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Abstract. We formulated an effective theory for a single interlayer exciton in
a bilayer quantum antiferromagnet, in the limit when the holon and doublon
are strongly bound onto one interlayer rung by the Coulomb force. Upon using
a rung linear spin-wave approximation of the bilayer Heisenberg model, we
calculated the spectral function of the exciton for a wide range of the interlayer
Heisenberg coupling α = J⊥/J z. In the disordered phase at large α, a coherent
quasi-particle peak appears, representing free motion of the exciton in a spin
singlet background. In the Néel phase, which applies to more realistic model
parameters, a ladder spectrum arises due to Ising confinement of the exciton.
The exciton spectrum is visible in measurements of the dielectric function, such
as c-axis optical conductivity measurements.
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1. Introduction

An exciton is the bound state of an electron and a hole, and considering their bosonic character
the question immediately arises whether they can condense into an exciton Bose condensate [1].
The quest for such exciton superfluidity has, over the last decade, increasingly focused its
attention on layered structures where one layer contains holes and the other layer contains
electrons [2]. The Coulomb attraction between the electrons and holes then allows for the
formation of so-called interlayer excitons. In 2004, a condensate of interlayer excitons was
successfully created in a heterostructure of two two-dimensional electron gases (2DEGs) under
the application of a perpendicular magnetic field [3]. Since then, many other candidate materials
have been suggested that should support interlayer exciton condensation in the absence of
magnetic fields, such as graphene [4–7] or topological insulators [8]. One class of candidate
materials has not been considered so far, namely Mott insulators [9]. The strong interactions
between electrons render these materials currently one of the most fascinating and the least
understood solid state compounds. When making heterostructures of p- and n-doped quasi-two-
dimensional CuO2 layers, one expects the formation of interlayer excitons, and these excitons
will interact strongly with magnetic excitations, possibly leading to unexpected dynamics. To
explore all these unexpected dynamics of the excitons in a strongly correlated system such as
exciton condensation, understanding the dynamics of a single exciton would be the first step.

Heterostructures of p- and n-doped cuprates can be typically described by a strongly
correlated model, namely the bilayer t–J model, which is extended from two single-band t–J
models for each layer with coupling terms between the layers as follows:

Hbt−J = Ht + HJ + HV , (1)
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Exciton

V

Figure 1. Naive real space picture of an exciton in a strongly correlated material,
as viewed from the side. Two square lattices (blue balls) are placed on top of
each other. The red arrows denote the spin ordering, which forms a perfect Néel
state. The exciton consists of a bound pair of a double-occupied site and a vacant
site on an interlayer rung. The energy required to break this doublon–holon pair
is V . The magnetic ordering is governed by the in-plane Heisenberg J and the
interlayer J⊥, as described by the Hamiltonian (3).

where Ht is the hopping of electrons in each layer,

Ht = −te

∑
〈i j〉σ,l

c†
ilσc jlσ + h.c. (2)

and HJ is the bilayer Heisenberg model describing the undoped Mott insulating state

HJ = J
∑
〈i j〉,l

sil · s jl + J⊥

∑
i

si1 · si2. (3)

Here cilσ and sil denote the electron and spin operators, respectively, on site i in layer l = 1, 2.
The Heisenberg HJ is antiferromagnetic with J > 0 and J⊥ > 0. The last term HV in (1) is the
Coulomb attraction between a vacant site (holon) and a double-occupied site (doublon) in the
same rung, described by

HV = V
∑

i

ni1ni2, (4)

which is the force required to form an exciton in the same rung. Without loss of generality, we
assume that layer ‘1’ contains the excess electrons with the constraint

∑
σ c†

i1σci1σ > 1 and layer
‘2’ has the constraint

∑
σ c†

i2σci2σ 6 1. If one considers doped systems, this amounts to n-type
doping in layer ‘1’ and p-type doping in layer ‘2’.

In this paper, we will present a theoretical framework describing the dynamical properties
of a single exciton in a strongly correlated bilayer described by (1), following our previous
shorter publication on this topic [10]. The binding of the holon and the doublon is determined
by the interlayer Coulomb repulsion and we will focus on the strong coupling limit (V > t).
This implies that the exciton is formed by the holon and the doublon on the same rung, as is
shown in figure 1.

Understanding of the bilayer Heisenberg model will be an important step towards
analyzing the dynamics of a single exciton. The ground state and excitations of the bilayer
Heisenberg Hamiltonian have been studied quite extensively using quantum Monte Carlo
(QMC) methods [11, 12], dimer expansions [13–15] and the closely related bond operator
theory [16, 17], the nonlinear sigma model [18, 19] and spin-wave theory [20–23]. All results
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Figure 2. Zero-temperature phase diagram of the bilayer Heisenberg model as
a function of interlayer coupling strength α =

J⊥

4J on the horizontal axis. At a
critical value αc a quantum phase transition exists from the antiferromagnetic
(AF) to the singlet phase. The vertical axis shows the Néel order parameter
signaling antiferromagnetism. Note that even at α = 0 the Néel order parameter
is reduced from the mean field value 1

2 to approximately 0.3 due to spin flip
interactions. (Adapted from [25].)

indicate an O(3) universality class quantum phase transition at a critical value of J⊥/J from an
antiferromagnetically ordered to a disordered state, see figure 2. A naive mean field picture of
the antiferromagnetic ground state is provided by the Néel state, in which each of the sublattices
are occupied by either spin-up or spin-down electrons as shown in figure 1. However, the exact
ground state is scrambled up by spin flip interactions reducing the Néel order parameter to about
60% of its mean field value [24]. A finite interlayer coupling J⊥ influences the antiferromagnetic
order. In the limit of infinite J⊥, the electrons on each interlayer rung tend to form singlets
destroying the antiferromagnetic order.

Standard spin-wave theories, however, cannot account for the critical value of J⊥/J ∼ 2.5
found in QMC and series expansion studies. This discrepancy between numerical results and
the spin-wave theory has a physical origin. Chubukov and Morr [25] pointed out that standard
spin-wave theories do not take into account the longitudinal (that is, the interlayer) spin modes.
By taking into account those longitudinal spin waves one can derive analytically the right phase
diagram [26]. Another correct method is to introduce an auxiliary interaction which takes care
of the hard-core constraint on the spin modes [27].

If one wants to study the doped bilayer antiferromagnet however, one needs explicit
expressions of how a moving dopant (be it a hole, electron or exciton) interacts with the spin
excitations. Even though the Néel state is just an approximation to the antiferromagnetic ground
state, it provides an intuitive explanation of the major role spins play in the dynamics of any
dopant. As can be seen in figure 3, a moving exciton causes a mismatch in the previously perfect
Néel state. Consequently, the motion of an exciton is greatly hindered and a full understanding
of possible spin-wave interactions is needed to describe the exciton dynamics. This is of course
similar to the motion of a single hole in a single Mott insulator layer [28, 29]. Vojta and
Becker [30] have computed the spectral function of a single hole in the Heisenberg bilayer.
A rung linear spin-wave approximation [26] is needed to obtain the expressions for the spin
waves in terms of single-site spin operators. Summarizing, we will formulate first an effective
exciton t–J model from the bilayer t–J model in the limit of strong Coulomb attraction in
section 2. In order to find the interaction coefficients between excitons and spin excitations,
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Moved excitonSpin mismatch

Figure 3. Exciton motion in a naive real space picture. In a perfect Néel state,
the motion of an exciton (with respect to the situation in figure 1) causes a
mismatch in the spin ordering. The kinetic energy gained by moving the exciton
is proportional to the energies of the doublon te and the holon th divided by the
exciton binding energy V .

we will construct a spin-wave theory of the bilayer Heisenberg model in section 3. Based on
these two developments, we can compute the exciton spectral function using the self-consistent
Born approximation (SCBA) in section 4. Finally, we connect the exciton spectral function to
measurable quantities in section 5.

