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ABSTRACT

Optical imperfections, misalignments, aberrations, and even dust can significantly limit sensitivity in high-contrast
imaging systems such as coronagraphs. An upstream deformable mirror (DM) in the pupil can be used to correct
or compensate for these flaws, either to enhance the Strehl ratio or suppress the residual coronagraphic halo.
Measurement of the phase and amplitude of the starlight halo at the science camera is essential for determining the
DM shape that compensates for any non-common-path (NCP) wavefront errors. Using DM displacement ripples to
create a series of probe and anti-halo speckles in the focal plane has been proposed for space-based coronagraphs
and successfully demonstrated in the lab. We present the theory and first on-sky demonstration of a technique to
measure the complex halo using the rapidly changing residual atmospheric speckles at the 6.5 m MMT telescope
using the Clio mid-IR camera. The AO system’s wavefront sensor measurements are used to estimate the residual
wavefront, allowing us to approximately compute the rapidly evolving phase and amplitude of speckle halo. When
combined with relatively short, synchronized science camera images, the complex speckle estimates can be used
to interferometrically analyze the images, leading to an estimate of the static diffraction halo with NCP effects
included. In an operational system, this information could be collected continuously and used to iteratively correct
quasi-static NCP errors or suppress imperfect coronagraphic halos.

Key words: instrumentation: adaptive optics – instrumentation: high angular resolution – instrumentation:
miscellaneous – methods: statistical – techniques: interferometric – techniques: miscellaneous
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1. INTRODUCTION

Extrasolar planets (ESPs) are expected to be 106–109 times
fainter than their host stars in the thermal infrared. Solar system
analogs will have planetary orbital distributions within 1 arcsec
of their host star (Nielsen 2011), where they are masked by
diffracted and scattered starlight. Without a coronagraph, most
ESPs will appear to be several decades fainter than the telescope
diffraction pattern, characterized by its point-spread function
(PSF). A coronagraph suppresses the diffraction structures in the
PSF halo, but wavefront aberrations, alignment errors, and dust
or other transmission flaws within the telescope scatter starlight
into the suppressed region, overwhelming the faint science
signal from the ESP. Ground-based telescopes rely on adaptive
optics (AO) to correct the atmospheric wavefront distortions,
but even a high degree of correction leaves random, rapidly
changing, residual speckles that are several decades brighter
than the ESPs. Ideally, long exposures should average out the
speckle noise as 1/

√
t to a level where the planet becomes

detectable against a smooth background. Unfortunately, any
unsuppressed halo is coherently modulated by the AO speckles,
increasing the speckle noise (Bloemhof 2004; Aime & Soummer
2004), and AO processing lag can cause the residual speckles
to be both brighter and persist longer than they otherwise
might (Fried 1990; Angel 2003). The most serious features in
the scattered starlight are quasi-static speckles (QSS) caused
by non-common-path (NCP) aberrations (Racine et al. 1999;
Hinkley et al. 2007), which are not known a priori, change on
timescales from minutes to hours, and average slowly—if at
all (Macintosh et al. 2005; Sivaramakrishnan & Oppenheimer
2006). These halo features determine the practical detection
limit for ESPs.

A number of techniques have been developed to address QSS
and the effect of slowly changing PSFs over time. These tech-

niques include Angular Differential Imaging (ADI; Marois et al.
2006; Schneider & Silverstone 2003), Simultaneous Differen-
tial Imaging (SDI; Biller & Close 2007; Racine et al. 1999;
Marois et al. 2000), and Local Optimization of Combined Im-
ages (LOCI; Lafrenière et al. 2007), all with various degrees of
success. These techniques all post-process the science camera
data after observation time, and therefore can only achieve in-
coherent gains. AO systems include a deformable mirror (DM)
that can dynamically modify the incoming wavefront, allow-
ing wavefront correction to be introduced pre-detection, with
the potential for coherent improvements in the signal gain. In
an AO system, after encountering the DM, part of the starlight
is diverted into a wavefront sensor (WFS), where the wave-
front shape is measured and processed by a computer, sending
updated compensating shape commands to the DM. The re-
sulting flattened starlight wavefront may optionally be used to
feed a coronagraph or imaged directly onto a science camera.
In either case, NCP aberrations that occur downstream from
the AO system are only evident in the final science images.
This can manifest as distorted and fainter images or coro-
nagraphically suppressed halos that are spoiled by scattered
starlight. But if instead of correcting the wavefront from the
vantage of the WFS, we can try to improve the science im-
age (Malbet et al. 1995) by applying bias offsets to the DM,
we can obtain coherent gains that are significantly better than
those achieved post-detection. Suppressing the halo also sup-
presses the interference or “pinned” speckle noise (Bloemhof
2004), with a corresponding improvement in sensitivity. The
problem is determining the correct biases to apply.

Uniquely improving the PSF (or the Strehl ratio) or suppress-
ing undesired halo in a coronagraph using information from
the science camera requires more than just intensity measure-
ments: it requires phase as well. A full complex halo measure-
ment can be inverse Fourier transformed to estimate the NCP
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optical flaws, interpreted under the paradigm of Fourier op-
tics. The Strehl ratio can be improved by biasing the DM with
the opposite of the computed pupil wavefront. Coronagraphic
halo suppression can be improved by measuring the residual
halo’s complex amplitude and creating a set of “anti-speckles”
by adding ripples to the DM to suppress them (Codona &
Angel 2004). It is possible to build a modified Lyot corona-
graph that uses the blocked starlight to form a reference beam
(Angel 2003; Codona & Angel 2004) in a focal plane interfer-
ometer. However, measuring the halo with the science camera
requires that the reference beam be included, spoiling the image
unless exposures are multiplexed between interferometer and
science. The two modes will have similar exposure times if we
are to measure faint static speckles that are of the same level
of brightness as a planet, and the corresponding loss of science
exposure time leads to a loss in sensitivity.

Another approach is to use the upstream DM to create
weak probe speckles in the focal plane with controllable
phase. The speckles coherently add to the underlying halo and
interfere, modulating the intensity which is then recorded by
the science camera (Bordé & Traub 2006; Give’on et al. 2007).
By using three or more probe speckle phases it is possible
to measure the complex amplitude of the static halo under
the probe speckle. This method works very well and is the
basis for the extraordinary laboratory halo suppression results
at the JPL High-Contrast Imaging Testbed (HCIT; Trauger
& Traub 2007), designed to simulate a very stable space-
based environment. Implementing this on the ground must also
contend with the presence of residual AO speckles, as well
as a much less stable environment where at least the quasi-
static speckles are changing on the timescale of a few minutes
(Hinkley et al. 2007; Martinez et al. 2012), forcing the probe
speckles to be brighter in order to speed the measurements.
Regardless of how the complex halo measurements are made,
the same anti-halo servo algorithms can be applied or, if the
entire complex halo is available, Strehl ratio improvements can
be achieved at the science camera. The downside of using
a speckle probing method is the same as the coronagraphic
focal plane interferometer: it puts probe light into the science
image, forcing science and wavefront sensing to be multiplexed,
reducing sensitivity.

In this paper we present and demonstrate a new technique
for measuring the complex halo in the focal plane using only
the residual AO speckles. Since the speckles are already present
in the field of view, no extra light is introduced during the
measurement, hence there is no need to reduce science exposure
time. Since the AO speckles vary rapidly, measurements of both
quasi-static speckles and other halo structures can be obtained
fast enough to implement focal plane servos with update rates
of several times per minute. Our method does not attempt
to control the residual AO speckles, but only uses the WFS
telemetry to monitor and characterize them as they change. The
method requires no new hardware and should be implementable
on virtually any AO system. The only requirements are that
the science camera be capable of sufficiently short exposures
(�30 ms) to adequately “freeze” the speckles, and that the
camera and WFS data be accurately synchronized. In an earlier
paper (Codona et al. 2008), we proposed an algorithm called
Phase Sorting Interferometry (PSI), which binned and sorted
the pixels based on the computed speckle phase. That result
gave the static halo’s phase, which is the information needed to
properly place a DM ripple in an anti-halo servo. In the present
paper we greatly simplify the analysis into a set of statistical

formulae that can easily be computed in real time. If the halo is
estimated over only a limited search area, as it would be with
a coronagraph, the results can be used to suppress the residual
halo. If the halo is estimated more globally, including the PSF
core, the result can also be used to estimate and correct the NCP
aberrations, improving the Strehl ratio and PSF quality at the
science camera.

Our technique is most closely related to the random phase
diversity techniques employed by Lee et al. (1997) and more
recently by Frazin (2013). In those papers the focal plane
intensity is written as a nonlinear functional of the unknown
NCP aberrations, as well as the known residual AO wavefront
error. The NCP error is then estimated from a synchronized set
of focal plane images, simultaneous WFS measurements, and
a nonlinear algorithm. In contrast, our approach is primarily to
create the functional equivalent of a focal plane interferometer
that measures the mean halo field. Once known, the linear
relationship between the focal plane and pupil plane fields can be
used to estimate the mean pupil field. If desired, the aberrated
wavefront may then be estimated by computing the complex
argument of the mean pupil field. Our approach never requires
a nonlinear algorithm to estimate the pupil wavefront, the phase
nonlinearity being completely contained within the calculation
of the pupil field argument.

In Section 2 we present the theory of interferometry using
a known-but-random probe field. In Section 3 we simulate
an AO system with NCP aberrations and apply the theory to
the simulated data set. We demonstrate the robustness of the
estimated complex halo and derived NCP aberrations by adding
a wide range of noise in the science images. In Section 4
we use Shack–Hartmann WFS data from the MMTO 6.5 m
telescope and short-exposure images from the Clio mid-infrared
camera to estimate the complex halo. By Fourier transform,
we estimate the complex pupil field including the effect of
subsequent NCP aberrations. Using a seventh magnitude test
star, reasonably consistent NCP aberration estimates were
available in a few seconds. More stable estimates would required
longer integrations, but an update to a possible NCP-correcting
servo would be possible every 30 s or more.

2. THEORY

We begin by considering a set of short-exposure images of a
star, acquired while the telescope’s AO system is delivering
diffraction-limited images with a clearly visible PSF core.
The images consist of a static halo (the diffraction pattern of
the telescope) and a cloud of rapidly changing speckles. The
speckles are significantly fainter than they would be without the
AO system, but they are still present and contribute scattered
starlight out to the radius of the seeing disk and beyond.
The science camera is unable to directly measure the incident
electrical field’s phase, only the intensity of the static halo as it is
modulated and coherently interfered with by changing speckle
cloud. To see the speckles and their interference clearly, the
individual exposures must be short enough that the speckles do
not change much in phase or amplitude. The residual speckles
arise from several sources: wavefront correction errors from
noise in the wavefront sensing, limitations or errors in the
wavefront reconstruction, AO servo errors (e.g., loop gain),
fitting errors due to the deformable mirror, and processing
lag. Of these, lag error speckles are the most dynamic since
they are related to the wind along the telescope’s line of sight.
The speckle cloud typically appears as diffraction-limited noise,
with individual speckles having widths of ∼λ/D. But the halo
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also contains speckles and possibly deformations and extended
regions of scattered starlight with much longer timescales.
These include the quasi-static speckles which confusion-limit
sensitivity in high-contrast detection. For our discussion, we
consider these more slowly changing features to be a part
of the “static” halo, and by measuring its complex amplitude
we can provide an adaptive anti-halo servo algorithm with
the information required to correct aberrations or suppress
unwanted halo and maximize sensitivity.

Whatever the cause of the rapidly changing uncorrected
wavefront error, and certainly in the case of lag error, the
WFS residuals are non-zero and can still be measured. While
the continuing goal for high-end AO systems is to reduce the
residual wavefront error to below the WFS noise floor, we are not
there yet. It is true that some of the residual errors cannot be
seen by the WFS, but in the current generation of AO systems
there is always a statistically significant measurable wavefront
error while the AO system is in closed loop. We will assume that
we are in that situation. Any unsensed but varying residual will
appear to us as unexplained noise in the image data. Changes
that are averaged over during the science exposures will appear
as a loss of coherence. Classic errors such as waffle are not a
problem with the MMT since the hexapolar actuator pattern is
incommensurate with the WFS sub-apertures. It might be an
issue when implementing this method on other AO systems,
however.

Even though the Taylor “frozen flow” hypothesis (i.e., the
approximation that turbulent motion of the atmospheric irregu-
larities may be ignored as they are carried past the telescope’s
line of sight by the wind) may be nearly true for the incident
uncorrected wavefront aberrations, the residual AO wavefront
error does not behave the same way. Consider a typical low-
altitude wind that carries atmospheric irregularities across the
6.5 m MMT aperture in about 0.5 s. High altitude winds are typ-
ically much faster and cross the aperture in about 100–200 ms.
In either case the irregularities are not likely to significantly
rearrange during the pupil crossing. Turbulence within the ob-
servatory dome or in the vicinity of the telescope optics are
different and significant rearrangement is likely. The AO sys-
tem estimates the wavefront error and approximately removes
it after a processing delay. It does this using a wavefront error-
suppressing servo with an adjustable gain factor. As a particular
wavefront pattern crosses the pupil, the AO system iteratively
measures the residuals and adds corrections to the DM. Even
for rapidly moving wavefront patterns, the AO system has many
tens to hundreds of iterations to suppress it. As a result, the resid-
ual pattern is usually incrementally altered as it moves across
the pupil, becoming progressively more uncorrelated with its
earlier configuration as it moves. The effect of an incorrect
servo gain is that any pattern will not be completely removed
in the next iteration. This repeats even while the initial pattern
is being carried across the pupil, leaving a residual wavefront
pattern that exponentially decays in place with a time constant
that depends on how far the gain is from the “correct” value.
Thus the residual wavefront error is typically dominated by two
or possibly three parts: a set of changing wavefront patterns that
appear and disappear with a time scale dependent on the servo
gain, and one or two wind-driven patterns that decorrelate much
faster than turbulent rearrangement would suggest. Meanwhile
in the focal plane, the wind-driven lag error forms a wide plume
of speckles that are brighter near the star. In addition, as the
wavefront errors move across the pupil, the speckles’ complex
phasors rotate at a speed that increases linearly with distance

Figure 1. Complex halo measurements using MMT data for a single pixel in
the first Airy ring. The science camera intensity is plotted against the speckle
phase computed from the WFS measurements. The speckles vary randomly in
phase and amplitude while the underlying halo is presumed to be steady. When
the speckle phase is the same as the halo, the intensity recorded by the science
camera is increased. When the phase is 180◦ off from the halo, the intensity
is reduced. If the speckle amplitude were constant, the intensity would vary
sinusoidally with speckle phase. The randomly varying amplitude causes the
sinusoid to become noisy, but the mean behavior is the same. Just judging by
eye we can see that the underlying halo has a phase of about −2.5 rad in this
pixel. Statistical analysis allows for much more precise estimation of the halo
phase. Intensity scatter vs. intensity swing allows us to estimate the underlying
halo amplitude. See Section 4 for details.

from the star projected along the direction of the wind (Angel
2003). Eventually, the phase wrapping is so fast that the speckle
phase changes significantly during a single science camera ex-
posure, causing the speckle and the static halo to appear to lose
coherence in that interference between them has less contrast.
Superimposed on this systematic effect is a random evolution
of the speckles that depends on how long it takes to replace the
pupil-plane aberrations with a statistically unrelated set. This is
usually a fraction of D/‖vwind‖. These effects, along with the
general fading of the speckle halo with angular distance from the
star creates a practical outer radius for using speckles as a halo
measuring tool. Fortunately, the generally brighter and slower
speckles nearer the star allow us to measure the aberrations that
affect telescope or coronagraphic performance exactly where
improvement is needed most.

