase transition. A m
detailed study of the fluctuations is beyond the scope of
present paper and is therefore left to future work.

V. CONCLUSIONS

In summary, we have applied the slave-boson formal
to the Bose-Hubbard model, which enabled us to analytic
describe the physics of this model at nonzero temperatu
We have reproduced the known zero-temperature results
we have computed the critical temperature for the superfl
normal phase transition. The crossover from a Mott insula
to a normal phase has also been quantified. We have sh
how thermal fluctuations introduce additional dispers
modes associated with paired quasiparticles-quasih
propagating through the system. We have also consid
density fluctuations induced by the creation of quasipartic
quasihole pairs. These fluctuations do not average out to
in the Gaussian approximation.
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APPENDIX A: HIGHER-ORDER TERMS

If we also want to calculate quantities like the superflu
density, we have to calculate the effective action up to fou
order. One way to do this is by going to higher order in t
interaction part. Here we follow a slightly different strateg
Because we are only interested in the mean-field theor
suffices to just considerF0,0 terms. The effective action fo
F0,0 is found from

Z5E d@F0,0* #d@F0,0#

\b E )
a,k,n

d@~aa!k,n* #d@ak,n
a #

\b

3expS 2
1

\
SD , ~A1!

where from Eq.~6! we have

S5 iNs\bl1e0uF0,0u21(
ab

(
k,n

~ak,n
a !* Mabak,n

b .

~A2!

Note, however, that now the matrixM is only block diagonal
and it contains off-diagonal terms proportional toF0,0 .
When we take the determinant of that matrix, you get au
matically all powers inF0,0 . This can be made more explic
by looking at the block structure of the matrix which is
04362
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M5S B0

B2

B4

. . .
D , ~A3a!

where

Ba5S xa

Aa11

ANs\b
e0F0,0

Aa11

ANs\b
e0F0,0* xa11 D ~A3b!

with xa52 i\vn2 il2am1a(a21)U/2. The slave
bosons can be integrated out with the result

Z5E d@F0,0* #d@F0,0#

\b
expH 2

1

\
~ iNs\bl1e0uF0,0u2!J

3expH 2(
k,n

ln@detbM #J . ~A4!

The determinant can be calculated up to fourth order
F0,0 as

detbM5S)
a

bxaD S 11(
a

e0
2

Ns\b
uF0,0u2

~a11!

xaxa11

1(
a

(
ua2bu>2

e04

~Ns\b!4
uF0,0u4

~a11!~b11!

xaxa11xbxb11
D .

~A5!

For smallF0,0 we can expand the logarithm in Eq.~A4! by
using the Taylor expansion

ln$12ax21gx4%52ax21 1
4~22a214g!x41O~x5!.

Combining the latter equation with Eq.~A4!, we also recover
that the second-order term in the effective action forF0,0 is
given by

S e02\(
k,n

(
a

e0
2

Ns\b

~a11!

xaxa11
D uF0,0u2

5S e01e0
2 na2na11

2m1aU D uF0,0u252\G21~0,0!uF0,0u2.

~A6!

We determine the effective action to fourth order in t
case of the first four slave bosons. Using the above we
readily verify that
3-11
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2Seff/\52
1

\ H e0UF0,0U21 iNs\bl2(
j 50

3

ln bx j

2 lnF12S e0

N\b D 2S 3

x3x2
1

2

x2x1
1

1

x1x0
D uF0,0u2

1S e0 D 4 3
uF0,0u4G J . ~A7!
N \b x x x x

e
on
h

in
ic

th
o

na

-

rd
m

04362
From this we find thata4 in the case of four slave bosons
given by

a45
\

4 S e0

ANs\b
D 4

(
k,n

F22S (
a50

3
~a11!

xaxa11
D 2

1
12

x0x1x2x3
G ,

~A8!

