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By considering the detailed structure of DNA in the base pair level, two possible definitions of the persistence
length are compared. One definition is related to the orientation of the terminal base pairs, and the other is based
on the vectors which connect two adjacent base pairs at each end of the molecule. It is shown that although these
definitions approach each other for long DNA molecules, they are dramatically different on short length scales.
We show analytically that the difference mostly comes from the shear flexibility of the molecule and can be used
to measure the shear modulus of DNA.
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I. INTRODUCTION

The DNA molecule is involved in many fundamental life
processes and is usually found in highly compact config-
urations in the cell, where it is significantly bent at short
length scales. Therefore, it is expected that the nanomechan-
ical behavior of DNA contributes strongly to its biological
functions. As a result, elasticity of the DNA molecule at short
length scales, and especially its bending rigidity, has been an
important subject of study in recent decades and still can be
regarded as a highly progressive field of research [1,2].

Like that of any other polymer, the bending rigidity of DNA
is quantified by its persistence length. For every pair of points
along the DNA chain with a distance of L, the persistence
length is defined by the equation 〈cos θ (L)〉 = exp(−L/lp),
where θ (L) is the bending angle between tangents along
the corresponding pair of points and lp is the persistence
length. In the well-known wormlike chain (WLC) model [3],
where DNA is modeled as a continuous and inextensible rod,
the bending angle is defined by the tangent unit vectors at
the ends of the rod. This leads to a constant, length-independent
persistence length [4].

Persistence length of DNA can be determined in DNA
stretching experiments by fitting an elasticity model to the
experimental data [5] or directly by measuring the bending
angle along the tangent vectors of DNA in atomic force
microscopy (AFM) images [6–8]. While the former method
has been applied only to micron-sized DNA molecules, with
high-resolution AFM it is possible to study the bending elas-
ticity of DNA on a nanoscale level. Although the WLC model
successfully explains the elasticity of long DNA molecules,
coarse-grained models of DNA at the base pair level, in
which each base pair is regarded as a rigid body [9], are more
suitable for short DNA molecules at the nanoscale level. In
these coarse-grained models, the bending angle can be defined
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as the angle between two unit vectors at the two ends of the
DNA molecule. Two different ways to define the unit tangent
vectors are depicted in Fig. 1(a). One option is to consider the
normal vectors to the terminal base pairs [dashed red (gray)
vectors in Fig. 1(a)], and the other is to use the center-to-center
connective vectors of two adjacent base pairs at the two ends
of DNA to define the unit vectors [solid blue (gray) vectors
in Fig. 1(a)]. The former definition is not applicable in AFM
studies, where the direction of base pairs is not detectable.
However, a generalization of the latter definition can be related
to the AFM experiments. In this paper we show that the first
definition leads to a length-independent persistence length,
which can be found from large-scale experiments, while the
persistence length in the second definition depends on DNA
length. We show analytically that this difference comes from
contributions of shear elasticity to the latter definition, as well
as the resolution of the coarse-grained model. Our findings
point out some important considerations for analyzing AFM
experiments on DNA elasticity.

II. MATERIALS AND METHOD

In the coarse-grained model at the base pair level, a local
coordinate system with an orthonormal basis is attached to
each rigid base pair. For the kth base pair, this basis is denoted
by {d̂1(k),d̂2(k),d̂3(k)}, where d̂3 is perpendicular to the base
pair, while d̂1 and d̂2 lie in the base pair plane (see Fig. 2). Three
translational degrees of freedom, as well as three rotational
degrees of freedom, are assigned to each base pair [9]. It
is convenient to define the degrees of freedom of the base
pairs from their relative position and orientation. The relative
rotational degrees of freedom are called tilt, roll, and twist,
and for the kth base pair step, we denote them by �1(k),
�2(k), and �3(k). The parameters ρ1(k), ρ2(k), and ρ3(k)
describe the translational degrees of freedom of the k-base
pair step and are called shift, slide, and rise respectively. They
are the projections of the relative translation vector �r(k) on
the midframe coordinate system {d̂M