In isolation, the phase of a speckle is unobservable with the
science camera unless the speckle coherently interferes with
the static halo. But the cloud of rapidly changing residual
AO speckles do constantly interfere with the halo, making an
intricate pattern of intensity fluctuations that can be captured by
the science camera. Using the WFS telemetry and an idealized
model for the telescope that ignores NCP errors, we can compute
the phase and amplitude of the speckles at the science camera.
Comparing these calculated speckles with the intensity recorded
by the camera allows us to use the speckles as interferometric
probes, enabling estimation of the phase and amplitude of the
static halo. This relies on a simple concept: when the speckles
are in phase with the underlying halo, the intensity is greater, and
when they are anti-phased the combined intensity is diminished.
If we were to plot the observed halo brightness against the
speckle phase (Figure 1), the maximum in the light curve
corresponds to the phase of the halo at that point. In addition
to the phase, an estimate of the static halo’s amplitude can
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be found by comparing various statistics computed from the
science images and the computed speckles.

We begin by deriving the interferometry equations needed
to use an ensemble of known random (in the sense of mea-
sured but uncontrolled) reference beams to estimate a static
subject beam. We then apply the resulting equations to the
problem of random speckles and a static halo. Since we do
not have any a priori knowledge about the NCP aberrations,
our calculations of the complex speckle field can only be ap-
proximate. However, the phase of the speckle peaks and their
locations are able to be computed rather robustly and the effects
of the unknown NCP errors will only enter as “speckles on the
speckles” which will appear as a small amount of noise in our
measurement.

2.1. Traditional Interferometry Theory

Since we have the ability to create speckles in the science
camera’s focal plane by impressing a ripple on the DM, we
could simply cycle through three or more ripple phases (i.e.,
by changing the ripple placement relative to the pupil) and
determine which placement reinforces or suppresses the static
halo under the resulting speckle (see Give’on et al. 2007;
Kenworthy et al. 2006). The analysis is straightforward and
equivalent to the common interferometry technique of using
a phase-shifted reference beam to probe an unknown subject
beam. In that generalized case the subject beam under test is
mixed with a phase-shifted reference beam and a camera is used
to capture the resulting interference pattern or “interferogram.”
Using residual AO speckles is similar to using intentionally
created speckles, except that they vary randomly in both phase
and amplitude and are beyond our control. Even though the
evolution is random, we can still measure the residual wavefront
and determine the speckle amplitude and phase by calculation.
The temporal evolution of the speckles is only important in that
they might change during a single science camera exposure,
smearing the parameters that we would like to use in interpreting
the resulting image. Otherwise, the random speckles can be
thought of as instantaneous samples drawn from an ensemble
described by statistical moments. Interferometry with a random
collection of reference beams (or speckles) looks different than
the conventional analysis with carefully selected phases and a
constant amplitude, but the principles are the same. Therefore,
we will start by reviewing phase-shift interferometry, but use
terminology that extends cleanly to our random speckle case.
Both the traditional and generalized theory described below can
be applied to measuring fields in any optical plane or physical
context, but we will only consider its application in the focal
plane in this paper. The traditional goal is to measure the phase
of a constant subject beam Ψ by mixing it with a constant
reference beam ψ that is stepped through a set of known phase
offsets. At each phase offset the camera is used to capture an
intensity interferogram that is the magnitude-squared of the sum
of the subject and phase-shifted reference beam fields. In our
treatment we consider a single pixel of the camera and the fields
are complex constants with phases φs = arg Ψ and φr = arg ψ
(where for ψ = |ψ | exp{iφ}, φ = arg ψ ≡ � ln ψ). The
reference beam is phase-shifted by an extra amount η ∈ {ηn}. To
solve for the subject beam, we need at least three phase shifts in
order to uniquely determine the phase. Even though everything
here is constant or preset, we will use angle bracket notation
〈·〉 to indicate averaging over an appropriate or indicated set.
This will simplify our notational transition to randomly varying
reference beams. We require that the phase shifts are selected

such that

〈exp{iηn}〉 ≡ 1

N

N∑
n=1

eiηn = 0. (1)

If this condition is not met, the non-zero-mean reference beam
will leave a residual that cannot be distinguished from being
part of the subject beam. Our analysis will therefore produce
the correct value biased by the mean of the reference beam. We
also require that

〈exp{2iηn}〉 = 0 (2)

so that we may easily process the interferograms. The interfer-
ograms record the intensity of the interfering fields at each of
the applied phase shifts, giving

In = |Ψ + ψeiηn |2 (3)

= |Ψ|2 + |ψ |2 + Ψψ∗e−iηn + Ψ∗ψeiηn (4)

= |Ψ|2 + |ψ |2 + 2 |ψ | |Ψ| cos(φs − φr − ηn). (5)

The expanded real form in Equation (5) is the most familiar,
but we prefer Equation (4) because the complex algebra is
simpler. We proceed by assigning each interferogram to the
shifted complex phase of the reference beam and averaging
over the phase shifts

〈Ine
iηn〉 = (|Ψ|2 + |ψ |2)〈eiηn〉 + Ψψ∗ + Ψ∗ψ〈e2iηn〉. (6)

Making use of our constraints Equations (1) and (2), we find
that the mean intensity term averages to zero, and one of the
two varying interference terms is “stabilized” while the other
averages to zero by construction. The single surviving term is
the product of the subject and conjugated reference beam

〈Ine
iηn〉 = Ψψ∗. (7)

Taking the imaginary part of the log of Equation (7), we find the
subject beam phase to be

φs = arg〈Ine
iηn〉 + φr . (8)

In many interferometric applications, the only desired quan-
tity is the subject beam phase, in which case we are done. In
cases where the subject beam amplitude is also desired, it can
be found by simply blocking the reference beam and measuring
the non-interfering intensity. But since we cannot “turn off” the
speckles, along with the fact that the speckle cloud’s shape and
amplitude fluctuates with the wind and other external influences
and may not be accurately known, we will now find the sub-
ject beam amplitude assuming the reference beam amplitude is
unknown. From Equation (4) we find the average intensity as

〈I 〉 = |Ψ|2 + |ψ |2. (9)

The magnitude-squared of Equation (7) gives us the product of
beam intensities

|〈Ine
iηn〉|2 = |Ψ|2|ψ |2. (10)

Note that Ψ and ψ are interchangeable in both of these
equations. Using Equation (10) and substituting in Equation (9)
and solving for the subject beam intensity,

|Ψ|2 = 〈In〉
2

± 1

2

√
〈In〉2 − 4|〈Ineiηn〉|2, (11)
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we find two solutions. This is due to the subject-reference
ambiguity built into the statement of the problem. Which beam
was physically phase shifted in our measurements is lost when
looking at the intensity, and we are left with two solutions: one
being the subject beam intensity and the other the reference
beam intensity.

2.2. Interferometry with a Known Random Reference Beam

The analysis in Section 2.1 is very rigid in its reference beam
variation, the main purpose being to simplify the mathematics.
But we can also use a randomly changing reference beam to
analyze a static subject field Ψ in each pixel of a set of images
in a manner very similar to Section 2.1. Being “random” in this
context means not being controlled or predictable. “Random”
does not imply that the reference beam is unknown, since we will
always assume that at least its phase is known. If we know both
the reference beam’s phase and amplitude corresponding to a
series of images, the problem is very similar to the phase-shifted
reference beam case above. Unlike that analysis, however,
which was unable to tell the difference between subject and
reference beam phase and amplitudes, the varying reference
beam allows us to unambiguously solve for both the subject
beam since it is constant while the reference beam changes. If
all we know about the reference beam is its phase, we can
still estimate the subject beam’s phase by using the known
reference beam phase to stabilize one of the fluctuating terms
in Equation (4). Even though the amplitude is changing, this
allows a reliable statistical estimate of what reference phase
maximizes the intensity (Figure 1). When the intensity is
maximized, the subject and reference phases are the same. If
we also know the reference beam amplitudes, or even if we just
know the rms speckle amplitude, we can determine the subject
beam amplitude. Since our reference beam is determined by
calculation from the WFS measurements and does not depend
on, for example, the flux of the star (Section 4.4), we also have
a scale factor between reference and subject beams that needs
to be determined from the data’s statistics.

In Section 2.1, we typically had three or four images with
known phase offsets. For the random reference problem, we
imagine having a synchronized pair of relatively large data
sets: one of complex reference beam fields and the other of the
corresponding intensities. We treat each synchronized collection
of images and fields as a set with statistics determined from
the available data. We make no assumptions about underlying
probability distributions.

The total field is the sum of the subject and reference fields,
with the reference beam changing without the need for a separate
phase offset

Ψtotal = Ψ + ψ. (12)

The subject field Ψ is assumed to be constant over the data
set, while the reference beam ψ changes in some uncontrolled
yet measured or otherwise known way. The first assumption
is that the reference beam field has a zero mean, functionally
corresponding to the reference phase shift requirement in
Equation (1), but allowing for varying amplitudes,

〈ψ〉 = 0. (13)

If we were analyzing an ensemble of data, this would have some
more absolute meaning. But since it is just the mean over the
available data, perhaps spanning just a few seconds, the mean
will have some random residual. This residual will appear to
be part of the static subject beam, affecting the derived subject

beam as estimation error. If the reference beam mean is non-
zero, we can subtract it from the complex reference values and
proceed using Equation (13)

Ψtotal = (Ψ + 〈ψ〉) + (ψ − 〈ψ〉). (14)

The analysis will now yield the biased result (Ψ + 〈ψ〉), from
which the means may be subtracted at the end of the calculation.
For simplicity, we will continue to write the reference field with
the suppressed mean as ψ which makes Equation (13) true by
construction. In addition to Equation (13), we note that the mean
square (not conjugated) of the field becomes negligible in large
data sets,

〈ψ2〉 → 0. (15)

This is the analog of Equation (2) and cannot be independently
forced like the mean. In our case where the speckles (our
reference beam) are each the sum of many independent patches
of approximately flattened field across the pupil, the complex
speckle field tends toward a Gaussian distribution by the central
limit theorem (Appendix A). Note that for a zero-mean Gaussian
random field, the scatter in estimates of |〈ψ2〉| ∝ 1/

√
N where

N is the number of statistically independent speckles in each data
set (Appendix B). The same is true of any moment 〈ψn(ψ�)m〉
where n �= m. We only require this general result for one more
term, where the scatter in estimates of 〈ψψ�ψ〉 → 0 as 1/

√
N

which is likely true so long as the speckle intensity and phase
are uncorrelated (see Appendix B).

We start as before with a simple intensity model, leaving out
any questions of partial coherence or intensity-dependent noise.
We simply treat the static halo as a complex constant coherently
interfering with the changing but known reference field. The
resulting intensity is given by

I = |Ψ + ψ |2 (16)

I = |Ψ|2 + |ψ |2 + Ψψ∗ + Ψ∗ψ. (17)

Taking the average of Equation (17) and invoking 〈ψ〉 = 0, we
find the subject beam intensity is

|Ψ|2 = 〈I 〉 − 〈|ψ |2〉 ≡ ΦI − Φspeckles. (18)

To facilitate our use of these results in later sections, we
have also written the result in terms of physical measurables:
ΦI ≡ 〈I 〉 is the mean PSF recorded by the science camera and
Φspeckles ≡ 〈ψψ�〉 is the average intensity of the halo of speckles
if they were recorded on their own. Note that while the intensity
expressed in Equation (17) is real, each of the conjugated
cross terms Ψψ∗ and Ψ∗ψ rotate in opposite directions and
individually have zero means. We can stabilize the first of the
fluctuating terms in Equation (17) by multiplying through by
ψ , maintaining a stable phase while causing the other term to
move twice as fast in phase. Upon averaging, the stabilized term
survives and the others drop out giving

〈ψI 〉 = 〈|ψ |2〉Ψ ≡ ΦspecklesΨ. (19)

In writing this equation, we also made use of our assumption
that 〈|ψ |2ψ〉 → 0 even though it will not be precisely zero for a
shorter data set, but will be in a larger data set. Since 〈|ψ |2〉 ∈ R,
we can immediately determine the phase of the subject beam as

arg Ψ = arg〈ψI 〉, (20)
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which is the robust result we described in Codona et al. (2008).
Since the reference beam intensity must be non-zero in order to
make any measurement at all, we can simply write the subject
field as

Ψ = 〈ψI 〉
〈|ψ |2〉 ≡ 〈ψI 〉

Φspeckles
. (21)

2.3. Including an Unknown Scale Factor

The subject beam field Ψ is the static diffraction halo in
the science camera focal plane. The reference beam field ψ
is the speckle field caused by the changing residual wavefront
errors after the AO system has “corrected” the atmospherically
distorted incident field. The intensity I measured by the science
camera is proportional to the magnitude-squared of the sum
of the static halo and speckle fields, but with the additional
factors of incident flux and exposure time, etc. The speckle
field is computed from WFS slopes with possible (modal) gain
errors in the wavefront reconstruction, and generic assumptions
about amplitude. Converting these fields to actual images require
all of the aforementioned factors such as starlight flux. All of
these influences can be included in an unknown scale factor
g that may also be a function of focal plane position. The
relationships between Ψ, ψ , and I depend on getting this scale
factor right, so we will add it to the model and estimate it from
the data. We introduce the scale factor into Equation (16) with
the modification

I = |Ψ + gψ |2 (22)

where g ∈ R since we assume our phase estimates are accurate.
Following our derivation as before, we find the mean intensity

ΦI = |Ψ|2 + g2Φspeckles (23)

and the stabilized intensity

〈ψI 〉 = gΨΦspeckles. (24)

To determine the scale factor before we know Ψ, we adjust
it until the intensity variance based on the calculated speckles
matches that of the actual intensity images. Using Equation (22)
to compute σ 2

I ≡ 〈(I − 〈I 〉)2〉, we find

σ 2
I = 2g2|Ψ|2Φspeckles + g4σ 2

speckles (25)

where σ 2
speckles = 〈(|ψ |2 − 〈|ψ |2〉)2〉 is the speckle-only inten-

sity variance without halo interference. Using the magnitude-
squared of Equation (24) to replace g2|Ψ|2 with measured quan-
tities in Equation (25), we find

g =
[

σ 2
I

σ 2
speckles

− 2 |〈ψI 〉|2
Φspecklesσ

2
speckles

]1/4

. (26)

Using this result in Equation (24) allows us to write the halo as

Ψ = 〈ψI 〉
gΦspeckles

. (27)

This is the diffraction halo at the science camera, including
any NCP aberrations. While it is obvious that the intensity
imaged by the science camera must first have any background
noise removed, it is important to note that the background noise
variance should also be estimated and removed from σ 2

I before
using Equation (27). We will also find that the region near the

center of the halo (very low spatial frequencies) tends to be
biased low due to physical reasons not included in our isolated
pixel analysis. Since the result is still useful without increasing
the complexity of the model to eliminate the bias, we will use
these results as they stand.