2. The bilayer exciton t–J model

The bilayer t–J model (1) describes generally the p-/n-doped bilayer antiferromagnet. The
behavior of a bound exciton however depends on the magnitude of the Coulomb force V in HV ,
equation (4). If the Coulomb repulsion is relatively weak, the motion of holons and doublons
will be relatively independent of each other and the HV can be treated as a perturbation on
Ht + HJ . The full exciton-susceptibility χ(ω) can be obtained from the bare susceptibility χ0(ω)

in the absence of the Coulomb force using the ladder diagram approximation (figure 4),

χ(ω)=
χ0(ω)

1 − Vχ0(ω)
. (5)

Since the undoped state is a Mott insulator, there is a gap in the imaginary part of the bare
susceptibility χ ′′

0 . Above this gap there is an onset of the particle–hole continuum. In the ladder
diagram approximation, there can only be a single delta function peak in the full susceptibility at
Vχ ′

0 = 1 signaling the formation of an exciton. We conclude that in the weak coupling limit no
special exciton features other than a single delta function peak can appear in the gap. Following
our expectation that realistic materials are in fact in the strong coupling limit, as explained in
section 5, we will henceforth focus our attention on the strong coupling limit.

In the strongly coupling limit (V � t), the hopping term Ht can be treated as a perturbation
on the unperturbed HV using the perturbation method developed by Kato [31], in a manner
similar to the derivation of the t–J model from the Hubbard model [32–34]. In this method, one
considers first an exact solvable part of the Hamiltonian, in this case the interlayer Coulomb
interaction HV . It has the eigenvalues

E Ñ = V (N − N0 + Ñ )= E0 + V Ñ , (6)

where N is the total number of sites, N0 is the number of dopants per layer and Ñ is the number
of double occupied sites that do not lie above a vacant site. It is clear that the ground state of HV
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Figure 4. In weak coupling the spectrum of an exciton is obtained by the ladder
diagram approximation from the spectrum of the single doped hole. The χ ′′

0
and χ ′

0 are, respectively, the imaginary and the real part of the bare exciton
susceptibility. The χ ′′ is the imaginary part of the full exciton susceptibility
obtained in the ladder diagram approximation (5). Besides the continuous
particle–hole spectrum above the gap, there can be only a single exciton peak
determined by Vχ ′

0 = 1 in the weak coupling limit.

Virtual break-up 
of exciton

Spin mismatch

Figure 5. The motion of the composite exciton can be related to the motion of its
constituents via Kato’s perturbation method. In this method a virtual intermediate
breakup of the exciton is in between the initial state (figure 1) and the final state
(figure 3). The kinetic energy of the exciton is therefore the product of the kinetic
energies of the holon and doublon divided by the energy of this virtual state,
tex = teth/V .

is given by the state where all double occupied and vacant sites lie above each other, as depicted
in figure 1. As mentioned before, an exciton consists of a double-occupied site and a vacant site
bound on top of each other. Consequently, the ground state of HV is the state where all dopants
are bound to excitons.

The essence of Kato’s perturbation method is that we now forbid all states with higher
HV eigenvalues. In our model, this implies that we forbid states such as the one depicted in
figure 5 where the double-occupied site is not on top of the vacant site. In zeroth order, hopping
of electrons is forbidden since that would break up an exciton state. Therefore the zeroth order
Hamiltonian only contains Heisenberg terms H (0)

= HJ .
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In second order, processes are allowed that virtually break up excitons, but end up with
only bound excitons. The corresponding effective Hamiltonian is given by

−
1

2V
Pe (Ht) (1 − Pe) (Ht) Pe, (7)

where Pe is the operator that projects out states with unbound dopants. As can be verified from
figure 5 this process allows the hopping of excitons by virtually breaking the dopants apart. If
we define the exciton operator in terms of electron creation operators,

E†
i = c†

i1↑
c†

i1↓
(1 − ρi2), (8)

where ρi2 =
∑

σ c†
i2σci2σ is the density operator in the p-type layer, the exciton hopping process

can be formulated as

Ht,ex = −
teth

V

∑
〈i j〉σσ ′

E†
j

[
c†

i1σ ′c
†
i2σc j2σc j1σ ′

]
Ei . (9)

Note that in this Hamiltonian, no breakup of the exciton is required. The virtual process as
described before only enabled us to relate the single layer kinetic energies to the bilayer exciton
kinetic energy,

t =
teth

V
. (10)

Here te is the hopping energy for a single electron, th is the hopping energy for a single hole and
t is the hopping energy for a bound exciton. In addition to this hopping process there are also
second-order processes that are equal to a shift in chemical potential of the excitons. In the limit
that we are interested in, that of a single exciton, we neglect chemical potential terms.

In conclusion, we formulated a model for the strong coupling limit of HV that describes the
motion of bound excitons in a Mott insulator double layer. The corresponding Hamiltonian is

H = Ht,ex + HJ . (11)

We will refer to this model as the exciton t–J model.

2.1. The singlet–triplet basis

The hopping term (9) represents an exciton Ei on site i swapping places with the spin
background c jpσc jnσ ′ on site j . This Hamiltonian is in the electron Fock state representation
with the background determined by the bilayer Heisenberg model (3). Historically, the spin
singlet–triplet basis turned out to be convenient in treating the bilayer Heisenberg model, and
consequently we will apply this representation also to the hopping term (9).

Unlike the fermionic holes in the single layer case, the exciton is composed of a fermionic
doublon and holon in the same rung and hence is a bosonic particle. The local Hilbert space on
each interlayer rung is five dimensional with a basis in terms of five hard-core bosons as one
interlayer exciton state |E〉i and four different spin states. In the singlet–triplet basis, which is
valid for both the doped and the undoped case, we can introduce the four hard-core bosons as
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one singlet state and three triplet states:

|0 0〉i =
1

√
2

(
c†

i1↑
c†

i2↓
− c†

i1↓
c†

i2↑

)
|0〉, (12a)

|1 0〉i =
1

√
2

(
c†

i1↑
c†

i2↓
+ c†

i1↓
c†

i2↑

)
|0〉, (12b)

|1 1〉i = c†
i1↑

c†
i2↑

|0〉, (12c)

|1 − 1〉i = c†
i1↑

c†
i2↑

|0〉. (12d)

Then the hopping term (9) can be re-expressed as

Ht,ex = −t
∑
〈i j〉

|E j〉

(
|0 0〉i〈0 0| j +

∑
m

|1 m〉i〈1 m| j

)
〈Ei |. (13)

We can introduce the total spin operator

Si = si1 + si2 (14)

and the spin difference operator

S̃i = si1 − si2. (15)

Explicitly, in terms of singlet and triplet rung states for S =
1
2 , this reads

Sz
i = |1 1〉〈1 1| − |1 − 1〉〈1 − 1|, (16a)

S+
i =

√
2 (|1 1〉〈1 0| + |1 0〉〈1 − 1|) , (16b)

S̃z
i = −|0 0〉〈1 0| − |1 0〉〈0 0|, (16c)

S̃+
i =

√
2 (|1 1〉〈0 0| − |0 0〉〈1 − 1|) . (16d)

In general, we see that the operator Si conserves the total on-site spin, while S̃i always changes
the total spin number s by a unit. The z-components of the spin operators do not change the
magnetic number m, while the ±-components of the spin operators change the magnetic number
by a unit. The bilayer Heisenberg model is now written as

HJ =
J

2

∑
〈i j〉

(
Si · S j + S̃i · S̃ j

)
+

J⊥

4

∑
i

(
S2

i − S̃2
i

)
. (17)

In conclusion, we formulated the exciton t − J model in the singlet–triplet basis which will be
a starting point to solve the dynamics of the single exciton.

