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Spatially embedded networks are shaped by a combination of purely topological (space-independent) and
space-dependent formation rules. While it is quite easy to artificially generate networks where the relative
importance of these two factors can be varied arbitrarily, it is much more difficult to disentangle these two
architectural effects in real networks. Here we propose a solution to this problem, by introducing global and
local measures of spatial effects that, through a comparison with adequate null models, effectively filter out
the spurious contribution of nonspatial constraints. Our filtering allows us to consistently compare different
embedded networks or different historical snapshots of the same network. As a challenging application we
analyze the World Trade Web, whose topology is known to depend on geographic distances but is also strongly
determined by nonspatial constraints (degree sequence or gross domestic product). Remarkably, we are able to
detect weak but significant spatial effects both locally and globally in the network, showing that our method
succeeds in retrieving spatial information even when nonspatial factors dominate. We finally relate our results to
the economic literature on gravity models and trade globalization.
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I. INTRODUCTION

The growth of interest toward complex networks during the
last decade was mainly brought about by the unexpected struc-
tural and dynamical consequences of the lack of “standard”
spatial constraints (i.e., imposed by the ordinary embedding
of vertices in physical three-dimensional space) universally
observed in many real-world networks. For instance, the
emergence of a scale-free topology [1] and unconventional
percolation properties [2] is impossible in networks (such
as regular lattices) that are entirely shaped by geometric
constraints in physical space. However, many real networks
are in general the result of a combination of spatial and
nonspatial effects. So, spatial constraints, even if not entirely,
still substantially affect network topology [3]. A remarkable
example is that of transportation networks, which offer
an insightful approach to some prominent and apparently
unrelated scientific questions concerning the size and form of
recurrent structures in nature [4–9]. The ubiquitous allometric
scaling laws characterizing the shape of living (e.g., vascular
networks [10]) and nonliving (e.g., river networks [11])
systems have been demonstrated to be the result of efficient
and optimized transportation processes, crucially dependent
on the dimension of the embedding space [10–15]. Even when
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the embedding space is abstract rather than physical (as in
ecological networks [16,17] and food webs [18,19]), effective
pseudo-spatial constraints (such as interspecific competition)
allow us to treat the network as an efficient transportation
system [18]. In all these examples, the optimized character
of many real transportation networks highlights the interplay
between spatial (geometric constraints) and nonspatial (evo-
lution toward efficiency) effects. More generally, there are
many types of “nonstandard” spatial networks embedded in a
nonphysical, abstract, and latent space, where the coordinates
of nodes are unknown hidden variables to be inferred [20,21].
In such cases, scale-free topologies and nontrivial percolation
properties even emerge from purely geometric constraints, e.g.,
if the embedding space is hyperbolic [20,22]. This suggests
that real networks could be shaped by generalized spatial
effects and that the latter can be even stronger than ordinary
spatial effects.

Owing to the important results in graph theory and
network science [1,2], it is now relatively easy to generate
artificial networks with any desired combination of spatial and
nonspatial effects [3,23,24]. However, disentangling these two
factors in real networks is still difficult, for at least two reasons.
First, one needs to specify a model incorporating spatial
information and fit the model to real data. Examples include the
so-called gravity model [25,26], its recent extension denoted
as the radiation model [27], or maximum-entropy models [28].
This immediately poses the problem of the (arbitrary) choice
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of the model’s functional dependence on empirical spatial
quantities. Second, one also needs to appropriately filter out
a spurious component of spatial dependence which might be
simply due to other nonspatial factors shaping the network.
For instance, in scale-free networks where many vertices
with small degree (number of neighbors) coexist with a few
vertices (hubs) with very large degree, the spatial position of
the hubs will be the destination of many links, irrespective
of the positions of the source vertices. This will induce an
apparent spatial independence (whereby hubs appear to have
no preference to connect over short or long distances) even
if the topology was instead generated by a space-dependent
process. Conversely, since any two hubs are very likely to be
connected (and also very intensely connected if the network is
weighted), the distance between them would set an apparent
spatial scale for connectivity, even if the network formation
process was instead space-independent. In general, the entity
of the spurious mixture of spatial and nonspatial effects will
depend on the detailed spatial distribution of vertices and on
the correlation between positions and topological properties.

In this article, we propose a solution to the above problem
by jointly introducing measures of spatial effects and adequate
null models. Our null models are meant to control for important
topological properties, treated as nonspatial constraints, while
being neutral with respect to spatial factors. The most impor-
tant null models are those that control for local topological
properties which have an immediate structural effect, i.e., the
degree sequence (the set of the degrees of all vertices in binary
networks) or the strength sequence (the set of the sum of edge
weights of all vertices in weighted networks). We show that,
besides filtering out spurious spatial effects, null models also
suggest a natural and simple choice for the definition of (both
global and local) spatial measures. This enables us to analyze
both binary and weighted networks in a similar manner. Taken
together, measures and null models allow us to effectively
disentangle spatial and nonspatial effects in real networks.

In order to illustrate our approach, we apply it to the World
Trade Web (WTW), the network of international import-export
trade relationships among world countries [30–32]. The choice
of this particular network arises from the fact that the WTW
is an excellent example of a network where spatial effects are
present but weak and in some sense dominated by stronger
nonspatial ones. On one hand, well-known results in the
economic literature show that international trade depends
significantly on the geographic distances among countries. In
particular, gravity models are able to reproduce quite well the
intensity of trade between two countries as a function of their
gross domestic product (GDP) and their geographic distances
[25,26]. Including distances improves the fit significantly.
On the other hand, as has been recently found [33], when
such models are adjusted in order to predict the existence
of a link along with its weight (thus, when the binary
topology of the network is also concerned), they perform
very badly. At the binary level, the topology of the WTW
can instead be excellently reproduced by the specification
of local nonspatial constraints (the degree sequence in its
more and more detailed forms: undirected [30,31], directed
[31], or reciprocated [34]). This means that, once the degree
sequence is specified, the topology of the entire network can
be reproduced almost exactly—in other words, the degree

sequence is highly informative about the topology of the
whole network. If the GDP of world countries is used as an
alternative constraint replacing the degree, the same results
are obtained [30,35] (and found also for the trade of virtual
water [36]). Again, the GDP is a nonspatial constraint.

Taken together, the above results indicate that the influence
of distances on the structure of the WTW becomes smaller
as the focus is shifted from nonzero weights to the network
as a whole. As a result, we expect distances to play a
significant but weaker role than the degree sequence. This
makes the WTW a challenging benchmark for our method.
We therefore use our approach in order to look for the residual
spatial dependence of the WTW, once the degree sequence
is controlled for. We also perform an analogous analysis in
the weighted case, by controlling for the strength sequence.
We find that our method is indeed capable of filtering out
the strong nonspatial effects and uncovering significant spatial
dependencies, despite the weakness of the latter. This makes
us confident that our approach can be successfully applied to
any network, irrespective of the strength of spatial effects.