2.4. Visibility

The traditional interference fringe “visibility” measures the
intensity modulation caused by changing the reference beam
phase normalized by the mean intensity (Born & Wolf 1999,
Section 7.5). It is usually written in terms of the maximum and
minimum intensities as

V = Imax − Imin

Imax + Imin
. (28)

Since the standard deviation of the cosine is
√

2, we can
use Equation (5) to rewrite the conventional definition of
visibility as

V =
√

2σI

〈I 〉 . (29)

In our random reference case, the appropriate portion of the
intensity variance is the term in Equation (25) that is caused by
interference (2g2|Ψ|2Φspeckles) rather than intrinsic variations in
the reference beam intensity (g4σ 2

speckles). This allows us to write

V = 2g|Ψ|√Φspeckles

〈I 〉 .

Using Equation (27) to replace |Ψ|, and the notational associa-
tion of 〈I 〉 = ΦI , the formula for the visibility becomes

V = 2 |〈ψI 〉|
ΦI

√
Φspeckles

. (30)

3. SIMULATION

In this section we demonstrate our technique with a realistic
simulation based on the MMTO 6.5 m telescope and AO system,
with some arbitrary NCP errors added. Using the simulation
results, we apply our random reference interferometric formulae
to estimate the static complex halo and informally explore the
effect of measurement noise. Finally, we Fourier transform the
complex halo back into the pupil plane to estimate the NCP
aberrations. We find that this method underestimates the very
lowest spatial frequencies of the pupil field, requiring a simple
correction to recover the proper static wavefront aberration. The
results are adequate for building either an anti-halo servo for a
coronagraph or improving the Strehl ratio at the science camera
by compensating for NCP aberrations. Finally, we discuss the
degradation of results caused by speckle halo evolution during
the science camera exposures and how to estimate its effect from
real data.

We used a simple lagged spatial filtering model to simulate
the post-AO wavefront at the MMT. We first synthesized a
2048 × 2048 grid with 4 cm spacing of Kolmogorov wavefront
displacements scaled to give a Fried length r0 of 15 cm
in V band and an outer scale of 30 m. The effect of AO
correction was simulated by applying a Gaussian smoothing
to the wavefront and subtracting the result from the original
wavefront. This approximates the effect of applying a mode-
limited reconstructor to the DM. The width of the smoothing
kernel was adjusted to make the rms residual wavefront fitting
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(a) (b)

Figure 2. (a) The simulated non-common-path error masked by the pupil. The modeled aberration includes trefoil and a Gaussian indentation. The peak-to-valley
aberration is 725 nm. (b) The NCP error added to a realization of the residual AO residual WFE.

error (WFE) 250 nm. The effect of wind and processing lag
was introduced by laterally shifting the smoothed correction by
δx = vwindτlag. For convenience, the lateral shift was selected
to be one grid pixel of 4 cm. A total of five phase screens were
synthesized and a set of residual wavefronts was selected from
each by using a sub-grid of size D = 6.5 m at 0.85D spacings
giving a 14 × 14 sample of slightly overlapping wavefronts.
Each scintillation-free pupil field instance was computed using
exp{2πiδz/λ} and multiplied by a 6.5 m pupil mask Π(x) with a
10% central obstruction. The wavelength λ was set to 3.8 μm (L′
band). In addition to the residual AO wavefront error, the camera
images were presumed to include an additional NCP wavefront
error described by Zernike trefoil (δz = Z3

3(2r/D, θ ) λ/16) and
an additional Gaussian indentation centered on x0 = (−1, 2)
(meters) with depth λ/8 (max mirror figure error of 237.5 nm)
with a 1/e radius of 1 m (Figure 2).

The PSFs were computed using two-dimensional (2D) fast
Fourier transforms (FFTs) padded to 2048 × 2048 samples and
taking the magnitude squared to find the intensity. The resulting
images were converted to array counts assuming a mean total of
157,000 counts per exposure (typical of a magnitude 7.5 star at
L′ band, bandwidth of 0.65 μm, MMT aperture, 50% quantum
efficiency, and a throughput of 67%). Gaussian noise was added
to the images to simulate the variance caused by different
amounts of thermal and sky background noise. The complex
speckle halo was computed without the NCP aberrations, but
with the same pupil mask. This takes the place of the WFS-
based halo calculation in the actual observations. The intentional
neglect of the NCP WFE in the halo calculation emulates the
fact that we cannot see the downstream NCP errors when
working from the WFS measurements. This “bootstrapping”
technique of the algorithm should have minimal effect on the
speckle phases so long as the Strehl ratio is high enough to
have a clear peak above the speckles. (We tested the effect of
this approximation by including the NCP errors in the speckle
calculation, with an effect on the estimated wavefront error of
8 nm rms or about 0.013 radians rms.) The resulting complex
halo has speckles with the ideal PSF’s sidelobes, as opposed to
the actual speckle sidelobes which would show the trefoil, etc.
The computed speckles are otherwise in the correct locations
and have the correct phase relationship to the PSF core. After

subtracting off the mean complex halo, the remaining speckles
have mostly the correct complex values near their maximum
amplitudes, where the effect of the simplified sidelobes can be
ignored.

In a calculation of this sort, it is possible to know and control
the piston component of the wavefront, resulting in absolute
phase control or to have a global phase reference. This is not
the case in reality, however. The WFS only measures wavefront
slopes and is therefore blind to constant phase offsets. The mean
intensity distribution of the speckles, Φspeckles, has power and
phase fluctuations all the way in to the center of the PSF. We
multiply the complex halo by a unit-amplitude phasor to adjust
the halo’s peak value to zero phase and reference the speckles to
the current halo peak, allowing them to be compared. Ideally, we
would want to reference the halo phase to the core of the static
halo, but it is only practical to use the phase of the full computed
complex halo. This will slightly bias the reference phase and
introduce a fluctuating phase error to all points in the halo. This
phase error is zero-mean and becomes less significant at higher
Strehl ratios like those in our simulation. Our phase referencing
procedure does not change either the speckles’ intensity or
variance, which is why we correctly see speckle power all the
way to the center of the PSF (Figure 3). When we process real
data, we also remove tip-tilt from the WFS measurements and
the science images, which has the effect of further removing
speckle power to the next order about the center of the PSFs.
Again, this is not detrimental to the measurement of Ψ away
from the center, but it will bias the lowest spatial frequencies
and become an issue when we attempt to estimate the pupil field
from our focal plane results.

Once the complex halo was computed for all pupil wavefronts
and all of the peaks were referenced to zero phase, the complex
mean was computed and subtracted, leaving only the complex
speckles ψ . The mean speckle intensity is shown in Figure 3. The
figure clearly shows the broad fitting error cloud and a horizontal
plume of speckles caused by lag error and the wind. There is no
evidence of the main diffraction pattern in the speckle halo, since
the appearance of aberrations in the simulation is independent
of position relative to the pupil. To explore the robustness of the
result, zero-mean Gaussian noise was added to the simulated
CCD images to simulate observations of fainter target stars.
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Figure 3. Mean speckle halo intensity averaged over the simulated data set.
The residual AO fitting error is isotropic, while the lag error driven by the wind
(vwindτlag = 4 cm) is responsible for the horizontal plume of speckles near the
center.

The introduced noise sigmas are 0, 10, 100, and 1000 counts
per pixel.

In order to use the random reference interferometry results,
we need to compute various statistics from the simulated fields
and images. The mean speckle field is zero by construction,
leaving any actual non-zero means folded into the static halo
as estimation error. The simulation generates two data cubes:
a set of simulated science camera images with all aberrations
included and actual counts per pixel, and a data cube of complex
halos that, in reality, would have been computed from the
WFS measurements and a simplified model of the telescope
without the NCP aberrations. The mean of the complex halo
data cube is an estimate of the static halo, but without the NCP
distortions we wish to measure. This mean is subtracted from
the complex halo cube leaving only the complex speckle field.
While the computed speckle phases and relative amplitudes
values are meaningful, the units are arbitrary and cannot be
compared directly with the photon counts in the science camera
image cube. So we include a scale factor g (first introduced
in Equation (22)) as a constant that depends on the flux and
takes care of the units. The average of the science images gives
ΦI (Figure 4), the average of the magnitude-squared speckle
fields (the “speckle intensities”) gives Φspeckles (Figure 3), the
variance of the science images is σ 2

I (Figure 5) and the variance
of the speckle intensities is σ 2

speckles. Since the two data sets
are computed from the same grids, they are automatically
commensurate and properly aligned. We multiply the science
image and complex speckle field data cubes element-by-element
and average over the 960 frames to compute 〈ψI 〉 from which
we can derive the static complex halo Ψ using Equation (27)
(Figure 6). Note that the static halo has a lower amplitude than
it should at the very center of the function. This is caused
by a subtle difference between our interferometric analysis
and the symmetries of complex speckles. We assumed that
an arbitrary random complex speckle could be added to the
static halo anywhere during the interferometric analysis. This
is true everywhere in the focal plane except at the center of

(a)

(b)

(c)

(d)

Figure 4. Simulated science camera images: single frame (left) and data set
averages (right). The images are constructed from the computed PSFs with
photon noise and added background noise. The starlight is set to an average
of 157,000 counts per exposure, with added background noise sigmas of (a) 0,
(b) 10, (c) 100, and (d) 1000 counts per pixel. The PSF images are 15λ/D on
each side with 0.25λ/D pixels. The simulation data set included 980 images.
The PSFs on the left are individual 20 ms images while those on the right are
averaged over the 980 images in the entire data set (a total exposure time of
19.6 s).

the star image. The reason is that a small amplitude wavefront
ripple in the pupil plane not only diffracts starlight from the
PSF core into a speckle at the expected position, but creates
another speckle on the opposite side of the star. Referenced to
the starlight in the PSF core, the two speckles have different
phases such that the real part of the field is antisymmetric, while
the imaginary part is symmetric. This is called anti-Hermitian
symmetry and is a well-known feature of faint speckles. Each
speckle is able to take on an arbitrary complex value, subject
to energy constraints, and the speckle on the other side of the
star will follow according to its anti-Hermitian symmetry. This
non-local correlation is not an issue in our analysis because
the two correlated speckles are usually so far apart from each
other that they have no mutual effect. However, a very low
spatial frequency aberration, or even small residual tip-tilts,
cause speckle pairs that appear close enough together that they
can significantly interfere. When they do, the antisymmetric
real part tends to cancel and the sum becomes only due to the
symmetric imaginary part. Since we have constructed the phase
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Figure 5. Variance of the simulated science camera images σ 2
I displayed on

a four decade logarithmic scale. This figure only includes intensity variations
caused by the changing speckles, with no background or photon noise. The
science image variance includes the product of the speckle halo and the intensity
of the static halo (Equation (25)). There is a reduction in the variance at the
center as a consequence of the anti-Hermitian symmetry of speckles and is not
included in our analysis model.

reference to be the PSF core, ideally of the static halo center,
the center of the static halo is real. Adding a small speckle near
the core approaches purely imaginary and has the effect of a
phase shift. This does not change the intensity of the PSF core,

only the phase, therefore the intensity variance near the core
should drop relative to where the speckle pairs do not overlap
(Figure 5).

If we use our results in an anti-halo servo designed to
suppress unwanted residual halo in a coronagraph, the low
spatial frequency power deficit in Equation (27) does not affect
us. However, if we wish to estimate the wavefront in the
pupil plane, as we might for increasing the Strehl ratio in
the science images by correcting the NCP aberrations, or for
computing a more accurate numerical PSF for post-detection
processing of the science images, we would like to recover the
low spatial frequencies as well as the higher ones. We can still
do this by reconsidering how we compute |Ψ|2. Instead of using
Equation (24) to compute Ψ, we compute the halo phase arg Ψ,
which is what we found in Equation (20). We then estimate
the static halo intensity from Equation (23), which does not
suffer from the anti-Hermitian speckle effect. To satisfy the
requirement that |Ψ| ∈ R and |Ψ|2 > 0, we use a max function,
giving a better estimate of Ψ as

Ψ =
√

max{ΦI − g2Φspeckles, 0}ei arg〈ψI 〉. (31)

We computed Ψ using this equation and Fourier transformed
back into the pupil plane to compare with the initial NCP aber-
rations. The results for a set of noise levels is shown in Figure 7.
For each noise level, the pupil field amplitude is shown on the
left and the phase converted back to nanometers of wavefront
displacement is shown on the right, which should be compared
with the introduced NCP aberrations. The spatial resolution is
limited because the signal-to-noise ratio (S/N) drops off with
increasing radius. As the noise level is increased, the estimated

(a)

(c)

(b)

(d)

Figure 6. Computed static halo and visibility at noise levels listed in Figure 4. The leftmost column is the base-10 log of the static halo amplitude. The levels are
normalized to a point in the first Airy ring. The center column is the computed phase of the static halo, and the rightmost column is the visibility (lighter is better).
Note the missing intensity at the very center of the halo in the left column images. This is due to the anti-Hermitian symmetry of the speckles, an effect that is not
included in our interferometry analysis.