2.2. Sign problem

Note also that the Hilbert space no longer contains fermionic degrees of freedom. The
question is whether the disappearance of the fermionic structure also leads to the disappearance
of the fermionic sign structure, which causes so much difficulty in the single layer t − J
model [35].
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The sign structure can be investigated as follows. Remember that at half-filling the
fermionic signs in the standard t − J model on a bipartite lattice can be removed by a Marshall
sign transformation [36]. Upon doping, signs reappear whenever a hole is exchanged with (for
example) a down spin. Which matrix elements of the Hamiltonian become positive (and thus
create a minus sign in the path integral loop expansion) depends on the specific basis and on the
specific Marshall sign transformation.

For the double-layer exciton model, we define a spin basis state with a built-in Marshall
sign transformation of the form (compare with [37])

|φ〉 = (−1)N↓

An+N↓

Bp

∣∣∣∣· · · ↓ ↑↓ ↑

↓ 0 ↓
· · ·

〉
, (18)

where N↓

An is the number of down spins on the A sublattice in the n-layer and similarly we
define N↓

Bp. With these basis states the Heisenberg terms are sign-free and the only positive
matrix elements come from the exchange of an exciton with an m = ±1 triplet.

We conclude that, even though the model is purely bosonic, the exciton t − J model
is not sign-free and it is not possible to remove this sign structure using a Marshall or
similar transformation2. However, as will be further elaborated upon in section 4, for both the
antiferromagnetic and singlet ground states these signs do cancel out. Therefore for such ordered
bilayers the problem of exciton motion turns out to be effectively bosonic.

3. The undoped case: the bilayer Heisenberg model

Before considering the dynamics of the exciton and expressing the interaction between the
exciton and the spin background, we need to derive a spin-wave theory for the bilayer
Heisenberg model. Similar to the traditional Holstein–Primakoff spin-wave theory, we need
a classical reference state, i.e. the mean field ground state of the bilayer Heisenberg model, and
then develop the linear order for the spin-wave theory from the mean field ground state. The
method we present here is similar to that presented in [26].

3.1. Mean field ground state

The singlet–triplet basis (17) of the bilayer Heisenberg model is convenient for mean field
theory. Mean field theory tells us that for a large ratio J⊥/J the ground state is the singlet
configuration |0 0〉. For small J⊥/J , we expect antiferromagnetic ordering, which amounts to
staggered condensation of S̃z

i . By setting 〈̃Sz
i 〉 = (−1)i m̃ we obtain a mean field Hamiltonian

H MF
J =

∑
i

[
1

4
J zm̃2 +

J⊥

4

(
S2

i − S̃2
i

)
−

1

2
J zm̃(−1)i S̃z

i

]
, (19)

which has an ordered–disordered transition point at

αc ≡

(
J⊥

J z

)
c

=
4

3
S(S + 1), (20)

2 We are not claiming that the sign structure cannot be removed. Of course, if we would know the exact eigenstates
of the Hamiltonian there would be no sign problem. However, finding a basis where the sign structure vanishes is
in general an NP-hard problem [38].
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where S is the magnitude of spin of the spin operator on each site. A proof of this result can be
found in appendix A.

The basic idea of a spin-wave theory [39–41] is to start from this semiclassical (mean
field) ground state and describe the local excitations with respect to this ground state. One can
immediately infer why the Holstein–Primakoff or Schwinger approach to spin-wave theories
fails for the bilayer Heisenberg model. Firstly, the mean field ground state is no longer a Néel
state for a finite α. Secondly, where Holstein–Primakoff describes one and Schwinger describes
two on-site spin excitations, the bilayer Heisenberg has in fact three types of excitations.
This has been pointed out by Chubukov and Morr [25], who called the ‘third’ excitation the
longitudinal mode.

Here we want to point out that due to the local Hilbert space and the mean field ground
state as described by (19), we can ‘reach’ all states in the local Hilbert space with three types
of excitations: a longitudinal e† that keeps the magnetic number m constant and a transversal
b†

± that changes the magnetic number m by either ±1. In the limit of large S these excitations
tend to become purely bosonic. We will take the mean field ground state of (19) and these three
excitations as the starting point for the linear spin-wave theory.

Finally, we must mention an obvious flaw in the above reasoning. Where we criticized
earlier spin-wave theories because they predicted the wrong critical value of J⊥/J z, we now
apparently adopt such a ‘wrong’ theory since (20) predicts αc = 1 for S =

1
2 ! Nevertheless, as

we show in appendix C concerning S =
1
2 , the presence of spin waves changes the ground state

energy, which makes the disordered state more favorable even below the mean field critical(
J⊥

J z

)
c

calculated above. Hence, because of correctly taking into account the ground state energy
shifts, one finds that the accurate critical value for α is consistent with numerical calculations.

3.2. Spin-wave theory

We will now construct explicitly the spin-wave theory described above for S =
1
2 . First, one

needs to find the ground state following equation (19). In the S =
1
2 case, this amounts to

competition between the singlet state |s = 0,m = 0〉 and the triplet |s = 1,m = 0〉. The mean
field ground state on each rung is given by a linear superposition of those two,

|G〉i = ηi cosχ |0 0〉i − sinχ |1 0〉i , (21)

which interpolates between the Néel state (χ = π/4) and the singlet state (χ = 0). The onset of
antiferromagnetic order can thus be viewed as the condensation of the triplet state in a singlet
background [26]. With ηi = (−1)i alternating we have introduced a sign change between the
two sublattices A and B. The angle χ will be determined later by self-consistency conditions.

The three operators that describe excitations with respect to the ground state are

e†
i = (ηi sinχ |0 0〉i + cosχ |1 0〉i) 〈G|i , (22a)

b†
i+ = |1 1〉i〈G|i , (22b)

b†
i− = |1 − 1〉i〈G|i . (22c)

The e-operators will later turn out to represent the longitudinal spin waves, whereas the
b-operators represent the two possible transversal spin waves.
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The bilayer Heisenberg model can be rewritten in terms of these operators. For
completeness we include the parameter λ that enables a comparison of the Ising limit (λ= 0)
with the Heisenberg limit (λ= 1),

S1 · S2 = Sz
1 Sz

2 + 1
2λ(S

+
1 S−

2 + S−

1 S+
2 ). (23)

Given this, we can explicitly write down the spin operators in terms of the new e and b operators,
as is done in appendix B.

From the requirement that the Hamiltonian does not contain terms linear in spin-wave
operators, we obtain the self-consistent mean field condition for the ground state angle χ ,

(cos 2χ −αλ) sin 2χ = 0, (24)

which has two possible solutions. Either χ = 0, which corresponds to a singlet ground state
configuration, the disordered phase. If cos 2χ = αλ, there exists an antiferromagnetic ordered
phase. These are indeed the two phases represented in figure 2. Which of the two solutions
ought to be chosen depends on the ground state energy competition. In appendix C, we compare
the ground state energy of both phases, from which we can deduce that the critical point lies at
αc ≈ 0.6, consistent with the numerical literature [11, 12].

The dispersion of the spin-wave excitations can be found when if we consider only the
quadratic terms in the Hamiltonian. This is called the ‘linear’ spin-wave approximation, and it
amounts to neglecting the cubic and quartic interaction terms. First take a Fourier transform of
the spin-wave operators

e†
iσ =

√
2

N

∑
k

e†
kσeik·ri , (25)

where the sum over k runs over the N/2 momentum points in the domain [−π, π] × [−π, π]
and σ = A, B represents the sublattice index. A similar definition is used for the b-operators.

Upon Fourier transformation, we can decouple the spin waves from the two sublattices A
and B by introducing

e†
k,p =

1
√

2
(e†

k A + pe†
k B), (26)

where p = ± stands for the phase of the spin mode. Modes with p = −1 are out of phase and
have the same dispersion as the in-phase p = 1 modes but shifted over the antiferromagnetic
wavevector Q = (π, π). Again similar considerations hold for the b operators.