II. BINARY ANALYSIS

We start by considering binary graphs. The extension to
weighted networks will be presented in Sec. III. For generality,
we assume that the graph is directed, even if our discussion
can be applied to undirected graphs as well, by treating each
undirected link as a pair of directed ones pointing in opposite
direction. A binary directed graph with N vertices is specified
by an N × N adjacency matrix A. The entries aij of A are equal
to 1 if a directed link from vertex i to vertex j exists, and they
are 0 otherwise. The number of links in the network is given by
L = ∑

i

∑
j �=i aij . If the nodes of the network are embedded in

a metric space, we can also define a symmetric distance matrix
D, whose entries dij are the distances between nodes i and j .
This matrix is symmetric, i.e., dij = dji ∀i,j , and additionally
dii = 0 ∀i. For future convenience, we also consider the list
of all (off-diagonal) distances ordered from the smallest to the
largest, and we denote it by V ↑ = (d↑

1 , . . . ,d
↑
n , . . . ,d

↑
N(N−1)),

where d
↑
n � d

↑
n+1. Similarly, we consider the inverse ordering

from the largest to the smallest distances, and we denote it by
V ↓ = (d↓

1 , . . . ,d
↓
n , . . . ,d

↓
N(N−1)), where d

↓
n � d

↓
n+1. Note that,

since dij = dji , the distance between each pair of vertices
(dyad) appears twice in both lists.

Just to visualize a concrete example, imagine the subset
of the World Trade Web (since a graph of the whole WTW
would be confusing), whose vertices are the 27 countries
belonging to the European Union (EU27). The embedding
space for this network is shown in Fig. 1, where vertices are
located at capital cities. Figure 2 shows the cities’ coordinates
�ri = (xi,yi) (longitudes and latitudes) generating the metric
distances dij ≡ d(�ri,�rj ). Our goal is to introduce appropriate
measures in order to check whether these distances have an
effect on the topology of the embedded network.

A. Measuring global spatial effects

In order to define a global measure of spatial effects in real
networks, we are in principle left with the arbitrary choice
of any function F (A,D) quantifying the dependence of the
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FIG. 1. (Color online) Map of the EU27 countries, with capital
cities highlighted in red.

realized topology (i.e., the entries of the matrix A) on the
spatial distances (i.e., the entries of D). However, we now
show that a natural choice for the functional form exists, so
that much of this arbitrariness can be removed.

We recall that our aim is to filter out the component of
F (A,D) that can be attributed to nonspatial effects. Practi-
cally, this means comparing F (A,D) with its expected value
〈F (A,D)〉 under a null model where a given set of nonspatial
constraints are specified. As we mentioned, the most important
null model in the binary case is one where the degree sequence
is specified (and kept equal to the observed one), and the rest of
the topology is completely random. This null model is known
as the configuration model (CM) [37]. In directed networks,
the corresponding directed configuration model (DCM) is
one where the in-degree kin

i = ∑
j �=i aji (number of incoming

links) and out-degree kout
i = ∑

j �=i aij (number of outgoing
links) of each vertex i are simultaneously specified, and the
network is otherwise random. Besides the DCM, we will also
consider a more relaxed null model where the only nonspatial
constraint is the total number of links, L, in the network,
i.e., the directed random graph (DRG) [38], and a more
stringent null model where there are additional constraints

10 10 20 30
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FIG. 2. (Color online) Longitudes and latitudes (deg) of the
vertices in the EU27 trading network.

on the reciprocity, i.e., the reciprocated configuration model
(RCM) [34,39].

A first way of implementing a null model is computational
[37,40]. For instance, in the CM and DCM, one starts with
the original network and randomizes it through the iteration
of some fundamental rewiring move that alters the topology
but keeps the (in- and out-) degrees of all vertices fixed
[37]. As found recently [40], this approach produces biased
results unless one uses a careful (but difficult to implement)
acceptance probability of the attempted rewiring moves. Even
with the correct acceptance probability, this approach is
extremely time consuming since many iterations are necessary
in order to produce a single randomized network, and many
such randomized network variants are needed in order to
sample the microcanonical ensemble of random graphs with
degree sequence exactly equal to the observed one. The
quantities of interest—F (A,D) in our case—should then be
calculated on each randomized variant and averaged, the result
being beyond mathematical control and entirely dependent on
numerical simulations.

A second way of implementing a null model is instead
analytical [38]. For the CM, one solves a system of N (2N

for the DCM) nonlinear equations, and the solution is used
to produce the exact probability matrix P, whose entry pij

represents the correct probability that vertex i is connected
to vertex j in the canonical ensemble of graphs with average
degree sequence equal to the observed one [38]. When using
this approach, it is not necessary to generate any randomized
network, since the matrix P is already the exact expectation
value of the adjacency matrix A over the entire ensemble, i.e.,
〈A〉 = P [38]. The same considerations apply to the other two
binary null models we will consider, i.e., the DRG and the
RCM, and also to weighted models (with more details on all
the models we adopted to be be given later). This property
makes the analytical method extremely fast and completely
under mathematical control. Given the above considerations,
we choose the second approach to the problem.

Our choice of the null model also automatically implies a
natural choice for the function F (A,D). Indeed, if we choose
a linear function, then the expected value 〈F (A,D)〉 can be
calculated exactly as

〈F (A,D)〉 = F (〈A〉,D) = F (P,D), (1)

which only requires the probability matrix P (where we note
that the distance matrix D is constant and unaffected by the
null model). The simplest linear choice for a global measure
that exploits the entire topological and spatial information (i.e.,
relevant to all pairs of vertices) is

F ≡
N∑

i=1

∑

j �=i

aij dij (2)

(where we have dropped the dependence on A and D to
simplify the notation), whose expected value reads

〈F 〉 =
N∑

i=1

∑

j �=i

pij dij . (3)
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FIG. 3. (Color online) Maximally shrunk configuration for the
EU27 trading network with a constraint on the number of links:
f = 0 (N = 27, L = 27).

Due to the exact knowledge of P, 〈F 〉 can be computed in a
time as short as that required to compute F on the real network,
with no need to generate any realization of the null model.

Although not fundamentally different, we consider a
slightly more complicated definition, for the unique purpose
of having a normalized quantity between 0 and 1:

f ≡
∑

i

∑
j �=i aij dij − Fmin

Fmax − Fmin
, (4)

where Fmin and Fmax are the minimum and maximum values
that F can take, given the distance matrix D and the total
number of links, L. Explicitly, in terms of the two lists V ↑
and V ↓ introduced above, the maximum and minimum values
for F read Fmin = ∑L

n=1 d
↑
n and Fmax = ∑L

n=1 d
↓
n . The former

extreme (f = 0) represents the case where the L links are
placed among the closest couples of nodes (maximally shrunk
network). The latter extreme (f = 1) instead represents the
case where the L links are placed among the most distant
couples of nodes (maximally stretched network). For our
previous example of the EU27 trading network, these two
extremes are shown in Figs. 3 and 4, respectively, where for
visualization purposes we have actually chosen a value of L

equal to N = 27, which is much less than the real value (which

FIG. 4. (Color online) Maximally stretched configuration for the
EU27 trading network with a constraint on the number of links: f = 1
(N = 27, L = 27).