(A color version of this figure is available in the online journal.)
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(a)

(b)

(c)

(d)

Figure 7. Fourier transforming the static halo Ψ computed from Equation (31)
gives an estimate of the static pupil field ϒ for the same noise levels listed in
Figure 4. The left column is the amplitude of the estimated pupil field and the
right column shows the pupil phase scaled to wavefront displacement in nm.
As the noise level increases, high angles are lost first, leaving a progressively
smoothed pupil wavefront estimate.

pupil field and wavefront becomes progressively smoother. The
simulation is somewhat unrealistic in that the speckles were
not derived from a Nyquist-limited WFS measurements and the
wavefront itself has properties that are statistically “cleaner”
than real data with residual wavefront errors that are not tied
to the pupil or actuator locations. Nevertheless, the results
validate the technique and show us what to expect with real
data.

3.1. Effects of Optical Bandwidth and Exposure Time

In the preceding discussions, we assumed that the evolving
halo field was monochromatic and instantaneously sampled
in time, with no blurring or phase averaging due to speckle
evolution during the exposure. However, these effects can be
important in practice. The incident wavefront at a single point
in the pupil experiences an rms phase change of 1 radian after a
time τ0 defined by the phase structure function Dφ(vwindτ0) = 1,
where vwind is the characteristic wind velocity projected onto the
pupil plane. This time scale determines how fast WFS exposures
must be made as well as actuator and AO servo bandwidths.
However, the speckles do not depend only on the field at a
point, but the field across the entire pupil. Moving the pattern

by a small distance, or even possibly by r0, leaves most of the
uncorrected incident wavefront unchanged, simply translated.
This causes speckles to remain in the same place, but with a
phase shift depending on the location of the given speckle in the
focal plane relative to the wind. AO residual speckles are more
complicated because they are the result of the initial aberrations
and the spatial and temporal limitations of the AO system.

For atmospheres with visible r0 values of ∼15 cm and
winds of ∼20 m s−1, τ0 � 2 ms. An AO WFS typically
has readout speeds of 500–2000 frames s−1, allowing the
wavefront to be estimated at that frame rate. Limited photon
flux degrades the wavefront estimate accuracy with increasing
frame rate, as does decreasing star brightness or increasing
background noise (Sandler et al. 1994). The MMT AO system
is currently at the low end of the frame rate range, but still
fast enough to capture the low spatial frequency wavefront
evolution without significant averaging. Science cameras are
usually used with much slower frame rates, although capabilities
of 30–50 frames s−1 are not uncommon. Broader optical filter
bandwidths pass more light, enabling us to make better use
of higher frame rates. However, the broader filter bands also
increase chromatic effects that can lead to confusion in the
analysis.

Our MMT L-band images have optical bandwidths of about
20% (0.7 μm bandwidth centered on 3.7 μm). This introduces
chromatic radial smearing where both diffraction halo and
speckle features appear at points proportionally farther from
the star with increasing wavelength. A practical operational
constraint is to not allow speckles and other halo features to
radially blur into each other, beyond which they may become
confusion-limited. The limits implied by this constraint can be
estimated by noting that the typical monochromatic speckle
size and separation are both ∼λ0/D (λ0 is a characteristic
wavelength in the detected band), regardless of their location
relative to the star. At a radius θ , the radial smearing is (δλ/λ0)θ .
The non-overlap constraint gives us the condition

θ <

(
λ0

δλ

)
λ0

D
. (32)

The MMT Shack–Hartmann WFS uses a 12 × 12 sub-aperture
array centered on the pupil, which means the maximum measur-
able unaliased spatial frequency is six cycles/D, beyond which
we cannot compute the speckles. This corresponds to a fractional
bandwidth of about 17%, which is reasonably well matched to
the L-band filter. Well inside the radial blurring limit, we are
progressively freer to ignore the effects of bandwidth and sim-
ply use monochromatic Fourier optics (Goodman 1995) at the
characteristic wavelength λ0.

Depending on the brightness of the star compared to the
background noise and the shape of the speckle halo, the
S/N of our measurement varies widely across the focal plane.
A long science camera exposure will smooth the intensity
fluctuations caused by the speckles beating against the static
halo, reducing their contrast and making them harder to detect
against the background noise and fluctuations. The WFS data,
converted to complex speckles, also have to be integrated
to the science camera’s frame rate in order to compare the
complex speckles with the images. Our metric for signal is
the “visibility” (Equation (30)), but that alone does not express
the fluctuating signal relative to the background noise. The
visibility is the phase-dependent intensity variation relative to
the mean intensity. The proper metric for comparing the intensity
variations, from which we derive all other information, and the
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background noise is

S/N = V ΦI

Φnoise
= 2|〈ψI 〉|

Φnoise
√

Φspeckles
. (33)

The average intensities, Φnoise and Φspeckles, are unaffected by the
exposure time since they are sums of positive contributions. The
impact of exposure comes only from the |〈ψI 〉| factor, which
we can analyze. Treating I (t) and ψ(t) to be instantaneous
measurements, we write the effect of longer camera exposures
as an integral average of duration T centered on t = 0, and
use an ensemble average to estimate the effect on |〈ψI 〉|. In
Equation (33) we replace I with an integrated I to represent the
time exposure

I (t) → 1

T

∫ T/2

−T/2
I (t + t ′)dt ′,

and

ψ(t) → 1

T

∫ T/2

−T/2
ψ(t + t ′)dt ′.

Multiplying the down-sampled measurements and ensemble
averaging, the stabilized intensity becomes

〈ψ(t)I (t)〉 → 1

T 2

∫ ∫ T/2

−T/2
〈ψ(t + t1)I (t + t2)〉dt1dt2.

Referring back to our simple model for the intensity
(Equation (22)), we expand and multiply through by the field,
performing the ensemble average on each term. Based on our
assumption that the speckle field is ultimately a zero-mean Gaus-
sian random process, the only term that survives averaging is
I (t) = gΨψ∗(t). Thus

〈ψ(t)I (t)〉 → gΨ
T 2

∫ ∫ T/2

−T/2
Γ(t2 − t1)dt1dt2, (34)

where Γ(τ ) is the complex speckle field’s mutual coherence
function (MCF)

Γ(t1, t2) = 〈ψ(t1)ψ�(t2)〉. (35)

The MCF becomes time-invariant, depending only on the time
difference, Γ(t2−t1) with the symmetry Γ(τ ) = Γ∗(−τ ), so long
as parameters such as wind, r0, and AO performance remain
constant. We can normalize the performance by the assuming
that the camera exposures match the WFS, which gives the
reference value of 〈ψI 〉 as

〈ψI 〉 → gΨΓ(0) ≡ gΨΦspeckles. (36)

We divide Equation (34) by Equation (36) to estimate the effect
of exposure time on S/N. Changing time integration variables
to sums and differences and using the MCF symmetry allows
us to write the effect of exposure on S/N as

S/N ∝ 1

T

∫ T

0

(
1 − τ

T

)
�

{
Γ(τ )

Γ(0)

}
dτ. (37)

We will use this result with the actual MMT data in Section 4.4.
The residual speckle halo Φspeckles(θ) ≡ Γ(t1, t1; θ ) consists

of a broad fitting error halo along with lag error speckle plumes
in the apparent projected direction of the wind. If there are
multiple wind streams along the line of sight, they will each

contribute their own speckle plume. Both fitting and lag error
phase patterns are carried across the pupil by their respective
winds, with characteristic effects expressed in the resulting
speckles. For simplicity, we will consider only one dominant
wind stream with velocity projected onto the pupil plane of
vwind. Fitting error has minimal power in spatial scales larger
than �AO ∼ D/

√
Nmodes and the corresponding halo is therefore

dark within λ/�AO, or at least relatively constant, depending
on the details of the AO system. The processing lag error
contributes a residual wavefront that is proportional to the
gradient of the uncorrected wavefront dotted into the wind shift
after the lag (i.e., τlagvwind · ∇φ0) since the wavefront correction
servo makes the same error in every iteration. This leads to a
plume of speckles in the direction of the wind that becomes
brighter as we look closer to the star. Depending on the details
of the AO system, the fitting error changes completely by the
time the wind has carried the wavefront by the AO correction
scale �AO. Therefore, the fitting error speckles decorrelate after a
timescale of �AO/‖vwind‖ � τfitting � D/‖vwind‖ (a fresh breeze
of 20 m s−1 at the MMT would give timescales of 43 ms
�τfitting � 325 ms). Lag error speckles are still affected by
larger spatial scales and can last much longer (Appendix A).
These are certainly completely decorrelated by the time the
wind has carried the turbulent pattern by the outer scale,
τwind � Louter/‖vwind‖ (possible on the order of a second or more
at the MMT). The outer scale in all layers of the astronomical AO
problem are often considered to be less than 30 m, but may be
longer in special cases. The decorrelation timescales described
here vary across the speckle halo around the star, and only real
data can tell the actual behavior. But we can say a few things that
ought to be robust statements. The fitting error speckles should
decorrelate fairly rapidly, while lag error speckles should last
significantly longer.

The same is not true of the translation effect, which is
systematic and highly dependent on position. Translation of
the residual wavefront by an amount δx causes any speckles
at angular position θ = κ/k, k = 2π/λ, to undergo a phase
shift of δφ = −kθ · δx. (This ignores the overall change in
coherence due to slightly different areas of the wavefront being
visible through the pupil at different times, which is contained in
the previously discussed portions.) Therefore, a wind will cause
a linear phase shift δφ = kθ · vwindδt . This affects all of the
speckles together systematically, and shows up in the MCF as

Γ(τ ) = Γ0(τ )e2ikτθ ·vwind , (38)

where τ = t2 − t1.
We can now estimate the effect of science camera exposure

time. We will consider only a single wind stream of ∼10 m s−1,
noting that for a moderate frame rate of ∼30 frames s−1, a
jet stream contribution with a speed of ∼60 m s−1 will be
highly averaged over virtually all of the focal plane, appearing
as incoherent noise. For fitting error, the slow change in the
MCF due to different configurations being present within the
pupil has a timescale of ∼650 m s−1 but likely much shorter
due to the AO iterations and other effects. Lag error speckles
within the control radius but outside of the PSF core arise from
spatial scales smaller than the pupil diameter D and are most
likely uncorrelated much beyond the pupil. Therefore they too
have a maximum lifetime of hundreds of milliseconds, which
is common. The systematic phase rotation caused by the wind
increases most rapidly in the direction of the speckle plume and
is not seriously detrimental until the phase wrapping from the
time center of the exposure to the endpoints is π/2, beyond
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which negative contributions are included. This means that
the phase rotation timescale, providing us with a conservative
exposure time limit, is when π > k|θ · vwind|tsci or

tsci <
D

2
∣∣∣ θ
λ/D

· vwind

∣∣∣ . (39)

Using the WFS Nyquist radius for the MMT 12 × 12 WFS
along either axis, ‖θ‖ = 6λ/D, and a wind of 10 m s−1, we find
that our exposure limit is about 54 ms. Assuming continuous
exposures, that corresponds to about 18.5 frames s−1. Referring
back to the effect of decorrelation on the S/N (Equation (37)),
we can see that our limit only drops the S/N by 64% at the
limiting radius. Using a higher frame rate camera is therefore
not extremely important for sensitivity, but would be for an
increased measurement radius or for higher wind speeds.

4. OBSERVATIONS AND ANALYSIS

To measure the complex halo at the science camera, we
require three capabilities: (1) acquire short exposures with
the science camera, (2) AO WFS data, and (3) provide a
mechanism for synchronizing the resulting data sets together.
Our mid-IR camera is capable of reading out small regions of
the sensor at frame rates in excess of 30 Hz, and our high-
speed AO WFS and subsequent processing software has an
engineering diagnostic mode capable of saving the full system
telemetry, including raw WFS pixels and computed slopes.
Tight synchronization between the science camera and the
AO system is not provided by the MMT and is added using
system handshaking and logging modifications. We describe
our solutions to these generic problems here, as well as other
difficulties to do with the engineering state of the MMT at the
time of our observations.

4.1. Facilities

4.1.1. The MMT AO System

The MMT AO system (Wildi et al. 2002) is the world’s first
telescope to use a deformable secondary mirror to provide
wavefront correction. This approach minimizes the number
of warm optical surfaces between the sky and the science
camera, greatly reducing the thermal emissivity of the telescope,
and makes the 6.5 m MMT aperture competitive with larger
telescopes for thermal infrared observations (Lloyd-Hart et al.
2000). The 640 mm diameter deformable secondary consists of
a thin shell mirror 2 mm thick, supported above a Zerodur
reference body by a fixed central hub, and deformed by
336 actuators in a modified hexapolar pattern (Figure 8).
The actuators provide non-contact forces to the shell via
electromagnetic voice coils acting on magnets attached to its
inner surface. The gap between the shell and the reference body
is measured by capacitive sensors at each actuator, and is actively
maintained by a 40 kHz servo in a dedicated mirror controller.
The typical time for the shell to reach a desired position is less
than 1 ms.

The MMT AO processing is performed by a real-time Linux
computer system (Vaitheeswaran et al. 2008) which reads
the WFS camera, computes the required wavefront updates,
and sends updated commands to the deformable secondary
controller, all synchronously clocked by the WFS frame rate.
The 12 × 12 sub-aperture Shack–Hartmann WFS (Mcguire
et al. 1999) is normally operated at 527 Hz. The AO computer

Figure 8. MMT’s deformable secondary mirror with an oblique view of the 336
voice coil actuators and their modified hexapolar placement.

(A color version of this figure is available in the online journal.)

calculates the wavefront slopes, reconstructs an estimate of
the wavefront, applies a conservative modal filter, and sends
the updated actuator commands to the deformable secondary
controller.