Next we perform the Bogolyubov transformation on the magnetic excitations,

e†
k,p = coshϕk,pζ

†
k,p + sinhϕk,pζ−k,p, (27a)

b†
k,p,+ = cosh θk,pα

†
k,p + sinh θk,pβ−k,p, (27b)

b†
k,p,− = cosh θk,pβ

†
k,p + sinh θk,pα−k,p. (27c)

The corresponding transformation angles are set by the requirement that the Hamiltonian
becomes diagonal in the new operators ζ (the longitudinal spin wave) and α, β (the transversal
spin waves). In doing so, we introduced the ‘ideal’ spin-wave approximation in which we
assume that the spin-wave operators obey bosonic commutation relations [41]. This assumption
is exact in the large S limit. For S =

1
2 this approximation turns out to work extremely well [24],
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since the corrections to the bosonic commutation relations are expressed as higher order spin-
wave interactions. The Bogolyubov angles are therefore given by

tanh 2ϕk,p =
−p 1

2 cos2 2χγk

sin2 2χ + λα cos 2χ − p 1
2 cos2 2χγk

, (28)

tanh 2θk,p =
pλγk

sin2 2χ + (1 + λ)α cos2 χ − pλ cos 2χγk

. (29)

The factor γk encodes for the lattice structure, and it equals, for a square lattice,

γk =
1

z

∑
δ

eik·δ
=

1

2

(
cos kx + cos ky

)
, (30)

where the sum runs over all nearest neighbor lattice sites δ. The Bogolyuobov angles still depend
on χ , which characterizes the ground state. In the antiferromagnetic phase cos 2χ = λα and for
the Heisenberg limit λ= 1, these angles reduce to

tanh 2ϕk,p =
−pα2γk

2 − pα2γk
, (31)

tanh 2θk,p =
pγk

1 +α− pαγk
. (32)

We can distinguish between the longitudinal and transversal spin excitations, with their
dispersions given by

εL
k,p = J z

√
1 − pα2γk, (33)

εT
k,p =

1

2
J z
√
(1 +α(1 − pγk))2 − γ 2

k . (34)

The longitudinal spin wave is gapped and in the limit where the layers are decoupled
(α = 0) completely nondispersive, while the transversal spin wave is always linear for small
momentum k. This type of spectrum is similar to a phonon spectrum, which contains a linear
k-dependent acoustic mode and a gapped flat optical mode. This correspondence between spin
waves and phonons enables us to use techniques from electron–phonon interaction studies for
the exciton–spin-wave interactions.

On the other hand, in the singlet phase (α > 1), one has trivially three identical triplet spin
excitations. The Bogolyubov angles are given by

tanh 2ϕk,p = − tanh 2θk,p =
−pγk

2α− pγk
, (35)

and the dispersion of the triplet spin waves is

εk,p = J z
√
α(α− pγk). (36)

These dispersions (see figure 6) correspond to earlier numerical and series expansions results
[13, 14, 25, 27]. In fact, these results are exactly equal to the dispersions obtained from the
nonlinear sigma model [18].

The above derivation adds to earlier studies of the bilayer Heisenberg model in that we
have now found explicit expressions of how the spin waves are related to local spin flips,
equations (27a)–(29). This microscopic understanding of the magnetic excitations of the system
enables us in the next section to derive exactly how magnetic interactions influence the dynamics
of excitons (figure 6).
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Figure 6. Dispersion of the bilayer Heisenberg spin waves for different values
of α. The top row has α = 0.04 and α = 0.4, the bottom row α = 0.9 and
α = 1.1. In the antiferromagnetic phase (the first three pictures) there is a clear
distinction between the longitudinal spin waves (long dashed lines in green) and
the transversal spin waves (solid line in blue and short dashed in red). The first
is gapped, while the latter is zero at either k = (0, 0) or (π, π) with a linear
energy–momentum dependence. In the singlet phase, all spin waves are gapped
triplet excitations (depicted as solid blue line and dashed red line).

4. A single exciton in a correlated bilayer

As was pointed out in section 2, the exciton t − J model is still troubled by the sign problem
even though it is purely bosonic. The sign-problem makes it difficult to say anything conclusive
for systems with a finite density of excitons. Doping the single layer t − J model leads to a
similar loss of theoretical control, and is the consequence of the fact that the magnetic ground
state changes rapidly with doping. However, we can derive the dynamics of a single exciton
in the undoped bilayer. In the thermodynamic limit a single exciton will not change the ground
state. Following the exciton hopping Hamiltonian (9) we can express the dynamics of the exciton
upon interaction with the spin-wave modes. A single exciton can be physically realized either
by exciting an interlayer charge-transfer exciton in the undoped bilayer or by infinitesimal small
chemical doping of layered structures.

From a theoretical viewpoint, the spin wave theory we derived in section 3 can be used to
construct the effective theory of the single exciton and apply the SCBA. Similar to the single
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layer case [28], we consider the mean field state |G〉 as the vacuum state and it is straightforward
to derive the effective theory for a single exciton as

Ht,ex = t
∑
〈i j〉

E†
j Ei

[
cos 2χ(1 − e†

i e j)+ sin 2χ(e†
i + e j)−

∑
σ

b†
iσb jσ

]
+ h.c. (37)

The dynamics of a single exciton are contained in the dressed Greens function, formally
written as

G p(k, ω)=

〈
ψ0|Ek,p

1

ω− H + iε
E†

k,p|ψ0

〉
, (38)

where E†
k,p is the Fourier transformed exciton creation operator, and p indicates the same phase

index as used for the spin waves in equation (26). The |ψ0〉 denotes the ground state that arises
from the spin-wave approximation [24]; that is, it is defined by the conditions

ζk,p|ψ0〉 = αk,p|ψ0〉 = βk,p|ψ0〉 = 0 (39)

for all k, p. Note that |ψ0〉 is not equal to the mean field ground state |G〉 defined in
equation (21).

Now the Greens function cannot be solved exactly and one needs to write out a
diagrammatic expansion in the parameter t . For this purpose, we have derived the corresponding
Feynman rules of the exciton t − J model in appendix D.

Using Dyson’s equation one can rephrase the diagrammatic expansion in terms of the self-
energy 6 p(k, ω) such that

G p(k, ω)=
1

ω− ε
p
0 (k)−6

p(k, ω)+ iε
, (40)

where ε p
0 (k) is the dispersion in the absence of spin excitations for the exciton with phase p.

The self-energy can be computed by summing all one-particle irreducible Feynman diagrams.
The degree to which exciton motion contains a free part grows with α, and indeed the free
dispersion is

ε
p
0 (k)= p zt cos 2χ γk, (41)

where cos 2χ is equal to αλ in the antiferromagnetic phase and equal to 1 in the singlet phase.
As we noted before, the spin-wave spectrum resembles a phonon spectrum. Hence, we

can compute the exciton self-energy using SCBA [28, 29], an approximation scheme developed
for electron–phonon interactions but subsequently successfully applied to the single layer t − J
model.

The SCBA is based on two assumptions: (i) that one can neglect vertex corrections and
(ii) one uses only the bare spin-wave propagators. The first assumption is motivated by an
extension of Migdal’s theorem3, the second by linear spin-wave approximation. Consequently,
all the remaining diagrams are of the ‘rainbow’ type which can be summed over using a
self-consistent equation. The assumption that the vertex corrections are irrelevant allows us
to completely resume Feynman diagrams up to all orders in t . The SCBA is therefore not

3 For electron–phonon interaction, higher order vertex corrections are of order m
M , where m is the electron mass

and M is the ion mass. This justifies that for electron–phonon interactions the SCBA is right [42]. Comparisons
between the SCBA and the exact diagonalization methods for the single layer t − J model have shown that it is
justified to neglect the vertex correction there as well [43].
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Figure 7. Feynman diagram representation of the SCBA of equation (43).
The self-energy of the exciton depends self-consistently on ‘rainbow’ diagrams
where it emits and absorbs either one or two spin waves. The two diagrams to
the left contain interaction with the longitudinal spin wave (solid green wavy
propagators with ζ labels). The diagram to the right contains the interaction with
the transversal spin waves; the dotted (blue, upper, wavy) propagator denotes the
α spin wave and the dashed (red, lower, wavy) propagator denotes the β spin
wave. The definitions of ζ, α and β are given in equations (27a)–(27c). Note that
vertex corrections are neglected in the SCBA.

a perturbation series expansion and consequently t does not necessarily have to be a small
parameter.