FIG. 5. (Color online) Maximally shrunk configuration for the
EU27 trading network with a constraint on the out-degrees: f = 0.06
(N = 27, kout

i = 1 ∀i).

would fill the plot with links). This would have been the case,
for instance, if in the original network each vertex had exactly
one outgoing link. Networks in between the two extrema would
have a value 0 < f < 1. As intuitively rendered by the figures,
a larger value of f implies a more pronounced filling of the
available space. Therefore we denote f as the (spatial) filling
of the network represented by the matrix A.

The above choice of the normalization for f is practical but
somewhat arbitrary. For instance, while networks generated
under the DRG model will achieve the two extremes, networks
generated under the DCM (where the constraints are stricter
than just the number of links) in general do not. For instance,
Fig. 5 shows the maximally shrunk configuration available
by imposing that each vertex has one outgoing link (for
simplicity, without constraints on the number of incoming
links). This produces a filling f = 0.06 > 0. Similarly, in
Fig. 6 we show the maximally stretched configuration under
the same constraints (f = 0.87 < 1). In Fig. 5 the outgoing
link of each vertex is directed toward the closest node, while
in Fig. 6 it is directed toward the most distant one.

In principle, depending on the null model or on the type
of analysis, one could choose alternative and more convenient
values for the constants Fmin and Fmax, such that f can indeed
achieve the extreme values 0 and 1. However, we are interested

FIG. 6. (Color online) Maximally stretched configuration for the
EU27 trading network with a constraint on the out-degrees: f = 0.87
(N = 27, kout

i = 1 ∀i).
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not in the value of f itself, but rather on its comparison with
the expected value

〈f 〉 =
∑

i

∑
j �=i pij dij − Fmin

Fmax − Fmin
(5)

under the null model adopted. This makes the choice of the
constants Fmin and Fmax irrelevant, so we can stick to the option
which is easiest to calculate. (We will keep the one based on
the total number of links, i.e., the one naturally associated with
the DRG.) Therefore, we will focus on the following rescaled
quantity, which we denote as the filtered filling:

φ ≡ f − 〈f 〉
1 − 〈f 〉 . (6)

The above quantity is equal to zero whenever the observed
filling (f or F ) coincides with the expected filling (〈f 〉 or
〈F 〉) under the specified model. Positive (negative) values
of φ indicate a network which is more stretched (shrunk)
than expected. The above definition filters out the nonspatial
effects encapsulated into the null model considered, i.e.,
the random value 〈f 〉 that would be produced, given the
spatial configuration of vertices, even in a network generated
irrespective of the distances, and only determined by the
topological constraints enforced. Being a rescaled quantity,
it also allows us to compare the degree of filling in networks
with different numbers of vertices and links, or with different
degree sequences. This also means that we can consistently
compare different snapshots of the same network, even if the
topological properties of the latter change over time.

B. Local spatial effects

The above considerations also suggest a natural (linear)
choice for the definition of local measures of spatial effects.
The two possible building blocks for any linear quantity locally
defined around vertex i, in analogy with Eq. (2), are the local
sums

F out
i ≡

∑

j �=i

aij dij F in
i ≡

∑

j �=i

ajidij (7)

(where we note that dij = dji), whose expected values under
the null model are

〈
F out

i

〉 =
∑

j �=i

pij dij

〈
F in

i

〉 =
∑

j �=i

pjidij . (8)

Again, although this is not strictly necessary, we can rescale
F out

i and define the local outward filling as

lout
i ≡

∑
j �=i aij dij − (

F out
i

)
min(

F out
i

)
max − (

F out
i

)
min

, (9)

where (F out
i )max and (F out

i )min are the two extreme values
of F out

i achieved in a maximally stretched and maximally
shrunk network, respectively, for some convenient reference
situation. For consistency with the global case, we choose
the reference associated with the DRG, i.e., one where all
vertices have on average the same out- and in-degree kout =
kin = L/N . In this case we can write (F out

i )min = ∑L/N

n=1 d
↑
i,n

and (F out
i )max = ∑L/N

n=1 d
↓
i,n, where d

↑
i,n and d

↓
i,n are elements

of the two ordered lists V
↑
i = (d↑

i,1, . . . ,d
↑
i,n, . . . ,d

↑
i,N−1) and

V
↓
i = (d↓

i,1, . . . ,d
↓
i,n, . . . ,d

↓
i,N−1) of local distances from vertex

i to the other N − 1 vertices (where d
↑
i,n � d

↑
i,n+1 and d

↓
i,n �

d
↓
i,n+1). Note that the above extremes are those achieved by the

typical realizations of the DRG where all degrees are close to
their expected value. The actual extremes would be either the
empty graph and the complete graph (in the canonical DRG) or
the maximally shrunk and maximally stretched configuration
as in the examples of Figs. 3 and 4 (in the microcanonical
DRG). However, in both cases these extreme configurations,
along with all the other nontypical ones where the degrees are
far from their expected values, are produced with very small
probability. For the global case, the above choice of (F out

i )max

and (F out
i )min is arbitrary (and, additionally, in this case lout

i can
be even larger than 1 for vertices with large out-degree in the
real network). However, this limitation is not essential, since
our aim is the comparison of Eq. (9) with its expected value

〈
lout
i

〉 =
∑

j �=i pij dij − (
F out

i

)
min(

F out
i

)
max − (

F out
i

)
min

, (10)

where (F out
i )max and (F out

i )min will be treated as constants.
In complete analogy with Eq. (9), we can also define the

local inward filling as

lin
i ≡

∑
j �=i ajidij − (

F in
i

)
min(

F in
i

)
max − (

F in
i

)
min

, (11)

whose expected value is

〈lin
i 〉 =

∑
j �=i pjidij − (

F in
i

)
min(

F in
i

)
max − (

F in
i

)
min

. (12)

Note that, due to the symmetry of the distances, (F in
i )min =

(F out
i )min and (F in

i )max = (F out
i )max under the same reference as

above. In principle, as for the global filling f , we can combine
the measured and expected values into a single filtered quantity
analogous to Eq. (6). However, in this case it is also instructive
to compare lout

i and lin
i (which combine local spatial and

topological information) with the out-degree kout
i and in-degree

kin
i (which only embody topological information). Therefore

we will avoid the introduction of additional quantities and
simply discuss the impact of spatial and nonspatial effects by
directly comparing measured and expected values as a function
of the degree.

We finally introduce a higher-order property which probes
the effects of correlations between vertices. Assortativity is
the tendency of vertices with determined common topological
properties to connect with each other [1]. A way to measure
assortativity locally is by comparing the degree of a vertex with
the average degree of its neighbors. We adapt this definition
in order to take into account spatial effects as well, and
we introduce the following measures of outward and inward
assortativity:

Aout
i ≡

∑
j �=i aij l

out
j

kout
i

Ain
i ≡

∑
j �=i aji l

in
j

kin
i

. (13)

We can approximate the expected values of the above quanti-
ties with

〈
Aout

i

〉 =
∑

j �=i pij

〈
lout
j

〉
〈
kout
i

〉 ,
〈
Ain

i

〉 =
∑

j �=i pji

〈
lin
j

〉
〈
kin
i

〉 . (14)
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Under the DCM and RCM, 〈kin
i 〉 = kin

i and 〈kout
i 〉 = kout

i so
the above expectations become particularly simple. Moreover,
expected and observed values can be compared by plotting
both quantities as a function of the degree of vertices.