The MMT’s Shack–Hartmann WFS uses a 12 × 12 lenslet
array to image the starlight within each sub-aperture onto the
center of a binned 2 × 2 pixel “quad-cell.” Local wavefront
slopes cause the image to shift, changing the relative amount
of starlight entering the various quad-cell pixels. The pixels are
exposed, read out, summed, differenced, and mapped through a
lookup table matched to the seeing level, yielding estimates
of the x and y wavefront slopes over each of the 144 sub-
apertures (Hardy 1998). The pixel sums and differences are
normalized by the sum of the quad-cell counts, plus a small bias
term. The bias ensures that unilluminated quad-cells generate
zero slope estimates. The resulting 288 x and y slopes are
serialized into a single column vector (the “slopes vector” �).
The AO system estimates the residual wavefront by multiplying
the slopes vector with a wavefront reconstructor matrix, W AO,
resulting in an estimate of the residual wavefront error at the
actuator positions: δz = WAO�. An AO reconstructor typically
has a combined legacy of optical measurements and analytical
processing, characterized ultimately by a number of singular
value decomposition (SVD) modes (Brusa et al. 2003). The
MMT AO reconstructor uses lowest-energy mechanical modes
of the thin shell as a basis set. This restriction means that the
wavefront spatial frequencies are not uniformly corrected within
the modal control radius of the mirror, implemented as a safety
precaution. Subsequent developments with the Large Binocular
Telescope (LBT) AO system (Esposito et al. 2010) and Magellan
observatories are less constrained. The wavefront correction is
post-processed using a “modal filter” to redundantly ensure that
damaging stresses are not applied to the shell. Once calculated,
the residual wavefront estimates are multiplied by an overall
(scalar) gain factor and added to the correction already applied
to the mirror. The result is then sent to the mirror controller
where it is applied with its own high-speed servo control loop.

There were several issues with the MMT AO system at the
time of observation. The gains on individual mirror actuators had
not been recalibrated for several years and in some cases had
drifted by as much as tens of percent. Out of the 336 actuators,
13 were non-functional (Figure 9). The loss of these actuators
did not significantly impact low-order correction modes as the
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Figure 9. Locations of the MMT deformable secondary mirror actuators
(circles). At the time of our measurements, there were 13 disabled actuators
(light gray circles) that float to a point between the adjacent actuators. Thirty-
four actuators had problematic or failed capacitive sensors (dots), but were
still able to be driven in open loop by the mirror controller. For the 56-mode
correction applied by the AO control servo, having 10% failed actuators has
only a marginal effect.

(A color version of this figure is available in the online journal.)

DM shell above a deactivated actuator floats to a position
interpolating that of its neighbors. Another 34 actuators had
inoperative capacitive sensors, requiring their positions to be
set in the high-speed mirror controller by dead reckoning rather
than using the closed-loop control servo. In addition to some
mount vibrations, our observations include significant pointing
swings deliberately introduced as a signal for calibration of a
pyramid WFS. These vibrations have amplitudes in excess of
100 mas (i.e., on the order of a science camera image diffraction
width).

4.1.2. The Clio Mid-infrared Science Camera

Our science camera was the mid-infrared Clio system (Freed
et al. 2004; Sivanandam et al. 2006). Light from the deformable
secondary directly enters Clio’s dewar through a tilted dichroic
window, forming an f/15 image at the first focal plane. A re-
imaging lens forms another pupil plane, usually for bandpass
filters and Lyot stops, but also where Clio’s Apodizing Phase
Plate (APP) is located (Kenworthy et al. 2007). A final lens
images the pupil plane onto the focal plane imaging sensor.
Clio’s sensor is a HAWAII-1 HgCdTe array with 18.5 μm square
pixels cooled to 75.6 K. The detector gain is 4.9 e−/dn with a
bias of 3700 dn and a saturation level of 55,000 dn, giving a
full-well capacity of 51,000 dn (250,000 e−). The read noise for
a single frame is 19 dn (93 e−). The dark current is 50 dn/s
(245 e−/s) at 75.9 K. Clio’s plate scale was measured as
0.′′0299 pixel−1 or 4.0 pixels/(λ/D) in L band. Clio is controlled
by a computer running Linux, taking exposures and saving FITS
image cubes asynchronously from the AO system. Data are taken
using a special 54 × 108 “sub-stamp mode” to achieve a higher
frame rate.

Figure 10. WFS and science data cubes have asynchronous placement and
non-guaranteed timing. Although clock synchronization, network handshaking,
timestamps, and logging procedures were implemented, a data-based cross
correlation procedure was also required to ensure proper synchronization.

4.2. Synchronizing WFS and Science Data

Since the speckle phases change rapidly, both randomly
and in a deterministic way depending on position within the
field and the projected speed and direction of the wind, small
synchronization errors can cause both random and systematic
biases in the measured halo phase. Without taking particular
care, we might expect the phase error to be determined by how
much the speckle phase changes during the science camera’s
exposure time. However, this can be reduced by carefully
synchronizing the WFS frames to the start and end of the
science frames, thereby achieving phase accuracies more in line
with the speckle phase change during a single WFS frame.
This improvement (a factor of 6.5 in this data set) only helps
reduce biases. The loss of coherence caused by the science
camera exposure time is not recoverable and still reduces the
measurement S/N. However, by removing systematic effects,
averaging will still yield more accurate measurements at the
higher frame rate.

All AO system updates occur at the WFS frame rate. In an
engineering diagnostic mode, the AO host computer buffers
10,000 frames of engineering data into a set of RAM-based
circular buffers. Once these buffers are filled, a separate pro-
cessing thread writes them out to the AO computer’s hard disk.
The MMT WFS frames are normally taken at a steady rate,
but an engineering issue resulted in every other WFS frame
being dropped from the data telemetry, resulting in the sys-
tem operating at half its normal speed. The result was that the
normally 527 frames s−1 rate was reduced to approximately
263.5 frames s−1 with a slopes file saved every 38 s. To avoid
timing problems and other possible buffer overrun issues, we
did not include any science data sets that ran across WFS slopes
files. These issues do not impact our technique. Clio buffers
100 contiguous exposures in RAM before saving them to disk.
When the RAM-based image buffer is filled, the camera acqui-
sition halts while the images are saved. The non-standard small
images were acquired at approximately 40.5 frames s−1, filling
the 100-image buffer in about 2.5 s and saved to disk every 3 s.
Within each Clio data cube, the images are continuous sequen-
tial exposures, with each exposure ending as the next began
(Figure 10).

Both the AO and Clio control computers run Network Time
Protocol (ntp) clients. The resulting filesystem and internal
header timestamps are directly compared between computers,
allowing us to uniquely associate log entries and data files.
Using ntp alone does not guarantee synchronization to the
WFS frame level. The AO engineering diagnostics files contain
only data and no internal timestamps or other useful FITS
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header information. The primary identifying information was
a unique file name that included a numerical code derived from
internal counters and the time of the first frame, recorded to
1 s accuracy. The operating system also encoded timestamps in
the filesystem inodes when the file was written. Since these are
volatile upon copying and archiving, we saved them to a file after
the run using the Linux command “ls -lt --full-time >
timestamps.log” which preserved the file creation times in
ISO format to the accuracy configured in the kernel (only 1 s
accuracy for both systems). The Clio file creation timestamps
are also saved as a fallback procedure, but the primary record
there was a timestamp saved in the FITS file header.

In addition to the timestamps, we implemented a simple net-
work handshaking protocol to record the WFS frame informa-
tion to higher accuracy. At the beginning of a set of science im-
ages, the science camera control computer sends a UDP packet
to the AO host computer. Once received by the AO system, this
information is written to the AO log file along with the base
name of the WFS engineering files currently being recorded
and the current WFS frame number. This information is later
extracted from the log and used to align the data sets to within
a few WFS frames. The handshake procedure contains an un-
known delay from the time Clio transmits the UDP packet and
the AO system wrote the current WFS frame offset to the log
file. This correlation gave us the mean number of WFS frames
per science exposure, 〈tsci/twfs〉, and the lag between the logged
frame number and the correct value.

Using the images from a single 100-frame Clio file, we
determined the location of either the star’s peak pixel or its
centroid. We then interpolated this time series based on an
assumed value for 〈tsci/twfs〉 to the WFS frame rate, allowing a
cross correlation with the mean θx and θy time series determined
from the appropriate subset of the WFS slope file, extended
before and after by a generous set of additional frames. The
concurrent engineering tests were introducing a lot of tip-tilt
noise, giving us a strong signal for the timing calibration. Our
exposures were short enough that this did not cause us any
problems. Even so, the normal tip-tilt noise in the AO system
would have been adequate for this determination. The science
camera and the WFS are not necessarily aligned, but were in
this case. Even so, we correlated all four combinations between
the two inputs to ensure that we had the coordinate mapping
correct. By varying the presumed ratio of frame rates, we
determined 〈tsci/twfs〉 ≈ 6.48 ± 0.03. Thus, in 100 continuous
science exposures, assuming the center exposure was correctly
placed, the start and end exposures have a placement uncertainty
of ±1.5 WFS frames or 5.7 ms. The cross correlation analysis
also determined the lag from the handshake protocol to be three
WFS frames. Once calibrated, the handshake protocol alone was
sufficient to synchronize the Clio images with the WFS data to
within a WFS frame on the average. Without the random WFS
readout timing problems encountered during our test run, and a
measured frame rate for the science camera, all the exposures
would be placed relative to the WFS with equal precision, and
overall accuracy would be determined by the accuracy of the
calibrated handshake. This is expected to be within a single
WFS frame, which is the limit of accuracy for the system. As
we shall see below, the speckle coherence time varies across
the field, but the minimum values are comparable to the timing
accuracy errors at the bounds of the exposures. The result is
that there were some coherence losses in S/N due to temporal
misalignment between the data sets, but they were not serious
enough to limit our results.

Figure 11. Clio star images. These 16 sequential images are shown with a 3
decade log gray scale.

4.3. Science Camera PSFs

The observed star is a 7.4 mag G5 star at zenithal angles
ranging from 13 to 14 deg (Figure 11). Clio was configured
for direct imaging with a Barr MKO L′-band filter (Tokunaga
et al. 2002), centered at 3.8 μm and a bandpass of 0.7 μm. At
the center wavelength, the Clio pixels subtend λ/4.0D. The
54 × 54 pixel region readout from the sensor was calibrated
with dark and flat images, with noisy or bad pixels flagged
and replaced by the median of a 3 × 3 window centered on the
pixel. Image vibrations were removed by shifting the PSF center
with bilinear interpolation to a fixed location. The PSF peak
was located using correlation with a Gaussian reference peak.
The pointing vibration during our observations had a swing
of approximately 1.5–2 λ/D which contributed only a small
amount of image motion blur during any given Clio exposure.
This vibration did not significantly impact the data reduction
process, but did have the effect of dithering over any bad pixels,
reducing their influence. It was not possible to precisely know
at observation time where we were in the WFS buffer, so no
attempt was made to avoid the times bridging slopes files. To
avoid any possible timing complexities, any Clio image cubes
that bridged WFS file boundaries were simply discarded.

4.4. Complex Speckles from WFS Slopes

We first use the WFS measurements to estimate the varying
wavefront displacement in the pupil plane z(x, t), where x is the
position in the pupil plane. Using the science camera filter band’s
mean wavelength λ, we compute the phase shift caused by the
displacement, ϕ(x, t) = kz(x, t), where k = 2π/λ. Ignoring
scintillation, we write a unit amplitude complex field in the
pupil plane as exp{iϕ(x, t)}, pass it through the pupil stop Π(x),
and then use Fourier optics (Goodman 1995) to find the complex
halo in the image plane

Ψ(κ, t) =
∫

eiκ ·xeiϕ(x,t)Π(x) d2x, (40)
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where κ is spatial frequency in the pupil plane and θ = κ/k
is the corresponding angular coordinate (in radians) measured
from the star. Over a given observation period, we can make a
distinction between the “static halo” and “speckles” as

Ψ(κ, t) = Ψ(κ)︸︷︷︸
static halo

+ ψ(κ, t)︸ ︷︷ ︸
“speckles”

. (41)

(A more detailed discussion of the separation of the halo into its
static and speckled components is given in Appendix A.) Basic
Fourier optics is a very simple model for an imaging system,
with no place to properly introduce aberrations that occur after
the starlight passes the pupil without significantly increasing the
complexity of the optical wave model. Aberrations that occur
anywhere other than the pupil plane (or images thereof), will
affect the halo and speckles differently depending on where
the star appears in the camera’s field of view. Since the field of
interest in high-contrast imaging is very small, we only introduce
negligible errors by treating all aberrations as having taken
place in the entrance pupil plane, including any downstream
aberrations not seen by the AO system (i.e., NCP aberrations).
It is because of this that we may measure the complex halo
in the focal plane and then use Fourier optics to find an
equivalent distorted field in the pupil plane. Since we do not
know the NCP aberrations a priori, we must compute the speckle
halo without them. Depending on the magnitude and nature
of the NCP errors, this can have a large effect, distorting both
the static and speckle halos. At higher Strehl ratios (where the
peak of the diffraction-limited PSF is much brighter than the
speckles), each individual complex speckle can be thought of as
a translated, scaled, and phase-shifted copy of the speckle-free
halo. Therefore, including the NCP aberrations would mostly
just alter the “speckles on the speckles,” adding noise to the
speckle halo, but having only a minor effect on the brighter
speckle peaks. The NCP errors also alter the static halo, often
in ways which cannot be ignored. However, by estimating and
removing the idealized static halo from our calculation, we are
left with just the speckles. This justifies why we can ignore
the NCP aberrations when computing the speckles, allowing us
to bootstrap our interferometric measurement of the true static
halo. If we need more accuracy, we can iterate the process
by using the first estimate of the NCP aberrations in a second
calculation of the complex speckle halo.

As we collect WFS data, we repeatedly carry out the above
steps to build a “data cube” of complex halos that do not include
the effects of NCP errors, but do include residual AO speckles
along with a simplified static halo. This static halo is presumed
common to all frames of the data cube (Ψnmw ≡ Ψ(kθnm, tw),
where θnm is the grid of pixel coordinates) and can be estimated
by averaging over the time index. Since we force the time
average of the speckles to be zero over each data cube, we
are actually pushing any estimation error onto the derived static
halo. This is a consequence of processing with smaller data
cubes, and the resulting individual static halo estimates from
multiple data cubes, when averaged, should lead to a more
accurate answer.