For the exciton t − J model, the SCBA amounts to computing the self-energy for the in-
phase exciton, as shown diagrammatically in figure 7. Usual Feynman rules dictate that we
need to integrate over all intermediate frequencies of the virtual spin waves. However, under the
linear spin-wave approximation the spin-wave propagator is i/(ω′

− ε(k)+ iε)which amounts to
a Dirac delta function in the frequency domain integration [28]. For example, the first diagram
of figure 7 is reduced as follows:

1

N

∑
q,p

∫
∞

−∞

dω′

π
M2

k,q G p(k − q, ω−ω′)

[
i

ω′ − εL
k,p + iε

]
=

1

N

∑
q,p

M2
k,q G p(k − q, ω− εL

q,p),

(42)

where Mk,q is the vertex contribution and G p(k, ω) is the exciton propagator. Emission (or
absorption) of a spin wave by an exciton can thus be incorporated by changing the momentum
and energy of the exciton propagator. Analytically, we write for the in-phase exciton self-energy,

6+(k, ω)=
z2t2

N
sin2 2χ

∑
q,p

(
γk−q coshϕq,p + pγk sinhϕq,p

)2
G p

(
k − q, ω− εL

q,p

)
+

z2t2

N 2
cos2 2χ

∑
q,q ′

∑
±,p

(γk+q ′ coshϕq,p sinhϕq ′,±p ± γk+q coshϕq ′,±p sinhϕq,p)
2

×G±
(
k − q − q ′, ω− εL

q,p − εL
q ′,±p

)
+

z2t2

N 2

∑
q,q ′

∑
±,p

(γk−q cosh θq,p sinh θq ′,±p

±γk−q ′ cosh θq ′,±p sinh θq,p)
2G±

(
k − q − q ′, ω− εT

q,p − εT
q ′,±p

)
, (43)
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Figure 8. Exciton spectral function for parameters J = t and α = 1.4. The only
relevant feature is the strong quasi-particle peak with dispersion equal to 8t ,
where t is the hopping energy of the exciton. The horizontal axis describes
energy and the vertical axis is the spectral function in arbitrary units.

which depends on the exciton propagator and the Bogolyubov angles derived in the previous
section. A similar formula as (43) applies as 6−. However, it is easily verified that

6−(k, ω)=6+(k + (π, π), ω) (44)

since γk+(π,π) = −γk . In general the SCBA (43) cannot be solved analytically, and hence we
have obtained the exciton spectral function

A(k, ω)= −
1

π
Im [G(k, ω)] (45)

using an iterative procedure with Monte Carlo integration over the spin-wave momenta
discretized on a 32 × 32 momentum grid. We start with 6 = 0 and after approximately 20
iterations the spectral function converged. The results for typical values of α, J and t are shown
in figures 8–11.

We start from the situation with α > 1 where the magnetic background is a disorder phase
with all spin singlet configuration in the same rung. In this case, the free dispersion of the
exciton with bandwidth proportional to t survived because all the magnetic triplet excitations
are gapped, with an energy of J z

√
α(α− 1). For t < J , the exciton-magnetic interactions

will barely change the free dispersion, while for t > J such exciton-magnetic interactions can
still occur, leading to a small ‘spin polaron’ effect where the exciton quasi-particle peak is
diminished and spectral weight is transferred to a polaronic bump at a higher energy than the
quasi-particle peak. For most values of t/J this effect is however negligible already for α just
above the critical point. The exciton spectral function for t = J and α = 1.4 can be seen in
figure 8.

As α decreases towards the quantum critical point at α = 1, the gap of the triplet excitations
also decreases. The effect of the exciton-magnetic interactions become more significant, which
leads to an increasing transfer of spectral weight from the free coherent peak to the incoherent
parts. When α hits the quantum critical point the gap of all spin excitations vanishes. There the
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Figure 9. Exciton spectral function at the quantum critical point, for J = 0.2t
and α = 1. No distinct quasi-particle peak is observable, and at all momenta a
broad critical bump appears in the spectrum.

motion of the exciton is strongly scattered by the spin excitations which completely destroy the
coherent peak and leads to an incoherent critical hump in the spectrum as shown in figure 9. As
α further decreases to values α < 1, the magnetic background becomes antiferromagnetically
ordered with two gapless transverse modes and one gapped longitudinal mode. In this case, the
motion of the exciton is still strongly scattered with the spin excitations leaving a footprint in
the exciton spectrum.

The most striking thing happens then at α = 0, when the two layers are effectively
decoupled, and we can expect a similar behavior for an interlayer exciton as for a hole or electron
in a single layer. Indeed conforming with the single hole in the t − J model [28, 29] we find that
a moving exciton causes spin frustration with an energy proportional to J . In the limit where
J � t , the kinetic energy of the exciton is too small to be able to move through the magnetic
background. Therefore, we expect a localization of the exciton, which is reflected in spectral
data by an almost nondispersive quasi-particle peak. This peak has a bandwidth proportional to
t2/J and carries most of the spectral weight, 1 −O(t2/J 2). The remaining spectral weight is
carried by a second peak, at an energy J z above the main peak.

A more complex behavior at α = 0 arises in the anti-adiabatic limit t � J , where the
kinetic energy of the exciton is large compared with the energy required to excite (and absorb)
spin waves. Consequently, many spin waves are excited as the exciton moves and the exciton
becomes ‘overdressed’ with multiple spin waves. At nonzero J however, a very small quasi-
particle peak remains with a bandwidth of order J . Nonetheless, the majority of spectral weight
is carried by the incoherent many-spin wave part.

However, realistic physical systems are expected to have a small nonzero value of α
and an intermediate value of t/J . What happens here? A simple extrapolation of the two
aforementioned cases yields that the bandwidth of the quasi-particle peak will reach its
maximum value at J ≈ t . Similar extrapolations suggest that about half of the spectral weight
will be carried by the quasi-particle peak. However, inclusion of a finite value of α is not so
trivial on an analytical level. Numerical results are therefore needed, and an overview of spectral
functions for different ratios of t/J and small values of α is given in figure 10.
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Figure 10. A qualitative overview of zero-momentum exciton spectral functions
A(k = 0, ω) for various parameters of t/J and small interlayer coupling α. For
α identically zero, the ratio t/J determines the number of excited spin waves.
In the adiabatic limit t � J no spin waves can be excited and the exciton is
localized with a clear quasi-particle peak. As t/J increases, more and more
spectral weight is transferred to higher order spin-wave peaks, which in the anti-
adiabatic limit t � J leads to the formation of a broad incoherent spectrum. The
inclusion of a small nonzero interlayer coupling α reduces the incoherence of this
spectrum, see equation (47). As a result, the Ising-like ladder spectrum becomes
more pronounced. Here we only show the zero-momentum spectra; in our earlier
work [10], the momentum dependence of these spectra was shown.