C. Binary null models

Before presenting our results, we describe a bit more in
detail the set of null models we adopt in our analysis, in order to
highlight our motivations and also to clarify the interpretations
we can get from the analysis we present immediately after.

The method we use is the analytical one proposed by
Squartini and Garlaschelli [38]. The method is based on
the class of exponential random graphs (ERGs) [41], which
mathematically represent maximum-entropy ensembles of
networks with specified constraints, and uses the maximum-
likelihood principle (MLP) [35] to fit ERGs to real networks.
A constraint is a given topological property (e.g., the number
of links), which can be evaluated on any graph G. Different
choices of the constraints specify different models in the family
of ERGs. For a particular choice of constraints, the model is
specified by a graph Hamiltonian H (G), which is a linear
combination of the constraints and hence a function of the
particular graph G on which it is evaluated. For binary graphs,
one can think of G as the adjacency matrix (G = A), while
for weighted graphs one can think of G as the weight matrix
(G = W), where wij is the weight of the link from vertex
i to vertex j . In the Hamiltonian, each of the constraints is
coupled to a free parameter acting as a Lagrange multiplier.
H (G) uniquely determines the occurrence probability P (G) =
e−H (G)/

∑
G′ e−H (G′) of each graph G in the ensemble. The free

parameters are then chosen in such a way that the likelihood
P (G∗) to generate the observed network G∗ is maximum.
This parameter choice automatically ensures that the expected
value of each of the constraints is exactly equal to the observed
value [35]. The fitted parameters are finally used to produce,
among other quantities, the expected values of G under the
null model, i.e., the probability matrix P = 〈A〉 = 〈G〉 or the
matrix of expected weights 〈W〉 = 〈G〉 [38]. In the present
article, we use three null models for binary networks and two
null models for weighted networks.

The first binary null model is the DRG where, as we
mentioned, the only constraint is the total number of links,
L. In terms of ERGs, the DRG is therefore defined by the
following Hamiltonian [41]:

HDRG(G) = θL(G). (15)

Following the general method [38], we fit this model to a
real network according to the MLP and obtain the resulting
parameter value θ∗. The latter is used to produce the probability
matrix P, which in this simple case has all entries equal to
pij = e−θ∗

/(1 + e−θ∗
) = L/N(N − 1). When used to obtain

the expected values of the space-dependent quantities we
have defined in Secs. II A and II B, the DRG filters out the
nonspatial effects due to the overall density of the network,
i.e., the spurious spatial dependencies only due by chance
when on average L links are placed among vertices with
a given spatial configuration. Although such overall density
effects are important, the number of links does not represent a
sufficiently informative property of real networks. Therefore

the nonspatial effects embodied by the DRG are not highly
informative as well. For this reason, we also consider more
stringent models.

The second binary null model is the DCM, where the
constraints are the in- and out-degree sequence [41–43]:

HDCM (G) =
N∑

i=1

[
θ in
i kin

i (G) + θout
i kout

i (G)
]
. (16)

The MLP yields in this case a more complicated, but still exact,
probability matrix P with entries pij = x∗

i y∗
j /(1 + x∗

i y∗
j ),

where xi ≡ e−θout
i and yi ≡ e−θ in

i (with x∗
i and y∗

i denoting
the fitted values). The DCM filters out not only the overall
density effects but also the spurious spatial dependencies due
to the different intrinsic connectivities of the vertices of the
network. Since the striking heterogeneity of the degrees of
vertices is one of the key properties of real networks, the
DCM is a very important null model. The nonspatial effects
filtered out by it are very informative and robust. For the
particular case of the WTW, it was shown that the degree
sequence is extremely informative, as the DCM very closely
reproduces many higher-order topological properties such as
the degree correlations and the clustering coefficients [31].
In our analysis, by filtering out the effects induced by the
degree sequence, the DCM will filter out a significant amount
of nonspatial effects present in the WTW.

The third and most stringent binary model is the RCM,
where the constraints are the three reciprocated degrees of
all vertices [34,38,39]. The out-degree kout

i can be split into
two contributions k→

i and k↔
i , representing the number of

nonreciprocated outgoing links and the number of reciprocated
(thus both outgoing and incoming) links of vertex i. Similarly,
the in-degree kin

i can be split into k←
i and k↔

i , where k←
i

represents the number of nonreciprocated incoming links of
vertex i. If we specify these three degrees separately for each
vertex, we obtain the Hamiltonian for the RCM:

HRCM (G) =
N∑

i=1

[θ←
i k←

i (G) + θ→
i k→

i (G) + θ↔
i k↔

i (G)].

(17)

Again, the MLP yields a precise expression [34,38] for
the exact probability matrix P, whose entries pij = (x∗

i y∗
j +

z∗
i z

∗
j )/(1 + x∗

i y∗
j + y∗

i x∗
j + z∗

i z
∗
j ) now involve the fitted values

of the three sets of parameters xi ≡ e−θ→
i , yi ≡ e−θ←

i , and
zi ≡ e−θ↔

i . The RCM controls for the nonspatial effects due to
the different connectivities of vertices, including their different
intrinsic tendency to reciprocate links. The reciprocity is
another robust property of real directed networks [34,44,45].
As a consequence, the RCM is a further improvement with
respect to the DCM in controlling for systematic topological
effects. In the particular case of the WTW, is was shown that,
unlike the DCM, the RCM almost perfectly reproduces the
occurrence of triadic motifs [34]. More in general, we note that,
in spatially embedded networks, both distance dependence
and reciprocity will tend to produce symmetric networks.
For instance, as shown in Figs. 3 and 4, the two extremes
of a maximally shrunk and maximally stretched network are
strongly symmetric (and perfectly symmetric if the number of
links is even and the matrix of distances is nondegenerate).
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FIG. 7. (Color online) Filtered binary filling in the WTW from
1948 to 2000. Nonspatial effects have been removed by using the
random graph model (red diamonds), the directed configuration
model (blue circles), and the reciprocated configuration model
(yellow squares).

In those examples, this effect is entirely due to the strong
dependence on the (necessarily symmetric) distances, and not
to any reciprocity effect. However, the same topology would
be induced in the opposite situation of maximal reciprocity
and no distance dependence. Therefore it is very important,
for the specific problem of assessing spatial effects, to filter
out the impact of reciprocity on real networks. The RCM will
accurately filter out such strong and systematic topological
effects.