As mentioned earlier, the WFS slopes are related to wavefront
displacements by a “reconstructor matrix.” This is essentially
an integrator, working on the set of x and y slopes returned
from the WFS sub-apertures. The x and y slopes from the
12 × 12 WFS are serialized into a single 288 × 1 “slopes
vector,” �, which is integrated into a wavefront by multiplying
by a “reconstructor matrix” W : z = W�. Since the MMT AO

wavefront reconstructor, W AO, only corrects a limited number
of modes (currently 56), it is not sufficient for our complex
halo calculation. If we consider each pair of modes to be the
equivalent of controlling the real and imaginary parts of the
complex amplitude of a speckle, each of which has a width
of roughly λ/D, then 56 modes will take us out to roughly
3.7λ/D from the star, while the WFS is capable of at least
6λ/D. To allow us to properly recover the residual wavefront
to the accuracy of the WFS rather than being limited by the AO
system, we require a better reconstructor, W residual. Since our
reconstructor is not used to drive the DM, nor is it intended to
be iterated by being placed inside of an AO servo loop, it is not
as important to be conservative about issues such as modal gain,
making it easier to derive an adequate reconstructor. Also, since
the computed displacements are not going to be used to drive
the actual DM, we can choose to reconstruct the wavefront
at more conveniently placed locations across the pupil: e.g.,
on a square grid, instead of the actual hexapolar locations of
the physical DM. But here, to facilitate direct comparison with
the AO system’s data as well as other live reconstructor tests,
we used the physical actuator locations. For each WFS slopes
vector, the estimated residual wavefront displacements at the
actuators are given by z = W residual�.

We estimated and removed the mean x and y slopes from
the slopes vector before multiplying by W residual, resulting in
a vector of wavefront displacements with tip-tilt removed. For
computing the complex pupil field and halo, we interpolated
the wavefront displacement estimates at the actuators to a
4 cm square grid using Delauney triangularization and cubic
interpolation, yielding a wavefront displacement znm at xnm =
(n,m)δx+x00. The complex pupil field was computed by ϒnm =
Πnm exp(2πiznm/λscience), where Πnm is the pupil transmission
mask interpolated to the grid coordinates. The resulting complex
mesh was zero-padded to N×N and Fourier transformed, giving
focal plane samples spaced by δκ = 2π/Nδx and angular
spacing of δθ = λscience/Nδx. We adjusted N to match the
L-band Clio plate scale of 0.25λ/D. The focal plane field was
computed using 2D FFTs and the results kept in a complex data
cube Ψnmw ≡ Ψ(κx, κy, twfs). This processing was performed
for each set of 100 science camera images (∼2.5 s), with the
corresponding set of WFS frames selected and used to compute
a halo data cube spanning the science camera exposures at
the WFS frame rate. Since the synchronization between the
WFS data and the science camera is only accurate to about
one frame from the center of a 100-exposure image set, but
the duration of the individual exposures is 6.5 frames, the
starting frame index is assumed to be on a frame boundary,
with subsequent exposures placed on the timeline as they
fell. The full-speed complex halo was then down-sampled
to the science camera frame rate by summing the complex
frames, including linearly weighted end frames according to
the computed endpoints. Finally, since the actual piston and tip-
tilt may have changed during a single science camera exposure,
we performed the complex halo sums before normalizing to the
peak phase. Since tip-tilt was removed in the slopes before
computing the halo, motion blur was not fully represented,
but the image wander is much smaller than λ/D during
any single science camera exposure and the error introduced
is small. The complex halo estimate at the science frame
rate was

Ψ̂nmμ = e−ipμ

∑
w∈tsci(μ)

Ψnmw (42)

15



The Astrophysical Journal, 767:100 (26pp), 2013 April 20 Codona & Kenworthy

Figure 12. Cut through the computed speckle field for five non-contiguous Clio image sets. The upper panel shows the speckle amplitudes as a function of time while
the lower panel is the speckle phase relative to the light in the PSF core. The 100 Clio frames of each set are contiguous, but not across boundaries at multiples of 100.
The speckle amplitudes are arbitrarily normalized to the brightest value.

(A color version of this figure is available in the online journal.)

where pμ = . arg{∑w∈tsci(μ) Ψnmw}|core. Since 〈φ〉 = 0 �

arg{〈eiφ〉} = 0, core phase referencing was performed on the
complex WFS PSF halo.

Since the individual complex halo cubes were so short, we did
not force the mean speckle field to be zero for each individual
cube, giving a changing estimate for the simplified static field
used in the calculation. Instead, we used an estimate of the
ensemble average of the halo, (i.e., S 1/2Ψ0 as described in
Appendix A) and used it to estimate the speckle halo over each
cube. This is better than using the per-cube average since the
estimation error appears as a constant across the pupil rather than
randomly textured (Section 4.6). Our resulting speckle field was

ψnmμ = Ψ̂nmμ − S 1/2Ψ0. (43)

Note that while this is no longer zero mean on the scale of
individual image cubes, it should approach zero mean in the
ergodic limit of many data cubes. The speckle field is now able
to be directly compared with the science camera image cubes
as they are synchronized and have the same sampling in space
and time.

Before continuing on to compute the static halo, it is useful
to look at the behavior of the complex speckles and their spatial
and temporal statistics to understand how our result is affected
by exposure time, wind, etc. Figure 12 shows an angle-time cut
through the center of the speckle field in the projected direction
of the wind to illustrate the lifespan of the speckles, with both
amplitude and phase variations. The speckle amplitude variation
timescale is reasonably consistent across the speckle cloud,
while the speckle phase has a similar pattern superimposed
on a steady phase rate that increases as we move away from
the star. These speckles coherently add to the as-yet unknown
static halo, the intensity being recorded by the science camera.
We can make a visual comparison of the science images frame-
by-frame to the WFS-based images using |Ψ̂nmμ|2, which is
based on our simplified no-NCP error model (Figure 13). This
figure illustrates if we are indeed computing speckles when
and where they were actually observed, and the extent of any
deviations. For each row in Figure 13, the PSF derived from
the WFS slopes is shown on the left, while the corresponding
Clio image is on the right. The two images exhibit similar
behavior, but with the single-wavelength computed PSF having
more well-defined speckles than the actual science images due
to the bandwidth of the science images. The speckles in the
computed images may also be more or less prominent than the
real images since the reconstructor gain may be incorrect as a

Figure 13. Star images computed from the residual WFS measurements (left
column) alongside the corresponding Clio images (right). The computed images
mainly differ from the actual images in optical bandwidth and non-common-
path (NCP) aberrations. The computed images are monochromatic and assume
that the estimated wavefront seen by the WFS is the only source of aberration.

function of position around the star (i.e., a possibly incorrect
modal gain). Also, since NCP aberrations and low-order effects
such as defocus are not included in the computed PSFs, there
might be noticeable differences between computed and real
images, as well as complicated differences with the speckles. In
our present case the comparison is reasonably good, providing
a sanity check that the synchronization and WFS-to-speckle
calculation was performed correctly.

The various statistics are straightforward to compute from
the image and complex speckle data cubes. The intensity
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variance is

σ 2
I = 1

N

N∑
w=1

(
Inmw − 1

N

N∑
w′=1

Inmw′

)2

; (44)

the mean speckle halo intensity is

Φspeckles = 1

N

N∑
w=1

|ψnmw|2; (45)

the variance in the speckle halo’s intensity

σ 2
speckles = 1

N

N∑
w=1

(|ψnmw|2 − Φspeckles,nm)2; (46)

and the stabilized intensity is

〈ψI 〉 = 1

N

N∑
w=1

ψnmwInmw. (47)

The scale factor g is computed using Equation (26) and the static
halo Ψ is given by Equation (27).

The wind speed gusted by more than a factor of two and
changed direction by more than 45 deg during the observation,
causing clearly visible effects in the speckle field statistics.
When the wind was slower (say 5–10 m s−1), the speckle
cloud was more isotropic with a form characteristic of fitting
error, while stronger wind gusts enhanced the plume of lag-
error speckles. Figure 14 shows two selected times with slower
and faster wind. For each case the figure shows the WFS
slopes and three derived speckle statistics. The 12 × 12 sub-
aperture Shack–Hartmann WFS slopes were organized into
288-element vectors and concatenated into a matrix of slopes
(upper images). The speckle halo was computed for each
slopes vector and the three statistical images were averaged
from the 650 complex speckle frames. The lower left images
are the average speckle power centered on the star, showing
the morphological change between the more isotropic fitting
error halo and the lag error speckle plume. The middle image
is the average amount of phase rotation seen during a Clio
exposure, computed from the two-time MCF (Equation (35)):
δφ(θ , tsci) = arg{Γ(θ, tsci)}. The phase rotation is mostly a
systematic translation effect, while the loss of coherence due to
random effects is better described by the drop in the magnitude
of the MCF |Γ(θ , τ )/Γ(θ , 0)|, shown in the lower right images
in Figure 14 for a lag of 6 twfs. The linear gray scale runs
from completely incoherent (black) to completely coherent
(white). The results show that while fitting error speckles rapidly
lose coherence, lag error speckles remain coherent longer in
the direction of the wind. This is due to the well-known
phenomenon of the AO system repeatedly making the same lag-
induced correction error as the aberrations are carried across
the pupil.

A more quantitative view of the speckle evolution and decor-
relation is shown in Figure 15. As described by Equation (38),
part of the MCF describes the speckles’ decorrelation, while a
phasor factor systematically rotates the phase depending on the
wind’s projection onto the selected point’s position relative to
the star. The figure shows the MCFs, normalized by the zero-lag
value (note Γ(0; θ ) = Φspeckles(kθ)), for a single selected point
in the second Airy ring for all of our speckle data cubes. This

complex function shows the speckle decorrelation as a decrease
in the absolute value of Γ(τ ) with increasing time, as well as
the systematic phase rotation caused by the wind. But also, the
figure shows that when the wind is faster, the MCF falls in mag-
nitude much more slowly. This is due to the AO system repeating
the same error as it “chases” the wind-driven aberrations across
the pupil. While this effect increases speckle noise due to fewer
statistically independent speckles in a given exposure, it helps
us in that longer-lived speckles can be imaged with more mod-
est science camera frame rates, like 30 frames s−1. Both speckle
decorrelation and phase rotation affect our interferometric mea-
surement’s S/N, as we will see below.

In the pre-AO pupil plane, the coherence time is usually
defined in terms of advection of the wavefront by pure Taylor
flow. This implies that the natural definition of coherence time
is Dφ(vwindτ0) = 1, or as is often quoted, τ0 = 0.314r0/vwind
for a Kolmogorov wavefront (Greenwood & Fried 1976).
However, this is more properly defined in terms of the temporal
MCF, Γ(τ ) = 〈ψ(x + vwindτ )ψ∗(x)〉 = exp{−Dφ(vwindτ )/2},
where the canonical structure function definition becomes
|Γ(τ0)/Γ(0)| = e−1/2. This is the definition we used to compute
the focal plane coherence time in Figure 16(a). Note that
the coherence time is only about 35–50 ms except in the speckle
plume where the coherence time is much longer. This is the
expected behavior with a non-predictive AO servo algorithm
that uses only the most recent WFS measurements to update
the DM. It is interesting to note in Figure 16(a) that the lag-
error speckle coherence time is longer over the Airy rings.
This was not expected, but may be due to the wind bringing
in unseen aberrations at the edge of the pupil. More study is
required.

The other timescale of concern is how long it takes for the
systematic phase shift to change by π/2, after which at least
some of the interferometric reference beam contributions will
start to subtract. Note that outside of the speckle plume, the
phase shift timescale is longer due to the oblique translation
geometry or irrelevant due to the lack of persistent speckles. For
speckles that are more in line with the wind flow, the phase
change becomes more consistent and the lag error speckle
plume makes the effect dominant. For our data set, however,
the most important effect over the majority of the focal plane is
the changing residual aberration pattern, not the translation by
the wind.

The most useful and practical metric is the additional loss of
S/N due to longer science camera exposures. As expressed in
Equation (37), the S/N is reduced by a weighted integral over
the MCF at various lags. This can be computed from our WFS
data and is shown in Figure 17. The figure shows that although
the Clio exposure times were long enough to show a great deal
of coherence loss end-to-end, the S/N dropped to only about
60%–90% of an arbitrarily high frame rate camera. This can
be recovered everywhere, if required, by integrating about three
times longer.

In each of these figures, there are occasional resonant speckles
caused by processing lag and wind, along with the particular
characteristics of the reconstructor, lead to enhanced speckles at
certain angles. This was an unusual situation, possibly due to the
engineering tests being performed. However, such phenomena
can occur in a live AO system and may cause difficulties in
the measurement. In this case, the speckle phase distribution
about the mean was still sufficient to give a good statistical
measurement of the static halo. But they are certainly a sign that
greater care should be taken.
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Figure 14. Effect of wind speed on the distribution and evolution of the speckles. Two 2.5 s WFS data sets are shown, with the 2.5 s of WFS slopes vectors organized
as a 288 × 650 matrix. The slopes were reconstructed into residual wavefronts and used to compute the complex speckle halo. In the top set of images the wind
is slower, while in the lower set the wind is gusting to more than twice the upper speed. The speckle halo’s mean intensity is shown on the left. The slower wind
case is dominated by the relatively isotropic fitting error, while the faster wind shows a prominent lag error speckle plume in the (shifted) direction of the wind. The
average speckle intensity is shown using a square root scale. The systematic phase smearing during a Clio exposure is shown in the center image. Finally, the speckle
decorrelation on the right shows the loss of speckle coherence at a lag roughly equal a Clio exposure.

18



The Astrophysical Journal, 767:100 (26pp), 2013 April 20 Codona & Kenworthy

Figure 15. Normalized mutual coherence function Γ(τ )/Γ(0) for a single point
in the second Airy ring. Two example cases are highlighted, one where the
angle between the wind vector and the pixel vector is small (brown with
diamonds) and one where the angle is significantly larger (blue with circles).
For each of the WFS-derived speckle data cubes, Γ(τ ) was computed at lags
τ : {0, 1, 2, · · · , 20, 25, 30, · · · , 100}twfs. The speckles always decorrelate with
time, but wind causes a systematic phase shift in a direction related to the
projection of the wind on the selected point in the focal plane. The interesting
cases where the angle swerves from one sign to the other are caused by more
than one wind stream competing. The values of the MCF at the end of the Clio
exposure are shown as filled red circles, showing that for this pixel the phase
smearing was never a serious issue. The speckle coherence time, τ0, is defined
as when Γ(τ )/Γ(0) crosses the red dashed circle at a radius of e−1/2. The more
wind-blown lag error speckles remain coherent longer since the AO system
repeats the same error as the wind carries the aberrations across the pupil. This
function and its two main behaviors (straight decorrelation and systematic phase
shift; see Equation (38)) determine the loss of S/N for various science camera
exposure times (see Section 3.1).

(A color version of this figure is available in the online journal.)