4.1. Development of Ising-like confinement

Upon the inclusion of a small nonzero interlayer coupling α, a ladder spectrum seems to
appear, reminiscent of the spectrum of a single hole in an Ising antiferromagnet. Physically,
this can be understood as follows. In the α = 0 limit, the magnetic interactions are dominated
by transverse excitations, which are just single layer spin waves. For any finite α > 0, the
(interlayer) longitudinal spin waves become increasingly relevant. To understand their effect on
the exciton spectral function, consider the SCBA equation (43), neglect the diagrams involving
transversal spin waves and expand the self-energy up to first order in α. Only the single spin-
wave diagram contributes and it is equal to

6+(k, ω)=
z2t2

N

∑
q,±

γ 2
k−q G±(k − q, ω− J z) (46)

from which we deduce, observing that 6−
=6+ and shifting the momentum summation, that

the self-energy must be momentum independent and given by the self-consistent equation

6(ω)=

1
2 z2t2

ω− J z −6(ω− J z)
. (47)
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This self-energy is exactly the same as the self-energy of a single dopant moving through an
Ising antiferromagnet [29]. In fact, in any system where a moving particle automatically excites
a gapped and flat mode, the self-consistent equation (47) applies.

As described in [29], a hole in an Ising antiferromagnet is effectively confined by the
surrounding magnetic texture. Each hop away from its initial point increases the energy, thus
creating a linear potential well for the hole. In such a linear confinement potential, a ladder
spectrum appears where the energy distance between the two lowest peaks scales as t (J/t)2/3.
The spectral weight carried by higher order peaks vanishes as t/J → 0 [29].

The Ising-like features in the exciton spectral function are explicitly visible in the
numerically computed dispersions shown in our figure 10 and in figure 2 of [10]. We indeed
conclude that the visibility of the ladder spectrum is actually enhanced in the bilayer case
presented here relative to the hole in the single layer due to the nondispersive interlayer spin
excitations.

Of course, the exciton ladder spectrum in figure 10 is not exactly sharp. From the above
analysis, we can infer that the incoherent broadening of peaks is due to interactions with the
transversal spin waves. Indeed, the transversal spin waves can be viewed as the equivalent of
single layer spin waves. Therefore for small α the effect of transversal spin waves is to reproduce
the results for a single hole in the t–J model, which is quasi-particle peak broadening.

5. The relation to experiment

The formation of bound exciton states can be experimentally verified in indirect measure-
ments of the dielectric function or any other charge-excitation measurements. One particular
example of the former is electron energy loss spectroscopy (EELS) which earlier showed clear
signatures of the in-plane charge transfer excitons in cuprates [44, 45]. The EELS cross-section
is directly related to the dielectric function [46] via the dynamic structure factor S(q, ω),

dσ ∝
1

q4
S(q, ω)∝

1

q2
Im

[
−1

ε(q, ω)

]
, (48)

where the dynamic structure factor is equal to

S(q, ω)=
1

N

∫
dt

2π
e−ε|t |

∑
λ

〈ψ0|

∑
i

e−iq·ri ei(ω−H)t
|λ〉〈λ|

∑
j

eiq·r j |ψ0〉, (49)

where the sum λ runs over all intermediate states, |ψ0〉 is the ground state wavefunction. We use
the dipole expansion such that

eiqri = 1 + iEq · Eri + · · · , (50)

where the electron position operator can be expanded in terms of the possible electron wave
functions in the tight binding approximation,∑

i

Eri =

∑
i jσ

c†
iσc jσ 〈φi |Er |φ j〉, (51)

where |φi〉 are the Wannier wave functions of the electron on site i . The z component of 〈φi |Er |φ j〉

is proportional to the interlayer hopping energy t⊥, which in turn is equal to the creation operator
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of an exciton,

r z
∝ t⊥

∑
iσ

c†
inσci pσ + h.c. (52)

∝ t⊥
∑

i

(
E†

i + Ei

)
. (53)

We recognize the Fourier transform of the k = 0 excitonic state, so that we find that

S(q z, ω)∝ (q zt⊥)
2

∫
dt

2π
e−ε|t |

∑
λ

〈ψ0|Ek=0 ei(ω−H)t
|λ〉〈λ| E†

k=0|ψ0〉. (54)

We have introduced the term e−ε|t | to ensure convergence of the integral so that we can integrate
over t . We find that the dynamic structure factor is directly related to the exciton spectral
function

S(q z, ω)∝ (q zt⊥)
2

〈
ψ0|Ek=0

(
i

ω− H + iε
−

i

ω− H − iε

)
E†

k=0|ψ0

〉
∝ (q zt⊥)

2 A(k = 0, ω) (55)

or in other words

Im
[
ε−1(q z, ω)

]
∼ (t⊥)

2 A(k = 0, ω). (56)

Consequently, one expects the bound exciton states to show up in EELS measurements when
probing the z-axis excitations. In addition to the bound exciton states, a broad electron–hole
continuum will show up at high energies.

Another possible way to detect interlayer excitons is to use optical probes. The optical
conductivity σ(q, ω) of a material is related to the dielectric function [47] by

ε−1(q, ω)= 1 − i
q2

ω
Vc(q)σ (q, ω), (57)

where Vc(q) is the Fourier transform of the Coulomb potential 1
ε0|r−r ′|

. The real part of the
c-axis optical conductivity is therefore proportional to the exciton spectral function. Similar
considerations hold when one measures the resonant inelastic x-ray scattering (RIXS) [48]
spectrum.

When comparing the dielectric function with the computed spectral functions in
figures 8–11, bear in mind that the latter are shifted over the energy E0 required for exciting
an interlayer exciton. This energy is of the order of electronvolts. For example, along the ab-
plane in cuprates charge-transfer excitons are observed in the range of 1–2 eV [49]. Since the
energy required for a charge-transfer excitation is largely dependent on the on-site repulsion,
we expect that the c-axis exciton will be visible at comparable energy scales.

How then would the exciton spectrum look for a realistic material, such as the bilayer
cuprate YBa2Cu3O7−δ (YBCO)? Following earlier neutron scattering experiments [9, 50], one
can deduce that the effective J = 125 ± 5 meV and J⊥ = 11 ± 2 meV, which corresponds to an
effective value of α = 0.04αc, where αc is the critical value of α [25]. The question remains as
to what a realistic estimate of the exciton binding energy is. The planar excitons are known to be
strongly bound [45] with binding energy of the order of 1–2 eV. Since the Coulomb repulsion
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Figure 11. The expected zero-momentum exciton spectral function for the
c-axis charge-transfer exciton in YBCO bilayers. We used model parameters
J = 0.125 eV, t = 0.1 eV and α = 0.04. A pronounced quasi-particle peak is
followed at a distance of zt (J/t)2/3 by a secondary peak as a sign of Ising
confinement. The electron–hole continuum sets in at an energy V ∼ 1.5 eV above
the center of this spectrum. The momentum dependence of this spectrum is
shown in [10].

scales as V ∼ (εr)−1, we can relate the binding energy of the interlayer excitons to that of
the planar excitons. The distance between the layers is about two times the in-plane distance
between nearest neighbor copper and oxygen atoms, but simultaneously we expect the dielectric
constant εc along the c-axis to be smaller than εab due to the anisotropy in the screening.
Combining these two effects, we consider it a reasonable assumption that the interlayer exciton
binding energy is comparable to the in-plane binding energy. The hopping energy for electrons
is approximately te = 0.4 eV, which yields, together with a Coulomb repulsion estimate
of V ∼ 1.5 eV, an effective exciton hopping energy of t ∼ 0.1 eV. Note that these estimates
of V/t justify our use of the strong coupling limit in section 2.

The spectral function corresponding to these parameters is shown in figure 11. Since t ∼ J
the ladder spectrum is strongly suppressed compared to the aforementioned anti-adiabatic limit.
However, the Ising confinement still shows its signature in a small ‘second ladder peak’ at
0.4 eV energy above the exciton quasi-particle peak. To the best of our knowledge and to our
surprise, the c-axis optical conductivity of YBCO has not been measured before in the desired
regime with energies above 1 eV .4 Detection of this second ladder peak in future experiments
would suggest that indeed the interlayer excitons in cuprates are frustrated by the spin texture.