D. Spatial effects in the binary WTW

Having clarified our approach in the binary case, we can
finally apply it to the topology of the WTW, which represents a
challenging and instructive benchmark wherein spatial effects
are expected but weak, as we have already discussed. We use
the database prepared by Gleditsch [46] from year 1948 to
2000. During this time span, the network exhibits an increase
in its size Nt (number of world countries) and connectance ct

(link density), from N1948 = 86 and c1948 = 0.39 to N2000 =
187 and c2000 = 0.57. Despite the increase of Nt (mainly due to
the creation of new countries from former European colonies
and the Soviet Union), the mean intercountry distance μt and
variance σ 2

t have been remarkably stable, going from μ1948 =
7516 km and σ 2

1948 = 2.3 × 107 km2 to μ2000 = 7550 km
and σ 2

2000 = 1.9 × 107 km2. This is not surprising, since the
embedding space of the WTW (the Earth’s surface) is bounded.
However, as we now show, spatial effects have not remained
constant.

In Fig. 7 we plot the temporal evolution of the filtered
filling corresponding to all null models, i.e., the three quantities
φDRG(t), φDCM (t), and φRCM (t). As a general observation,
it should be noted that the negative values of φ always
indicate that the WTW is more spatially shrunk than expected
on the basis of topological constraints. This means that our
method indeed succeeds in uncovering spatial effects that
were expected in the WTW but that could not detected by
previous analyses where nonspatial properties of the real
network were compared with the expectations of the above
null models [30–32,34]. Moreover, the entity of the spatial

effects is moderate (i.e., the values of φ range between −0.10
and −0.25, far from the extreme value −1). This confirms
quantitatively the qualitative expectation that distances should
play an appreciable but weak role.

It is also instructive to inspect the nontrivial temporal be-
havior of the filtered spatial effects. We start by comparing the
results obtained under the DRG and the DCM. Interestingly,
apart from the first decade, the trends of φDRG and φDCM

are almost perfectly inverted. Roughly from 1960 to the mid
1970s, φDRG fluctuated around an increasing trend, while
φDCM decreased steadily. Conversely, from the late 1970s to
2000, φDRG decreased markedly while φDCM increased. This
result highlights the importance of the choice of topological
constraints in null models. As we discussed, while the number
of links used by the DRG is not informative about the entire
topology of the WTW, the degree sequence is, to a great
extent [31]. Thus, by successfully reproducing the structure of
the WTW, the DCM effectively filters out strong topological
effects. The net result is a surprising inversion of the trend
generated under the DRG.

It should be noted that the rise of φDCM partly overlaps with
the period during which the reciprocity also strongly increased
in the WTW, i.e., from the late 1980s onward [43]. It therefore
becomes important to further control (using the RCM) for the
strong reciprocity, which, as we discussed, might have the
same apparent impact of distance dependence by enhancing
the symmetry of the network. Using the RCM is important in
general, as it controls for more stringent topological constraints
and achieves a better fit to any real directed network (including
the WTW [34]), thus filtering out nonspatial effects even more
accurately than the DCM. As shown in the figure, we find that
the RCM yields almost exactly the same results as the DCM.

We can therefore conclude that, even after disentangling
distance and reciprocity effects, global spatial dependencies
are present throughout the evolution of the WTW, with varying
intensity. In particular, the WTW experienced a phase of spatial
shrinking from 1960 to the mid 1970s, followed by a phase of
spatial stretching until 2000. The latter trend is probably the
result of economic globalization. In any case, note that for a
network starting from a shrunk configuration (i.e., with φ < 0),
the evolution toward a more stretched configuration means that
distances play a smaller and smaller role (i.e., φ getting closer
to zero). This means that, if the above trend persists in time,
spatial effects will become less and less important in the WTW.

We deepen our analysis of the binary WTW by studying
the local spatial quantities defined in Eqs. (9)–(14). This is
important in order to understand whether individual vertices
contribute uniformly to the global spatial effects we character-
ized above or whether systematic heterogeneities are instead
present. In Figs. 8 and 9 we show the local outward filling
lout
i versus the out-degree kout

i and the local inward filling lin
i

versus the in-degree kin
i , both for the WTW in year 2000

(but we observed similar results for all snapshots). Along
with the observed quantities, we also plot the expectations
under the DCM. Note that, due to the approximate symmetry
of the WTW topology and the exact symmetry of geographic
distances, the inward and outward quantities are very similar.
For brevity, given the similarity of the results generated by the
DCM and RCM as shown above, we discard the RCM in what
follows. (This approach is justified for the specific case of the
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FIG. 8. (Color online) Local outward filling lout
i vs out-degree kout

i

in the binary WTW (year 2000): observed [blue (gray)] and predicted
under the DCM [yellow (light gray)].

WTW, but it is not a recipe to be followed in general.) We
find that lout

i and lin
i are strongly dependent, but nonlinearly,

on kin
i and kout

i , respectively. Moreover, for vertices with
small and intermediate degree, the observed local (inward and
outward) filling is significantly smaller than expected under
the DCM. This difference gradually reduces as the degree
increases, and for vertices with large degree the observed and
expected values coincide. This means that poorly connected
countries tend to trade more locally (i.e., with geographically
closer countries) than expected only on the basis of the
different numbers of trade partners of all countries. By contrast,
highly connected countries are less limited by distances, as
clear in the extreme case of a country trading with all other
countries, an “unavoidable” space-neutral configuration which
coincides with the null model’s prediction, irrespective of
spatial dependencies. It is interesting to notice that, since the
number of trade partners (degree) is strongly correlated with
the GDP [30], the above results can be rephrased in terms of the
different resistance to trade that geographic distances impose
on poor (strong resistance) and rich (weak or no resistance)
countries. We therefore find that the global spatial effects
captured by φ arise from the combination of heterogeneous
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FIG. 9. (Color online) Local inward filling lin
i vs in-degree kin

i in
the binary WTW (year 2000): observed [blue (gray)] and predicted
under the DCM [yellow (light gray)].
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FIG. 10. (Color online) Outward assortativity Aout
i vs out-degree

kout
i in the binary WTW (year 2000): observed [blue (gray)] and

predicted under the DCM [yellow (light gray)].

contributions from different vertices and are not representative
of the more diverse local patterns.

We finally study the distance-induced correlation profiles
by plotting, in Figs. 10 and 11, the outward and inward
assortativity (Aout

i and Ain
i ) versus the out- and in-degree

(kout
i and kin

i ), again for the WTW in year 2000. We find
clearly decreasing trends, indicating that countries with large
degree trade with countries that are embedded in a more
spatially shrunk trade neighborhood, while countries with few
connections trade with countries that have a more spatially
stretched neighborhood (where by “neighborhood” of a vertex
we mean the set of vertices topologically connected to that
vertex via a link, and not the set of geographically close
vertices). However, the expected values are also decreasing,
even if they are systematically larger than the observed ones.
This means that the negative correlation between the degree
of a vertex and the average filling of its neighbors is simply
interpretable as a negative correlation between the degrees of
neighboring vertices imposed by the specific degree sequence
(as is well documented in the WTW [30,31]), through the
relation between degree and filling already shown in Figs. 8
and 9. Therefore we find that the mere decrease of the trend

50 100 150
ki

in

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ai
in

FIG. 11. (Color online) Inward assortativity Ain
i vs in-degree kin

i

in the binary WTW (year 2000): observed [blue (gray)] and predicted
under the DCM [yellow (light gray)].
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is not informative per se about spatial effects. Rather, it is the
comparison with the null model that conveys information: the
systematic difference between the observed and expected value
of the assortativity shows that, irrespective of their degree, all
countries tend to trade with countries that are embedded in a
more spatially shrunk trade neighborhood than expected on the
basis of topological constraints. This confirms that our method
successfully disentangles spatial and nonspatial effects, even
when both produce similar patterns.