1 (k),d̂M
2 (k),d̂M

3 (k)} [i.e.,
ρi(k) = �r(k) · d̂M

i (k), i = 1, 2, 3] [9].
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FIG. 1. (Color online) (a) Schematic representation of the two
choices for defining the unit vectors. Rectangles represent the base
pairs, dashed vectors (red [gray]) are normal to the base pairs, and
solid vectors (blue [gray]) are along the lines that connect two adjacent
base pairs. (b) Simulation data for lnp (squares, red [gray]) and lcp
(circles, blue [gray]) as a function of DNA length, along with the
theoretical results (solid and dashed curves). Filled symbols and
solid curves show the simulation data and theoretical results in three
dimensions (3D), while empty symbols and dashed curves correspond
to two-dimensional (2D) DNA. The inset shows − ln〈cos θ (L)〉 vs L

for the same data and with the same markers.

For a DNA with N base pair steps, the elastic energy of
molecule in the simplest form is given by

E

kBTr

= l0

N∑
k=1

3∑
i=3

[
Ai

2l2
0

��2
i (k) + Ki

2l2
0

�ρ2
i (k)

]
, (1)

with ��i = �i − �̂i and �ρi = ρi − ρ̂i , where kB is the
Boltzmann constant, Tr is the room temperature, and �̂i =
ρ̂i = 0 for i = 1, 2. In Eq. (1) we have ρ̂3 = l0, where l0 is the
intrinsic rise, and �̂3 = l0 ω0, where ω0 is the intrinsic twist
of DNA per unit length. Ais and Kis are the rotational and

1̂d
3d̂

2d̂

1d̂
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ˆ Md1̂
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ˆ

FIG. 2. Schematic representation of the local coordinates and
midframe. Cuboids represent two adjacent base pairs. The local
coordinates corresponding to each base pair and the midframe are
shown with solid and dashed arrows respectively.

translational elastic constants respectively. In the limit where
l0 goes to zero with finite L = Nl0, and the translational elastic
constants go to infinity, the elastic energy in Eq. (1) reduces to
the usual wormlike chain model [3].

The two definitions of the persistence length mentioned
above can be written in terms of the components of the model
as follows. If the normal vectors to the terminal base pairs are
used to define the bending angle, we have

lnp = −Nl0[ln (〈d̂3(1) · d̂3(N + 1)〉)]−1, (2)

where the superscript n stands for normal. Alternatively, if
we connect adjacent base pairs at the two ends of DNA to
define the terminal unit vectors, we can write the persistence
length-denoted by lcp-as

lcp = −Nl0[ln (〈û(1) · û(N + 1)〉)]−1, (3)

where û(k) is the unit vector along the line which connects the
base pair k to k + 1:

û(k) = 1

| �ρ(k)|
3∑

i=1

ρi(k) d̂m
i (k). (4)

To demonstrate the difference, we performed simulations
of a free DNA in the 3D space and a confined DNA on a
2D surface. In both simulations DNA was coarse grained
at the base pair level, and the interactions between the base
pairs are given by the elastic energy in Eq. (1). The elastic
parameters of DNA were obtained by averaging the elastic
parameters of all 10 possible base pair steps introduced in
Becker et al. [10]. Equation (1) implies that, for a free DNA
in 3D, the distribution functions of all local base pair step
parameters are Gaussian, which can be generated numerically
using a standard algorithm [11]. Using this method, we
generated an ensemble of 1 million DNA molecules in the
3D space, each consisting of 300 base pairs, which obeys
Maxwell-Boltzmann statistics at room temperature. Although
this method is highly efficient in spanning the phase space of
a free DNA in 3D, it is not applicable to a confined DNA in
2D space, since the distribution functions of the degrees of
freedom will no longer be Gaussian when DNA is confined to
a plane. Therefore, a coarse-grained molecular dynamics has
been used to simulate 2D DNA molecules. Every base pair in
these molecular dynamics (MD) simulations is considered as
a rigid object with a geometry given in Ref. [12]. In addition to
the elastic potential energy, two rigid walls at z = ±0.1Å with
hardcore potential are placed around the DNA to ensure that
it is confined in the xy plane. This potential has a simple form
of