6. Conclusion

Using a rung linear spin-wave theory for the bilayer Heisenberg model we constructed a theory
of strongly bound excitons in a strongly correlated bilayer system. Surprisingly, for small but
finite α =

J⊥

J z the exciton becomes confined in a fashion similar to Ising confinement. The
resulting ladder spectrum should be visible in measurements of the dielectric function, such
as EELS, RIXS or optical conductivity.

Possible candidate materials are, for example, heterostructures of n- and p-type doped
cuprates such as Nd2−xCexCuO4/La2−xSrxCuO4. In YBCO or Bi2Sr2CaCu2O8+δ, the copper

4 Confirmed by private communications with D van der Marel. In addition, standard review articles on optical
absorption in cuprates (such as [49]) indeed only show infrared measurements (<1000 cm−1) of the c-axis optical
absorption in insulating cuprates.
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oxide layers come in pairs, which suggests the possibility of interlayer charge-transfer excitons.
A spectrum of c-axis excitons in undoped YBCO is shown in figure 11.

Our model can be extended to different stacking structures. For example, in 214 compounds
the sites in adjacent cuprate layers do not lie above each other, and we might need to include
new interlayer magnetic interactions such as the Moriya–Dzyaloshinskii interaction. Different
lattice structures can also be studied, of which the hexagonal lattice (as in graphene) is the most
relevant.

One may wonder to what extent the used approximations are generally valid, such as the
linear and ideal spin-wave approximation. For the single layer Heisenberg model, it was shown
that the next-to-leading order corrections were indeed significantly smaller [24], justifying the
use of both approximations in that case. Together with the fact that we were able to reproduce
the known phase diagram and excitation spectrum, this suggests that our approach for the bilayer
Heisenberg model is justifiable. Nevertheless, an exact computation of the next-to-leading order
corrections can quantify the errors of the used spin-wave approximations.

Another approximation we used was the expansion in large V , the exciton coupling
strength. This coupling originates from the interlayer Coulomb interaction, from which we
consider only the on-site and nearest neighbor terms. Therefore our model cannot describe
accurately the process of how excitons are formed out of separate doublons and holons. We think
that this is a very interesting open question, especially at finite temperatures. In addition, the
formation process is also accompanied by an exciton annihilation process which we neglected
in this work.

Besides the interesting properties of the exciton formation process, we think that further
research should be directed towards finite densities of excitons [51]. The dynamical spin–hole
frustration effects that are well known in the context of doped Mott insulators occur in a
strongly amplified form dealing with interlayer excitons in Mott-insulating bilayer systems.
This gives further impetus to the pursuit to create such finite density correlated exciton systems
in the laboratory. One can wonder whether such physics is already at work in the four-layer
material Ba2Ca3Cu4O8F2 where self-doping effects occur creating simultaneously p- and n-
doped layers [52]. Much effort has been devoted to create equilibrium finite exciton densities
using conventional semiconductors [1], while exciton condensation has been demonstrated
in coupled semiconductor 2DEGs [2, 3]. In strongly correlated heterostructures however, the
formation of finite exciton densities is still far from achieved, although recent developments on
oxide interfaces indicate exciting potential (see, for example, [53]). Besides the closely coupled
p- and n-doped conducting interface layers in these SrTiO3–LaAlO3–SrTiO3 heterostructures,
further candidates would be closely coupled p- and n-doped cuprates, such as YBa2Cu3O7−x

or La2−xSrxCuO4 with Nd2−xCexCuO4. The feasibility of this has already been experimentally
demonstrated, e.g., in [54], but the exact interface effects need to be investigated in more detail,
both experimentally and theoretically [51, 55].
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Appendix A. The large S limit bilayer Heisenberg model

In this appendix, we will prove equation (20). The mean field Hamiltonian (19) depends on
the antiferromagnetic order parameter m̃. We must find the ground state energy of (19) as a
function of m̃ and then minimize with respect to m̃, thus yielding the mean field value of the
antiferromagnetic order parameter.

However, since we are only interested in the critical value αc where m̃ changes from
nonzero to zero, we can proceed as follows. In the singlet phase (m̃ = 0) the mean field
Hamiltonian is reduced to

H (0)
= J⊥S1 · S2, (A.1)

which has as ground state the singlet |0 0〉 and as the first excited state the triplet |1 0〉 with
energy difference E1 − E0 = J⊥. We will treat the Hamiltonian terms that depend on m̃ as a
perturbation, and compute the ground state energy in second order perturbation theory for small
m̃. If the ground state energy decreases with nonzero m̃, then there is an instability towards
antiferromagnetism. The perturbation Hamiltonian is

H (1)
=

1
4 J zm̃2

−
1
2 J zm̃(−1)i S̃z (A.2)

and the first- and second-order corrections to the ground state energy are

E (1)
0 + E (2)

0 = 〈0 0|H (1)
|0 0〉 +

2S∑
s=1

|〈s 0|H (1)
|0 0〉|

2

E (0)
0 − E (0)

s

. (A.3)

Now H (1) contains one term that is just an identity operator, and the S̃z operator can only change
the total spin number s by a single unit. This means that the former expression yields

E (1)
0 + E (2)

0 =
1

4
J zm̃2

−
(J z)2m̃2

4J⊥

|〈1 0|̃Sz
|0 0〉|

2

=
J zm̃2

4α

[
α− |〈1 0|̃Sz

|0 0〉|
2
]
. (A.4)

We see that whenever α > |〈1 0|̃Sz
|0 0〉|

2, the ground state energy always increases when m̃ is
nonzero. Hence the critical value of α is given by

αc = |〈1 0|̃Sz
|0 0〉|

2. (A.5)

The right-hand side can be evaluated explicitly using Clebsch–Gordan coefficients, since

〈1 0|̃Sz
|0 0〉 =

S∑
m=−S

2 m C SS1
m,−m,0 C SS0

m,−m,0

=
2

2S + 1

√
3

S(S + 1)

S∑
m=−S

m2

=
2

√
3

√
S(S + 1) (A.6)
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from which we indeed conclude that

αc =
4
3 S(S + 1). (A.7)

Appendix B. The bilayer Heisenberg Hamiltonian in terms of e, b operators

The bilayer Heisenberg operators (total spin and spin difference) can be expressed, in terms of
the local spin excitations e† and b†, by

Sz
iσ = b†

+iσb+iσ − b†
−iσb−iσ , (B.1)

S+
iσ =

√
2
(
− sinχ(b†

+iσ + b−iσ )+ cosχ(b†
+iσeiσ + e†

iσb−iσ )
)
, (B.2)

S̃z
iσ = (−1)σi

(
sin 2χ

(
1 −

∑
±

b†
±iσb±iσ − 2e†

iσeiσ

)
− cos 2χ(e†

iσ + eiσ )

)
, (B.3)

S̃+
iσ =

√
2(−1)σi

(
cosχ(b†

+iσ − b−iσ )+ sinχ(b†
+iσeiσ − e†

iσb−iσ )
)
, (B.4)

where σ represents the sign of the sublattice of site i . Consequently, the bilayer Heisenberg
model in terms of these new operators reads (with α ≡

J⊥

J z and σ = A, B denotes the sublattice
index)

H =
1

4
J zN (−α− 2λα cos 2χ − sin2 2χ)+

1

2
J z
∑

i

(cos 2χ −αλ) sin 2χ(e†
iσ + eiσ )

+J z
∑

i

(sin2 2χ +αλ cos 2χ)e†
iσeiσ −

1

2
J
∑
i∈A,δ

cos2 2χ(e†
i A + ei A)(e

†
i+δ,B + ei+δ,B)

+
1

2
J z
∑
i±

(α+sin2 2χ+λα cos 2χ)b†
±iσb±iσ+

1

2
Jλ

∑
i∈A,δ

(b†
+i Ab†

−,i+δ,B+b−i Ab+,i+δ,B

− cos 2χ(b†
+i Ab+,i+δ,B+b−i Ab†

−,i+δ,B)+h.c.)+O(b†b†e + e†bb)+O
(
[e†e + b†b]2

)
.