4.5. Estimating the Static Halo

As derived in Section 2.2, we can estimate the static halo from
the Clio and complex speckle data cubes using Equation (27).
In discrete form this is

Ψnm =
∑

w ψnmwInmw

gnm

∑
w |ψnmw|2 . (48)

The scale factor is a function of position and is computed
using Equation (26), shown in Figure 18. As expected for a
reconstructor that is not carefully calibrated, the speckles do
not have a uniform scale over the working field. Including this
correction, we now have an estimate of the static complex halo
as shown in Figure 19. Armed with this information, we can
now use it in an anti-halo servo to suppress the halo over some
region of interest (Codona & Angel 2004), or we can use the
entire halo to estimate the wavefront in the pupil plane including
the NCP error to improve the Strehl ratio and imaging quality at
the science camera. This use of the measured static halo requires
more work but is conceptually as simple as taking the Fourier
transform of the static halo.

4.6. Estimating the Pupil Field

The static halo is the mean of the complex halo (Appendix A,
specifically Equation (A1)), and therefore it is the inverse
Fourier transform of the mean complex pupil field ϒ(x, t) under
the paradigm of Fourier optics (Equation (A22)). Our static
halo field includes the effects of any NCP aberrations after
the AO system and the science camera, which may have been
introduced at any point in the intervening light path. The inverse
Fourier transform of the static halo does not give the literal pupil
field, but the apparent pupil field including the effects of the
downstream aberrations back-projected to the pupil. Since the
pupil is the canonical location of the DM where we can affect
wavefront corrections, we can use this estimate to determine the
wavefront offsets required to modify the resulting halo in any
desired way. Expressing this in terms of the forward Fourier
optics equation (Equation (40)), we write

ϒ0(x)Π(x) =
∫

e−iκ ·xΨ(κ)d2κ

(2π )2 S 1/2 , (49)

where we have made use of the assumption that the residual
wavefront phase from the AO correction is a zero-mean Gaus-
sian random variable and 〈exp(iφ)〉 = exp(−〈φ2〉/2) ≡ S 1/2

is the square root of the Strehl ratio. This gives us an estimate
of the pupil field, blurred due to the limited spatial frequencies
recovered by the interferometry calculation. The NCP pupil
field is ψ̄(x) = a(x) exp(ikδz) where the amplitude a(x) ∈ R

may include transmission effects, as well as back-projections
of downstream vignetting, etc. The wavefront to be corrected is
given by

δz = λ

2π
arg

{∫
e−iκ ·xΨ(κ)d2κ

}
. (50)

This simple procedure should be all that is required to
compute the wavefront correction, but there are some caveats
and corrections. The pupil field estimate is missing some low
spatial frequency components, mostly a constant. The reasons
for this have already been discussed in Section 3, and are related
to our computed phase referencing to the PSF core, and the fact
out tip-tilt stabilization reducing the apparent effect of anti-
Hermitian speckle pairs near the optical axis. We also did not
account for interference between the very low spatial frequency
speckle pairs, causing an error that becomes significant within
λ/2D of the PSF core. We can calibrate this error by applying
a known bias to the DM and seeing what the measured value is.
Since a constant bias would affect the measured phase aberration
according to

δ̂z = λ

2π
arg

{
ψbias +

∫
e−iκ ·xΨ(κ)d2κ

}
(51)

we can then adjust the constant ψbias to give a reasonable
estimate of the actual aberration.

Since we did not have a calibration for the data presented in
this paper, we estimated a constant pupil field of 50% of the mean
computed value. Adding this to the computed value for each 2.5 s
Clio data cube, we compute the NCP aberrations. A selected
subset of the wavefront errors are shown in Figure 20. Since
the estimates are generated from only 2.5 s duration science
camera cubes, the recovered NCPs show a significant amount of
variance, but they also show consistent morphological patterns.
The average of these is shown in Figure 21. The peak-to-valley
surface error (i.e., half the wavefront error) is 1266 nm and the
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(a) (b)

Figure 16. Average speckle halo characteristic timescales across the focal plane (dashed circles at 1λ/D spacings). The wind-driven speckle plume varied about a
direction roughly 60 deg clockwise from the positive y-axis. Image (a) is the characteristic coherence time computed using |Γ(τ )/Γ(0)| = e−1/2. The color scale is
labeled in milliseconds and runs from 35 ms to 90 ms. The fitting error speckles typically decorrelated after 35–50 ms while the lag error speckles in the apparent
direction of the wind lasted longer. Note that the lag-error speckle lifetimes were longer when they appeared over an Airy ring, which was not expected. Image (b)
shows the average time required for the speckle phase to change by ±π/2, extrapolated from the phase swing after four WFS frames. The color scale runs from 50 to
250 ms.

(A color version of this figure is available in the online journal.)

Figure 17. Pixel-by-pixel worst-case loss of S/N due to science camera exposure
time, compared to an ideal short-exposure S/N. The Clio exposures were
6.5 times longer than the WFS exposures, so there was some loss of S/N
depending on the wind and focal plane position. The S/N was only down
to about 90% nearer to the star, dropping to about 60% in the processing-lag
speckle plume as the phase wrapping rate increased farther from the star. For this
bright star and weather circumstances, we would have no difficulty analyzing
low-order aberrations with even significantly longer exposures.

rms error is 206 nm. This result is compatible with the science
images, and all that remains is to apply the corrections to the
DM and see the improvement in the image quality.

5. DISCUSSION

We have developed a new interferometric technique for focal
plane wavefront sensing using the residual starlight speckles
left behind by an AO system. Our method requires no extra
hardware or optics beyond that used in a typical AO system.

Figure 18. Map of the scale factor g(θ ) in a neighborhood around the star. The
scale is base-10 log and the circles are 1–6 λ/D. The white area on the upper
left is due to a dithered flaw in the sensor.

The rapidly changing residual AO speckles are present in the
science camera image plane and coherently interfere with the
starlight diffraction halo. The speckles result from uncontrolled
errors in the correction of the atmospheric aberrations, result-
ing in small residual wavefront fluctuations in a pupil plane
downstream from the AO system’s deformable mirror (DM).
While uncontrolled and unsuppressed by the AO system, these
residual errors are still monitored by the WFS and are available
for other purposes. Improved AO technology and algorithms
will continually reduce the errors and subsequent speckles, but
they will remain a ubiquitous feature that can be exploited for
other purposes. Our technique uses the WFS measurements to
compute a numerical analog of the complex halo (with both
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Figure 19. Average complex halo derived from 67 2.5 s Clio image cubes (6700 images) and 43,550 WFS measurements. This calculation used the presumed ensemble
average method for computing the speckles and therefore may be missing an additive fraction of the ideal complex halo.

(A color version of this figure is available in the online journal.)

Figure 20. Examples of 2.5 s estimates of the pupil wavefront. The scale factor g(θ ) was computed from the full set of 67 100-exposure image cubes and used in the
calculation of the static halo for each cube. The loss of low spatial frequency power due to the inability to sense piston as well as tip-tilt stabilization was approximately
compensated for by adding a constant to the computed pupil field. The resulting phase was converted to mirror surface heights using z = φ(x)λ/4π. The scale is
labeled in nanometers.

amplitude and phase), which is also measured in intensity by
the science camera. The computed halo is used as a key to inter-
pret short-exposure science camera images, allowing the steady
portion of the star’s complex halo. Since the intensity measure-
ments are downstream from the AO system, the our complex
halo measurement includes information about both common and
non-common-path aberrations. This information is useful both
for correcting the wavefront before imaging and post-detection
image processing.

We demonstrated the technique using data taken with the
MMT AO WFS and the Clio science camera in the L band.
We synchronized and down-sampled the WFS measurements to
match the Clio frame rate of about 40 frames per second. Using
our mathematical theory, we were able to compute an estimate
of the complex halo every 2.5 s from 100 Clio images and
650 WFS measurements. The resulting complex halo estimate
represents the average field in the focal plane and is related to
the pupil field by Fourier transform. We analyzed the temporal
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(a) (b)

Figure 21. MMT’s average static pupil field including back-projected non-common-path aberrations. The pupil field was biased by a constant of half the rms amplitude
to approximately compensate for underestimated low-spatial-frequency power. Image (a) is the intensity, and the 0.1D central obstruction is clearly seen. Image (b)
is the average WFE computed as a bias to be applied to the DM. The scale is labeled in nanometers. The peak-to-valley surface error is 1266 nm and the rms error is
206 nm (an rms phase error of λ/9.2 at L band).

statistics of the speckle halo and used them to estimate the effect
of slower science camera exposures. We found that the impact
of exposure time, while depending on the details of wind and
focal plane position, was not serious—especially near the star
where halo suppression will be most important.

Although at this time we were not able to demonstrate
the use of the complex halo to improve the science images,
the path forward and potential benefits of continuous end-to-
end optical quality measurements and updating are clear. The
Fourier transform of the halo provides an estimate of the pupil
field, including the back-propagated effects of NCP aberrations.
By applying appropriate DM offsets to compensate for the static
pupil field’s phase, the Strehl ratio seen by the science camera
can be improved, providing correspondingly improved detection
sensitivity. Measurements of the complex halo are even more
directly useful for suppressing residual diffracted starlight in
a flawed or poorly aligned coronagraph by using an anti-halo
servo, the theory of which was not discussed in this paper.

In future work we plan on developing a system to estimate
the static halo in real time during observations. The estimates
will then be fed back to the AO system either as WFS or DM
biases. For normal (non-coronagraphic) imaging, the goal will
be to optimize Strehl ratio at the science camera. When using
a coronagraph, our goal will be to suppress unwanted halo in
the search region while simultaneously maximizing Strehl ratio.
These enhancements will not require the addition of any new
optics, but will require the addition of an outer control loop
that affects the operation of the AO system. We also plan to
use the complex halo measurements to develop two new image
processing algorithms. By using the estimated pupil field, we
can compute better numerical PSFs, which include the effects
of both common and non-common-path aberrations as well as
optical filter bandwidth. Subtracting the computed PSFs from
the actual star images will reduce speckle noise. We also plan to
use the computed PSFs as a key for when to keep pixels in the
science data cube, including them only when the computed halo
falls below some statistical threshold. This “lucky pixel” type
algorithm should be capable of increasing sensitivity by a factor
of about two. Including both algorithms, the decrease in speckle
noise can be significant, depending on the raw performance of

the AO system. For the MMT, we would be hoping to achieve an
additional sensitivity of 2–4 mag over the corrected coronagraph
alone.

Observations reported here were made at the MMT, a joint
facility of the University of Arizona and the Smithsonian
Institution. This effort was supported by the National Science
Foundation grants AST-0804586 and AST-0904839. We also
make a special thanks to Roger Angel for stepping in at a critical
point in preparing the NSF proposal when the PI (JLC) was in
the hospital. This project would have, at the minimum, been
significantly delayed had he not taken extraordinary action.
We thank Vidhya Vaitheeswaran for PCR code which helped
organize the synchronization mode required for this data. We
thank Phil Hinz for support with the Clio mid-IR camera. We
also thank Michael Hart and Rich Frazin for review and editorial
comments.

APPENDIX A

THE STATIC HALO AND SPECKLE CLOUD

We treat residual AO speckles to be additive random field fluc-
tuations coherently interfering with a static diffraction pattern.
In this appendix we explore the halo, and consider assumptions
and statistics. We show why the high Strehl ratio focal plane
field is a somewhat attenuated version of the telescope’s diffrac-
tion pattern, including NCP aberrations, and a coherent cloud of
speckles which are reasonably described as zero-mean Gaussian
complex field fluctuations. We will consider two cases: the clas-
sic seeing-limited situation with no AO wavefront correction as
a touchstone, and the diffraction-limited case with a static PSF
surrounded by a cloud of speckles.

We start with an incident field ϒ(x) passing through a possibly
complex pupil mask Π(x), which also includes any NCP
aberrations. We will not include scintillation here, but could
easily do so. For convenience and wavelength independence, we
use the spatial frequency κ = (κx, κy) to describe the complex
halo field

Ψ(κ, t) =
∫

eiκ ·xϒ(x)Π(x)d2x (A1)
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where
ϒ(x) = eiϕ(x,t)ϒ0(x)

is the pupil field and ϒ0(x) is the pupil field without any of the
fluctuating phase aberrations ϕ(x, t). Note that our halo field is
the angular spectrum of plane waves comprising the pupil field,
where each κ plane wave travels from the direction θ = κ/k
with k = 2π/λ. The PSF is the focal plane intensity distribution
resulting from an on-axis star, where ϒ0(x) = 1. Although
NCP aberrations occur downstream from the AO system and
the nominal pupil plane, our small field of interest allows us to
treat them as being included in the initial pupil field ϒ0(x). In
our notation, the PSF is the angular power spectrum of plane
waves

Φ(κ, t) = |Ψ(κ, t)|2. (A2)

The fluctuating phase aberrations are presumed to vary
randomly in space and time, with ergodicity allowing us to
use ensemble and temporal averages interchangeably. While
this may be a reasonable assumption for the atmospherically
distorted incident field, it is wise to keep an open mind regarding
the post-AO statistics. In general, the average PSF is

〈Φ(κ)〉 =
∫

d2x1

∫
d2x2e

iκ ·(x1−x2)〈ei(ϕ(x1,t)−ϕ(x2,t))〉
× ϒ0(x1)ϒ∗

0(x2)Π(x1)Π∗(x2). (A3)

The average phase exponential is traditionally simplified using

〈eiq〉 = e−〈q2〉/2 (A4)

which is valid when q is a zero-mean Gaussian random variable
(GRV). If we assume q = ϕ(x1) − ϕ(x2) is a GRV, then

〈ei(ϕ(x1)−ϕ(x2))〉 = e−Dϕ (x1,x2)/2 (A5)

where
Dϕ(x1, x2) = 〈(ϕ(x1) − ϕ(x2))2〉 (A6)

is the structure function of the pupil field phase. Again, while
Equation (A5) can reasonably be applied to the seeing-limited
case, the post-AO case may contain patterns and correlations
that break this assumption. This may be particularly important
when using this result with multi-segment telescopes where
the segments are being phased with a slower servo loop, etc.
We cannot address that case here, and only provide a warning.
The statistics of the uncorrected atmospheric phase are also
usually considered to be translation-independent, while the post-
AO statistics may well not; post-AO correction residuals vary
depending on position relative to actuators, WFS sub-apertures,
pupil edges, etc. A simple example is the mean-square phase
residual, 〈ϕ2(x)〉 = σ 2

ϕ , which is generally assumed to be
position independent, although it probably is not. We note but
ignore this for now, assuming that at least the second-order phase
statistics are translation independent. If so, then

Dϕ(x1, x2) → Dϕ(x1 − x2).