∑
i=1,2 1/r12

i with ri as the distance between the center of
mass of each base pair and the ith rigid wall. The equations
of motion for each base pair are integrated via a symplectic
algorithm [13] and the Nose-Hoover chain thermostat is used
to achieve the canonical ensemble at room temperature. After
giving enough time for relaxation, we generated an ensemble
of two-dimensionally confined DNA molecules. To calculate
the persistence length in 2D, we projected every DNA chain
in the ensemble on the 2D plane to mimic AFM experiments.
Since we needed to generate a large number of chains, and
the MD simulation was time-consuming, the simulation was
only performed for DNA with 50 base pairs and the persistence
length measurment only applied for distances up to this length.
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III. RESULTS AND DISCUSSION

Figure 1(b) shows lnp (squares) and lcp (circles) as a function
of DNA length obtained from the 2D and 3D simulations
(empty and filled data points respectively). It is seen that lnp
is constant, independent of DNA length, just as for the WLC
model, while lcp is length dependent. The difference between
the two definitions vanishes at large length scales. The figure
also shows that l2D

p ≈ 2l3D
p for both definitions. The inset in

Fig. 1(b) shows that − ln〈cos θ (L)〉 is a linear function of
DNA length for both definitions. The lines have equal slopes,
but the line corresponding to the latter definition does not pass
the origin.

The two different behaviors shown in Fig. 1(b) can be
understood in terms of general properties of the elastic
energy. The elastic energy in Eq. (1) is invariant under the
reflection transformation R, which changes the signs of tilt
and roll as well as shift and slide for all base pairs. It is
straightforward to find the symmetry properties of the unit
vectors {d̂i(k)} and û(k) under the inversion transformation
(see Appendix A). It follows that the basis vectors {d̂i(k)}
transform in such a way that d̂i(k) · d̂3(k + 1) changes sign
for i = 1, 2. Thus the invariance of the elastic energy under
the reflection transformation implies that 〈d̂1(k) · d̂3(k + 1)〉 =
〈d̂2(k) · d̂3(k + 1)〉 = 0. Using this result as well as the locality
property of the elastic energy, one can show that [4] 〈d̂3(k1) ·
d̂3(k2)〉 = 〈d̂3(k1) · d̂3(k3)〉 〈d̂3(k3) · d̂3(k2)〉, for all values of k1,
k2, and k3. Hence, using the translational invariance of the
elastic energy, we obtain

〈d̂3(1) · d̂3(N + 1)〉 = [〈d̂3(1) · d̂3(2)〉]N = exp

(
−L

lnp

)
,

(5)

where L = Nl0 and

lnp = −l0[ln (〈d̂3(1) · d̂3(2)〉)]−1. (6)

lnp is a constant independent of DNA length, as suggested
by Fig. 1(b). Since lnp is by definition independent of the
translational degrees of freedom, and there is no coupling
between rotational and translational degrees of freedom in
Eq. (1), it can be seen that in the continuous limit lnp is
equal to the WLC persistence length, lWLC

p , which is given

by lWLC
p = 2 (A−1

1 + A−1
2 )−1 [4].

By a similar argument, we can calculate the persistence
length for the second definition, that is, Eq. (3). As a first step,
we write the vectors û(1) and û(N + 1) in terms of the basis
{d̂i(2)} and {d̂i(N )} respectively. The symmetry properties of
the vector û(k) under the reflection transformation R imply
that 〈û(k) · d̂1(k)〉 = 〈û(k) · d̂2(k)〉 = 0 and also 〈û(k) · d̂1(k +
1)〉 = 〈û(k) · d̂2(k + 1)〉 = 0. Using this symmetry-related re-
sult (see Appendix A) as well as the locality property of
the elastic energy, and replacing 〈d̂3(2) · d̂3(N + 1)〉 with
exp(−L−l0

lnp
) from Eq. (5), we obtain

〈û(1) · û(N + 1)〉 = α exp

(
−L

lnp

)
, (7)

where

α = exp

(
l0

lnp

)
〈û(1) · d̂3(1)〉 〈û(1) · d̂3(2)〉. (8)

In writing Eq. (8), we also used the translational invariance
of the elastic energy to replace 〈û(N + 1) · d̂3(N + 1)〉 with
〈û(1) · d̂3(1)〉. From Eqs. (3) and (7) it can be seen that the
persistence length in the second definition, that is, lcp, depends
on DNA length via the equation 1

lcp
= 1

lnp
− ln α

L
.