or explicitly,

s 0 1 2 3

a452S e0

2Ns
2\b

D H 9

~2Ū2m̄ !2
@3n3~12n3!12n2~12n2!#1

18

~2Ū2m̄ !3
~n32n2!1

4

~Ū2m̄ !2
@2n2~12n2!1n1~12n1!#

1
8

~Ū2m̄ !3
~n22n1!1

1

~m̄ !2
@n0~12n0!1n1~12n1!#1

2

m̄3
~n02n1!1

4

~Ū22m̄ !m̄2
n02

4

~Ū22m̄ !~Ū2m̄ !2
n2

1
4

~Ū2m̄ !m̄
n1~12n1!2

4Ū

~Ū2m̄ !2m̄2
n12

12

~3Ū22m̄ !~2Ū2m̄ !2
n32

12

~2Ū223Ūm̄1m̄2!
2n2~12n2!

2
12Ū

~2Ū223Ūm̄1m̄2!2
n21

12

~3Ū22m̄ !~Ū2m̄ !2
n1J . ~A9!
g
w-

al-

for
Note that in the zero-temperature limit for the first Mott lob
when the slave-boson occupation numbers are proporti
to a Kronecker delta, this result coincides exactly with t
one previously derived in standard perturbation theory~cf.
Ref. @4#!.

APPENDIX B: DENSITY CALCULATIONS

In this appendix we demonstrate for the noninteract
case the equivalence of the calculation of the total part
density through the thermodynamic relationN52]V/]m
and through the use of source currents that couple to
atomic fields. We consider a system of noninteracting bos
described by creation and annihilation fieldsai* (t) andai(t)
on a lattice. First we calculate the generating functio
Z@J* ,J# for this system,

Z@J* ,J#5E d@a* #d@a#expH 2
1

\
S0@a* ,a#

1
1

\E dt(
i j

ai* t i j aj1E dt(
i

~Ji* ai1ai* Ji !J .

~B1!

In this equationS0 is the on-site action, which in frequency
momentum representation typically looks like

S0@a* ,a#5(
k,n

ak,n* ~2 i\vn2m!ak,n . ~B2!

The hopping term is decoupled by means of a Hubba
Stratonovich transformation, i.e., we add the following co
plete square to the action:
,
al

e

g
le

e
ns

l

-
-

(
i j S ai* 2F i* 1\(

j 8
t i j 8

21Jj 8
* D t i j S aj2F j1\(

j 9
t i j 9

21Jj 9D .

The atomic fieldsa* , a can now be integrated out. Goin
through the straightforward algebra one arrives at the follo
ing expression for the generating functional:

Z@J* ,J#5E d@F* #d@F#expH(
k,n

Fk,n* G21~k,ivn!Fk,n

1Jk,n* Fk,n1Jk,nFk,n* 2\
Jk,nJk,n*

ek
J , ~B3!

where 2\G21(k,ivn)5ek2ek
2(2 i\vn2m)21. The total

density may be calculated from this expression by first c
culating the correlator̂ak,n* ak,n& through functional differen-
tiation with respect to the source currentsJ, and then to sum
over all momenta and Matsubara frequencies. We have
the first step

^ak,n* ak,n&5
1

Z@0,0#

d2

dJk,n* dJk,n

Z@J* ,J#U
J* ,J50

5
\

2 i\vn2m2ek
. ~B4!

We see that there is a pole here ati\vn52ek2m.
The density now can be calculated fromn
5(1/Ns\b)(k,n^ak,n* ak,n&. This is the expected result.
3-12
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On the other hand, we can also calculate the density f
the thermodynamic potentialV, by using the relationN
52]V/]m whereN is the total number of particles. Doin
that for this case we use that

V5
1

b (
k,n

$ ln@b~2 i\vn2m!#1 ln@2\bG21~k,ivn!#%

~B5!

and obtain
e

le

a

Re

Re

s

04362
m
n52

1

Ns

]V

]m
5

1

Ns\b (
k,n

H \

2 i\vn2m

1
\

2 i\vn2m2ek

ek

2 i\vn2mJ . ~B6!

When doing the sum over Matsubara frequencies the pol
i\vn52m in the first term in the right-hand side is cancel
by the second term and only the other pole ati\vn52ek
2m gives a contribution. This shows the equivalence of b
methods.
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