Because the post-AO halo contains lag error speckles, we
cannot generally assume isotropy since the wind defines a
preferred direction. Translation independence allows us to
simplify Equation (A3). Make the coordinate change

α = (x1 + x2)/2

β = x2 − x1

and carry out the α integration. The result gives the average
PSF in terms of a spatially filtered version of the optical transfer
function (OTF)

〈Φ(κ)〉 =
∫

eiκ ·βe−Dϕ (β)/2O(β)d2β (A7)

where the OTF (Williams & Becklund 2002) is given by

O(β) =
∫

ϒ0(α + β/2)Π(α + β/2)

× ϒ∗
0(α + β/2)Π∗(α + β/2)d2α. (A8)

Since Dϕ(β) starts off at zero when β = 0 and rises to a
maximum value as ‖β‖ increases, Equation (A7) shows how
the mean PSF loses higher angular frequencies as the rms pupil
wavefront phase increases. This expression will be our guide in
dissecting the halo, both for the intensity PSF and realizations
of the complex halo itself.

The uncorrected structure function has certain common
features that we often refer to. As two phase measurement points
become more distantly separated, the phase values eventually
become completely uncorrelated and

Dϕ(s) → 2σ 2
ϕ . (A9)

In the post-AO case, this asymptotic limit applies as s = ‖s‖ �
�AO where �AO is the correlation scale for the AO system, defined
below. In the no-AO seeing-limited case, this does not apply until
the spacing exceeds at least the outer scale L0, and possibly not
until significantly beyond that, depending on definitions. It is
not uncommon to consider a case, albeit non-physical, where
the outer scale and the phase variance are infinite. For simplicity
in this discussion we will assume that there is an outer scale and
〈ϕ(x)〉 = 0.

The no-AO case is often modeled, or at least described,
using the isotropic Kolmogorov power law structure function,
parameterized by the Fried length r0,

Dφ(s) = 6.88

(
s

r0

)5/3

. (A10)

This function actually flattens out past L0, but for D/r0 � 1
it will not change this discussion. The blurring factor in Equa-
tion (A7), exp{−Dϕ(β)/2}, has a radius defined by Dϕ(β)/2 = 1
or β = 0.477r0. For our estimates, we will use the diameter of
the blurring filter as ∼r0. The radius of the OTF is the pupil
diameter D, although it may be more complicated for a large
segmented telescope pupil. If D/r0 � 1, the blurring filter lim-
its the integral in Equation (A7) and we can approximate the
OTF with its value at the origin, which is simply the area of
the pupil weighted by its transmission mask. Therefore in the
seeing-limited no-AO case, the average PSF is approximately
given by

〈Φ(κ)〉 ≈ O(0)
∫

eiκ ·βe−Dϕ (β)/2d2β. (A11)

When the telescope is equipped with a good AO system, the
residual phase structure function has a maximum that is still
relatively small, causing the blurring factor to look like the
constant exp{−σ 2

ϕ } with a small rise up to the value of 1 as
β → 0. This no longer limits the integral in Equation (A7)
and reveals a diffraction-limited PSF plus a scattered light halo.
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This effect of this can best be seen by explicitly pulling out the
constant term and letting the small rise near the origin stand
alone

e−Dϕ (β)/2 = S + (1 − S )H (β) (A12)

where
S = e−〈ϕ2〉 (A13)

is the Strehl ratio as usually expressed in Maréchal’s approxi-
mation (Hardy 1998), and the factor

H (β) = e−Dϕ (β)/2 − S

1 − S
(A14)

goes from a maximum value of H = 1 at β = 0 to H → 0 for
‖β‖ > �AO. Just as the structure function exponential limited
the integral (Equation (A7)) in the seeing-limited case, H (β)
limits the integral in the scattered halo term when D/�AO � 1.
This gives a high-Strehl approximation for the PSF as

〈Φ(κ)〉 ≈ S Φ0(κ) + (1 − S )O(0)H̃ (κ) (A15)

where

H̃ (κ) =
∫

eiκ ·βH (β)d2β (A16)

and

Φ0(κ) =
∫

eiκ ·βO(β)d2β (A17)

is the diffraction-limited PSF (including NCP effects since it
includes ϒ0(x)). Note that Maréchal’s approximation is always
true, but only for the diffraction-limited part of the PSF.

So in both the low-Strehl seeing-limited case (Equation
(A11)) and the high-Strehl post-AO case (Equation (A15)), we
have a spatial filter that limits the β integral in Equation (A7). In
one case the spatial filter diameter is r0, while in the other it is
�AO, the width of H (β). Although they were derived somewhat
differently, Equation (A15) actually applies to both the AO and
no-AO cases, corresponding to the high-Strehl and low-Strehl
cases, respectively.

Equation (A15) describes the mean high Strehl ratio PSF
as the sum of a static PSF plus an averaged speckle halo.
This is useful as a description of the mean starlight intensity,
and the derivations are clear and familiar since the product
of the field and its conjugate lead to phase differences and
hence phase structure functions that are insensitive to large-
scale phase wander. The same is not true of the field, which has
an overall phase that possibly wanders over many 2π cycles.
Even a highly corrected post-AO field can wander in phase
since the WFS and any corrected images are blind to the phase.
If we somehow measured the complex halo field directly while
this large uncontrolled piston phase wander was occurring, the
mean halo field would tend to zero. We get around this problem
by using a phase reference characteristic of the field over the
pupil as a whole, φref(t). The phase-referenced halo field is then

Ψ(κ, t) → Ψ(κ, t)e−iφref (t).

In our interferometric analysis, we compute the wavefront from
the WFS measurements and then use an optical model and
Fourier optics to compute an estimate of the halo field. We tip-tilt
stabilize the PSF images and remove the mean slopes from the
WFS measurements, so the phase of the PSF core is equivalent
the halo field on the optical axis. (Note that if we were modeling

a coronagraph, the corresponding phase reference would be
defined by the PSF core before encountering the focal plane
mask.) The reference phase is therefore

φref(t) = arg

{∫
eiϕ(x,t)Π(x)d2x

}
(A18)

which fluctuates somewhat depending on the residual phase
pattern. We can now write the mean phase-referenced pupil
field

ϒ(x) = 〈ei(ϕ(x,t)−φref (t))〉ϒ0(x). (A19)

We have already made use of the average of a phasor with
a GRV phase when we found the phase structure function in
Equation (A5). Since D/�AO � 1, many statistically in-
dependent regions of the pupil contribute to the integral in
Equation (A18), giving a result that is at least approximately
a GRV. Assuming further that the AO correction is at least fairly
good, we can assume that σϕ < π/2 or better. In very high Strehl,
the integral is many sigmas from the origin and the complex ar-
gument approaches a projection, giving a Gaussian distribution
for the reference phase. Its scatter will also presumably be much
less than σϕ , by a factor of ∼�AO/D based on the number of
independent contributing patches. Therefore, we can argue that
φref(t) is a GRV and uncorrelated with any given ϕ(x, t) by at
least the area factor of (�AO/D)2. With these assumptions, the
mean pupil field becomes

ϒ(x) = e−〈ϕ2〉/2e−〈ϕ2
ref〉/2ϒ0(x) = e−〈ϕ2

ref〉/2S 1/2ϒ0(x). (A20)

If the Strehl ratio is high, as it is when working with corrected
MMT images in the mid-infrared, we can neglect the reference
phase variance, giving us the mean halo formula we use in our
analysis

ϒ(x) = S 1/2ϒ0(x). (A21)

Carrying out the same phase referencing and averaging on
Equation (A1) with high-Strehl average pupil field (Equa-
tion (A21)), we can inverse Fourier transform to find the mean
pupil field from the mean (or static) phase-referenced halo field

ϒ0(x)Π(x) =
∫

e−iκ ·xΨ(κ)d2κ

(2π )2S 1/2 . (A22)

Therefore, once we have an estimate of the static halo, we can
use Equation (A22) to estimate the actual pupil field, which
includes the NCP aberrations. Since the Strehl ratio is real, the
NCP phase aberrations are independent of the Strehl ratio and
are given by

ϕNCP(x) = arg

{∫
e−iκ ·xΨ(κ)d2κ

}
. (A23)

The pupil field is the mean plus the zero-mean residuals,
which contribute to the focal plane speckles as described above.
The speckle field at any given instant is the sum of the complex
contributions from each statistically independent patch, rotated
in the complex plane by the local Fourier kernel. If D/�AO � 1,
there are many independent patches, leading to zero-mean
complex Gaussian speckle fields, even though the pupil field
is far from Gaussian.
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APPENDIX B

GAUSSIAN COMPLEX RANDOM VARIABLES

We use some less familiar properties of complex Gaussian
random variables in this paper and to assist the reader, we will
provide some derivations. We consider an ensemble of complex
values ψn ∈ C with a Gaussian, or “normal” distribution. The
Gaussian distribution has only two independent moments: the
mean μ = 〈ψ〉 and the standard deviation σ = 〈|ψ −〈ψ〉|2〉1/2.
For simplicity, we will limit the discussion here to isotropic
distributions (i.e., where the standard deviation depends on the
direction in the complex plane), but the properties we require
generalize to non-isotropic distributions as well. The isotropic
probability distribution is

Pr(ψ) = e−|ψ−μ|2/2σ 2

2πσ 2
. (B1)

As usual, if ψ = χ + iζ = ρeiϑ + μ, (χ, ζ, ρ, ϑ) ∈ R, the
probability distribution is normalized∫ ∞

−∞

∫ ∞

−∞
Pr(ψ)dχdζ = 1 (B2)

and the ensemble average of a quantity is computed by integrat-
ing the quantity weighted by the probability distribution

〈f (ψ)〉 ≡
∫ ∞

−∞

∫ ∞

−∞
f (ψ) Pr(ψ)dχdζ. (B3)

This gives the mean as

μ =
∫ ∞

−∞

∫ ∞

−∞
ψ Pr(ψ)dχdζ (B4)

and the variance

σ 2 ≡
∫ ∞

−∞

∫ ∞

−∞
|ψ − μ|2 Pr(ψ)dχdζ. (B5)

The lesser known results that we require are Y = 〈ψ2〉 (as
opposed to the more important X = 〈ψψ∗〉) and the third
moment Q = 〈ψ2ψ∗〉. For our purposes, ψ is zero-mean, which
somewhat simplifies the derivations here. We wish to prove that
the ensemble average of both Y and Q are zero, and that an
N-sample estimate of each has a scatter that is proportional to
1/

√
N .

Using Equation (B3) we can write

Y = 〈ψ2〉 =
∫ ∞

−∞

∫ ∞

−∞
ψ2 Pr(ψ)dχdζ (B6)

=
∫ ∞

−∞

∫ π

−π

ρ2e2iϑ e−ρ2/2σ 2

2πσ 2
ρdϑdρ (B7)

=
(∫ π

−π

e2iϑdϑ

)
︸ ︷︷ ︸

=0

∫ ∞

−∞
ρ3 e−ρ2/2σ 2

2πσ 2
dρ. (B8)

Therefore
Y ≡ 〈ψ2〉 = 0. (B9)

Similarly,

Q = 〈ψ2ψ∗〉 =
∫ ∞

−∞

∫ ∞

−∞
ψ2ψ∗ Pr(ψ)dχdζ (B10)

=
∫ ∞

−∞

∫ π

−π

ρ3 e−ρ2/2σ 2

2πσ 2
e−iϑρdϑdρ (B11)

=
(∫ π

−π

e−iϑdϑ

)
︸ ︷︷ ︸

=0

∫ ∞

−∞
ρ4 e−ρ2/2σ 2

2πσ 2
dρ (B12)

Q = 0. (B13)

Therefore, for zero-mean isotropic Gaussian distributions, both
moments are indeed zero.

We also wish to know how the terms converge to zero in the
discrete case with N measurements. An experiment producing
N samples of ψ allows us to make an estimate of the Y moment
by averaging the squares of the individual measurements

YN = 〈ψ2〉N ≡ 1

N

N∑
n=1

ψ2
n . (B14)

We can calculate the scatter in this measurement by considering
an ensemble of the above N-measurement experiments, and
computing the variance of YN . The ensemble average of YN
is obviously zero from Equation (B9). However, the variance of
YN is not zero and is given by

σ 2
Y = 〈|YN − 〈YN 〉|2〉 = 〈|YN |2〉 (B15)

= 1

N2

〈∣∣∣∣∣
N∑

n=1

ψ2
n

∣∣∣∣∣
2〉

= 1

N2

〈
N∑

n=1

N∑
m=1

ψ2
nψ∗2

m

〉
. (B16)

If all of the samples ψn and ψm in a given experiment are
statistically independent and zero mean, then for n �= m, the
ensemble average of the “off-diagonal” terms are zero since
〈ψ2

nψ∗2
m 〉 = 〈ψ2

n〉〈ψ2
m〉∗ and each of the ensemble average Y

moment factors are 0 from Equation (B9). The “diagonal” terms
where n = m are the same sample and do not average to zero.
We continue

σ 2
Y = 1

N2

〈
N∑

n=1

|ψn|4
〉

(B17)

= 1

N2

N∑
n=1

〈|ψn|4〉 (B18)

= 1

N
〈|ψ |4〉 (B19)

where we have assumed that all of the measurements have the
same statistical moments. Therefore

σY = 〈|ψ |4〉1/2/
√

N. (B20)
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Similarly, an N-term estimate of Q is

QN = 〈ψ2ψ∗〉N ≡ 1

N

N∑
n=1

ψ2
nψ∗

n . (B21)

The variance of QN is

σ 2
Q = 〈|QN − 〈QN 〉|2〉 = 〈|QN |2〉 (B22)

= 1

N2

〈∣∣∣∣∣
N∑

n=1

ψ2
nψ∗

n

∣∣∣∣∣
2〉

(B23)

= 1

N2

〈
N∑

n=1

N∑
m=1

ψ2
nψ∗

nψ∗2
m ψm

〉
. (B24)

Once again, so long as the measurements for n �= m are
statistically independent, so the off-diagonal terms vanish due
to Equation (B13). The diagonal terms remain giving us

σ 2
Q = 1

N2

〈
N∑

n=1

|ψn|6
〉

= 1

N2

N∑
n=1

〈|ψn|6
〉

= N

N2

〈|ψ |6〉 = 1

N

〈|ψ |6〉 .
Therefore

σQ = 〈|ψ |6〉1/2/
√

N. (B25)

The same convergence result holds for any “unbalanced” mo-
ment where the number of straight and conjugate factors are
unequal.
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