Equations (5) and (7), with lnp being independent of
DNA length, agree qualitatively with Fig. 1(b). To prove the
quantitative agreement, we obtained an approximate analytical
expression for α. Since large deformations are unlikely for a
relaxed DNA, with the elastic energy given in Eq. (1), we
expect �̄� ≡ �� − 〈 ��〉 � 1, and �̄ρ ≡ �ρ−〈 �ρ〉

l0
� 1. Writing α in

Eq. (8) in terms of the base pair degrees of freedom, and
expanding the resultant expression in a Taylor series to second
order in �̄� and �̄ρ, we obtain (see Appendix C)

α = 1 − 2

l0 Ksh
+ l0

2 lnp
, (9)

where Ksh is the effective shear constant, defined as

1

Ksh
= 1

2 l0
(〈ρ1〉2 + 〈ρ2〉2). (10)

For a free DNA in 3D whose elastic energy is given by Eq. (1),
we have Ksh = 2 (K−1

1 + K−1
2 )−1.

Solid curves in Fig. 1(b) and its inset show the theoretical
results for a 3D DNA [i.e., Eqs. (2), (3), (5), and (7)], where
we have assumed lnp = lWLC

p and we calculated α from Eq. (9).
It can be seen that there is a perfect agreement between theory
and simulation.

Assuming ˜̂u (m)
(k) is the unit vector along the line which

connects kth base pair to the base pair k + m, m � 1, the
definition of lcp can be generalized by using the vector ˜̂u (m)

instead of û in Eq. (3). To calculate lcp in this generalized
definition, we perform coarse graining of DNA in a higher
level, so that every m base pairs are replaced with one
coarse-grained base pair. The degrees of freedom of the
coarse-grained base pairs are denoted by �̃

(l)
i and ρ̃

(l)
i , with

i = 1, 2, 3, where the tilde ( ˜ ) sign is used to distinguish
the coarse-grained degrees of freedom from the ordinary ones,
and l = ml0 is the coarse-graining length. Then ˜̂u (m)

can be
written in terms of the coarse-grained translational degrees
of freedom and the axes of the coarse-grained midframe
coordinate system, similar to Eq. (4). Under the reflection
transformation R at the base pair level, the coarse-grained
degrees of freedom transform similar to ordinary ones (see
Appendix B for more details). As a result, Eq. (7) can be
written in a generalized form as

〈̃û (m)
(1) · ˜̂u (m)

(N + 1)〉= α(l) exp

(
−L

lnp

)
≡ exp

(
− L

lcp(l)

)
,

(11)
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where

α(l) = exp

(
l

lnp

)
〈̃û (m)

(1) · d̂3(1)〉 〈̃û (m)
(1) · d̂3(m + 1)〉 .

(12)

Approximate analytical expressions, to the first order of �̄�
and �̄ρ, can be easily obtained for the coarse-grained degrees
of freedom. Using these expressions one can calculate α(l) to
the second order of �̄� and �̄ρ to obtain (Appendix C)

α(l) = 1 − 2

l K̃sh(l)
+ l

2 lnp
, (13)

where K̃sh(l) is the coarse-grained effective shear constant
given by

1

K̃sh(l)
= 1

2 l

(〈
ρ̃

(l)
1

〉2 + 〈
ρ̃

(l)
2

〉2) = 1

Ksh
+ 1

12

1

lnp

(
l2 − l2

0

)
.

(14)

On the right-hand side of Eq. (14), the first term comes from
pure shearing at the base pair level and the second term reflects
the contribution of the bending of the base pairs to the coarse-
grained shear.