(B.5)

We explicitly neglect the interaction terms, which are cubic and quartic in the spin-wave
operators. The above Hamiltonian contains a constant term (depends only on α, χ and λ) that
describes the ground state energy competition between the singlet and antiferromagnetic phase,
see appendix C. The term linear in spin operators gives us the self-consistent condition for χ .
The quadratic terms will be diagonalized using the Fourier and Bogolyubov transformation as
described in the main text.

Appendix C. Quantum phase transition

The ideal spin-wave approximation introduces a shift in the ground state energy similar to
that in the single layer Heisenberg model [24]. However, in the bilayer model there will be
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Figure C.1. Ground state energies of the bilayer Heisenberg model following
equation (C.1). Shown is the energies of the AF phase (in red) and the singlet
phase (in green) for the isotropic λ= 1 model. The energies are measured in
units of J zN . At α ≈ 0.605 there is a phase transition from the AF to the singlet
phase.

competition between the ordered phase (cos 2χ = αλ) and the disordered phase (χ = 0). Note
that for αλ > 1 we automatically end up in the disordered phase.

For αλ < 1, the ground state energy of both phases is given by the expression

E0 =
1

4
J zN (−α− 2αλ cos 2χ − sin2 2χ)

+J z
∑

k

[
(sin2 2χ +αλ cos 2χ) sinh2 ϕk −

1

4
cos2 2χγk(cosh 2ϕk − sinh 2ϕk)

]

+J z
∑

k

[
(α+sin2 2χ +αλ cos 2χ) sinh2 θk−

1

2
λγk(cos 2χ cosh 2θk + sinh 2θk)

]
,

(C.1)

where we have to fill in the right values of χ , θk and ϕk depending on the phase. As can be
seen in figure C.1, the spin waves drive the system earlier into the singlet phase, namely at
αc ≈ 0.605. For smaller values of λ, this critical value increases, in proportion to λ−1.

The critical value αc = 0.605 for our spin-wave theory closely resembles the numerical
results of αc = 0.63. Since this ground state energy competition the system is driven into the
disordered state for a different α than mean field theory suggests, we should replace bare values
of α =

J⊥

J z by the renormalized α∗
= α/αc when computing the exciton spectral function.
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Appendix D. Explicit expressions for exciton–spin-wave interactions

We can rewrite the hopping Hamiltonian (13) from the singlet–triplet basis using the local spin
excitation operators defined in equations (22a)–(22c),

Ht = t
∑
〈i j〉

E†
j Ei

(
cos 2χ(1 − e†

i e j)+ sin 2χ(e†
i + e j)−

∑
σ

b†
iσb jσ

)
, (D.1)

where σ is the sum over spins ±1 and 〈i j〉 denotes nearest neighbor pairs. We need to rewrite
this in terms of the longitudinal (ζ ) and transversal (α and β) modes derived in the main text.
Therefore we first split all operators into the ones that live on sublattice A and the ones that live
on B,

Ht = t
∑
i∈A,δ

E†
i+δ,B Ei,A

(
cos 2χ(1 − e†

i,Aei+δ,B)+ sin 2χ(e†
i,A + ei+δ,B)−

∑
σ

b†
i,A,σbi+δ,B,σ

)
+ h.c.

(D.2)

As described in the main text, the Fourier transform for the sublattice operators is E†
i,A =√

2
N

∑
k E†

k Aeikri and we introduce the in-phase p = 1 and out-phase p = −1 exciton operators

E†
k,p =

1
√

2
(E†

k A + pE†
k B); similar expressions hold for the spinon operators. The hopping

Hamiltonian can now be written as

H0 = zt cos 2χ
∑
k,p

p γk E†
k,p Ek,p, (D.3)

H1 =
zt

√
N

sin 2χ
∑
k,q

∑
p,p′

pE†
k+q,p Ek,pp′(γk+qe†

−q,p′ + p′γkeq,p′), (D.4)

H L
2 = −

zt

N
cos 2χ

∑
k,k′,q

∑
p,p′

∑
±

pp′γk−k′+q E†
k+q,p Ek,±pe†

k′−q,±p′ek′,p′, (D.5)

H T
2 = −

zt

N

∑
k,k′,q

∑
σ

∑
p,p′

∑
±

pp′γk−k′+q E†
k+q,p Ek,±pb†

k′−q,±p′,σbk′,p′,σ . (D.6)

Note that this Hamiltonian contains four different types of processes. The first line H0 contains a
free part of the exciton motion. The bandwidth of the free exciton dispersion increases linearly
in α in the antiferromagnetic phase until it saturates at 2zt in the disordered phase. The next
term H1 describes the creation and the annihilation of a single longitudinal mode due to exciton
motion. This term is only present in the antiferromagnetic phase and is comparable to the
hole–spin vertex in the single layer t − J model. Finally, there are two H2 interactions where an
exciton scatters off a transversal (H T

2 ) or longitudinal (H L
2 ) mode. These processes can also

be changed into the creation or annihilation of a pair of spin modes. All processes can be
characterized by a conservation of total phase index p and conservation of total momentum.

The remaining step is to write out the interaction vertices explicitly in terms of the
Bogolyubov transformed spin waves. The single-magnon process is equal to

H1 =
zt sin 2χ

√
N

∑
k1···k3

∑
p1···p3

δ(2)(k1 − k2 − k3)δ

(
3∏

i=1

pi − 1

)
E†

k1 p1
Ek2 p2ζk3 p3

×p1(p3γk2 coshϕk3 p3 + γk1 sinhϕk3 p3)+ h.c. (D.7)
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The process that involves two longitudinal spin waves is given by

H L
2 = −

zt cos 2χ

N

∑
k1···k4

∑
p1···p4

δ(2)(k1 − k2 + k3 − k4)δ

(
4∏

i=1

pi − 1

)
E†

k1 p1
Ek2 p2ζ

†
k3 p3
ζk4 p4

×p1

(
p4γk1−k4 coshϕk3 p3 coshϕk4 p4 + p3γk1−k3 sinhϕk3 p3 sinhϕk4 p4

)
−

zt cos 2χ

N

∑
k1···k4

∑
p1···p4

δ(2)(k1 − k2 + k3 + k4)δ

(
4∏

i=1

pi − 1

)
E†

k1 p1
Ek2 p2ζ

†
k3 p3
ζ

†
k4 p4

×p1

(
p4γk1+k4 coshϕk3 p3 sinhϕk4 p4 + p3γk1+k3 sinhϕk3 p3 coshϕk4 p4

)
+ h.c. (D.8)

Finally, we can also write out the Hamiltonian for the interaction vertex with the transversal spin
waves. We can write this Hamiltonian term explicitly using phase and momentum conservation,

H T
2 = −

zt

N

∑
k1···k4

∑
p1···p4

δ(2)(k1 − k2 + k3 − k4)δ

(
4∏

i=1

pi − 1

)
E†

k1 p1
Ek2 p2

(
α

†
k3 p3
αk4 p4 +β†

k3 p3
βk4 p4

)
×p1

(
p4γk1−k4 cosh θk3 p3 cosh θk4 p4 + p3γk1−k3 sinh θk4 p4 sinh θk3 p3

)
−

zt

N

∑
k1...k4

∑
p1...p4

δ(2)(k1 − k2 + k3 + k4)δ

(
4∏

i=1

pi − 1

)
E†

k1 p1
Ek2 p2α

†
k3 p3
β

†
k4 p4

×p1

(
p4γk1+k4 cosh θk3 p3 sinh θk4 p4 + p3γk1+k3 cosh θk4 p4 sinh θk3 p3

)
+ h.c. (D.9)

These expressions are used to transform the Feynman diagrammatic representation of the
SCBA of figure 7 into the explicit formula (43).
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