III. WEIGHTED ANALYSIS

In this section we extend our formalism to weighted
networks. As we mentioned, a weighted graph G is described
by a weight matrix W whose entries wij represent the intensity
of the link from vertex i to vertex j (including wij = 0 if no
link is there). As for binary networks, we assume no self-loops,
i.e., wii = 0 ∀i. In weighted networks, the analog of the
degree is the strength. For a directed network, the out-strength
sout
i = ∑

j �=i wij is the total weight of the outgoing links of
vertex i, and similarly the in-strength s in

i = ∑
j �=i wji is the

total weight of the incoming links of vertex i. The total weight
of a network is the sum of the weights of all directed links,
i.e., W = ∑N

i=1

∑
j �=i wij = ∑N

i=1 sout
i = ∑N

i=1 s in
i .

A. Generalizing the binary approach

For weighted networks, in order to filter out nonspatial
effects encoded in structural constraints, we will use two null
models generated according to the same analytical method [38]
we used so far.

The first null model is the weighted random graph (WRG)
model [38,47], which is the analog of the DRG. In this model,
the only constraint is the total weight W , so its Hamiltonian
reads

HWRG(G) = θW (G). (18)

The WRG filters out the nonspatial effects due to the overall
intensity of connections in a real network. Being completely
homogeneous, the WRG generates an expected weight matrix
〈W〉 having all entries equal to 〈wij 〉 = e−θ∗

/(1 − e−θ∗
) =

W/N (N − 1), where θ∗ is the fitted value of θ [47]. As a
consequence, every vertex has on average the same out- and
in-strength sout = s in = W/N . The out- and in-strengths of
vertices follow a negative binomial distribution with the above
mean value, and link weights follow a geometric distribution
with mean W/N (N − 1) [47].

The second null model we consider is the weighted
configuration model (WCM) [38], which is the analog of the
DCM. The constraints are the out-strength and in-strength of
all vertices:

HWCM (G) =
N∑

i=1

[
θ in
i s in

i (G) + θout
i sout

i (G)
]
. (19)

When fitted to the real network, the WCM yields the exact
matrix 〈W〉 with expected weights 〈wij 〉 = x∗

i y∗
j /(1 − x∗

i y∗
j ),

where xi ≡ e−θout
i and yi ≡ e−θ in

i (where again, x∗
i and y∗

j are
the fitted values). The WCM controls for nonspatial effects
due to the different intrinsic sizes or capacities of vertices.

As with the DCM, the WCM is very important in order to
filter out apparent spatial dependencies that are only due to
the heterogeneity of the weights induced by the strength of
vertices. As we discuss later, in the particular case of the WTW
this model is particularly appropriate as it indirectly controls
for the heterogeneity of the GDP of world countries.

For simplicity, in the weighted case we do not consider the
equivalent of the RCM, i.e., a weighted model that controls for
reciprocated and nonreciprocated interactions separately. In
fact, we expect that, as in the binary case, such a model would
be indistinguishable (as far as spatial effects are considered)
from the WCM. For the interested reader, a detailed description
of the reciprocated weighted configuration model is provided
in Ref. [45]. What follows can be directly extended in order to
include that model as well.

Since both the WRG and the WCM yield the exact matrix
〈W〉 of expected weights, a natural and simple choice for
any function F (W,D) aimed at measuring the effects of
distances on the weighted structure of a network is the linear
one, so that the expectation value can be obtained exactly as
〈F (W,D)〉 = F (〈W〉,D). Therefore it is easy to generalize the
linear binary quantities we introduced in Sec. II to the weighted
case. Starting from the quantity

F ≡
N∑

i=1

∑

j �=i

wij dij (20)

we introduce the rescaled global filling, in analogy with Eq. (4),
as

f ≡
∑

i

∑
j �=i wij dij − Fmin

Fmax − Fmin
, (21)

where now Fmin and Fmax are chosen as the two extreme values
that F can take in a network with the same total weight W

as the original network, i.e., Fmin = Wd
↑
1 and Fmax = Wd

↓
1

(with d
↑
1 and d

↓
1 being the smallest and largest distance

between vertices, respectively). This reference corresponds
to the WRG, and it is analogous to the choice of the DRG we
made in the binary case.

The filtered filling that properly controls for nonspatial
effects embodied in a null model is again

φ ≡ f − 〈f 〉
1 − 〈f 〉 , (22)

where 〈f 〉 is now obtained by replacing wij with 〈wij 〉 in
Eq. (21). Positive (negative) values of φ indicate a network
which is more stretched (shrunk) than expected. For a space-
independent network, φ = 0.

For the local weighted quantities, from the sums

F out
i ≡

∑

j �=i

wij dij , F in
i ≡

∑

j �=i

wjidij , (23)

we define the local outward filling as

lout
i ≡

∑
j �=i wij dij − (

F out
i

)
min(

F out
i

)
max − (

F out
i

)
min

(24)

and the local inward filling as

lin
i ≡

∑
j �=i wjidij − (

F in
i

)
min(

F in
i

)
max − (

F in
i

)
min

. (25)
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Consistently with the global case and in analogy with the
binary one, we choose the extreme values to correspond to
the maximally stretched and maximally shrunk configuration
achieved by a typical realization of the WRG (where all
strengths are close to their expected value W/N ), i.e.,
(F out

i )max = (F in
i )max = Wd

↓
i,1/N and (F out

i )min = (F in
i )min =

Wd
↑
i,1/N . The expected values of the above quantities are

〈
lout
i

〉 =
∑

j �=i〈wij 〉dij − (
F out

i

)
min(

F out
i

)
max − (

F out
i

)
min

, (26)

〈
lin
i

〉 =
∑

j �=i〈wji〉dij − (
F in

i

)
min(

F in
i

)
max − (

F in
i

)
min

. (27)

Finally, we define the local outward assortativity and the
local inward assortativity as

Aout
i ≡

∑
j �=i wij l

out
j

sout
i

, Ain
i ≡

∑
j �=i wji l

in
j

s in
i

. (28)

The expected values can be approximated as

〈
Aout

i

〉 =
∑

j �=i〈wij 〉
〈
lout
j

〉
〈
sout
i

〉 ,
〈
Ain

i

〉 =
∑

j �=i〈wji〉
〈
lin
j

〉
〈
s in
i

〉 . (29)

For the WCM, since 〈s in
i 〉 = s in

i and 〈sout
i 〉 = sout

i , the observed
and expected assortativities can be compared by plotting both
quantities as functions of the strength of vertices.