The argument presented above is also valid in 2D, where
DNA is confined to a plane. In this case, the centers of the base
pairs are forced to remain on a plane. To simplify the theoretical
approach, we also assume that the normal vectors to the base
pairs are confined to the plane. Since the confinement of DNA
in 2D does not alter the locality and homogeneity of the elastic
energy, or its symmetry properties, Eq. (3) is valid in 2D for
all coarse-graining lengths. Thus α(l) is still given by Eq. (13),
where lnp, Ksh, and K̃sh(l) are defined by Eqs. (6), (10), and (14)
respectively. The confinement in 2D only affects the values lnp
and Ksh. If it is assumed that bending and shearing in DNA
are isotropic (i.e. A1 = A2 and K1 = K2), we have ln (2D)

p =
2 ln (3D)

p and K
(2D)

sh = 2 K
(3D)

sh , and consequently according to

Eqs. (13) and (14), K̃
(2D)

sh (l) = 2 K
(3D)

sh (l) and α2D(l) − 1 =
1
2 (α3D − 1). For (α − 1) � 1 it then follows that lc (2D)

p (l) =
2 lc (3D)

p (l). Dashed curves in Fig. 1(b) show the theoretical
results for a DNA in 2D, assuming m = 1. It can be seen
that the theory agrees with the simulation, and the isotropic
approximation is valid.

Figure 3 shows α as a function of the coarse-graining length
l, as calculated from 3D Monte Carlo simulation (squares,
red [gray]) and 2D molecular dynamics simulations (circles,
blue [gray]). The theoretical results presented above are also
shown (solid red [gray] curve and dashed blue [gray] curve
respectively), which nicely fit the simulation data. It can be
seen in the figure that there is a critical value for the coarse-
graining length, lc, for which α = 1 and thus lcp = lnp. The
critical coarse-graining length can be calculated from Eq. (13),
and for the elastic parameters used here, it turns out to be about
5 bp. One has lcp < lnp for l < lc, while lcp > lnp for l > lc.

Figure 4 shows lcp as a function of DNA length for
four different values of coarse-graining length. Empty and
filled symbols correspond to the 2D and 3D simulation data
respectively, and curves show the theoretical results. As can
be seen in the figure, although all curves converge to lnp for

2 4 6 8 10 12 14 16
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1.04

coarse graining length (bp)

α

 

 

3D
2D

FIG. 3. (Color online) Plot of α3D (squares, red [gray]) and α2D

(circles, blue [gray]) for different values of coarse-graining length.
Solid curve (red [gray]) and dashed curve (blue [gray]) correspond to
3D and 2D theoretical results respectively.

long DNA molecules, the values of lcp can be significantly
different from lnp at small length scales, depending on the
coarse-graining length.

The generalized definition of the persistence length lcp is
closely related to the method used in AFM experiments to
measure the persistence length [6], where the coarse-graining
length l is related to the AFM resolution. In this sense, our
results suggest that the method used in the AFM experiments
can dramatically affect the measured values of the persistence
length and the bending flexibility of DNA at small length
scales, and thus the correction coefficient α should be taken
into account in the analysis to get a correct value for the
persistence length. Data shown in Fig. 4 suggest that it is
possible to determine α in a high-resolution AFM experiment,
by measuring lcp as a function of DNA length at small length
scales. It should be noted that α carries, by construction,
information about average shear modulus of DNA. Having
α in any resolution length l, one can find the effective shear
modulus, k̃sh(l) via Eq. (12). The contribution of the average
shear modulus of DNA, Ksh, dominates the contribution of
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FIG. 4. (Color online) Plots of lcp vs DNA length for different
values of the coarse-graining length: l = 1bp (circles, blue [dark
gray]), l = 2bp (squares, red [light gray]), l = 4bp (triangles, green
[drak gray]), and l = 8bp (diamonds, purple [light gray]). Empty and
filled symbols correspond to 2D and 3D simulations respectively, and
solid curves show the theoretical results. The dashed line indicates
the value of lnp .
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bending flexibility in Eq. (14) for l < (l2
0 + 12 lnp K−1

sh )
1
2 , which

is about 2.5 nm for the elastic parameters used here. This
is a feasible method to measure DNA shear modulus by
high-resolution AFM experiments.

IV. CONCLUSION

In summary, we have discussed differences between two
possible definitions of DNA persistence length in a coarse-
grained model. One definition is related to the orientation
of the base pairs, which is only observable on NMR or
crystallographic pictures, and the other definition is based
on connecting the centers of successive base pairs, which
is applicable to AFM experiments. It has been demonstrated
that although the two definitions converge to a common value
for sufficiently long DNA molecules, they are significantly
different at short length scales.
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APPENDIX A: SYMMETRY PROPERTIES OF THE
UNIT VECTORS UNDER THE REFLECTION

TRANSFORMATION

There are different ways to define the relative degrees of
freedom of the base pairs [9,14,15]. We chose the so-called
Cambridge University Engineering Helix Calculation Scheme
(CEHS) representation [9] since it is easier to deal with
mathematically, but it should be noted that the basic results
presented in the paper will not change if one chooses another
valid definition for the degrees of freedom. In the CEHS
representation the orientation of the (k + 1)-th base pair with
respect to the kth base pair is given by the relative rotation
matrix r(k) as d̂i(k + 1) = ∑3

j=1 rji(k) d̂j (k), and the relative
rotation matrix is written as an Euler rotation in the form

r(k) = R3

(
�(k)

2
− φ(k)

)
R2[
(k)] R3

(
�(k)

2
+ φ(k)

)
,

(A1)

where Ri(φ) denotes the rotation about the axis x̂i by
angle φ [9]. The three rotational degrees of freedom for the
(k + 1)-th base pair are then given by �1(k) = 
(k) cos[φ(k)],
�2(k) = 
(k) sin[φ(k)], and �3(k) = �(k). The midframe
coordinate system for the kth base pair step is defined in CEHS
representation via relation d̂M

i (k) = ∑3
j=1 rM

ji (k) d̂j (k), where

rM (k) = R3

(
�(k)

2
− φ(k)

)
R2

(

(k)

2

)
R3[φ(k)]. (A2)

The translational degrees of freedom for the (k + 1)-th base
pair are then given by ρi(k) = �r(k) · d̂M

i (k), i = 1, 2, 3,
where �r(k) is the relative position vector for the (k + 1)-th
base pair with respect to the kth base pair.

The reflection transformation R, as defined in the text,
transforms the angle φ(k) to φ(k) + π for every k, while keep-
ing 
(k) and �(k) unchanged. Therefore, the rotation matrices

r(k) and rM (k) transform under the reflection transformation as

r(k) −→ R3(π ) r(k) R3(π ) (A3)

and

rM (k) −→ R3(π )rM (k) R3(π ) . (A4)

Then, it follows that the unit vectors d̂i(k) and d̂M
i (k) transform

under the reflection transformation as

d̂i(k + 1) · d̂j (k) −→
{

−di(k + 1) · d̂j (k) if i or j 	= 3

di(k + 1) · d̂j (k) otherwise

(A5)

and

d̂M
i (k) · d̂j (k) −→

{
−dM

i (k) · d̂j (k) if i or j 	= 3

dM
i (k) · d̂j (k) otherwise.

(A6)

Since the reflection transformation changes the signs of ρ1(k)
and ρ2(k) while keeping ρ3(k) unchanged, it follows from
Eq. (A6) that the unit vectors û(k) [defined in Eq. (4) of the
main text] transforms like

û(k) · d̂j (k) −→
{

−û(k) · d̂j (k) if j 	= 3,

û(k) · d̂j (k) if j = 3.
(A7)

It is easy to show that û(k) · d̂j (k + 1) transforms in a similar
way.

APPENDIX B: COARSE-GRAINED DEGREES OF
FREEDOM AND THEIR SYMMETRY PROPERTIES

For coarse graining DNA to a higher level, we replace
every m base pairs with one coarse-grained base pair. The
corresponding coarse-grained degrees of freedom are denoted
by �̃

(l)
i and ρ̃

(l)
i , with l = m l0 being the coarse-graining length.