B. Spatial effects in the weighted WTW

We now employ the quantities defined above in order to
perform a weighted analysis of the WTW. The evolution of
φWRG and φWCM is shown in Fig. 12. The trends are the
weighted counterparts of those shown previously in Fig. 7.
Both quantities are always negative, indicating that, even after
taking into account the intensity of trade flows, the WTW is
still found to be more spatially shrunk than expected under
nonspatial models. This confirms the general lesson learned
from gravity models in the economics literature [25,26], but
with a big difference: while gravity models only take into
account the observed nonzero flows, and completely disregard
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FIG. 12. (Color online) Filtered weighted filling in the WTW
from 1948 to 2000. Nonspatial effects have been removed by using
the weighted random graph model (red squares) and the weighted
configuration model (blue circles).
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FIG. 13. (Color online) Weighted outward filling lout
i vs out-

strength sout
i in the weighted WTW (year 2000): observed [blue

(gray)] and predicted under the WCM [yellow (light gray)].

missing links [33], here we are combining the weighted
information of nonzero flows with the topological information
of missing links, as our quantities exploit the full matrix W.
The end result is that spatial effects are significant but weak,
as the values of φ (especially under the WCM) are small.

At this point it is worth observing that the WCM, by
controlling for the strengths of vertices (total exports and
total imports of all countries), automatically controls for the
GDP, since the linear correlation between the latter and the
total exports (or imports) of a country is extremely high.
This important aspect of the WCM is similar to the GDP
dependence in gravity models and makes the WCM a more
accurate and economically meaningful null model than the
WRG. In any case, unlike gravity models, our approach is not
intended to provide a spatial model of trade; it only singles out
statistically robust space dependencies that can be used in the
future to develop an improved spatially explicit model.

As for the binary case, we find that different null models
provide a very different filtering of nonspatial effects, even
over time. Apart from the first snapshot, φWCM first increases,
then remains almost constant (during the 1970s), and finally
decreases, approximately following an inverted U shape with
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FIG. 14. (Color online) Weighted inward filling lin
i vs in-strength

s in
i in the weighted WTW (year 2000): observed [blue (gray)] and

predicted under the WCM [yellow (light gray)].
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FIG. 15. (Color online) Weighted outward assortativity Aout
i vs

out-strength sout
i in the weighted WTW (year 2000): observed [blue

(gray)] and predicted under the WCM [yellow (light gray)].

small fluctuations. By contrast, φWRG first decreases and then
displays large fluctuations around an approximately constant
trend. Quite surprisingly, these trends are almost opposite
to the corresponding binary trends, and in particular φWCM

appears to indicate an unexpected spatial shrinking of the
network from 1980 onward, despite economic globalization.
However, it should be noted that while the DCM reproduces
the higher-order properties of the binary WTW with good
accuracy [31], the WCM does not satisfactorily reproduce the
observed weighted WTW [32]. Therefore, even if the WCM
accurately controls for the total import and exports (and hence
the GDP) of world countries, it does not entirely filter out
other nonspatial effects, at least not as stringently as its binary
counterpart.

We finally consider the local spatial effects in the weighted
WTW. Figures 13–16 show the quantities defined in Eqs. (24)–
(29), where the null model used is the WCM. The increasing
trends mean that rich countries have a more spatially stretched
trade neighborhood than poor countries. However, as opposed
to the binary results, here we find that the observed and
expected values of the local filling (lout

i and lin
i ) are almost

always in close agreement, except for minor differences in
the scattered values of vertices with small strength (Figs. 13
and 14). This means that the global spatial effects detected
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FIG. 16. (Color online) Weighted inward assortativity Ain
i vs in-

strength s in
i in the weighted WTW (year 2000): observed [blue (gray)]

and predicted under the WCM [yellow (light gray)].

by φ are due to the combination of local effects involving
only vertices with very small values of the strength, i.e.,
the poorest countries with small GDP and small import-
export values. Interestingly, the richest countries appear not
to be affected by distances at all, in both imports and
exports.

By contrast, the observed assortativities are systematically
larger than the expectations of the WCM (Figs. 15 and 16).
However, looking at the definition in Eq. (29), we find that
the cause of this divergence must be the difference between
wij and 〈wij 〉, and not the tiny disagreement between the
observed and expected values of lout

i and lin
i shown above

(and, of course, the expected and observed strengths are
identical by construction). The strong difference between wij

and 〈wij 〉 under the WCM has already been well documented
in Ref. [32]. This confirms the different interpretations we
can get from the binary and weighted analysis of the WTW.
While the remarkable agreement between the DCM and the
observed topology of the WTW [31] ensures that the DCM
accurately controls for nonspatial effects, the disagreement
between the WCM and the real WTW [32] implies that the
final differences are partly due to the disagreement itself
(i.e., differences between observed and expected quantities,
irrespective of spatial effects). Still, as far as the problem
of controlling for the intrinsic heterogeneity of vertices (in
terms of import, exports, and indirectly GDP) is concerned,
the WCM yields the correct answer.

IV. CONCLUSIONS

In this paper we have introduced a simple framework to
detect spatial effects in geometrically embedded networks. We
have proposed global and local measures of space dependence
for both binary and weighted networks. Our approach makes
intense use of null models intended to preserve nonspatial
constraints that strongly and unavoidably affect the structure
of any network, irrespective of any spatial arrangement. This
allowed us to filter out, from the measured spatial effects,
a spurious component due either to the overall density and
intensity of connections (as in the DRG and WRG) or to the
intrinsic heterogeneity of vertices (as in the DCM, RCM, and
WCM).

We tested our approach on the WTW, which is affected
by both nonspatial constraints [30–32] and geographic dis-
tances [25,26,29]. The dependence of the weighted WTW on
distances is well documented by gravity models; however, the
latter are generally fitted to the observed nonzero weights of the
network, without regard the effects of distances on the creation
of links, and hence on the binary topology [33]. By contrast,
our weighted analysis of the WTW takes into account both zero
and nonzero weights, as it exploits the full matrix W. A recent
study employed a more sophisticated class of gravity models
(the so-called zero-inflated models) [33] which can also
incorporate zero flows, thus aiming at reproducing topology
and weights simultaneously. The important result of this study
is that even these generalized models fail in reproducing the
properties of the WTW. In other words, unless the topology
is prespecified, gravity models perform unsatisfactorily. These
results show that, if the binary topology is taken into account,
the WTW is less clearly affected by geographic distances than
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ordinarily thought. At the same time, it has been shown that
the binary structure of the WTW is strongly dependent on the
degree sequence [31] and indirectly on the GDP [30] (a result
confirmed also for individual commodities [31] and for the
trade of virtual water [36]).