Defining the coarse-grained degrees of freedom in terms of
the base pair degrees of freedom is straightforward. Using the
formalism presented in the previous section we have d̂i(k +
m) = ∑3

j=1 r̃
(l)
ji (k) d̂j (k), where

r̃ (l)(k) =
k+m−1∏

p=k

r(p) . (B1)

Similar to Eq. (A3), the coarse-grained relative rotation matrix
r̃ (l)(k) can be written as an Euler rotation in the form

r̃ (l)(k) = R3

(
�̃ (l)(k)

2
− φ̃ (l)(k)

)
R2[
̃ (l)(k)] R3

×
(

�̃ (l)(k)

2
+ φ̃ (l)(k)

)
. (B2)

The coarse-grained rotational degrees of freedom can
then be defined as �̃

(l)
1 (k) = 
̃ (l)(k) cos[φ̃ (l)(k)], �̃

(l)
2 (k) =


̃ (l)(k) sin[φ̃ (l)(k)], and �̃
(l)
3 (k) = �̃ (l)(k). Also, the coarse-

grained midframe coordinate system, whose axes are de-

noted by ˜̂d
M (l)

i , i = 1, 2, 3, can be defined via equation
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˜̂d
M (l)

i (k) = ∑3
j=1 r̃

M (l)
ji (k) d̂j (k), where

r̃M (l)(k) =R3

(
�̃ (l)(k)

2
− φ̃ (l)(k)

)
R2

(

̃ (l)(k)

2

)
R3[φ̃ (l)(k)].

(B3)

The coarse-grained translational degrees of freedom can then
be defined by the projections of the vector which connects
the base pair k to k + m on the axes of the coarse-grained
midframe coordinate system and are given by

ρ̃
(l)
i (k) =

3∑
j=1

k+m−1∑
p=k

ρj (p) d̂M
j (p) · ˜̂d

M (l)

i (k) , i = 1, 2, 3 .

(B4)

From the transformation properties of r(k) and Eq. (B1), it
can be seen that under the reflection transformation at the base
pair level, r̃ (l)(k) transforms similar to r(k), that is, Eq. (A3).
It is then follows from Eq. (B2) that the reflection transforms
φ̃ (l)(k) to φ̃ (l)(k) + π for every k, while keeping 
̃ (l)(k) and
�̃ (l)(k) unchanged. As a result, the coarse-grained rotational
degrees of freedom transform similar to the ordinary rotational
degrees of freedom, that is,

�̃
(l)
1 (k) −→ −�̃

(l)
1 (k),

�̃
(l)
2 (k) −→ −�̃

(l)
2 (k), (B5)

�̃
(l)
3 (k) −→ �̃

(l)
3 (k).

Also, it can be seen from Eq. (B3) that r̃M (l)(k) transforms
similar to rM (k), that is, Eq. (A4). Hence it is easy to show that
we have

˜̂d
M (l)

i (k) · d̂M
j (p) −→

⎧⎨⎩− ˜̂d
M (l)

i (k) · d̂M
j (p) if i or j 	= 3

˜̂d
M (l)

i (k) · d̂M
j (p) otherwise,

(B6)

for every p and k. Therefore, it follows from Eqs. (B4) and
(B6) that the coarse-grained translational degrees of freedom
transform similar to the ordinary translational degrees of
freedom, that is,

ρ̃
(l)

1 (k) −→ −ρ̃
(l)

1 (k),

ρ̃
(l)

2 (k) −→ −ρ̃
(l)

2 (k), (B7)

ρ̃
(l)

3 (k) −→ ρ̃
(l)

3 (k).

APPENDIX C: CORRECTION COEFFICIENT IN
THE FIRST APPROXIMATION

The correction coefficient α(l), as given in Eq. (12) of the
main text, can be written in terms of the coarse-grained degrees
of freedom. Considering the definition of ρ̃

(l)
i (k) in Eq. (B4),

the unit vector ˜̂u (l)
(k) can be written as

˜̂u (l)
(k) = 1

|̃ �ρ (l)
(k)|

3∑
i=1

ρ̃
(l)
i (k) ˜̂d

M (l)

i (k), (C1)

where |̃ �ρ (l)| ≡ √
(ρ̃ (l) 2

1 + ρ̃
(l) 2

2 + ρ̃
(l) 2

3 ). From Eqs. (B2) and (B3) we obtain

˜̂d
M (l)

i (k) · d̂j (k) =
{
R3

(
�̃ (l)(k)

2
− φ̃ (l)(k)

)
R2

(

̃ (l)(k)

2

)
R3[φ̃ (l)(k)]

}
ji

(C2)

and

˜̂d
M (l)

i (k) · d̂j (k + m) =
{
R3

(
− �̃ (l)(k)

2
− φ̃ (l)(k)

)
R2

(
− 
̃ (l)(k)

2

)
R3[φ̃ (l)(k)]

}
ji

. (C3)

Also, from Eq. (B2) together with the Eq. (5) of the main text, it follows that

〈cos 
̃ (l)(k)〉 = exp

(
− l

lnp

)
. (C4)

Using Eqs. (B4) and (C1)–(C4), together with Eq. (12) of the main text, we can write

α(l) = 〈cos 
̃ (l)〉−1

〈
ρ̃

(l)
3

|̃ �ρ (l)|
cos


̃ (l)

2
− ρ̃

(l)
1 cos φ̃ (l) − ρ̃

(l)
2 sin φ̃ (l)

|̃ �ρ (l)|
sin


̃ (l)

2

〉

×
〈

ρ̃
(l)

3

|̃ �ρ (l)|
cos


̃ (l)

2
+ ρ̃

(l)
1 cos φ̃ (l) − ρ̃

(l)
2 sin φ̃ (l)

|̃ �ρ (l)|
sin


̃ (l)

2

〉
. (C5)

In Eq. (C5) we have omitted the indexes that indicate the number of the base pair steps, since the elastic energy is translationally
invariant and every base pair step is equivalent to any other. To calculate the statistical averages in Eq. (C5), we expand the
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right-hand side of the equation in terms of �̄� and �̄ρ. Equations (B1)–(B4) relate the coarse-grained degrees of freedom to the

ordinary ones. Hence, it is straightforward to calculate �̃�(l)
and �̃ρ (l)

to the first order of �̄� and �̄ρ. We obtain

�̃
(l)
1 (k) =

m∑
p=1

[
cos

(
ψm

p

)
�̄1(k + p − 1) + sin

(
ψm

p

)
�̄2(k + p − 1)

] + O(�̄2, ρ̄2), (C6)

�̃
(l)
2 (k) =

m∑
p=1

[− sin
(
ψm

p

)
�̄1(k + p − 1) + cos

(
ψm

p

)
�̄2(k + p − 1)

] + O(�̄2, ρ̄2), (C7)

�̃
(l)
3 (k) = lω0 +

m∑
p=1

�̄3(k + p − 1) + O(�̄2, ρ̄2), (C8)

ρ̃
(l)

1 (k) = l0

m∑
p=1

[
cos

(
ψm

p

)
ρ̄1(k + p − 1) + sin

(
ψm

p

)
ρ̄2(k + p − 1)

] + l0

m∑
p=1

[
−

(
m

2
+ 1

2
− p

)
sin

(
ψm

p

)
�̄1(k + p − 1)

+
(

m

2
+ 1

2
− p

)
cos

(
ψm

p

)
�̄2(k + p − 1)

]
+ O(�̄2, ρ̄2), (C9)

ρ̃
(l)

2 (k) = l0

m∑
p=1

[− sin
(
ψm

p

)
ρ̄1(k + p − 1) + cos

(
ψm

p

)
ρ̄2(k + p − 1)

] − l0

m∑
p=1

[(
m

2
+ 1

2
− p

)
cos

(
ψm

p

)
�̄1(k + p − 1)

+
(

m

2
+ 1

2
− p

)
sin

(
ψm

p

)
�̄2(k + p − 1)

]
+ O(�̄2, ρ̄2), (C10)

and

ρ̃
(l)

3 (k) = l + l0

m∑
p=1

ρ̄3(k + p − 1) + O(�̄2, ρ̄2), (C11)

where ψm
p = (m+1

2 − p) ω0 l0. By expanding α(l) in Eq. (C5) in powers of �̃�(l)
and �̃ρ (l)

to the second order, and using Eqs. (C6)–
(C11), one can easily calculate the averages in Eq. (C5) to obtain Eqs. (13) and (14) of the main text. These two equations
are valid to the second order of �̄� and �̄ρ, and in the special case of m = 1 are reduced to Eqs. (9) and (10) of the main text
respectively.
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