Taken together, the above results imply that spatial effects
in the binary WTW are present but weak. This makes the WTW
an ideal candidate for testing our method, due to the challenge
of disentangling spatial dependencies and strong topological
constraints. Indeed, we showed that our method is able to detect
weak spatial effects even in a network which is dominated by
nonspatial constraints. Our results confirm the importance of
the use of null models in the analysis of real-world networks,
including spatially embedded ones.
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[27] F. Simini, M. C. González, A. Maritan, and A.-L. Barabási,

Nature (London) 484, 96 (2012).
[28] G. Bianconi, P. Pin, and M. Marsili, Proc. Nat. Acad. Sci. USA

106, 11433 (2009).
[29] F. Picciolo, T. Squartini, F. Ruzzenenti, R. Basosi, and

D. Garlaschelli, in Proceedings of the 2012 Eighth International
Conference on Signal Image Technology and Internet Based
Systems (IEEE Computer Society, Washington, DC, 2012),
pp. 784–792.

[30] D. Garlaschelli and M. I. Loffredo, Phys. Rev. Lett. 93, 188701
(2004).

[31] T. Squartini, G. Fagiolo, and D. Garlaschelli, Phys. Rev. E 84,
046117 (2011).

[32] T. Squartini, G. Fagiolo, and D. Garlaschelli, Phys. Rev. E 84,
046118 (2011).

[33] M. Duenas and G. Fagiolo, LEM Working Paper Series 2011/25,
Laboratory of Economics and Management, Sant’Anna School
of Advanced Studies, Pisa, Italy, 2011.

[34] T. Squartini and D. Garlaschelli, in Self-Organizing Systems,
Lecture Notes in Computer Science, Vol. 7166, edited by
F. Kuipers and P. Heegaard (Springer, Berlin, 2012), pp. 24–35.

[35] D. Garlaschelli and M. I. Loffredo, Phys. Rev. E 78, 015101
(2008).

[36] S. Suweis, M. Konar, C. Dalin, N. Hanasaki, A. Rinaldo, and
I. RodriguezIturbe, Geophys. Res. Lett. 38, L10403 (2011).

[37] S. Maslov and K. Sneppen, Science 296, 910 (2002).
[38] T. Squartini and D. Garlaschelli, New J. Phys. 13, 083001

(2011).
[39] D. Garlaschelli and M. I. Loffredo, Phys. Rev. E 73, 015101

(2006).

066110-12

http://dx.doi.org/10.1016/j.physrep.2010.11.002
http://dx.doi.org/10.1126/science.284.5420.1677
http://dx.doi.org/10.1126/science.284.5420.1677
http://dx.doi.org/10.1038/35098076
http://dx.doi.org/10.1038/35098076
http://dx.doi.org/10.1073/pnas.0610172104
http://dx.doi.org/10.1098/rstb.2009.0302
http://dx.doi.org/10.1098/rstb.2009.0302
http://dx.doi.org/10.1140/epjb/e2011-20208-9
http://dx.doi.org/10.1140/epjb/e2011-20208-9
http://dx.doi.org/10.1098/rsif.2009.0495
http://dx.doi.org/10.1098/rsif.2009.0495
http://dx.doi.org/10.1126/science.276.5309.122
http://dx.doi.org/10.1126/science.276.5309.122
http://dx.doi.org/10.1038/20144
http://dx.doi.org/10.1038/20144
http://dx.doi.org/10.1016/j.physa.2007.05.037
http://dx.doi.org/10.1016/j.icheatmasstransfer.2005.07.010
http://dx.doi.org/10.1016/j.icheatmasstransfer.2005.07.010
http://dx.doi.org/10.1098/rspb.2007.0459
http://dx.doi.org/10.1126/science.1177894
http://dx.doi.org/10.1126/science.1177894
http://dx.doi.org/10.1006/jtbi.2000.2234
http://dx.doi.org/10.1006/jtbi.2000.2234
http://dx.doi.org/10.1038/nature01604
http://dx.doi.org/10.1038/nature01604
http://dx.doi.org/10.1016/j.jtbi.2010.03.024
http://dx.doi.org/10.1103/PhysRevE.82.036106
http://dx.doi.org/10.1038/nature11459
http://dx.doi.org/10.1103/PhysRevLett.106.048701
http://dx.doi.org/10.1103/PhysRevLett.106.048701
http://dx.doi.org/10.1209/epl/i2003-00600-6
http://dx.doi.org/10.1103/PhysRevLett.104.218701
http://dx.doi.org/10.1103/PhysRevLett.104.218701
http://dx.doi.org/10.1111/0008-4085.00082
http://dx.doi.org/10.1111/0008-4085.00082
http://dx.doi.org/10.1038/nature10856
http://dx.doi.org/10.1073/pnas.0811511106
http://dx.doi.org/10.1073/pnas.0811511106
http://dx.doi.org/10.1103/PhysRevLett.93.188701
http://dx.doi.org/10.1103/PhysRevLett.93.188701
http://dx.doi.org/10.1103/PhysRevE.84.046117
http://dx.doi.org/10.1103/PhysRevE.84.046117
http://dx.doi.org/10.1103/PhysRevE.84.046118
http://dx.doi.org/10.1103/PhysRevE.84.046118
http://dx.doi.org/10.1103/PhysRevE.78.015101
http://dx.doi.org/10.1103/PhysRevE.78.015101
http://dx.doi.org/10.1029/2011GL046837
http://dx.doi.org/10.1126/science.1065103
http://dx.doi.org/10.1088/1367-2630/13/8/083001
http://dx.doi.org/10.1088/1367-2630/13/8/083001
http://dx.doi.org/10.1103/PhysRevE.73.015101
http://dx.doi.org/10.1103/PhysRevE.73.015101


SPATIAL EFFECTS IN REAL NETWORKS: MEASURES, . . . PHYSICAL REVIEW E 86, 066110 (2012)

[40] E. S. Roberts and A. C. C. Coolen, Phys. Rev. E 85, 046103
(2012).

[41] J. Park and M. E. J. Newman, Phys. Rev. E 70, 066117 (2004).
[42] D. Garlaschelli, F. Ruzzenenti, and R. Basosi, Symmetry 2, 1683

(2010).
[43] F. Ruzzenenti, D. Garlaschelli, and R. Basosi, Symmetry 2, 1710

(2010).

[44] D. Garlaschelli and M. I. Loffredo, Phys. Rev. Lett. 93, 268701
(2004).

[45] T. Squartini, F. Picciolo, F. Ruzzenenti, and D. Garlaschelli,
arXiv:1208.4208.

[46] K. S. Gleditsch, J. Conflict Resolut. 46, 712
(2002).

[47] D. Garlaschelli, New J. Phys. 11, 073005 (2009).

066110-13

http://dx.doi.org/10.1103/PhysRevE.85.046103
http://dx.doi.org/10.1103/PhysRevE.85.046103
http://dx.doi.org/10.1103/PhysRevE.70.066117
http://dx.doi.org/10.3390/sym2031683
http://dx.doi.org/10.3390/sym2031683
http://dx.doi.org/10.3390/sym2031710
http://dx.doi.org/10.3390/sym2031710
http://dx.doi.org/10.1103/PhysRevLett.93.268701
http://dx.doi.org/10.1103/PhysRevLett.93.268701
http://arXiv.org/abs/arXiv:1208.4208
http://dx.doi.org/10.1177/0022002702046005006
http://dx.doi.org/10.1177/0022002702046005006
http://dx.doi.org/10.1088/1367-2630/11/7/073005



